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Creating accurate and low-noise covariance matrices represents a formidable challenge in modern-day
cosmology. We present a formalism to compress arbitrary observables into a small number of bins by
projection into a model-specific subspace that minimizes the prior-averaged log-likelihood error. The lower
dimensionality leads to a dramatic reduction in covariance matrix noise, significantly reducing the number
of mocks that need to be computed. Given a theory model, a set of priors, and a simple model of the
covariance, our method works by using singular value decompositions to construct a basis for the
observable that is close to Euclidean; by restricting to the first few basis vectors, we can capture almost all
the constraining power in a lower-dimensional subspace. Unlike conventional approaches, the method can
be tailored for specific analyses and captures nonlinearities that are not present in the Fisher matrix,
ensuring that the full likelihood can be reproduced. The procedure is validated with full-shape analyses of
power spectra from Baryon Oscillation Spectroscopic Survey (BOSS) DR12 mock catalogs, showing that
the 96-bin power spectra can be replaced by 12 subspace coefficients without biasing the output
cosmology; this allows for accurate parameter inference using only ∼100 mocks. Such decompositions
facilitate accurate testing of power spectrum covariances; for the largest BOSS data chunk, we find the
following: (a) analytic covariances provide accurate models (with or without trispectrum terms); and
(b) using the sample covariance from the MultiDark-Patchy mocks incurs a ∼0.5σ shift in Ωm, unless the
subspace projection is applied. The method is easily extended to higher order statistics; the ∼2000-bin
bispectrum can be compressed into only ∼10 coefficients, allowing for accurate analyses using few mocks
and without having to increase the bin sizes.
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I. INTRODUCTION

Most conventional analyses of cosmological data proceed
bymeasuring a summary statistic, computing a theorymodel,
and comparing the two in a Gaussian likelihood. A key
ingredient in this is the inverted covariance matrix (also
known as the precision matrix). In the simplest case, this is
measured by creating a number of mock datasets, computing

the desired statistic in each, and then estimating the sample
covariance directly. In order to obtain an unbiased precision
matrix estimate, a large number of mocks is required [1], and
it has been further shown that noise in the precision matrix
leads to stochastic shifts in the best-fit parameters, which is
usually treated by inflating the output parameter covariances
[2–6]. To reduce these shifts, it is important to use a large
number of mocks, though creating such a sample requires
considerable computational effort, since the mocks are also
required to be accurate. Furthermore, the magnitude of the
effect increases with dimensionality; upcoming galaxy sur-
veys such as those of DESI [7], Euclid [8], the Rubin
Observatory [9], and the Roman Telescope [10] will provide
substantially higher resolution data, with an associated
increase in the number of bins.
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There exists significant literature pertaining to alternative
methods for galaxy survey covariance matrix generation.
On one end of the scale sits purely theoretical models of the
covariance, which, for the galaxy power spectrum and its
multipoles, is possible via perturbation theory (PT)
[11–14]. While these are theoretically well motivated,
we are fundamentally limited by the applicability of the
perturbative model in the nonlinear regime, and, without
simulations, it is unclear how to set model hyperparameters
such as galaxy bias and PT counterterms. A natural
extension of this therefore is semianalytic models, which
combine well-understood theory and free parameters that
can be calibrated from a (small) number of simulations.
These exist for a range of statistics, including two-point
correlation functions [12,15–18], three-point correlation
functions [19], power spectra [20,21], and bispectra [22],
though the applicability of the model assumptions must be
rigorously tested in all circumstances.
An alternative approach is to find different ways of

estimating the covariance matrix from simulations, for
example, by using noise reduction techniques (such as
tapering [23], shrinkage [24], invoking sparsity [25], and
combining with theoretical covariances [26]), calibrating
the covariance matrix with inexpensive small-volume
simulations [27,28], or expanding the precision matrix
around some smooth fiducial model [29]. Of particular
interest are schemes that reduce the dimensionality of the
data vector via some form of compression. As the number
of bins falls, precision matrix noise becomes less important,
allowing one to use fewer mocks to generate the covari-
ance. The question, however, is how to perform this data
compression.
In this work, we develop a method to compress a given

data vector by computing an information maximizing
subspace from the theoretical model for our data, using
techniques developed for gravitational wave analyses [30].
In practice, we take a large sample of Nbank points in the
underlying (prior-bounded) space of Nparam cosmological
and nuisance parameters, and compute model data vectors
(which we denote the “template bank”) at each point. This
requires no knowledge of the observational data vector, just
the theory model and parameter priors. Using a singular
value decomposition (SVD) of the resulting Nbank × Nbin
noise-weighted matrix, we generate a set of basis vectors
which are ordered in signal-to-noise and, together, contain
all cosmological information. These do not require prior
knowledge of the observed data vector. By restricting to the
first NSV of these modes, we capture the dominant
contributors to the specific experimental likelihood, in a
much lower dimensional space. The analysis then proceeds
using the projection of the full data vector into this
subspace; we note that it is fully applicable to non-
Gaussian posteriors (including multimodality) and blind
to the choice of input parameters. Assuming one has a
somewhat accurate initial ansatz for the covariance, this

procedure captures the maximum log-likelihood informa-
tion possible for a fixed dimensional data vector using
linear transformations. Furthermore, it is of low cost,
requiring only a set of theory model samples that could
easily be evaluated at the start of a Markov chain
Monte Carlo (MCMC) routine.
Ours is certainly not the first work performing analysis

along these lines, with other examples including bispec-
trum compression via approximate eigenvalue decomposi-
tions [31] and expansions in polynomial basis functions
[32–35], as well as the COSEBI method for cosmic shear
observables [36,37]. Perhaps most notable are the MOPED
algorithm [38–41] and Karhunen-Loève methods [42], both
of which perform linear transformations to compress the
data, with the former outputting a set of Nparam values that
preserve the Fisher matrix. While these have been shown to
have utility in cosmological analyses [43,44] most define
the basis vectors by assuming the posterior surface to be
locally Gaussian, i.e., that all information is contained
within the second derivatives of the log-likelihood, and
hence the Fisher matrix. Further, the compression can be
computationally expensive for high-dimensional datasets
and is optimal only for the linear response of the model data
vector with respect to parameter changes around a fiducial
point in model space, without consideration of whether this
is valid across the parameter space spanned by the priors.
For most cosmological analyses, these issues do not pose a
significant problem, especially if the procedure is iterated,
but caution is needed in the case of highly nonlinear
posteriors. References [45,46] provide an interesting
generalization of these approaches to non-Gaussian like-
lihoods, via compression to a score function. The subspace
method developed herein instead optimizes the log-like-
lihood itself, ensuring that the χ2 factors of the original and
compressed likelihoods agree up to some fixed limit
across the whole prior domain. Unlike approaches simply
decomposing the covariance matrix of the statistic, our
approach is tailored to each specific analysis, effectively
ensuring that we do not encode information that is well
known a priori. Notably, this can require using a few more
modes than parameters to encapsulate nonlinear parameter
responses, though the precise number can be robustly
set from accuracy considerations. Furthermore, while
many methods use an approximate covariance of the
compressed data points (e.g., by assuming them to be
independent) allowing for analytic posterior sampling, we
instead opt to use the full covariance for accuracy, as in
Refs. [40,44].
While our approach is fully general and can be applied to

any observable, given a theory model, parameter priors, and
a fiducial estimate of the covariance, we here consider the
analysis of galaxy survey data in redshift space, using the
approach of Refs. [47–52]. By creating a template bank
from the theory model, we can generate a subspace of a
much reduced dimension, which, for a large number of
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mocks, gives similarly accurate parameter inference to the
full likelihood, and, for a few mocks, substantially reduces
the noise-induced shifts, avoiding the need for significant
posterior inflation.
The paper has the following structure. In Sec. II, we

provide a mathematical derivation of the template bank and
subspace decomposition, as well as discussing the corre-
sponding subspace likelihoods. Section III discusses the
expected constraints obtained from the subspace analysis
and the effects of noise in the data and covariance. We
apply the formalism to the galaxy power spectrum in
Sec. IV, before discussing extensions to other analyses
in Sec. V and concluding with a summary in Sec. VI.
Appendixes A and B contain derivations of key results used
in Sec. III, with Appendix C presenting additional material
related to Sec. IV.

