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We investigate the possibility that axionlike particles (ALPs) with various potentials account for the
isotropic birefringence recently reported by analyzing the Planck 2018 polarization data. For the quadratic
and cosine potentials, we obtain lower bounds on the mass, coupling constant to photon g, abundance and
equation of state of the ALP to produce the observed birefringence. Especially when the ALP is responsible
for dark energy, it is possible to probe the tiny deviation of dark energy equation of state from −1 through
the cosmic birefringence. We also explore ALPs working as early dark energy (EDE), which alleviates the
Hubble tension problem. Since the other parameters are limited by the EDE requirements, we narrow down
the ALP-photon coupling to 10−19 GeV−1 ≲ g≲ 10−16 GeV−1 for the decay constant f ¼ Mpl. Therefore,

the Hubble tension and the isotropic birefringence imply that g is typically the order of f−1, which is a
nontrivial coincidence.
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I. INTRODUCTION

The Cosmic Microwave Background (CMB) observation
has played a crucial role in the development of the modern
precision cosmology. The WMAP and Planck satellites
determined the various cosmological parameters with high
precision and established the standard cosmology based on
the Λ Cold Dark Matter (ΛCDM) model [1–4]. Recently,
however, the novel analysis on the Planck 2018 polariza-
tion data indicated a hint of a new ingredient beyond
ΛCDM. Reference [5] reported a measurement of the
isotropic cosmic birefringence, which excludes the null
hypothesis at 99.2% confidence level (CL). Cosmic bire-
fringence is the rotation of the photon polarization angle
[6,7], and the observation of isotropic cosmic birefringence
may imply the presence of new physics.
One of the possible sources of cosmic birefringence is

axion or axionlike particle (ALP) with a weak coupling to
photon [8–13]. Axion is a hypothetical pseudo-Nambu-
Goldstone boson originally introduced to solve the strong
CP problem [14–16], and ALPs have been introduced in
many extensions of the standard model of particle physics
[17,18]. Especially, those particles predicted in string
theory have the broad range of mass and the couplings
to gauge fields [19,20].
In the presence of ALPs coupled to photons through a

Chern-Simons term, the difference of the ALP field along
the light path induces cosmic birefringence [6,7,21–23].
While the ALP perturbation at the decoupling of photon

induces anisotropic birefringence, the background motion
of the same field induces isotropic birefringence.
Therefore, we are interested in the ALP field whose
background value evolves in time after the decoupling of
CMB photons. If the ALP field rapidly oscillates during the
photon decoupling epoch, its background value around
the last scattering surface (LSS) is averaged over the
duration of thickness of the LSS and exponentially sup-
pressed. In this case, what is left over for the contribution to
polarization angle is the ALP field value today, and hence
the isotropic birefringence is significantly suppressed.
Therefore, we expect that the ALP field can induce a
non-negligible birefringence if its mass is small enough not
to oscillate until the last scattering epoch.
In particular, if the ALP mass m is as small as today’s

Hubble constant H0 and the field slowly rolls down the
potential until now, the ALP may comprise all or part of
dark energy [24–35]. In this case, the corresponding dark
energy scenario is called thawing quintessence [36] in
which the field equation of state is initially close to −1
and it starts to deviate from −1 only recently. The joint
likelihood analysis of Planck 2018 combined with the data
of supernovae type Ia and baryon acoustic oscillations
showed that today’s field equation of state is constrained
to be in the range wϕ < −0.95 (95% CL) [4] with the
quintessence prior wϕ ≥ −1 (see also Refs. [37–39]). Due
to the observational degeneracy of wϕ around −1, it is
generally difficult to distinguish thawing quintessence from
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the cosmological constant. In other words, the time
variation of the ALP field is hard to be detected by the
standard distance measurements alone. On the other hand,
the cosmic birefringence provides an independent probe for
constraining the background dynamics of the ALP field.
Even if wϕ is very close to −1, we will show that the
existence of the ALP-photon coupling g can explain the
observed rotation angle of cosmic birefringence, while
satisfying other experimental bounds of g.
In the ΛCDM model, there is an observational tension

of the H0 value between CMB [4] and local astrophysical
measurements at low redshifts (cosmic distance ladder)
[40–45], with the significance of 4.4σ [45]. Among various
solutions to alleviate this problem [46–60], the modifica-
tions of the cosmological dynamics prior to the CMB
decoupling epoch dubbed early dark energy (EDE) [61–71]
have been in active study. In these scenarios, the energy
density of EDE behaves like a cosmological constant at
early times and increases the Hubble expansion rate before
the last scattering epoch, and then it dilutes away like
or faster than radiation. As a result, the presence of EDE
reduces the sound horizon at the last scattering and increases
H0 inferred from the observed temperature anisotropies in
CMB. This unique evolution of EDE can be realized if the
bottom of the potential is equal to or higher order than
the quartic potential. With such a nonlinear potential, the
ALP oscillation gets slower as the amplitude decreases.
Consequently, the aforementioned suppression of cosmic
birefringence due to the ALP oscillation during the last
scattering epoch is not as severe as the quadratic potential,
which drastically changes the prediction of birefringence
compared to the conventional ALPs.
In this paper, we investigate the possibility that the ALPs

account for the recently reported isotropic cosmic birefrin-
gence with various potentials. First, we examine the case
where the ALP comprises a part of the energy component
of our universe including dark energy and dark matter by
extending the previous work [72] which some of the
authors conducted when only the upper bound on the
isotropic cosmic birefringence angle was available. We
adopt the quadratic potential and cosine potential and
discuss the relations among the ALP mass, the ALP energy
fraction, initial conditions, and the inferred value of the
coupling g. In addition, the equation of state is related to
the inferred value of g. From these relations, we put lower
bounds on g, the ALP mass, the current ALP abundance,
and the equation of state.
We also investigate the isotropic birefringence produced

in the proposed EDE scenarios for the first time, while the
earlier work studied the anisotropic birefringence in an
EDEmodel [73]. We study two typical models of EDE with
higher-order periodic potentials and power-law potentials.
Since the ALP mass and initial conditions are restricted by
the requirement that the ALP works as EDE, we can infer
the ALP parameters with less free parameters than the

former case. In particular, for higher-order periodic poten-
tials, the inferred g value and the decay constant f satisfy
the nontrivial relation gf ¼ Oð1Þ for f ¼ Mpl.
While we mainly focus on the background ALP field

inducing the isotropic birefringence in this paper, the ALP
fluctuation at the observer also contributes to it. We also
discuss the latter effect.
This paper is organized as follows. In Sec. II, we briefly

review the cosmic birefringence induced by the ALPs. On
using the recent observed angle of cosmic birefringence,
we identify the inferred ALP parameters for the simple
ALP models in Sec. III and for the EDE models in Sec. IV.
We discuss other possible contributions to the isotropic
birefringence in Sec. V. We conclude in Sec. VI.

II. COSMIC BIREFRINGENCE BY ALP

In this paper, we consider an ALP field ϕ coupled to
photons with the electromagnetic tensor Fμν. The gravita-
tional sector is described by general relativity with the Ricci
scalar R. The action in such theories is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
M2

pl

2
R −

1

2
gμν∂μϕ∂μϕ − VðϕÞ

−
1

4
FμνFμν þ 1

4
gϕFμνF̃μν

�
; ð1Þ

where g̃ is the determinant of metric tensor gμν, Mpl ¼
2.435 × 1018 GeV is the reduced Planck mass, VðϕÞ is the
ALP potential, g is the ALP-photon coupling constant, and
F̃μν is the dual of electromagnetic tensor. It is known that a
linearly polarized photon propagating under the influence
of ALP field rotates its polarization plane, because of the
parity-violating nature of the ALP and its coupling to
photon [6,7,21–23]. To observe this phenomenon, the
CMB photon is an ideal target. When we observe CMB
photons emitted at the last scattering surface (LSS), the
rotation angle α of their polarization plane depends on
the difference of ALP field values between the observer
(“obs”) and the LSS. Since this rotation is caused by the
ALP-photon coupling, α is also proportional to the
coupling constant g. The rotation angle α of the CMB
photon coming from a direction on the sky (denoted as a
unit vector n̂) is given by [74]