II. METHODOLOGY

A. The template bank and Euclidean subspace

A general cosmological model is specified by a set of
parameters θ, which can be fundamental, nuisance, or
systematic. While the arguments below strictly apply to any
physical model, this work will principally be concerned
with the analysis of galaxy power spectra, via the one-loop
effective field theory (EFT) model [47–52]. This carries the
parameter vector

θ¼fωcdm;As=As;fid;h;…g×fb1;b2;bG2
;b4;cs;0;cs;2;Pshotg;

ð1Þ

where additional parameters can be added to the first set to
more finely probe cosmology. Here, we will use only these
three for simplicity, but we note that the method can be
arbitrarily extended.
The model parameters generate a manifold with which

we can associate a vector field of Nbin-dimensional model
spectra, PaðθÞ, where a specifies the component (k-bin and
multipole) of the power spectrum evaluated at θ. We may
define the inner product between two points θðiÞ and θðjÞ as
the noise weighted distance from a suitably defined mean
spectrum, P̄ (to later be set to the mean power spectrum
from the template bank):

hδPðiÞ; δPðjÞiC ¼
X
ab

δPðiÞ
a C−1

abδP
ðjÞ
b ; ð2Þ

where C is some fiducial covariance, encoding the
metric, and δPðiÞ ¼ PðθðiÞÞ − P̄.1 This is motivated by
considerations of the χ2 of a sample power spectrum P̂

with model PðθÞ and covariance CD, which is simply a
squared norm,

χ̂2ðθÞ ¼ hP̂ − PðθÞ; P̂ − PðθÞiCD
: ð3Þ

It is convenient to perform a global linear transform that
centers and whitens the power spectra,

δPðθÞ → XðθÞ; XaðθÞ≡
X
ab

C−1=2
b ½PbðθÞ − P̄b� ð4Þ

(where C1=2 is the Cholesky factorization of C), while
preserving the inner product,

hδPðiÞ; δPðjÞiC ≡ hXðiÞjXðjÞi
¼
X
abcd

XðiÞ
a C1=2

ab C−1
bcC

1=2
cd XðjÞ

d

¼
X
a

XðiÞ
a XðjÞ

a : ð5Þ

Note that the metric is Euclidean in this set of coordinates.2

We can write an arbitrary rotated spectrum XðθÞ in terms of
a set of Nbin orthonormal basis vectors Vα, i.e.,

XaðθÞ ¼
X
α

cαðθÞVαa; cαðθÞ ¼
X
a

XaðθÞVαa ð6Þ

with coefficients cα, where the basis vectors Vα satisfy
hVαjVβi ¼ δKαβ. Hence the inner product of any two
(rotated) vectors can be written as a product of basis
coefficients,

hXðiÞjXðjÞi ¼
X
α

cðiÞα cðjÞα : ð7Þ

To compute the basis vectors, Vα, of Eq. (6), we sample a
set of Nbank spectra from the parameter manifold (known as
the “template bank”) and execute a singular value decom-
position.3 Practically, this identifies the directions in
the vector space which have the largest contributions to the
log-likelihood, χ2. Given a set of points, fθðiÞg, on the
(bounded) manifold with corresponding spectra fPðiÞg
(each of dimension NbinÞ, we first compute the rotated
spectra fXðiÞg at each point using Eq. (4), setting P̄ to the
mean of all template bank spectra.4 By stacking the rotated
spectra, we can form an Nbank × Nbin matrix Xia, which has
the SVD,

1Note that this assumes the manifold to be Riemannian, such
that the “distance” between points is specified by a quadratic
form. Below, this will correspond to the assumption of a Gaussian
noise model.

2When computing the data χ2 we will later find that the metric
becomes almost Euclidean, providing the true and fiducial
covariances are similar.

3Note that we restrict the parameter ranges (i.e., apply broad
priors), such that the manifold is of finite extent.

4Subtracting the mean is necessary to perform SVDs, but it
does not change the analysis, since P̄ cancels in the likelihood.
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Xia ¼
X
α

UiαDαVαa; ð8Þ

where Dα is a rank-Nbin diagonal matrix of the singular
values (SVs) and the matrices U and V (of dimension
Nbank × Nbin and Nbin × Nbin) are unitary, projecting from
observations to SVs, and SVs to spectra, respectively.5 By
comparison with Eq. (6), we see that the basis coefficients
are given by

cðiÞα ¼ UðiÞ
α Dα: ð9Þ

The principal value of this decomposition is that any
spectrum can be well approximated by a relatively small
number of basis vectors, such that

XðiÞ
a ≈

XNSV

α¼1

cðiÞα Vαa ð10Þ

forNSV < Nbin, where we assume that the SVs are arranged
in decreasing order.6 This is possible since jcαj ≤ Dα as U
is unitary, and Dα is small for large α. We henceforth drop
the components of U, V, and D with indices above NSV.
The projection corresponds to projecting the spectra into an
NSV-dimensional Euclidean subspace, as we approximate

hXðiÞjXðjÞi ≈
XNSV

α¼1

cðiÞα cðjÞα : ð11Þ

Here, the first mode (α ¼ 1) defines the basis vectors that
contribute most to the distance between two points on the
manifold (or equivalently, the χ2 difference), the second
mode is the transformation that has the second largest
contribution, etc.
We may fix NSV by again considering the inner product.

The mean squared distance of all Nbank spectra from the
mean spectrum P̄ is given by the average χ2,

χ2 ¼ 1

Nbank

X
i

hδPðiÞ; δPðiÞiC ¼ 1

Nbank

X
ia

XðiÞ
a XðiÞ

a

¼ 1

Nbank

X
iaαβ

UiαDαVαaUiβDβVβa ¼
1

Nbank

X
iα

U2
iαD

2
α

¼ 1

Nbank

X
α

D2
α ð12Þ

since V and U are unitary. If one uniformly increases the
number of template spectra across the manifold-with-

boundary by a factor of f, the mean χ2 (which is a
geometric property of the manifold, unrelated to the
template bank in the large Nbank limit) should be invariant;
thus Dα ∝

ffiffiffi
f

p
. We thus conclude that Dα ∝

ffiffiffiffiffiffiffiffiffiffiffi
Nbank

p
.

Assuming χ2 to be a good estimator of the distance between
any two spectra in the template bank (and hence any two
theory models on the prior-bounded manifold), the value of
NSV may be set by excluding those SVs which, in total,

contribute less than some fixed χ2min to χ2; this fixes the
optimal number of SVs, N�

SV, to

N�
SV ¼ min

�
NSV

���� XNbin

α¼NSVþ1

D2
α ≤ χ2minNbank

�
: ð13Þ

This condition ensures that the decomposition incurs a χ2

error below χ2min, averaged across the prior space. For a
perfect measurement, with nondegenerate parameters, we
would additionally require N�

SV ≥ Nparam, where Nparam is
the dimensionality of the manifold. This would ensure that
features of the spectra are not lost under the subspace
projection, though, in practice, parameter degeneracies
limit this.
A few comments on the SVD are needed. First, we note

that the decomposition of Eq. (8) implies

XTX ¼ VTD2V ð14Þ

(keeping coordinates implicit for clarity), which is just a
diagonalization with eigenvalue matrix D2. From this, it is
clear that the SVD performs an eigendecomposition [or
equivalently, a principal component analysis (PCA)] of
XTX, the covariance matrix of (whitened) model spectra
XðθÞ across the prior manifold.7 The first basis vector in V
(with the largest singular value) therefore identifies the
mode of the power spectrum that sources most of the
variance between all templates sampled from the model
space; the second vector identifies the second largest mode,
subject to being orthogonal to the first one, and so on.
Keeping only the basis vectors corresponding to the largest
singular values [i.e., Eq. (11)] thus encapsulates the main
variation in PðkÞ seen across the sampled model space.
Given that we weight by C−1=2, this is equivalent to finding
the modes that contribute most to the log-likelihood, χ2.
Importantly, this approach is different from a standard

eigendecomposition or PCA of the measurement covari-
ance matrix (e.g., [31,55]), which identifies the orthogonal
modes of the statistic that explain most of the variance of
the measurement when sampling over different random
realizations of the measurement rather than different

5Since the SVD algorithm is linear in the number of posterior
samples, generating basis vectors is not a computationally
intensive step.

6By the Eckart-Young theorem, this is the best rank-NSV
matrix approximation to X [53].