αðn̂Þ ¼ g
2
½ϕðt0; 0Þ − ϕðtLSS; dLSSn̂Þ�; ð2Þ

where 0 is the position of the observer, t0 is the present
time, tLSS is the last scattering time, and dLSS is a distance to
the LSS. In the following, we use the subscripts “0” and
“LSS” as the values today and at the LSS, respectively. As
ϕ depends on both time and space, we decompose it into
the background and perturbed parts, as,
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ϕðtLSS; dLSSn̂Þ ¼ ϕ̄LSS þ δϕLSS; ð3Þ

ϕðt0; 0Þ ¼ ϕ̄obs þ δϕobs; ð4Þ

where a bar represents background values. The rotation
angle can be also separated into the isotropic and aniso-
tropic terms, as

αðn̂Þ ¼ ᾱþ δαðn̂Þ ¼ g
2
ðϕ̄obs − ϕ̄LSS þ δϕobsÞ−

g
2
δϕLSSðn̂Þ:

ð5Þ

Recently, reanalyzing the observational data of Planck
satellite, Ref. [5] reported the detection of the isotropic
birefringence, as

ᾱ ¼ 0.35� 0.14 deg: ð6Þ

Since the null result is excluded at 99.2% CL, it provides a
fascinating hint of new phenomena beyond the standard
ΛCDM cosmology. On the other hand, the anisotropic
birefringence has not yet been detected and only some
constraints were derived [75,76]. Inspired by these latest
observations on α, we focus on the isotropic birefringence
and consider models in which the background ALP field
explains the observed value of ᾱ through the background
dynamics, ᾱ ¼ g

2
ðϕ̄obs − ϕ̄LSSÞ. It should be noted that

δϕobs also contributes to ᾱ and may be able to account
for the observed value by itself. However, since the ALP
fluctuations, δϕLSS and δϕobs, have the same origin and are
tightly connected, one should be careful not to violate the
observational constraint on δα, when seeking the possibility
of ᾱ ≃ gδϕobs=2. In fact, we will see that its contribution is
constrained as jᾱj ≤ 0.13 deg in the simplest case. We will
further discuss this issue in Sec. V.
In order to extract constraints on g from the observed

value of ᾱ in Eq. (6), we need to solve the time evolution
of ϕ̄ðtÞ together with the Friedmann equation. We study
the background cosmological dynamics on the spatially flat
Friedmann-Lemaître-Robertson-Walker space-time with
the line element,

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð7Þ

where aðtÞ is the time-dependent scale factor. Then, the
scalar field obeys

̈ϕ̄þ 3H _̄ϕþ V;ϕ̄ðϕ̄Þ ¼ 0; ð8Þ

where V;ϕ̄ ¼ dV=dϕ̄, a dot represents the derivative with
respect to t, andH ≡ _a=a is the Hubble expansion rate. The
energy density and pressure of the ALP field are given,
respectively, by ρϕ¼ _ϕ2=2þVðϕÞ and Pϕ ¼ _ϕ2=2 − VðϕÞ.
The associated density parameter and equation of state are

Ω̃ϕ ¼ ρϕ
3M2

plH
2
; w̃ϕ ¼ Pϕ

ρϕ
; ð9Þ

where we denote their today’s values as Ωϕ and wϕ,
respectively.
To solve Eq. (8) for ϕ̄, we need to know the evolution of

H from the late radiation era to today. For this purpose, we
take the energy densities of radiation, nonrelativistic matter,
and cosmological constant into account, which are denoted
as ρr, ρM, and ρΛ respectively. They obey the continuity
equations,

ρI þ 3Hð1þ wIÞρI ¼ 0; ðI ¼ r;M;ΛÞ; ð10Þ

where wr ¼ 1=3, wM ¼ 0, and wΛ ¼ −1. The Friedmann
equation is given by

3M2
plH

2 ¼ ρr þ ρM þ ρΛ: ð11Þ

When the ALP field is nearly frozen by the Hubble friction,
w̃ϕ is close to −1. After ϕ̄ starts to oscillate around the
minimum of a quadratic potential, it behaves as a dust with
the averaged equation of state w̃ϕ ≃ 0. Then, the energy
density of ALP field can be incorporated into either ρΛ or
ρM in Eq. (11).
To compute an effective field value hϕ̄iLSS at the LSS, we

also take into account the effect of finite thickness of the
LSS. If the time variation of ϕ̄ is significant around the
decoupling epoch of photons, it is not trivial to identify
the value of hϕ̄iLSS. Indeed, the ALP field with a mass
larger than H at the LSS starts to oscillate before the
decoupling epoch. A natural way to define the effective
field value for the cosmic birefringence in CMB is to take a
time average of ϕ̄ðtÞ as [72,73]

hϕ̄iLSS ¼
Z

dTVðTÞϕ̄ðtðTÞÞ: ð12Þ

In Eq. (12) the ALP field is weighed by a visibility function
VðTÞ. This function describes the probability density that
a CMB photon, now observed, is scattered at the temper-
ature T. We approximate VðTÞ by a Gaussian function,

VðTÞ ≃ 1ffiffiffiffiffiffi
2π

p
σT

exp

�
−
ðT − TLÞ2

2σ2T

�
; ð13Þ

where TL ¼ 2941 K and σT ¼ 248 K are the numerical
fitting parameters [77]. If ϕ̄ is nearly frozen around the
decoupling epoch, then hϕ̄iLSS is almost equivalent to ϕ̄
at T ¼ TL.
If the field exhibits rapid oscillations between positive

and negative values around the LSS, however, hϕ̄iLSS
practically approaches 0 by taking the time average (12).
This is especially the case for the ALP mass m much larger
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than the Hubble expansion rate H at the LSS. In such a
case, even though the amplitude of ϕ̄ today is smaller than
that at the LSS, jhϕ̄iLSSj is suppressed relative to jϕ̄obsj and
hence the dominant contribution to ᾱ comes from ϕ̄obs. In
Sec. III, we will discuss the mass range of ALP field in
which jhϕ̄iLSSj becomes smaller than jϕ̄obsj.
In summary, we will address the possibility to account

for the reported value of isotropic birefringence, Eq. (6), by
considering several ALP potentials. The background value
of α is computed according to

ᾱ ¼ g
2
Δϕ̄≡ g

2
ðϕ̄obs − hϕ̄iLSSÞ: ð14Þ

On using Eq. (10), the Friedmann Eq. (11) can be expressed
as

HðaÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMa−4ðaþ aeqÞ þ ΩΛ

q
; ð15Þ

where H0 is today’s Hubble constant, which is given by

H0 ¼ 2.1331 × 10−33 h eV: ð16Þ

We take the dimensionless constant h to be 0.677. In
Eq. (15), ΩM and ΩΛ are today’s density parameters of
nonrelativistic matter and cosmological constant, respec-
tively. We adopt the values ΩM ¼ 0.31 and ΩΛ ¼ 0.69 in
our numerical simulation. We also choose the value aeq ¼
1=3400 for the scale factor at radiation-matter equality,
where a ¼ 1 today. The central temperature TL ¼ 2941 K
in Eq. (13) corresponds to the scale factor aL ¼ T0=TL ¼
9.266 × 10−4, where we used today’s temperature T0 ¼
2.725 K. From Eq. (15), the Hubble parameter HLSS at the
peak of Gaussian distribution (13) can be estimated as

HLSS ≃ 3.3 × 10−29 eV: ð17Þ

When we study the background dynamics of the ALP
field, there is a typical constant mass scale mwhose energy
scale is related to the second derivative V;ϕ̄ ϕ̄. For the
numerical purpose, we write the field Eq. (8) in the form,

ϕ̄00 þH0

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMa−4ðaþ aeqÞ þ ΩΛ

q
ϕ̄0 þ V;ϕ̄

m2
¼ 0; ð18Þ

where a prime represents a derivative with respect to
the dimensionless variable τ≡mt. Since the temperature
has the dependence T ∝ a−1, the integral (12) can be
expressed as hϕ̄iLSS ¼

R τ0
0 dτHTVϕ̄=m. Then, from the

past to today, we need to integrate the following differential
equation:

hϕ̄i0LSS ¼
H0

m
T0

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMa−4ðaþ aeqÞ þ ΩΛ

q
V
�
T0

a

�
ϕ̄: ð19Þ

For a given potential V and initial conditions, we will
integrate Eqs. (15), (18), and (19) to obtain the values
of ϕ̄obs and hϕ̄iLSS. We will choose one of the initial
conditions of the ALP field to be ϕ̄0ðτ ¼ 0Þ ¼ 0.

III. SIMPLE ALP MODELS

In this section, we compute how much the isotropic
birefringence is generated for two different ALP
potentials: (A) VmassðϕÞ ¼ m2ϕ2=2 and (B) VcosðϕÞ ¼
m2f2½1 − cosðϕ=fÞ�. We explore the mass region,
10−42 eV≲m≲ 10−25.5 eV, in which the ALP can act
as either dark energy or a subdominant component of dark
matter, depending on its mass. Respecting the constraint on
the ALP energy fraction not to ruin the success of the
ΛCDM cosmology, we will obtain the ALP-photon cou-
pling constant g consistent with the observed isotropic
birefringence (6). We also derive lower bounds on the ALP
mass and its energy fraction to generate the observed value
of ᾱ in these models.

A. Quadratic potential

We first consider a quadratic potential given by

VmassðϕÞ ¼
1

2
m2ϕ2: ð20Þ

In Ref. [72], some of the authors have studied the ALP with
the same potential and computed the isotropic and aniso-
tropic birefringence induced by its background and per-
turbation parts, respectively. In the following, we explain
the background calculation in more detail than Ref. [72]
and derive the new limits on some parameters by using the
observed value of ᾱ.
For the quadratic potential, the ALP field begins to

oscillate when m ≃H. If m ≫ HLSS, then the ALP field
exhibits rapid oscillations around the CMB decoupling
epoch. In this case, the LSS value hϕ̄iLSS of Eq. (12) is
suppressed to be smaller than ϕ̄obs due to the time averaging
of fast oscillations of ϕ̄. If m ≪ H0, on the other hand, the
Hubble friction does not allow the field to roll down the
potential by today, and hence Δϕ̄ is suppressed. Therefore
the cosmic birefringence is most sensitive to the inter-
mediate mass region, H0 ≲m≲HLSS.
With a given mass m, the different choices of initial

conditions of the ALP field ϕ̄init not only affects the
quantitative estimate of Δϕ̄ but also today’s energy
fraction Ωϕ.
For m≲H0, the energy density of ALP field can be the

source for all of dark energy. Asm increases, ϕ̄ starts to roll
down the potential around the redshift z≲ 1. This leads to
the deviation of today’s ALP equation of state wϕ from −1.
The likelihood analysis based on the Planck 2018 data [4]
with the prior w̃ϕ ≥ −1 puts the bound wϕ < −0.95 at
95% CL. Applying this constraint to the potential (20),
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we find that Ωϕ can be as large as the density parameter of
dark energy ΩΛ ¼ 0.69 for

m ≤ 8.5 × 10−34 eV: ð21Þ

Ifm is larger than this upper bound, wϕ is larger than −0.95
and hence the energy density of ALP field is not the main
source for dark energy.
For m ≥ 10−32 eV, the ALP field begins to oscillate in

the past, and w̃ϕ shows a transition from −1 to 0 by today.
In the mass range

10−32 eV ≤ m ≤ 10−25.5 eV; ð22Þ

the observations of CMB and large-scale structures put
constraints on the ALP with such a transition of w̃ϕ, as
Ωϕh2 ≤ 0.006 [78].
From these constraints, we obtain the upper limit of

Ωϕ, as

Ωϕ;max ¼
�
0.69 ðm ≤ 8.5 × 10−34 eVÞ;
0.006h−2 ð10−32 eV ≤ m ≤ 10−25.5 eVÞ:

ð23Þ

In the intermediate mass region 8.5 × 10−34 eV < m <
10−32 eV, we linearly connect these upper limits of Ωϕ in
the logm- logΩϕ plane. Note that Ωϕ;max increases for the
heavier mass region, m > 10−25.5 eV. The ALP behavior
becomes more similar to that of normal dark matter there,
and several complications such as the growth of perturba-
tions due to clustering and the shorter oscillation period
may not be negligible. To make a conservative argument,
we restrict ourselves to the lighter mass region,
m ≤ 10−25.5 eV. In Sec. V, we will further discuss these
phenomenological aspects of the higher mass ALP.
With the energy constraint Ωϕ ≤ Ωϕ;max, we compute

the field excursion Δϕ̄ by numerically solving Eqs. (18)
and (19). In Fig. 1, we plot the ALP-photon coupling g
which generates the observed isotropic birefringence
ᾱ ¼ 0.35� 0.14 deg for a given m. The green line, which
corresponds to the maximum ALP energy fraction Ωϕ ¼
Ωϕ;max, can be interpreted as the lower bound on g, while
the blue line corresponds to Ωϕ ¼ 10−6. In addition, we
also show the current constraints on g with shaded regions
and the future sensitivities with dotted lines. CAST [79]
and IAXO [80,81] are axion helioscope experiments,
Chandra [82] and Athena [83] are X-ray observatories,
and ALPSII [84] is a light shining through a wall style
experiment. The ALP-photon coupling is also constrained
by the conversion to photons in galactic magnetic fields of
axions emitted by SN1987A [85].

As for the behavior of g in Fig. 1, there are three distinct
regions depending on the massm. In the following, we will
discuss each of them in turn.
For m≲H0, the ALP field is nearly frozen until

recently, in which case 3H _̄ϕ ≃ −m2ϕ̄. The field excursion
Δϕ̄ is approximately proportional to m2ϕ̄obs, where
Ωϕ ≃m2ϕ̄2

obs=ð6M2
plH

2
0Þ. This means that the rotation angle

(14) has the dependence,

jᾱj ∝ gm2jϕ̄obsj ∝ gm
ffiffiffiffiffiffi
Ωϕ

p
; ðm≲H0Þ; ð24Þ

where the constant of proportionality can be determined
numerically.
In the intermediate mass regionH0 ≲m≲HLSS, ϕ̄ starts

to oscillate at m ≃Hosc, where Hosc < HLSS. The field
value at the onset of oscillations (denoted as the scale factor
aosc) is practically identical to hϕ̄iLSS, after which the
amplitude of ϕ̄ decreases as Φ ∝ a−3=2. In this case ϕ̄obs is
negligible relative to hϕ̄iLSS, so that ᾱ ≃ −ghϕ̄iLSS=2. On
using the matter-dominated approximation (a ∝ H−2=3) to
relate hϕ̄iLSS with today’s field amplitude Φ0, we obtain

hϕ̄iLSS ≃
�
aosc
a0

�
−3=2

Φ0 ≃
Hosc

H0

Φ0 ≃
m
H0

Φ0: ð25Þ

FIG. 1. The ALP-photon coupling constant g inferred by the
isotropic birefringence ᾱ ¼ 0.35� 0.14 deg versus the ALP
mass m for the quadratic potential VmassðϕÞ ¼ m2ϕ2=2. The
green line corresponds to the maximum energy fraction Ωϕ ¼
Ωϕ;max given in Eq. (23), whereas the blue line shows the case
with Ωϕ ¼ 10−6. The shaded regions are excluded by the
measurements of CAST [79] (blue), SN1987A [85] (orange),
and Chandra [82] (pink). We also plot the projected sensitivities
of the future experiments, ALPSII [84], IAXO [80,81], and
Athena [83], from top to bottom as dotted lines.
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Since
ffiffiffiffiffiffi
Ωϕ

p
∝ mΦ0, it follows that

jᾱj ∝ gmΦ0 ∝ g
ffiffiffiffiffiffi
Ωϕ

p
; ðH0 ≲m≲HLSSÞ; ð26Þ

which means that jᾱj does not depend on m.
For m≳HLSS ≃ 3.3 × 10−29 eV, ϕ̄ starts to oscillate

before the last scattering epoch. Up to the mass range
m≲ 2.7 × 10−27 eV ≃ 80HLSS, jhϕ̄iLSSj is still larger than
jϕ̄obsj, even though hϕ̄iLSS is suppressed due to the
oscillations of ϕ̄ around the LSS. As m increases, the
exponential suppression of hϕ̄iLSS tends to be more
significant.