7This decomposition is not a new concept; such an approach
forms the basis of many dimensionality reduction algorithms
used in machine learning. For an additional application of this to
approximating cosmological theory models, see Ref. [54].
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samples from the model space. Unlike our approach, this
PCA is agnostic of the model space, and thus cannot exploit
the underlying structure, e.g., that cosmological parameters
typically change multiple k-bins simultaneously in a
smooth manner (implying that neighboring bins are corre-
lated with respect to parameters, even on very large scales).
While the approach of covariance PCAs is to discard any
information corresponding to modes that are too noisy to be
measured well, the effect of using SVDs is instead to
discard any information that does not affect our analysis,
made possible by sampling only a finite region of theory
space. While this may lead to a loss of information
regarding unsampled parameters, it ensures that the basis
vectors do not include much information about parameters
for which we have strong prior knowledge. Of course, our
compression is optimal only for analyses that utilize the
sampled parameters (or some transformations thereof); in
practice, we expect the decomposition to still be useful in a
larger parameter space, though the optimal analysis would
require creation of a new template bank including the
additional degrees of freedom.
An additional point of note concerns the choice of

parameters, fθðiÞg, with which we generate the template
bank. A simple choice would be to draw samples uniformly
from each cosmological parameter (subject to some limits),
though there is freedom in their exact form, for example,
whether to useΩm or ωcdm, As or logAs. In the general case,
this will have a nontrivial impact on the basis vectors, since
it will give different weights to different sections of the
manifold from which X is sampled. However, we note that
the SVD does not receive any information on the input
parameters, only the output spectra, and thus, if the
locations on the manifold are held fixed, the decomposition
is invariant of the choice of coordinate chart. Furthermore,
we expect identical results (on average) when drawing
samples from any linear transform of the input parameters
(assuming that the manifold boundary remains unchanged).
In general, however, we suggest using the same choices of
parameters and priors (or at least a superset of these) to
draw fθðiÞg as will be used in the later MCMC analysis,
such that the basis vectors well represent the case in hand.
This blindness to the choice of parameters highlights
another important note; the method is fully applicable to
models which are nonlinear in parameters, and thus give
non-Gaussian posteriors. As an example, consider a
parameter, ζ, which enters the model quadratically.
Based on the above discussion, if the sampling points
on the prior manifold are identical, we can parametrize by
either ζ2 or ζ and obtain the same decomposition. In the
latter case, the posterior is highly non-Gaussian and indeed
bimodal due to the ζ ↔ −ζ symmetry.
While our decomposition is blind to the input parame-

ters, there exist alternative approaches that include such
information, for example, partial least squares and canoni-
cal correlation analyses [56]. In these formalisms, both the

input parameters and model data vector are projected into a
latent space; the benefit of this is that it gives the linear
combinations of parameters that define the best-constrained
features in the data vector. While this sounds appealing, in
our context its interpretation is difficult since the optimal
parameter sets are nontrivial combinations of cosmological
and nuisance parameters, the latter of which are less
meaningful.

B. Application to observational likelihoods

While the above is somewhat abstract, it is of use when
we consider observational data, since it gives us a rigorous
method for which to reduce the dimensionality of the
spectra. For a model power spectrum P̂, the log-likelihood
of parameters θ given data covariance CD is simply

−2 logLðθÞ ¼ χ̂2ðθÞ
¼
X
ab

ðP̂a − PaðθÞÞC−1
D;abðP̂b − PbðθÞÞ; ð15Þ

where we have assumed a Gaussian noise model, as is
common in cosmology, and ignored the effects of param-
eter priors. Under the previous rotation by fiducial covari-
ance C [Eq. (4)], this can be written

χ̂2ðθÞ ¼
X
αβ

ðX̂α − XαðθÞÞ½CT=2C−1
D C1=2�αβðX̂β − XβðθÞÞ:

ð16Þ

Note this is diagonal only if the fiducial covariance matches
that of the data. When performing inference from a small
number of mocks, the data covariance is not well known;
thus it is preferred to use a smooth model for C instead,
giving a slightly non-Euclidean space. In terms of the basis
vectors of Eq. (6), and using modes only up to NSV, we
obtain

χ̂2ðθÞ ≈
XNSV

α¼1

XNSV

β¼1

ðĉα − cαðθÞÞ½VCT=2C−1
D C1=2VT �αβ

× ðĉβ − cβðθÞÞ

¼
XNSV

α¼1

XNSV

β¼1

ðĉα − cαðθÞÞC−1D;αβðĉβ − cβðθÞÞ: ð17Þ

In the second line, we have noted this likelihood is simply a
Gaussian likelihood for the ĉ variables, given covariance
CD, which is simply the full covariance CD projected into
the subspace. For CD ¼ C, it is simply a unit matrix. Note
that this can be written in terms of the inner product of
Eq. (5) as

χ̂2ðθÞ ¼ hX̂ − XðθÞjX̂ − XðθÞiD; ð18Þ
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where the subscript D indicates that this is with respect to
the metric gαβ ¼ C−1D;αβ, rather than being strictly Euclidean.
Given a set of mocks, we may estimate the projected

covariance directly from the measurements of ĉ in each.8

Since this contains fewer bins than the unprojected covari-
ance, it is less susceptible to stochastic shifts arising from
covariance matrix noise. The inference proceeds by com-
puting the model power spectrum for each chosen param-
eter vector, projecting onto the reduced Vα basis, and
computing the likelihood of Eq. (17) using the mock-based
CD subspace covariance. MCMC can then be performed
using this subspace likelihood.9 Subject to a suitably
chosen NSV, we expect the incurred χ2 error to be small,
and thus the posteriors to be unbiased.

III. PARAMETER SHIFTS AND COVARIANCES

A. Noise-averaged constraints

It is important to show that the θ estimates obtained in
this subspace formalism are unbiased and produce a good
estimate of the parameter covariance. To do this, we write
the data coefficients as ĉ ¼ cðθ�Þ þ n̂ where θ� are the true
parameters and n̂ is some noise vector, assumed to be
uncorrelated with theory. For the simple case of matching
true and fiducial PðkÞ covariances (C ¼ CD), we have a
diagonal subspace metric C−1D;αβ ¼ δKαβ, which implies that
each element of n̂ is independent and drawn from a
Gaussian of unit variance. In contrast, due to the use of
SVD to define the subspace basis vectors, we expect the
magnitude of the cαðθ�Þ coefficients to fall strongly with α;
we thus expect the signal-to-noise of the modes to fall
monotonically, such that the later components are noise
dominated and can be justifiably removed.
The subspace log-likelihood is given by Eq. (17), which

we may write as another inner product in the space spanned
by cðθÞ,

χ̂2ðθÞ ¼ ðĉ − cðθÞjĉ − cðθÞÞ
¼ ðcðθ�Þ − cðθÞ þ n̂jcðθ�Þ − cðθÞ þ n̂Þ: ð19Þ

The observed mean parameter vector θ̂ is defined by
maximizing χ̂2,

∂χ2
∂θi
����
θ¼θ̂

¼ 0⇒
�∂cðθÞ

∂θi
����cðθ�Þ−cðθ̂Þ− n̂

�����
θ¼θ̂

¼ 0; ð20Þ

where i ∈ f1;…; Nparamg indexes the parameter vector.10

Averaging over noise, this simply requires cðθ�Þ−cðθ̂Þ¼0,
implying that θ̂ ¼ θ� [assuming that the mapping θ → cðθÞ
is injective, which is usually the case in cosmological
contexts]. Note this is true for any value of NSV; i.e., the
subspace decomposition always gives an unbiased estimate
of the parameters, as required.
For the parameter covariance, we start from the Fisher

matrix, defined by

2F̂ ij ¼
∂2χ̂2ðθÞ
∂θi∂θj

����
θ¼θ̂

¼
�∂cðθ̂Þ

∂θi
���� ∂cðθ̂Þ∂θj

�
þ
�∂2cðθ̂Þ
∂θi∂θj

����cðθ�Þ − cðθ̂Þ − n̂

�

þ ði ↔ jÞ: ð21Þ

Averaging over noise allows us to drop the second set of
parentheses (since θ̂ ¼ θ�). From this, we can see that using
less than Nbin SVs (i.e., restricting to a subspace) produces
a shift in the noise-averaged Fisher matrix,

ΔF ij¼
�XNSV

α¼1

XNSV

β¼1

−
XNbin

α¼1

XNbin

β¼1

�∂cαðθ�Þ
∂θi C−1D;αβ

∂cβðθ�Þ
∂θj : ð22Þ

This generates a corresponding shift in the noise-averaged
parameter covariance Φ ¼ F−1,

ΔΦij ¼ −
X
kl

F−1
ik ΔF klF−1

lj ¼ −
X
kl

ΦikΔF klΦlj: ð23Þ

As shown in Appendix A, ΔΦij is positive semidefinite;
i.e., restricting to a nontrivial subspace can only increase
the parameter covariance. While this shift exists, it is
expected to be small, since the cα coefficients rapidly
decrease with index α; thus we expect similar behavior for
the parameter derivatives and hence contributions to ΔΦij.