For m≳ 2.7 × 10−27 eV ≃ 80HLSS, jhϕ̄iLSSj becomes
smaller than jϕ̄obsj. In this regime, the rotational angle
has the dependence,

jᾱj ∝ gjϕ̄obsj ∝ gm−1
ffiffiffiffiffiffi
Ωϕ

p
; ðm≳ 2.7 × 10−27 eVÞ:

ð27Þ

Numerically, we obtain the constants of proportionality
in Eqs. (24), (26), and (27). The resulting approximate
expressions in three different regimes are given, respec-
tively, by

g ¼

8>>><
>>>:

1.8 × 10−18 GeV−1
�

jᾱj
0.35 deg

	�
Ωϕ

ΩΛ

	
−1=2

�
m=H0

10−2

	
−1
; ðm≲H0Þ;

1.5 × 10−20 GeV−1
�

jᾱj
0.35 deg

	�
Ωϕh2

0.006

	
−1=2

; ðH0 ≲m≲HLSSÞ;

1.8 × 10−12 GeV−1
�

jᾱj
0.35 deg

	�
Ωϕh2

0.006

	
−1=2

�
m=H0

108

	
; ðm≳ 2.7 × 10−27 eVÞ:

ð28Þ

For the mass range HLSS < m≲ 2.7 × 10−27 eV, g expo-
nentially increases withm, while the dependence of g on jᾱj
and Ωϕ are the same as the third of Eq. (28). As we observe
in Fig. 1, the coupling g generating the value ᾱ ¼ 0.35 deg
has the mass dependence g ∝ m−1 for m≲H0, g ∝ m0 for
H0 ≲m≲HLSS, and g ∝ m for m≳ 2.7 × 10−27 eV.
As Ωϕ decreases from Ωϕ;max, the green line in Fig. 1

moves upwards, i.e., to the region of larger values of g.
Since g is bounded from above by Chandra measurements,
the mass region which can explain the observed value
of ᾱ is limited. Combining the first of Eq. (28) with the
observational bound by Chandra, g < 1.4 × 10−12 GeV−1,
we obtain the constraint on the ALP mass, as

m > 1.8 × 10−41 eV

�
0.69
Ωϕ

�
1=2

�
ᾱ

0.35 deg

�
: ð29Þ

This result is, to our best knowledge, the first lower mass
bound on a dark energy model.
In the literature, the time evolution of w̃ϕ is often used to

constrain the (effective) mass of a quintessence field.
However, the observational allowed range of w̃ϕ is close
to the value −1 as we already mentioned above, so it is
difficult to distinguish between quintessence and cosmo-
logical constant from the observations of supernovae
type Ia and the distant measurements of CMB and baryon
acoustic oscillations. In comparison to them, the lower ALP
mass bound (29) accomplishes the prominent sensitivity to
the time variation of quintessence. In a similar way, one can
also derive the upper bound on the ALP mass, which is
expected to be around 10−25–10−23 eV. Since it is beyond
the applicable limit of Eq. (23), we leave its detailed
calculation for future work.

Furthermore, as we see in Fig. 1, the minimum value of g
is taken in the intermediate mass region H0 ≲m≲HLSS.
Applying the Chandra constraint on g to the numerically
calculated minimum g for a fixed Ωϕ, we obtain the lower
bound on Ωϕ, as

Ωϕ > 9.1 × 10−19
�

ᾱ

0.35 deg

�
2

; ð30Þ

where the numerical coefficient is a bit different from the
one derived by the second line of (28) because the actual
minimum g for a fixed Ωϕ is slightly smaller. It is
particularly remarkable that the observation of cosmic
birefringence gives rise to an extremely small lower bound
of Ωϕ. At the same time, it should be noted that Eq. (30)
is derived under the assumption that Δϕ̄ generates the
observed value of ᾱ. The perturbation δϕobs sourced by an
adiabatic mode might provide a significant contribution to
ᾱ through Eq. (5), and then the bound can be subject to
change. We will discuss such possibilities in Sec. V.

B. Axion potential

In this section, we consider the ALP field with a cosine
potential,

VcosðϕÞ ¼ m2f2
�
1 − cos

�
ϕ

f

��
; ð31Þ

where m and f are constants having a dimension of mass.
This potential is often used in the context of the QCD axion
and ALP [17]. Due to the periodicity of the potential, we
will consider the case in which the field initial value ϕ̄init is
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in the range 0 ≤ jϕ̄initj ≤ πf. We also choose f ¼ Mpl, but
the similar calculation can be performed for arbitrary values
of f.
The difference from the quadratic potential (20) is that

VcosðϕÞ is bounded from above, as VcosðϕÞ ≤ 2m2f2.
Moreover, the potential (31) has a plateau at ϕ ¼ πf,
with the inflection point at ϕ ¼ πf=2. In the region ϕ ≪ f,
the potential approximately reduces to the quadratic
one, i.e., VcosðϕÞ ≃m2ϕ2=2. The background ALP field
obeys

̈ϕ̄þ 3H _̄ϕþm2f sin

�
ϕ̄

f

�
¼ 0; ð32Þ

where H is given by Eq. (15).
For given values of ᾱ and m, we expect that a larger ϕ̄init

leads to a greaterΔϕ̄ or, equivalently, a smaller g. However,
the choice of a large ϕ̄init can give rise to a large Ωϕ

exceeding the maximum Ωϕ;max given in Eq. (23). Due to
the nonlinear property of the cosine potential, it is difficult
to analytically relate Ωϕ to ϕ̄init. Therefore, for each m, we
numerically scan over ϕ̄init to find minimum values of g
satisfying the condition Ωϕ ≤ Ωϕ;max. The green line in
Fig. 2 corresponds to the minimum coupling gmin which
accounts for the observed value ᾱ ¼ 0.35� 0.14 deg.
In the left panel of Fig. 3, we also show the theoretical

line corresponding to the coupling gmin in the (m; ϕ̄init)
plane as the green line, over the contour of g generating
ᾱ ¼ 0.35 deg. The gray region is excluded by the violation
of the condition Ωϕ ≤ Ωϕ;max. For m≲H0, the field value
that generates gmin is ϕ̄gmin

≃ πf=2. This is because ϕ̄ slowly
rolls down the potential until now in this mass region
and the gradient of the potential is maximum at the
inflection point, ϕ̄ ¼ πf=2. For m≳H0, ϕ̄gmin

corresponds
to Ωϕ ¼ Ωϕ;max because ϕ̄ begins to oscillate by today, and
the larger ϕ̄init is, the greater Δϕ̄ is.
The observational bound (6) of ᾱ infers that, for smaller

ϕ̄init, the coupling g tends to be larger, so that the allowed
region is more severely constrained by the Chandra bound.
Moreover, in the standard scenario, the homogeneous field
ϕ̄ should be generated by the misalignment mechanism,
and ϕ̄init=f is naturally expected to be of order unity. Thus,
the initial field displacement in the range ϕ̄init=f ≪ 1
requires a fine tuning. As a reference, we plot the
theoretical line corresponding to the initial condition
ϕ̄init=f ¼ 10−3 as a blue line in Fig. 2.
The properties of theoretical lines in Fig. 2 look similar

to those for the quadratic potential plotted in Fig. 1, but
there is the difference in the light mass range m≲H0. The
third term on the left hand side of Eq. (32) approaches 0 as
ϕ̄ increases toward πf, so the field excursion Δϕ̄ does not
possess linear dependence in ϕ̄init. In comparison to the
quadratic potential, the coupling g grows more rapidly

with the decrease of m. The minimum coupling g has the
following relation:

gmin ¼ 3.6 × 10−16 GeV−1
�

ᾱ

0.35 deg

��
m=H0

10−2

�
−2
;

ðm≲H0Þ: ð33Þ

We note that the axion-photon coupling is typically
given by g ¼ cϕαEM=f, where αEM ≃ 1=137 is the fine
structure constant and cϕ ¼ Oð1Þ is a dimensionless
constant. Therefore, the tiny coupling constant of order
g ∼ 10−20 GeV−1, which corresponds to m ∼H0 in
Eq. (33), can be naturally expected for the ALP with
f ∼Mpl. From Eq. (33), the Chandra experiment gives the
mass constraint,

m > 1.8 × 10−37 eV

�
ᾱ

0.35 deg

�
1=2

; ð34Þ

which is tighter than the bound (29).