B. Noise in the data vector

While the above subsection gives the behavior of the
subspace likelihood averaged over noisy realizations, it
remains to consider how the best-fit parameter is shifted
from the mean for individual noise realizations. Assuming

8It is worth noting that the subspace coefficients, c, do not have
straightforward correspondences with individual cosmological
parameters. As an example, consider an analysis measuring only
the primordial amplitude. As required by the SVD, the first
coefficient dominates, but will have contributions from all
nuisance parameters that affect the amplitude, especially those
that control the high-k regime, where the error bars are small.

9Note that it is not sufficient to simply use the template bank
samples to compute the likelihood posterior surface (as is done in
gravitational wave analyses, e.g., Ref. [30]). For a posterior that is
compact in the prior space, there are very few template bank
samples near the minimum point of the likelihood. In this
example, we have a minimum log-likelihood of 300 in the data,
versus just three in the MCMC output. This could be reduced by
using more restrictive priors on the template bank.

10Throughout this section we assume that any Gaussian
parameter priors (e.g., those on the higher-order bias parameters)
are not strongly informative and may be ignored, a justifiable
assumption in this work.
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the inverse covariance matrix CD to be known precisely,
Eq. (B5) of Appendix B shows the shift in the best-fit
parameter for a given noise realization n̂ to be equal to

δθi ¼
X
j

�∂cðθ�Þ
∂θj

����n̂
�
Φij; ð24Þ

adopting the inner product of Eq. (19) and neglecting
(subdominant) noise in the parameter covariance, Φ. Since
this is a stochastic quantity, it is best understood by
computing the shift covariance, hδθiδθji. Using the defi-
nition hn̂αn̂βi ¼ CD;αβ, the average can be simply obtained,

hδθiδθji ¼ Φij: ð25Þ

As noted in the previous section, Φij increases as NSV is
decreased; thus a reduction in the number of basis vectors
necessarily increases the magnitude of best-fit parameter
shifts. However, given that cαðθ�Þ falls rapidly with increas-
ing index α (due to the SVD), we expect higher SVs to have
only small contributions to the shift covariance.

C. Noise in the precision matrix

Of greater importance in this work is noise in the
precision matrix, which generally appears when estimating
C−1D using a finite number, Nmock, of mocks. As shown in
Eq. (B8) in Appendix B, a stochastic shift in the precision
matrix, δΨ, leads to an additional shift in the best-fit
parameters

Δθi¼
X
αβj

�
Φijn̂β

∂cα
∂θj −

X
kl

ΦikΦjl

� ∂c
∂θj
����n̂
�∂cα
∂θk

∂cβ
∂θl
	
δΨαβ;

ð26Þ

valid for any likelihood monotonic in χ̂2. While the
exact form is unimportant for our purposes here, we note
that it depends on the product δΨn̂; there is no shift from
noisy precision matrices if the data is noiseless. For noisy
data, this shift is present, though it vanishes on average
providing that hδΨi ¼ hδΨn̂i ¼ 0.11 Averaging over stat-
istical noise in both n̂ and δΨ (assuming Gaussian
statistics), we obtain the shift covariance from precision
matrix noise,

hΔθiΔθji ¼
ðNmock − NSVÞðNSV − NparamÞ

ðNmock − NSV − 1ÞðNmock − NSV − 4ÞΦij

ð27Þ

[2,4], which includes the Hartlap factor required to debias
the inversion of noisy covariance matrices [1]. In the limit
of large Nmocks ≫ NSV, this is approximately

hΔθiΔθji ≈
NSV − Nparam

Nmock
Φij: ð28Þ

It is here that we see the utility of using NSV < Nbin. This
dramatically decreases the parameter shifts obtained using
smallNmock, and, conversely, allows one to perform equally
accurate inference using many fewer mocks, greatly
improving the computational efficiency for surveys with
a large number of bins. The standard way of accounting for
such errors is to inflate the output parameter covariances [5]
and thus lose constraining power; using fewer SVs reduces
this need, implying that the parameter confidence contours
will reduce as NSV decreases.
The assumption of Gaussianity in the above discussion is

not fully valid. As shown in Ref. [6], when the covariance
matrix is estimated from a finite number of mocks, one
should properly marginalize over its inverse, which leads to
the likelihood being replaced by a multivariate t distribu-
tion of the following form:

−2 logLðθÞ → Nmock log

�
1þ χ̂2ðθÞ

Nmock − 1

�
þ const: ð29Þ

with no Hartlap factors required. In general, this correction
becomes important when Nmock becomes comparable to
NSV and alters the tails of the posterior distributions,
causing a significant inflation relative to that of the
naïve Gaussian likelihood (without the Hartlap correction
factor). While Eq. (29) is simple to implement in a
sampling code, we principally adopt the Gaussian like-
lihood in this work, since the alternative complicates some
technical points pertaining to the analytic marginalization
over nuisance parameters discussed in Appendix C. In fact,
this makes very little difference to the output parameter
constraints; assuming uninformative priors, the likelihood
of Eq. (29) leads to the posterior distribution itself being a
multivariate t distribution with Nmock − Nparam degrees of
freedom. In general, this is large, hence the posteriors are
very close to Gaussian, and we find very similar parameter
constraints from the Hartlap-rescaled Gaussian likelihood
and that of Ref. [6]. Furthermore, in both choices of
likelihood we find stochastic shifts in the best-fit param-
eters arising from covariance matrix noise [Eq. (26)].
Several works advocate for the inclusion of an additional
inflation factor, m1, to ensure that the output parameter
variances match those one would obtain by repeating the
analysis many times allowing for stochastic noise in both
the data vector and covariance. Here, we adopt the rescaling
factor of Ref. [5], which is derived in the Gaussian limit and
discussed further in Sec. IV D 3.

11These conditions are nontrivial in some cases. Systematic
parameter biases can be obtained from smooth models of the
covariance matrix which have hδΨi ≠ 0 as well as covariance
matrices estimated using the data, which have hδΨn̂i ≠ 0.
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We emphasize that such posterior inflation is not strictly
mathematically justified. Indeed, the inflation factor, m1,
essentially captures the difference between the true param-
eter variance obtained with a correct covariance matrix (i.e.,
one from infinitely many mocks) and that averaged over a
large number of covariance matrix realizations. However,
neither a set of such realizations nor the true covariance are
available in actual parameter estimates. m1 should thus be
viewed as a phenomenological factor introduced in order to
approximately compensate for the stochastic shifts of the
best fit by the sampling noise in the covariance matrix.
While this is the approach adopted by the BOSS and
eBOSS collaborations, it is necessarily inferior to a fully
Bayesian treatment.

D. Choice of fiducial covariance matrix

The choice of fiducial covariance C used to generate the
SVD subspace warrants discussion. For NSV ¼ Nbin, this is
arbitrary since the mapping from power spectra to coef-
ficient space is invertible; equivalently, χ2 is independent
of C. In the general case it is important, since the fiducial
covariance defines the mapping onto the lower-dimensional
subspace. If C is equal to the power spectrum data
covariance CD, the subspace metric is Euclidean and all
cα coefficients are uncorrelated. Since we define basis
vectors via SVD, we expect the information content of the
basis coefficients to decrease monotonically with the index
α; having a diagonal covariance ensures that we do not
throw away information arising from correlations between
low and high basis coefficients. In general, the subspace
metric is defined by the projection

C−1D ¼ VCT=2C−1
D C1=2VT ð30Þ

[Eq. (17)], which becomes more diagonal as C approaches
CD (since V is unitary). For this reason, using a poor
estimate of CD will lead to significant correlations between
basis coefficients, and thus reduce the efficacy of the
method by introducing a larger shift in the parameter
covariance [Eq. (23)] as SVs are removed. It is thus
desirable to use some input estimate of C which is close
to the truth (to allow for efficient subspace projections) and
low-noise (to ensure the basis vectors are smooth). It is
worth noting, however, that any invertible choice of fiducial
covariance gives unbiased parameter estimates in the limit
of zero noise; optimizing this simply ensures that the
posteriors are less affected by noise for a given (small)
number of basis vectors.