FIG. 2. The ALP-photon coupling constant g inferred by the
isotropic birefringence ᾱ ¼ 0.35� 0.14 deg versus the ALP
mass m for the cosine potential VcosðϕÞ ¼ m2f2½1 − cosðϕ=fÞ�
with f ¼ Mpl. The green line corresponds to the case of minimum
values of g satisfying Ωϕ ≤ Ωϕ;max. The blue line adopts the
initial condition ϕ̄init=f ¼ 10−3 and the parameter region above
this line requires a fine tuning near ϕ̄init ∼ 0. The ALP that
accounts for all of dark energy by staying on the hilltop of the
potential lies on the red dashed line. In this case, we show five
different values of wϕ þ 1 (10−8, 10−5, 10−3, 10−2, 0.05) as the
black dots, whose initial conditions ϕ̄init can be found in Fig. 3.
Each point on and in the left side of the red dashed line has two
corresponding values of ϕ̄init in the regions 0 < ϕ̄init=f < π=2
and π=2 < ϕ̄init=f < π, with the degeneracy at the inflection
point ϕ̄init=f ¼ π=2 on the green line.
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For m≳H0, the initial field value corresponding to
the coupling gmin is mostly in the range ϕ̄init=f ≲ 1, in
which regime the potential approximately reduces to
VcosðϕÞ ≃m2ϕ2=2. Hence the field excursion from the
LSS to today is not different from that for the quadratic
potential studied in Sec. III A. As we observe in Figs. 1
and 2, the qualitative shapes of the minimum g line in the
two ALP potentials are similar to each other for m≳H0.
From the theoretical line of gmin in the mass range
H0 < m < HLSS, we obtain the constraint,

Ωϕ > 1.2 × 10−18
�

ᾱ

0.35 deg

�
2

; ð35Þ

which is close to the bound (30) derived for the quadratic
potential.
In the following, we study the case in which the ALP

accounts for all of dark energy, i.e.,Ωϕ ¼ ΩΛ ¼ 0.69. If the
ALP field is near the top of the potential during the epoch
of cosmic acceleration, the potential energy is given by
Vcosðϕ̄ ≃ πfÞ ≃ 2m2f2. When this is responsible for all
of dark energy, we require that 2m2f2 ¼ 3M2

plH
2
0ΩΛ and

hence

m ¼
ffiffiffiffiffiffiffiffiffi
3ΩΛ

2

r
Mpl

f
H0: ð36Þ

For f ¼ Mpl and ΩΛ ¼ 0.69, it follows that m ¼ 1.017H0.
As the initial field value ϕ̄init approaches the inflection

point ϕ̄ ¼ πf=2, m slightly gets larger than the value (36).
Moreover, if ϕ̄init is close to πf=2, the observational bound
wϕ < −0.95 tends to be violated due to the large variation
of the ALP field.
In Fig. 2, the red dashed line corresponds to the case in

which the ALP field acts as all of dark energy. We also
show several values of wϕ þ 1 as black dots. The corre-
sponding line and the values of wϕ þ 1 are also plotted on
the ðm; π − ϕ̄init=fÞ plane in the right panel of Fig. 3.
As ϕ̄init approaches πf=2, wϕ continues to increase. The
observational upper limit wϕ;max ¼ 0.95 is reached
around ϕ̄init ≃ 2.2f.
For ϕ̄init closer to πf, the deviation of wϕ from −1

decreases toward 0. As we see in Fig. 2, even the tiny
deviation like wϕ þ 1 ¼ 10−8 predicts the coupling gwhich
is below the current bound of Chandra. If the future axion
measurements were to detect the coupling g, this can
provide a very interesting possibility for probing the
tiny deviation of the ALP dark energy equation of state
wϕ from −1. Under the slow-roll approximation where the
ALP kinetic energy is subdominant to the potential energy,
we have

wϕ ¼
_̄ϕ
2
=2 − V

_̄ϕ
2
=2þ V

≃ −1þ
_̄ϕ
2

V
; ð37Þ

where V is related to H0, as 3M2
plH

2
0 ≃ ð1þΩM=ΩϕÞV.

Then, the ALP-photon coupling constant can be esti-
mated as

FIG. 3. (Left panel) The contour of the ALP-photon coupling constant g inferred by the isotropic birefringence ᾱ ¼ 0.35 deg in the
(m, ϕ̄init=fÞ plane for the cosine potential (31) with f ¼ Mpl. The gray region is excluded by the upper limit of Ωϕ. The green line
represents ϕ̄init that gives the minimum value of g for a given mass, and it corresponds to the initial conditions of the green line in Fig. 2.
(Right panel) The plot scheme is the same as the left panel except for the vertical axis that changes to focus on the hilltop initial
condition, ϕ̄init ∼ πf. The red line represents the ALP parameters accounting for all of dark energy and it corresponds to the red dashed
line in Fig. 2. The black dots show five different values of wϕ þ 1.
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g ¼ 2jᾱj
jΔϕj ≃

2jᾱj
H−1

0 j _̄ϕj

¼ 1.6 × 10−20 GeV−1
� jᾱj
0.35 deg

��
0.05

1þ wϕ

�
1=2

; ð38Þ

where we assumed that the field excursion is dominated by
the recent contribution, which is true for the thawing
models of dark energy. With this equation, the value of
wϕ can be estimated on the red dashed line in Fig. 2.
Applying the Chandra bound g < 1.4 × 10−12 GeV−1 to
Eq. (38), it follows that

wϕ þ 1 > 6.5 × 10−18
� jᾱj
0.35 deg

�
2

: ð39Þ

The field needs to vary at some extent to explain the
observed value of isotropic cosmic birefringence. It is
interesting to note that the constraint (39) gives a lower
bound on wϕ larger than −1. To our knowledge, this is
the first observational lower bound of wϕ forbidding the
cosmological constant value −1.
Finally, we should comment on the fact that one set of m

and g does not necessarily determine a unique initial
condition ϕ̄init. As we see in Fig. 3, for the mass range
m≲H0, there are two values of ϕ̄init which correspond to
the same m and g. One of those initial conditions is in
the region 0 < ϕ̄init=f < π=2, whereas the other is in the
regime π=2 < ϕ̄init=f < π. In Fig. 2, each set of m and g
has two corresponding initial conditions ϕ̄init in the left-side
region of the red dashed line and above the green line. On
the green line, the two initial conditions are degenerate at
the inflection point, ϕ̄init=f ¼ π=2.
As the coupling g increases along the red dashed line in

Fig. 2, one of ϕ̄init approaches the bottom of potential and
the other does the top of potential. As we already
mentioned, the initial condition ϕ̄init=f ≪ 1 requires a fine
tuning. To obtain the values of g whose orders are the same
in the two regimes ϕ̄init=f ≪ 1 and jϕ̄init=f − πj ≪ 1, we
need the similar level of fine tuning for the ALP initial
conditions. The initial condition with jϕ̄init=f − πj ≪ 1
corresponds to the case in which the ALP field can be
the source of all of dark energy. In the region above the blue
line in Fig. 2, we require the fine tuning of ϕ̄init in both the
two regimes mentioned above.

IV. EARLY DARK ENERGY

Recently, some scalar-field models were proposed to
resolve or alleviate the problem of H0 tension between
CMB and low-redshift measurements. In these early dark
energy (EDE) models, the scalar field is nearly frozen due
to the Hubble friction prior to a critical scale factor ac of
order aeq, and it plays a role of the cosmological constant
with w̃ϕ close to −1. The additional scalar-field energy

density increases the Hubble expansion rate at early times,
so the sound horizon around the LSS is reduced by the
presence of EDE. Then, the models can be compatible with
the Planck data of CMB temperature anisotropies with
larger values of H0. For a ≥ ac, the scalar field exhibits
damped oscillations with the energy density decaying faster
than those of standard matter components. This is possible
for the field potential behaving like VðϕÞ ∝ ϕ2n with n ≥ 2
around its potential minimum. In this case, the contribution
of EDE to the late-time cosmic expansion is negligible.
Previous works identified the parameter space in which

the existence of EDE remedies the Hubble tension. In this
section, we assume that the scalar field in EDE models is
coupled to photon through the coupling gϕFμνF̃μν=4 and
compute how much cosmic birefringence is generated. We
will explore two EDE models, (A) higher-order periodic
potentials [62,86] and (B) power-law potentials [63], and
obtain the coupling constant for which the observed
isotropic birefringence is produced. Therefore, the ALP
not only ameliorates the Hubble tension but also explains
the observed value of ᾱ inside the parameter space
derived below.