IV. APPLICATION TO BOSS DR12

A. Mock datasets and covariances

We apply the formalism of the above section to galaxy
power spectra taken from the twelfth data release (DR12)
[57] of the Baryon Oscillation Spectroscopic Survey

(BOSS), which is part of SDSS-III [58,59]. For simplicity,
we use only the largest of the four data chunks, the high-z
North Galactic Cap sample, with mean redshift z ¼ 0.61
and volume V ¼ 2.8h−3 Gpc3. In this work, all mock
data are drawn from the publicly available [60] power
spectrum multipoles from 2048 MultiDark-Patchy mocks
(hereafter Patchy) [61–63], including 48 k bins in
½0.01; 0.25�h Mpc−1 for both monopole and quadrupole
moments, as in Refs. [47–49,52]. Two choices of mock
data are used: a single Patchy realization, which emulates
the BOSS sample, and the mean-of-48 realizations, to
ensure our analysis is unbiased.
For the covariance matrix, we consider three possible

choices: (1) the sample covariance from Patchy mocks;
(2) the analytic covariance presented in Ref. [14]; and (3) a
simplified Gaussian (plus shot-noise) covariance computed
for the best-fit BOSS cosmology. In the former case, we use
eitherNmock ¼ 2000 or 125 mocks (excluding those used to
define the data vectors), defining the sample covariance via
the usual formula

covðPa;PbÞ≡CD;ab

¼ 1

Nmock−1

XNmock

i¼1

ðP̂ðiÞ
a − P̄aÞðP̂ðiÞ

b − P̄bÞ; ð31Þ

where P̂ðiÞ
a is the power spectrum of the ith mock, subscripts

indicate the k bin and multipole, and the overbar represents
the mean over all mocks. When forming χ2 we require the
inverse covariance, ΨD; to ameliorate noise-induced bias,
we include the Hartlap factor [1], defined by

ΨD ¼ fH × C−1
D ; fH ¼ Nmock − Nbin − 2

Nmock − 1
: ð32Þ

Since the other choices of covariance are analytic, they do
not require a Hartlap factor. The first of these uses
perturbation theory to compute the off-diagonal trispectrum
terms and the contributions from super-survey modes,
while the diagonal spectrum is estimated from Patchy. In
contrast, the second assumes Gaussianity (and thus no off-
diagonal terms before window convolution), with the
diagonal computed via the one-loop theory model used
in this work. Both include the BOSS window function, as
discussed in Ref. [14].

B. Creation of the template bank
and subspace coefficients

The template bank is generated following the procedure
of Sec. II A. We first draw 105 points in the parameter space
of Eq. (1), subject to the broad priors,
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h ∈ ½0.6;0.74�; ωcdm ∈ ½0.08;0.16�;
As=As;fid ∈ ½0.6;1.4�; b1 ∈ ½1.7;2.3�;

b2 ∼N ð0;1Þ; bG2
∼N ð0;1Þ; b4 ∼N ð500;5002Þ;

cs;0 ∼N ð0;302Þ; cs;2 ∼N ð0;302Þ;
Pshot ∼N ð0;50002Þ; ð33Þ

whereN ðμ; σ2Þ indicates a Gaussian prior and all quantities
are in hMpc−1-type units. Note that the flat priors are only
for the generation of the template bank and are not used in
the later MCMC analysis.12 For each set of parameters, the
power spectrum model is computed via one-loop EFT, as
implemented in the CLASS-PT code [50], then convolved
with the BOSS window function. Note that the priors are
purposefully very broad; given more restrictive priors, the
domain of the parametermanifold can be reduced, leading to
fewer required subspace coefficients.
To compute the basis vectors of the subspace discussed

in Sec. II A, we first require the fiducial covariance C,
which defines the rotated power spectra X [Eq. (4)]. While
setting this equal to the sample covariance would ensure
that the subspace metric is diagonal, this is seldom
desirable since, unless Nmock is very large, it will lead to
noisy basis vectors and hence less optimal subspace
decompositions. In general, it is important to use a fiducial
covariance that is (a) relatively smooth, and (b) provides a
fair approximation to the true covariance. For this reason,
we principally set C equal to the analytic covariance matrix
of Ref. [14], as described above.13

Using this, we rotate the template spectra into the X
variables and apply SVD as in Eq. (8) to compute the set of
basis vectors fVαg. This further defines the SVs fDαg
which can be used to setNSV.

14 To set NSV we use Eq. (12),
enforcing that χ2 be reproduced to within 0.1, averaged
across the prior, which we expect to give reasonable results.
This requires NSV ≈ 12 (depending on the exact covari-
ance); i.e., all SVs above this index contribute less than 0.1
to the mean χ2. This corresponds to compressing the data
by a factor of 8 and is slightly larger than the number of
parameters (10), indicating the effects of nonlinearities in
the transformation θ → PðθÞ (and hence the likelihood)
that cannot be well represented as linear across the prior
domain. Alternatively, this signifies a breakdown of the

assumption that all information can be encapsulated in the
rank-Nparam Fisher matrix. Below, we will also consider
NSV ¼ 48 and the uncompressed power spectrum vector
for testing purposes. Had we used more cosmological or
nuisance parameters in our model, we would expect NSV to
increase correspondingly.
Given the above Patchy mocks, we generate correspond-

ing subspace coefficients fĉðiÞα g using the first NSV basis
vectors via Eq. (6). These are then used to compute the
sample covariance of the coefficients via the standard
formula,

covðcα; cβÞ≡ CD;αβ

¼ 1

Nmock − 1

XNmock

i¼1

ðĉðiÞα − c̄αÞðĉðiÞβ − c̄βÞ ð34Þ

[cf. Eq. (31)], which is used in the subspace likelihood
[Eq. (17)]. As for the former covariance, this requires a
Hartlap factor to invert; the upside is that the Hartlap factor
will be closer to unity here if NSV < Nbin, shrinking the
parameter covariances. Additionally, we will find it useful
to perform the analysis using analytic covariances within
the likelihood (rather than just as the fiducial covariance);
in this case, we can form the subspace data covariance
from Eq. (30).

C. Posterior sampling methods

With the datasets and basis vectors in hand, posterior
surfaces are computed using MCMC methods, here
implemented via MontePython v3.3 [64,65]. Given the neces-
sity to run MCMC a significant number of times to validate
our method, we implement two approaches to expedite
the sampling. First, we note that any parameter which
enters the power spectrum model PðθÞ linearly can be
analytically marginalized without loss of information
[66,67]. This procedure is described in Appendix C and
simply leads to those parameters being absorbed into a
cosmology-dependent covariance matrix. In our case, the
nuisance parameters b4; cs;0; cs;2, and Pshot fall in this
category and are thus marginalized over directly. Note that
this does not affect the SVD decompositions since it is
applied only in the final MCMC step.
Second, when computing multiple posteriors at similar

locations, it is illogical to rerun the MCMC each time from
scratch. Instead, we opt to run the MCMC once, saving the
(unprojected) power spectra for each point in parameter
space, and then use these samples to reconstruct the
posterior for a different analysis, e.g., a different choice
of NSV, via standard importance sampling techniques. This
is fast (since it does not require a Boltzmann code to be run)
and highly accurate for posteriors close to the initial
MCMC chain. The latter requirement can be assessed by
the effective sample size of the resampled chain (e.g., [68]),
equal to

12The 105 samples are likely overkill; the change to the
dominant basis vectors is negligible when this is reduced to
104 samples and remains small even for Nbank ¼ 103. Both of
these cases require the same number of basis vectors (12) to incur
a prior-averaged χ2 error below 0.1.

13Note that havingC ≠ CD does not bias our inference, though
it changes the efficiency of our subspace projection. If we use the
same number of SVs as bins, the likelihood is independent of our
choice of C. Assuming the sample covariance to be fixed, our
analysis is robust to inaccuracies in the fiducial covariance.

14See Fig. 6 for a representative plot of the Dα components.
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ESS ¼ ðPiwiÞ2P
iw

2
i

; ð35Þ

where wi are the importance sampling weights. For a new
posterior, if the effective sample size is too small (≲104

samples) when importance sampling from any preexisting
set of spectral samples, we simply create a new MCMC
chain for this configuration.

D. Results

Below, we present the results of the subspace analyses of
the mock power spectrum data. Unless otherwise specified,
we use a single realization of mock data, set the fiducial
covariance to that of Ref. [14] (including both Gaussian and
non-Gaussian components), and use a sample covariance
from 2000 Patchy mocks. In all cases, we plot the derived
parameters H0, Ωm, and σ8; in the true Patchy cosmology,
these are given by 67.77, 0.3071, and 0.8288, respectively.

1. Bias in the noiseless limit

The first important check is whether the subspace
analysis gives an unbiased estimate of cosmological
parameters in the limit of zero noise in the data vector.

Figure 1 displays the posterior contours when the above
analysis is applied to the mean-of-mocks dataset, compar-
ing 96 uncompressed power spectrum bins, 48 SVs, and
12 SVs. Comparing the modal parameters to the true
Patchy cosmology (from which the mock data are gen-
erated) shows excellent agreement in all cases; furthermore
the posterior shapes are consistent between all datasets,
with no noticeable increase in the parameter variances due
to the subspace projections. This matches the theoretical
calculation of Sec. III A, which asserted that the subspace
likelihood would give an unbiased estimate of the mean,
but a small increase to the parameter covariance; we here
confirm that this increase is negligibly small even when
using NSV ¼ 12.

2. Bias from a single realization

Next, we consider the analogous results using data from
a single Patchy mock, emulating the true observational
sample. This uses the 2000-mock sample covariance; thus
we expect the effects of parameter shifts induced by
covariance matrix noise to be small. As discussed in
Sec. III B, we expect some stochastic parameter shifts as
a result of the differing noise properties, since data vectors
with lower NSV include fewer noise-dominated modes.
These results are shown in Fig. 2 and confirm our
suspicions; there is a noticeable shift in parameters (in
particular Ωm) as we move from 96 to 48 to 12 bins in the

FIG. 1. Corner plot of the MCMC posterior from analyzing the
mean of 48 Patchy mocks, using both the standard analysis in 96
power spectrum bins (green, full lines), 48 subspace coefficients
(red, dashed lines), and 12 subspace coefficients (blue, dotted
lines). The true Patchy cosmology is indicated by the vertical
lines in the 1D histograms. All plots are computed using a 2000-
mock Patchy covariance matrix, with an analytic covariance used
to define the SVD subspace projection, following the method
discussed in Sec. II. The posterior is clearly unbiased in all cases.

FIG. 2. As Fig. 1, but analyzing a single Patchy mock. We
additionally show the “true” results from the mean of 48 mocks in
yellow (dot-dashed lines). Here, restricting to fewer basis
coefficients does induce a shift in the parameters (as discussed
in Sec. III B), due to slightly different noise properties, since
fewer noisy modes are included.
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data vector. While in this example the posteriors shift in the
direction of the noiseless limit, we expect the sign of this
shift to vary for different noise realizations. In any case,
although the noise properties of the subspace likelihoods
differ somewhat from those of the true data, the results of
the previous subsection confirm to us that the analysis is not
biased as a result.

3. Parameter shifts from precision matrix noise

Perhaps the most important test is whether restricting to
a small number of subspace coefficients allows us to use
fewer mocks. To test this, we simply run the likelihood
analysis with a single mock dataset and two sets of
covariance matrices; one generated from 2000 mocks
and one with 8 times fewer (matching the factor by which
we optimally compress the data). Note that we assume a
Gaussian likelihood in both instances (apropos of the
discussion in Sec. III C). These results are shown in
the first two datasets of Fig. 3, and we immediately
note large shifts in the best-fit parameters for the uncom-
pressed likelihood analysis, alongside an inflation of
the parameter error bars, matching the predictions of
Sec. III C. Notably, these shifts dramatically decrease as
we compress the data, and, for NSV ¼ 12 (the value
suggested by the constraints on Δχ2 in Sec. II A), these
are insignificant. This is the main result of this paper; we
can obtain robust estimates of cosmological parameters
with just Oð100Þ mocks when using optimal subspace
projections.
While the above discussion correctly shows the stochas-

tic shifts induced in the cosmological parameters from
precision matrix noise, it does not accurately reflect real
analyses, which usually account for this by inflating the

parameter error bars by rescaling the Gaussian parameter
covariances by the constant factor15

m1 ¼
1þ BðNbin − NparamÞ
1þ Aþ BðNparam þ 1Þ ; ð36Þ

defining

A ¼ 2

ðNmock − Nbin − 1ÞðNmock − Nbin − 4Þ ;

B ¼ Nmock − Nbin − 2

ðNmock − Nbin − 1ÞðNmock − Nbin − 4Þ ð37Þ

[5]. This is more complex than that of Eq. (27) (which is
equal to the numerator of m1 minus one), since noise in the
covariance matrix inflates the observed parameter error
bars in addition to giving a best-fit parameter shift. When
rescaling the observed parameter covariances to account for
best-fit variation, this must be accounted for, giving the
reduced shift of Eq. (36) [62]. The m1 numerator [equiv-
alently, Eq. (27)] gives the necessary parameter covariance
inflation relative to the Nmock → ∞ case, which is a good
indicator of the efficacy of the subspace decomposition; for
Nmock¼125 and Nparam, we obtain 1þ BðNbin − NparamÞ≈
4.3, 1.5, 1.0 for Nbin ¼ 96, 48, 12, while m1 ≈ 3.0, 1.3, 1.0
for the same data. The results includingm1 are shown in the

(a) (b) (c)

FIG. 3. Comparison of the posterior parameter contours from analyses using a sample covariance matrix created from 125 mocks
(blue, full lines) or 2000 mocks (red, full lines), for various choices of data compression. Notably, there are significant shifts induced by
precision matrix noise, but these are almost completely nulled by using NSV ¼ 12, the value indicated by χ2 constraints. In green and
yellow dashed lines we show the corresponding results including the m1 rescaling factor of Eq. (36) to account for precision matrix
noise. With the rescaling, the posteriors with Nmock ¼ 125 and Nmock ¼ 2000 are not in tension, though the precision matrix noise leads
to a significant loss of constraining power when many bins are used.

15It is important to note that we focus only on data vectors that
are not used to build the sample covariance. For this reason, we
do not include theM2 factor used in the mock catalog analyses of
Refs. [5,69]. Our m1 factor is equivalent to M2

1 in the notation
of Ref. [69]. Furthermore, we note the discussion at the end of
Sec. III C regarding the applicability of the m1 factor.
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third and fourth datasets in Fig. 3; we note that the width
of the one-dimensional histograms for the Nmock ¼ 125,
Nbin ¼ 96 case is inflated by ∼2x, as expected. Following
the rescaling, the results for Nmock ¼ 125 and 2000 are
broadly consistent, though this is with a significant loss of
precision, or equivalently, an effective survey volume. As
above, we note that strictly the likelihood should be
replaced by a modified t distribution to properly account
for the effects of covariance matrix noise; thus the above
rescaling, which is derived in the Gaussian limit, is not fully
valid. Switching to the modified likelihood was found to
have an insignificant effect in our context, even for
Nmock ¼ 125.

4. Changing the fiducial covariance

An important hyperparameter is the fiducial covariance,
C, used to define the subspace. In Sec. III D, it was stated
that, while any (invertible) choice of fiducial covariance
would lead to an unbiased estimate of cosmology when
averaged over noise, noisy estimates, or those far from the
true covariance, would lead to greater noise-induced shifts
for small numbers of SVs. To test this, Fig. 4 compares the
posterior predictions from a single mock power spectrum
analyzed with three fiducial covariances: (1) the analytic
covariance discussed above (with off-diagonal terms);
(2) the diagonal of the Patchy covariance matrix from

2000 mocks; and (3) the full Patchy covariance matrix. In
all cases, the data covariance is held constant.
Notably, we observe no significant differences between

posteriors when using NSV ¼ 48 but larger shifts with
NSV ¼ 12. In particular, we note a significant shift from
using the Patchy fiducial covariance; this is attributed to the
large off-diagonal noise present therein, which leads to less
efficient subspace decompositions. This conclusion is
strengthened by the results with the diagonal of the
covariance matrix; while this does not accurately represent
the true covariance (since window effects induce nontrivial
mode coupling and hence off-diagonal terms are present
even if one assumes Gaussianity), it has low noise and is
consistent with the analytic prediction. We thus conclude
that it is important to have a relatively smooth estimate of
the fiducial covariance (though not necessarily one that
matches the true covariance), else the low-SV results will
be significantly affected by noise.