A. Higher-order periodic potentials

First, we consider the higher-order periodic potentials
studied in Refs. [62,86]:

VðnÞ
cosðϕÞ ¼ m2f2

�
1 − cos

�
ϕ

f

��
n
; ð40Þ

where f is the decay constant and we fix f ¼ Mpl in the
following. For ϕ ≪ f, this potential is well approximated

by a power-law function VðnÞ
cosðϕÞ ≃ ðm2f2=2nÞðϕ=fÞ2n. In

Ref. [62], the critical redshift ac is defined by

ρϕðacÞ ¼
VðnÞ
cosðϕ̄initÞ

2
; ð41Þ

which qualitatively indicates that the ALP field begins to
oscillate at a ¼ ac. The onset of oscillations can be also

roughly estimated as jVðnÞ
cos; ϕ̄ ϕ̄

ðϕ̄cÞj ≃H2
c, where ϕ̄c and Hc

are the ALP background and the Hubble parameter at
a ¼ ac, respectively. In the regime ϕ̄ ≪ f, this estimation
approximately translates tom2ðϕ̄c=fÞ2ðn−1Þ≃H2

c. For n≥2,
Hc is smaller than m. The EDE field starts to oscillate
prior to the last scattering epoch, so the massm should be in
the range

m ≫ HLSS ≃ 3.3 × 10−29 eV: ð42Þ

Before and after the transition at a ¼ ac, the field equation
of state changes from w̃ϕ ≃ −1 to hw̃ϕi ≃ ðn − 1Þ=ðnþ 1Þ,
where the latter is averaged over oscillations. For a > ac
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the energy density of ϕ decreases as ρϕ ∝ a−6n=ðnþ1Þ. This
means that, for n ≥ 2, the contribution of ρϕ to H becomes
negligible compared to nonrelativistic matter.
In Ref. [62], the authors introduced the relative ratio

between the density parameters of EDE and total matter
at the transition, as fEDE ≡ Ω̃ϕðacÞ=Ω̃totðacÞ. Running a
Markov chain Monte Carlo (MCMC) simulation with flat
priors on log10ðacÞ;Ωϕ ¼ Ω̃ϕðt0Þ; ϕ̄init, and six ΛCDM
parameters, they obtained the posterior distributions of
them. For the likelihood analysis, they used the observa-
tional data of SH0ES, Planck, 6dFGS, SDSS, BOSS DR12,
and Pantheon. The best-fit value of the Hubble constant
was found to be H0 ¼ 71.1 km=s=Mpc for n ¼ 2 and
H0 ¼ 71.6 km=s=Mpc for n ¼ 3, so this EDE model can
ease the Hubble tension. Here, we use their marginalized
2D posterior distributions of log10ðacÞ and fEDEðacÞ with
n ¼ 2 and 3.
To calculate the field excursion Δϕ̄ and derive the

produced isotropic birefringence in this model, one needs
to know the mass parameter m and the initial field value
ϕ̄init. Numerically solving the dynamics of ϕ̄ for varying
parameters, we convert the posterior distributions of ac
and fEDEðacÞ in Ref. [62] to the distribution of m and ϕ̄init.
The result is shown in the left panel of Fig. 4. In Ref. [62]
the posterior distribution was presented only for

fEDEðacÞ > 0.01, presumably because ϕ is not effective
to reduce the Hubble tension for a smaller energy fraction.
Following Ref. [62], we disregard the distribution for
fEDEðacÞ < 0.01, and hence the contour in the left panel
of Fig. 4 has a sharp cutoff at its bottom edge.
For the derivation of ᾱ in Eq. (14), we also compute

hϕ̄iLSS by integrating Eq. (19). As we already discussed in
Sec. II, the suppression of hϕ̄iLSS by the fast oscillation of ϕ̄
around the LSS also occurs for the present potential with
the mass scale (42). To illustrate this effect, we show the
averaged value hϕ̄iLSS as a function of the initial value ϕ̄init

for m ¼ 2.9 × 10−27 eV in the right panel of Fig. 4. Since
hϕ̄iLSS is obtained by convoluting the oscillating field ϕ̄
with the positive visibility function, its sign can be positive
or negative depending on the phase of ϕ̄. When we change
ϕ̄init=f continuously, the oscillation phase slides and the
sign of hϕ̄iLSS flips at certain values of ϕ̄init=f. Therefore
jhϕ̄iLSSj passes through zero for these initial conditions,
which appear as a sharp dip in the right panel of Fig. 4.
For such ϕ̄init, Δϕ̄ is also subject to suppression and one
apparently needs a large g to account for the observed ᾱ.
Nevertheless, it is less likely to have such specifically small
values of jhϕ̄iLSSj with high precision by chance. To
quantify this fine tuning, we introduce a threshold of
jhϕ̄iLSSj above which 99% of the interval of ϕ̄init=f within

FIG. 4. (Left panel) The 1σ and 2σ contours of the mass parameterm and the initial EDE field value ϕ̄init=f with the potential Vð2Þ
cosðϕÞ.

We convert the posterior distributions of ac and fEDEðacÞ in Ref. [62] by (inversely) solving the dynamics of ϕ̄. A sharp cutoff at the
bottom and right edges corresponds to the boundary of the figure in Ref. [62]. The blue dotted line denotes m and the domain of ϕ̄init=f
with which the right panel is depicted. (Right panel) jhϕ̄iLSSj=f as a function of ϕ̄init=f within the 2σ contour for m ¼ 2.9 × 10−27 eV.
This value ofm corresponds to the best-fit values of ac and fEDEðacÞ. The horizontal gray line denotes the threshold defined in the main
text. The region below this threshold includes only 1% of the ϕ̄init=f domain and it is less likely to have such an initial value, which
accidentally suppresses jhϕ̄iLSSj=f.
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the 1σ or 2σ contour is included for a given m. This
threshold is shown as a solid horizontal line in the right
panel of Fig. 4 and the probability to realize jhϕ̄iLSSj less
than this threshold is smaller than 1%.
In Figs. 5 and 6, we plot the 1σ and 2σ contours in the

(m, g) plane which explain the observed ᾱ and also reduce
the Hubble tension for the potential (40) with n ¼ 2 and 3.

Since jhϕ̄iLSSj can vanish for some special initial conditions
of ϕ̄, the contour of m and ϕ̄init=f in the left panel of Fig. 4
does not put an upper bound on g in a rigorous sense. Thus
we show the 1σ and 2σ regions enclosed by the lower
bound from the EDE contour (solid line) and the sketchy
upper bound inferred by the fine-tuning threshold discussed
above (dashed line). Although there is a small chance to

FIG. 5. (Left panel) The orange shaded regions denote the 1σ (dark) and 2σ (light) contours in the (m, g) plane for the EDE model

with the higher-order periodic potential Vðn¼2Þ
cos ðϕÞ. We fix the cosmic birefringence to be the observed best-fit value ᾱ ¼ 0.35 deg.

The dashed lines denote the fine-tuning threshold below which 99% of the initial value ϕ̄init is included. As g goes higher than the
threshold line, it becomes less likely to realize, although it is not rigorously excluded. This feature is expressed by the gradation of
the light orange color above the contour. The pink shaded region is constrained by Chandra. The pink dotted line is the projected
sensitivity of Athena. (Right panel) The dark and light orange regions are the 1σ and 2σ EDE model contours extended by the 1σ and
2σ uncertainties of the observed ᾱ (i.e., δᾱ ¼ 0.14 deg and δᾱ ¼ 0.28 deg), respectively. The solid, dashed, and dotted lines are all
the same as those in the left panel.

FIG. 6. The plot scheme is the same as Fig. 5, while the EDE model potential is replaced by Vðn¼3Þ
cos ðϕÞ.
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have g larger than the threshold, the probability rapidly
decreases as g increases. This feature is expressed by the
gradation of the light orange color above the contour.
The left panels of Figs. 5 and 6 do not take into account

the uncertainty of ᾱ, but we merely use its best-fit value,
ᾱ ¼ 0.35 deg. It is tricky to combine the uncertainties of the
EDE model parameters and that of ᾱ, because we do not
have the complete information of their posterior distribu-
tions. To present conservative contour plots, we sweep from
ᾱ ¼ ð0.35 − 0.14Þ deg to ð0.35þ 0.14Þ deg for the 1σ
EDE contour and from ᾱ ¼ ð0.35 − 0.28Þ deg to ð0.35þ
0.28Þ deg for the 2σ EDE contour in the right panels of
Figs. 5 and 6. This treatment does not follow the general
rule of error propagation, so it can overestimate the
uncertainty to some extent. Thus one should consider
the contours in these right panels as crude but conservative
constraints which do not exactly correspond to 1σ or 2σ.