5. Changing the data covariance

Can consistent results be obtained from analyses using
different data covariances? This question extends beyond
subspace analyses, but can be well probed in our formalism,
sincewecan separate out the effects of precision-matrix noise
by reducing the number of basis coefficients. In Fig. 5 we
display the results from a selection of covariance matrices:

(a) (b)

FIG. 4. Comparison of the parameter posteriors estimated using different choices of the fiducial covariance matrix, C, to define the
subspace decomposition. Results are plotted for the analytic covariance of Ref. [14] (green, full lines), the diagonal of the sample
covariance from 2000 Patchy mocks (red, dashed lines), and the full Patchy covariance (blue, dotted lines). We additionally show the
posterior from the mean-of-mocks analysis of Fig. 1 (yellow, dot-dashed lines) and note that all likelihoods use the full 2000-mock
Patchy covariance in the likelihood. For 48 SVs, there is little difference between choices of fiducial covariance, but some shifts for
12 SVs. We attribute this to noise in the SVD basis vectors induced by using noisy fiducial covariances (i.e., Patchy).
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the 2000-mock Patchy covariance, the analytic prescription
of Ref. [14] (including trispectrum and supersample terms),
and an analytic Gaussian covariance. In the conventional
analysis using 96 power spectrum bins, there are seen to be
significant (∼0.5σ) shifts in Ωm when different covariances
are used, especially between Patchy and the analytic pre-
scriptions.16 Notably, adding the trispectrum terms to the
covariance does not appear to induce a significant parameter
shift.AsNSV decreases, these differences become small, and,
by 12 SVs, we report no obvious deviations in the best-fit
parameters when using different covariances.
From these results, one may conclude that, for a BOSS-

like sample volume and tracer density, the trispectrum
terms in the covariance do not alter the output parameter
posteriors. Further, there is a bias induced by using the
publicly available Patchy covariance, which disappears as
the number of bins is reduced. This can thus be attributed to
residual noise in the covariance matrix, and must carefully
be taken into account to avoid biasing the output cosmol-
ogy, for example, by using the subspace-based analysis.
These conclusions agree with the results of Ref. [70], which
analyzed the BOSS data using the perturbation theory
covariance matrices [14].

V. DISCUSSION

A. Dependence of number of SVs on priors
and the survey volume

In Sec. IV B, we found that, for the BOSS sample used in
this work, 12 SVs were needed to ensure that the mean

subspace χ2 was consistent with the usual power spectrum
χ2 to within χ2min ¼ 0.1. This is not a general statement,
since it depends on the fiducial covariance matrix, the
cosmological model, and our choice of priors. In the above,
we opted to use broad priors implying a lack of knowledge
of the posterior; tighter priors lead to a smaller variation of
χ2 across the parameter manifold, thus requiring fewer SVs.
A simple test of this is to repeat the SVD for power
spectrum samples drawn from the posterior rather than the
prior template bank. This is simply done and represents the
minimum number of SVs which can safely be used, since it
is the number one would obtain if they started with full
knowledge of the posterior space. In this case, we find that
only 8 subspace coefficients are required, rather than 12.
This is less than the number of model parameters, indicat-
ing that the parameters are partially degenerate. A hybrid
approach might also be possible; i.e., one could approxi-
mate the posterior as a multivariate Gaussian and draw
template banks instead from this distribution. While this
would result in basis vectors that are more tailored to the
posterior peak and thus somewhat fewer SVs, it will fail if
the posterior is not well modeled as a Gaussian (noting that
a Gaussian posterior is not necessarily implied by a
Gaussian likelihood). For the sake of generality, we have
not implemented such an approach here.
The required number of SVs also has dependence on the

observational volume. If the survey size is increased by a
factor f, we expect the covariance to fall by a factor f, and
thus the SVD matrixDα to scale as f1=2. From Eq. (13), we
may mimic this by choosing NSV such that the cumulative
signal-to-noise of excluded SVs is less than χ2min=f rather
than χ2min. For the priors considered herein, increasing the
survey volume by a factor of 10 (making it comparable to

(a) (b) (c)

FIG. 5. Estimated posteriors from analyses using different choices of covariance matrix in the likelihood. Data are shown for the 2000-
mock Patchy covariance (green, full lines), the analytic covariance of Ref. [14] (red, dashed lines), and an analytic Gaussian covariance
(blue, dotted lines) alongside the mean covariance of Fig. 1 (yellow, dot-dashed lines). In all cases, the fiducial covariance (used to
define the subspace basis vectors) is set to the analytic covariance of Ref. [14], and we analyze a single mock dataset with differing
compressions. Using 12 SVs, the posteriors are identical for each covariance, though there are larger noise-induced discrepancies when
using a greater numbers of bins.

16These shifts are larger than those of Ref. [70]; this is due to
our restriction to a single data chunk, and the different random
catalog used in the former work.
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the DESI volume), while making the unrealistic assumption
that there is still only one tomographic bin, the number of
required SVs increases from 12 to 16. This increase is due
to the nonlinear parameter dependencies becoming more
important (with respect to noise), though we note it to still
be a small number compared to the 96 power spectrum
bins, due to the steepness of the Dα.

B. Application to bispectra

While the main focus of this paper has been the galaxy
power spectrum, the subspace decomposition is fully
general and can be applied to any observable, given a
theory model and a set of priors. Of particular interest is the
galaxy bispectrum, since this statistic generically has a
large number of bins, which has limited its applicability in
previous mock-based approaches.17 Any formalism that is
able to substantially compress the bispectrum, while
retaining its information content, is thus of great impor-
tance, allowing mock-based analyses to take place in
reasonable computation times.18 To test the applicability
of our method to the bispectrum, we may simply ask the
question: how many SVs are needed to reproduce the
bispectrum likelihood to within Δχ2 ¼ 0.1?
For this forecast, we consider a simplified scenario; a

survey with the effective volume and redshift of the largest
BOSS data chunk, but with a periodic box geometry. We
assume the same power spectrummodel as above (one-loop
effective field theory), keeping the k-binning constant (i.e.,
with 48 k bins for each of the monopole and quadrupole).
For the (redshift-space monopole) bispectrum, we use tree-
level theory as in Ref. [72], for k in ½0.01; 0.15�h Mpc−1.
This gives a total of 2135 bispectrum bins and 96 power
spectrum bins. To generate the subspace basis vectors we
require also a fiducial model for the joint covariance
(Sec. II A); for this we assume a Gaussian covariance
for both observables (matching that of Ref. [72]), noting
that the exact choice of fiducial covariance is of limited
importance in the analysis. For simplicity, we assume the
power spectrum and bispectrum to be uncorrelated, i.e., that
they are observed in separate regions of the sky. By instead
inserting a Gaussian model for the cross covariance [73],
we have shown that this assumption does not have a
significant impact on the observed χ2 or number of SVs.
A set of 104 template bank samples is then computed

from the prior and the SVD performed. As in Sec. II A, the
output SVs can be used to assess the impact on the prior-
averaged χ2 from including only a subset of all bins; in
Fig. 6, we plot the χ2 deficit for analyses using (a) only the
power spectrum, (b) only the bispectrum, and (c) their

combination. As previously noted, there is a steep depend-
ence of Δχ2 on the number of SVs, with negligible
contributions from the higher basis vectors. As before,
we consider the optimal NSV to be the minimum number
which yields a total (prior-averaged) χ2 error below 0.1; this
is found to be 12 for the power spectrum, 9 for the
bispectrum, and 21 for their combination.19 Further, any
correlations between observables are expected to reduce the
combined number. The efficacy of this method is impres-
sive; we can compress a combined data vector with 2231
bins into just 21 (even in the presence of nonlinearities in
the likelihood), which would allow easy analysis with
Oð100Þ mocks. This has further implications for the
measurement of bispectra from data; by including the
optimal basis vectors directly in the bispectrum estimators,
the relevant compressed statistics can be computed in far
fewer operations than before, an important quality given the
nontrivial computation time required for bispectrum
estimation.
Similar analysis is possible for the combination of full-

shape analyses, such as that presented herein, with Baryon
Acoustic Oscillations (BAO) information from recon-
structed power spectra (as in Ref. [49]). This is straightfor-
ward to test; we simply generate a template bank of the

FIG. 6. Impact on χ2 from using a finite number of basis vectors
in the likelihood for mock analyses using the power spectrum, the
bispectrum, and the combination of two probes (as described in
the main text). For each case we plot the difference between
the true χ2 (from all Nbin bins) and that using NSV SVs. The
horizontal line indicates Δχ2 ¼ 0.1; i.e., beyond this point, the
sum of all remaining SVs contribute less than 0.1 to the total log-
likelihood. For the power spectrum analysis, 12 basis vectors are
required to reach this limit (compared to 96 bins), while for the
bispectrum, only 9 are needed (compared to 2135 bins). In
combination, one needs 21 SVs, though this is an upper bound as
the two observables are assumed to be uncorrelated.