B. Rock ‘n’ roll model

As another interesting proposal of the EDE potential, we
consider the rock ‘n’ roll model studied in Ref. [63]:

VðnÞ
RnRðϕÞ ¼ V0

�
ϕ

MPl

�
2n

¼ m2M2
Pl

2n

�
ϕ

MPl

�
2n
; ð43Þ

where V0, n, and m are constants. Here, we defined the
mass m such that the higher-order periodic potential (40)
with f ¼ Mpl asymptotes to (43) in the vicinity of the
origin, ϕ ¼ 0. For n ≥ 2, a scalar field with this potential
can work as the source of EDE.
In Ref. [63], the authors introduced two parameters, the

critical redshift ac defined by V
ðnÞ
RnR;ϕ̄ ϕ̄

ðϕ̄cÞ ¼ 9H2ðacÞ, and
the energy fraction of the EDE potential to the total energy

at ac, fϕ ≡ VðnÞ
RnRðacÞ=ρtotðacÞ. These parameters are

defined in a slightly different way in comparison to those
for the potential (40). Using the datasets of SH0ES, Planck,
6dFGS, SDSS, BOSS DR12, and Pantheon and running a
MCMC simulation with flat priors on log10ðacÞ; fϕ, and six
ΛCDM parameters, they obtained the posterior distribu-
tions of ac and fϕ. For n ¼ 2 the best-fit value of the
Hubble constant was found to be H0 ¼ 70.5 km=s=Mpc,
so this EDE model also reduces the Hubble tension. Here,
we use their marginalized 2D posterior distributions of
log10ðacÞ and fϕ with n ¼ 2.
Analogous to the discussion in Sec. IVA, we translate

the ðac; fϕÞ contour derived in Ref. [63] to the distribution
ofm and ϕ̄init by solving the dynamics of ϕ̄. In this step, we
disregard the region of ðac; fϕÞ with fϕ < 0.01 for the
same reason explained in Sec. IVA. Our results are shown

in Fig. 7. Compared to Fig. 5 whose potential Vð2Þ
cosðϕÞ

asymptotes Vð2Þ
RnRðϕÞ around the origin, the contour in Fig. 7

favors a lower massm, with the shrink of an allowed region
of m. Note that the treatments of the ALP dynamics are not
identical to each other between Ref. [62,63], which might
lead to the deviation of the results in addition to the intrinsic
model difference.

C. Common features in two EDE models

We discuss some common results in the two EDEmodels
presented in Secs. IVA and IV B. The lower bounds on g
consistent with the observed value of ᾱ can be seen in
Figs. 5–7. A careful reader may notice that these lower
limits are even smaller than those of the simple models
obtained in Sec. III for similar values of m (see the green
lines in Figs. 1 and 2). This is because the suppression by
the time averaging in Eq. (12) is less significant in the EDE

FIG. 7. The plot scheme is the same as Figs. 5 and 6, while the rock ‘n’ roll model with n ¼ 2 is employed.
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models. The effective mass squared of the EDE field
around ϕ ¼ 0 is given by V;ϕϕðϕÞ ∼m2ðϕ=fÞ2ðn−1Þ, so it
decreases as the amplitude of ϕ̄ decays during the oscil-
lation. Hence the EDE field oscillates more slowly in
comparison to the scalar field with a constant mass m.
Unlike the models studied in Sec. III, the values of jhϕ̄iLSSj
are typically larger than jϕ̄obsj for the constrained model
parameters shown in Figs. 5–7 (apart from the 1% of the dip
of jhϕ̄iLSSj seen in the right panel of Fig. 4).
One also observes in Figs. 5–7 that the coupling constant

g accounting for the observed ᾱ and reducing the Hubble
tension is much smaller than the current Chandra bound
g < 1.4 × 10−12 GeV−1. Unfortunately, it looks difficult
for the future observation by Athena to detect a signal of the
axion-photon coupling. It is worth considering how to
confirm our scenario where the scalar field in the EDE
models with the photon coupling produces the isotropic
birefringence. We will discuss this issue in Sec. V.
Finally, it is interesting to note that the contours in

Figs. 5–7 are centered at

g ∼ 10−18 GeV−1: ð44Þ

This means that gf is a dimensionless number of order
unity. We can rewrite Eq. (14) as

gf ¼ 2ᾱ

Δϕ̄=f
≃

2ᾱ

hϕ̄iLSS=f
; ð45Þ

where we ignored the subleading contribution from ϕ̄obs.
The observed value of isotropic birefringence is a small
number in radians, ᾱ ≃ 6 × 10−3, and hϕ̄iLSS is subject to
suppression by the time averaging. Therefore the fact that
gf ¼ Oð1Þ appears to be quite nontrivial and it may imply
something about Planck scale physics. Although we fix
f ¼ Mpl in this paper, the same exercises can be done for
other values of f.

V. DISCUSSION

In this section, we discuss the contributions to the CMB
birefringence from the ALP fluctuation, namely δϕLSS and
δϕobs in Eq. (5), which have been ignored so far. The ALP
fluctuation has two possible origins: One is the quantum
perturbation produced during inflation δϕðinfÞ, and the other
is the sourced perturbation induced by the adiabatic mode
during the background ALP evolution δϕðsrcÞ.
Let us mainly consider the massive ALP potential given

by Eq. (20). Since we are interested in the mass scale m
much smaller than the inflationary Hubble parameter Hinf,
the amplitude of δϕðinfÞ is of the order ∼Hinf=ð2πÞ, when
the primordial perturbation is produced around the Hubble
radius crossing. However, the evolution of δϕðsrcÞ as well as
δϕðinfÞ highly depends on the models and their parameters.
It requires a dedicated investigation to calculate their

contributions to the birefringence in the full range of m,
which is beyond the scope of this paper.
Instead, we split the parameter range into three parts,

(i) the light region: m≲H0, (ii) the heavy region:
m≳HLSS, and (iii) the intermediate region: H0 ≲
m≲HLSS, and briefly explore them in order. We give
simple estimations of the fluctuations and make comments
on their potential effects on the cosmic birefringence.
In the mass region m≲H0, the sourced perturbation is

not relevant to the observed ᾱ because the source term for

δϕ is proportional to _̄ϕ ∝ m2 and thus negligible. Then it is
straightforward to track the evolution of δϕ originating
from δϕðinfÞ. In doing so, we introduce the tensor-to-scalar
ratio r ¼ 2H2

inf=ðπM2
plPζÞ, where Pζ is the scalar power

spectrum generated during inflation. The contributions of
perturbations at present and at the LSS to the birefringence
can be computed, respectively, as [72]

jᾱδϕj
0.35 deg

¼
�

g
3.0 × 10−15 GeV−1

��
r

0.06

�
1=2

; ð46Þ

Aα

0.033 deg2
¼

�
g

1.1 × 10−15 GeV−1

�
2
�

r
0.06

�
; ð47Þ

where Aα ¼ LðLþ 1ÞCαα
L =ð2πÞ characterizes the aniso-

tropic birefringence with Cαα
L being the angular power

spectrum of αðn̂Þ, and we used its current upper bound
Aα ≤ 0.033 deg2 [75,76] as a reference value. Here ᾱδϕ
denotes ᾱ contributed by δϕobs. Eliminating g and r from
the above equations, we obtain the relation between ᾱδϕ
and Aα, as

jᾱδϕj ¼ 0.13 deg×
�

Aα

0.033 deg2

�
1=2

: ð48Þ

It implies that, since δϕLSS and δϕobs are connected to each
other, the upper bound on the anisotropic birefringence also
puts a constraint on the isotropic birefringence which is
generated by the ALP fluctuation. Therefore, we expect
that δϕobs gives only a subdominant contribution to the
observed ᾱ for m≲H0. Nonetheless, δϕobs has a stochastic
nature, in that Eq. (46) is evaluated by its root mean square
and hence there is a chance that δϕobs gives a larger
contribution. An interested reader may refer to Ref. [72] for
more details on δϕobs.
In the mass regionm≳HLSS, the ALP begins to oscillate

before the last scattering epoch. In the simple ALP models,
hϕ̄iLSS is exponentially suppressed by the averaging (12),
and the amplitude of ϕ̄ has been damped by today. In the
EDE models, on the other hand, the suppression effect is
less significant due to the field-dependent effective mass
decaying in time. This is expected to be true for δϕLSS as
well. In fact, Ref. [73] computed the effective sourced

fluctuation hδϕðsrcÞ
LSS i for the potential (40) with n ¼ 2, 3 and
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f ¼ Mpl, and found that idealized future CMB experiments
could detect the anisotropic birefringence down to
g ∼ 10−17 GeV−1. This value roughly corresponds to the
upper part of the contours in Figs. 5 and 6. Therefore, future
observations may confirm the prediction of the EDE
models and further investigation is awaiting to be done.
For the higher mass region m≳ 10−26 eV, the ALP

behavior becomes closer to the major dark matter compo-
nent and its clustering may be relevant in the simple ALP
models. Considering the local dark matter density much
higher than the averaged one, it may be possible that the
ALP clustering boosts its fluctuation and makes δϕobs
significantly contribute to the isotropic birefringence. To
give a crude estimate, we assume that the ALP follows the
normal dark matter distribution. Then, by scaling the dark
matter density, one finds the local ALP amplitude, as

ϕlocal ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρlocalΩϕ

m2Ωc

s

¼ 2.5 × 1011 GeV

�
Ωϕ

10−2Ωc

�
1=2

�
m

10−24 eV

�
−1
;

ð49Þ

where Ωc denotes the energy fraction of all dark matter,
and the local dark matter density ρlocal is set to be
0.4 GeV=cm3. ϕlocal contributes to the isotropic birefrin-
gence through the δϕobs term in Eq. (5) and the corre-
sponding coupling constant is given by

gδϕobs
¼ 2ᾱ

ϕlocal
∼ 5 × 10−14 GeV−1

�
ᾱ

0.35 deg

�

×

�
Ωϕ

10−2Ωc

�
−1=2

�
m

10−24 eV

�
: ð50Þ

This value is much smaller than the naive extrapolation of
Figs. 1 and 2 to m ¼ 10−24 eV as well as the current upper
bound. Thus, such a heavy ALP at the observer might be
able to dominate the observed isotropic birefringence in
the simple models. However, it should be noted that, in the
above crude estimate, we ignore the de Broglie wavelength
of the ALP reaching or exceeding the galactic scale, the
quantum pressure preventing its clustering on a smaller
scale, and the oscillation of the ALP field whose period is
∼100ðm=10−24 eVÞ−1 yr. We leave the evaluation of the
contribution from the local ALP density to the birefrin-
gence for future work.
Finally, the intermediate region H0 ≲m≲HLSS has not

been studied well in the literature. The ALP oscillation
starts after the decoupling of CMB photons and the source
effect is negligible before that. Equation (47) is applicable

for δϕLSS, while δϕðinfÞ
obs is more suppressed than that

estimated by Eq. (46) due to the damped oscillation.
The ALP clustering may be negligible due to its extremely

large de Broglie wavelength. It would be interesting to

investigate the sourced fluctuation δϕðsrcÞ
obs in this mass

region in the simple ALP models.

VI. CONCLUSION

Cosmic birefringence is a powerful tool to investigate
the properties of ultralight ALPs. The recent analysis
based on the Planck 2018 polarization data reported the
rotation angle of CMB polarization ᾱ ¼ 0.35� 0.14 deg,
excluding the null hypothesis at 99.2% CL. The iso-
tropic birefringence indicates the difference of ALP field
values between the last scattering and the detection of
CMB photon caused by the dynamics of the background
ALP field. Thus, the detected signal opened up a new
window for the study of dark energy and early dark
energy.
In this paper, we studied the possible origins of isotropic

birefringence signal by solving the ALP background
dynamics for various potentials VðϕÞ. The ALP effective
mass, which is associated with the second derivative
V;ϕϕðϕÞ, is a crucial quantity to characterize the epoch
at which the initially slow-rolling field starts to oscillate
around the potential minimum. The field dynamics trans-
lates to the rotation angle through the relation ᾱ ¼ gΔϕ̄=2
as Eq. (14). We included the effect of finite thickness of the
LSS, which suppresses the net rotation angle if the ALP
field begins to oscillate before the decoupling of CMB
photons. Finally, we determined the required value of the
ALP-photon coupling constant, g, on each parameter to
explain the observed isotropic birefringence.
In Sec. III, we investigated the simple ALP models with

two potentials: the quadratic potential, VmassðϕÞ ¼ m2ϕ2=2
of Eq. (20), and the cosine-type potential, VcosðϕÞ ¼
m2f2½1 − cosðϕ=fÞ� of Eq. (31). Figures 1 and 2 show
the axion-photon coupling inferred from the observed
isotropic rotation against the ALP mass. We found that
the inferred values of g can be smallest forH0 ≲m≲HLSS,
while in other mass ranges the smaller field variation Δϕ̄
leads to the larger g. Using the dependence of g on m and
Ωϕ, we put lower bounds on g, m, and Ωϕ for both
potentials. Moreover, we studied the possibility of ALP
as dark energy and derived the relation between the ALP-
photon coupling and the field equation of state of wϕ, in
Eq. (38). Using this relation, we put the lower bound of wϕ

as wϕ þ 1≳ 6.5 × 10−18 in Eq. (39), which is a quite
surprising result since such a small deviation of wϕ from −1
is far out of reach of the previous constraints derived by
standard distance measurements.
In Sec. IV, we studied the signature of ALP-photon

coupling in cosmic birefringence for two typical models

of EDE: the higher-order periodic potential, VðnÞ
cosðϕÞ ¼

m2f2½1 − cosðϕ=fÞ�n of Eq. (40), and the rock ‘n’ roll

model, VðnÞ
RnRðϕÞ ¼ m2M2

plðϕ=MplÞ2n=2n of Eq. (43).
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The EDE is motivated to alleviate the observational tension
of today’s Hubble constant between the CMB [4] and local
astrophysical observations at low redshifts [40–45]. Since
the successful EDE scenarios require the very limited
ranges of ALP mass and initial conditions, we can
rigorously estimate the ALP-photon coupling based on
the EDE models. In Figs. 5–7, we showed the axion-photon
coupling inferred from the observed isotropic rotation with
1σ and 2σ parameter regions for the successful EDE
scenarios. The upper bound of g is plotted by requiring
the 1% fine tuning of the ALP initial condition, and the
more fine-tuned the initial condition is, the larger g is. We
found that the observed isotropic birefringence typically
requires g ∼ 10−18 GeV for the EDE models in Eq. (44),
and it results in gf ¼ Oð1Þ for f ¼ Mpl, which is a
nontrivial coincidence. In this paper, we focused on the
higher-order periodic potential with f ¼ Mpl and leave the
dependence on f for future work.
In Sec. V, we commented on other possible sources of

isotropic birefringence by ALP. The isotropic birefringence
can be induced not only by the background dynamics but
also by the fluctuation at the observer’s position, δϕobs. To
estimate δϕobs, we divided the ALP mass range into three
different regions, (i) the light region:m≲H0, (ii) the heavy
region: m≳HLSS, and (iii) the intermediate region:
H0 ≲m≲HLSS, and briefly explore each of them. In the
region (i), the ALP fluctuation is mostly given by the

primordial perturbation during inflation. We found that
δϕobs is unlikely to explain the observed isotropic bire-
fringence since the contribution of such ALP fluctuations is
constrained by the observation of anisotropic birefringence.
In the region (ii), the ALP fluctuation may be mainly
produced by the gravitational growth around galaxies.
We roughly estimated the ALP field value as the sub-
component of the local dark matter density, and found that
the observed signal might be explained by the ALP with
g ∼ 10−14 GeV−1, m ∼ 10−24 eV, and Ωϕ ∼ 10−2Ωc in
Eq. (50). We leave the region (iii) for future work since
the de Broglie wavelength of ALP is larger than the size of
galaxies and the structure formation of ALP is unclear in
such a mass region.
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