17As an example, Ref. [71] had to use broad k bins to ensure
that the covariance could still be estimated from the 2048
available mock catalogs.

18See Ref. [31] for an approximate bispectrum compression
method using bispectrum eigenmodes.

19If we restrict only to modes with k < 0.1h Mpc−1 for the
tree-level bispectrum, we find that only 5 (17) SVs are needed for
the bispectrum-only (combined) analysis.
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power spectrum multipoles coupled with the Alcock-
Paczynski parameters, α ¼ fαk; α⊥g, and apply the SVD,
supplementing the fiducial covariance with the measured
joint covariance of α and multipoles discussed in Ref. [49].
Here, we find that only a single additional extra SV is
required to accurately approximate the (significantly more
constraining) χ2.

VI. SUMMARY

In this work, we have introduced a formalism to reduce
the dimensionality of cosmological observables by linearly
projecting the observables into subspaces that maximize the
prior-averaged χ2. Given only a theoretical model and a set
of priors, a set of model predictions can be computed and
used to define a quasi-Euclidean metric space via a singular
value decomposition. This provides a natural compression
for the observables; by restricting to the first NSV basis
vectors of the subspace, the dimensionality of the data is
significantly reduced while the likelihood remains almost
unchanged. While we assume the likelihood itself to be
Gaussian, it can be non-Gaussian in the parameters
themselves (and indeed multimodal), since our decompo-
sition is blind to the model parametrization. Observables
such as the power spectrum and bispectrum can be
represented with Oð10Þ subspace coefficients, incurring
χ2 errors of <0.1 over the broad prior manifold, even in the
presence of nonlinearities in the likelihood. While the
method has some dependence on an assumed fiducial
covariance, this does not bias the inference, and requires
only a simple (low-noise) estimate.
The principal appeal of this concerns covariance matri-

ces; likelihood analyses are inherently sensitive to precision
matrix noise induced by the use of finite numbers of mocks,
which is drastically reduced by data compression. Indeed,
we prove that restricting to low-dimensional subspaces
significantly reduces the induced parameter shifts, while
keeping the noise-averaged constraints unchanged (except
for a slight increase in parameter covariances, which is
shown to be negligible in practice). Indeed, due to the
posterior inflation required to ensure that the estimators
remain appropriate in the presence of noise, our subspace
projection gives more precise parameter constraints when
the number of mocks is small.
Our method is validated by application to mock BOSS

DR12 power spectrum multipoles. In particular, we show
that the 96-bin power spectrum data can be robustly
compressed to a set of 12 subspace coefficients, allowing
for accurate parameter estimations using only 125 mocks.
The required number of coefficients has only weak
dependence on the prior space; adding maximally restric-
tive priors would allow the number of coefficients to be
reduced to only 8, in our 10-parameter model. While we
have assumed a simple ΛCDM model in this work, this is
by no means a restriction; the formalism can apply to any
extension for which model spectra can be evaluated and

further include arbitrary parameters describing systematics.
While one should recompute the basis vectors given a new
cosmological model, this is not a major concern, since
creating the template bank requires computing far fewer
spectra than needed for a well-converged MCMC analysis.
It is useful to compare our methodology to the SVD-

based techniques used to de-noise the power spectrum and
bispectrum covariance matrices in Refs. [74–76]. In this
approach one diagonalizes the covariance matrix and uses
only the highest signal-to-noise (S=N) eigenvalues in the
likelihood analysis. In contrast to S=N, we use Δχ2 from
variations of all relevant parameters as a criterion to define
the subspace projections, which allows us to better capture
the eigenmodes that are sensitive to features in the power
spectrum shape. Indeed, we have seen that our method can
fully extract the information encoded in the BAO wiggles,
which contribute very little to the overall S=N, but
dominate the distance constraints.
With the addition of just a small number of extra

coefficients, the method can also apply to larger volumes
(where nonlinearities in the likelihood become more
important, and thus Fisher-based compressions become
suboptimal), as well as more complex statistics, such as
bispectra or combination with BAO constraints. For the
BOSS sample analyzed herein, we need only 12 SVs to
encapsulate 96 power spectrum bins; this rises to 16 for a
ten-times larger survey (such as DESI), and only a further
eight are required to incorporate the ∼2000 bin bispectrum.
An additional possibility is for projected statistics such as
lensing; the large number of bins across different redshifts
in 3 × 2 pt analyses could be substantially reduced using
SVs. In general, the exact number of subspace coefficients
depends on both the chosen parameter and the experimental
setup (e.g., survey redshift and volume) and should thus be
computed separately for each experiment, but this is a
trivial operation to implement once the SVD has been
performed.
The methods developed herein provide a useful sandbox

in which to investigate an important question in cosmology:
how parameter estimates depend on power spectrum
covariances. Focusing on the largest data chunk of
BOSS, we find that the inclusion of off-diagonal trispec-
trum terms in the covariance does not affect the parameter
estimates, though this will generically depend on the shot
noise and k binning. Further, in the uncompressed like-
lihood, there is a ∼0.5σ stochastic shift in the best-fit
posteriors for Ωm using a covariance drawn from
MultiDark-Patchy mocks compared to that using analytic
covariances, away from the true cosmology and in the
direction of increasing tension with Planck. In contrast,
using a small number of subspace coefficients, all cova-
riances yield consistent results, indicating that (a) there is
residual noise in the mock-based covariance that shifts the
inferred cosmological parameters even if 2000 mock
catalogs are used, and (b) analytic prescriptions can be
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accurately applied. Subspace projection provides a simple
way of ameliorating this, through limiting the effects of
covariance matrix noise. Furthermore, the ability to per-
form analyses using significantly fewer mocks paves the
way to allowing the covariance matrix to be parameter
dependent; the computational cost of performing repeated
analyses gradually updating the covariance matrix becomes
far more manageable.
Approaches such as that of this work are vital when

using statistics beyond the power spectrum. In particular,
bispectrum analyses should no longer be considered mock-
limited, opening up new and exciting avenues into the
exploration of cosmological datasets. The future grows
brighter for higher-order statistics.
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APPENDIX A: INCREASE IN PARAMETER
COVARIANCE FROM SUBSPACE PROJECTION

We here demonstrate that the shift in the parameter
covariance [Eq. (23)] is positive semidefinite, implying that
the restriction to a subspace increases the covariance on
average. For convenience, and without loss of generality,
we adopt the parameter set ψ in which the Fisher matrix is
diagonal (this can always be found by diagonalization). We
further rotate the coefficients cðψÞ → c̃ðψÞ ¼ C−1=2D cðψÞ
such that the subspace metric is diagonal. In this basis, the
full Fisher matrix is simply

F ij¼
δKij
σiσj

⇒Φij ¼ δKijσiσj; ΔΦij ¼−σ2i σ2jΔF ij; ðA1Þ

where σ2i is the variance of parameter ψ i. The Fisher matrix
in the subspace defined by NSV ≤ Nbin SVs is given by

F̂ ij ¼
XNSV

α¼1

XNSV

β¼1

∂c̃αðψ�Þ
∂ψ i

∂c̃βðψ�Þ
∂ψ j

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNSV

α¼1

�∂c̃αðψ�Þ
∂ψ i

�
2XNSV

β¼1

�∂c̃βðψ�Þ
∂ψ j

�
2

vuut ; ðA2Þ

using the Cauchy-Schwarz inequality in the second line.
Since NSV ≤ Nbin and the derivatives are real, each com-
ponent of the sum is positive; hence

F̂ ij ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNbin

α¼1

�∂c̃αðψ�Þ
∂ψ i

�
2XNbin

β¼1

�∂c̃βðψ�Þ
∂ψ j

�
2

vuut ¼ 1

σiσj
; ðA3Þ

and thus

ΔF ij ≡ F̂ ij − F ij ≤
1

σiσj
ð1 − δKijÞ: ðA4Þ

Contracting this with an arbitrary vector x, one can easily
show this to be negative semidefinite,

X
ij

xiΔF ijxj ¼
�X

i

�
xi
σi

�
2

−
X
i

x2i
σ2i

	
≤ 0; ðA5Þ

where we have again invoked the Cauchy-Schwarz inequal-
ity. From Eq. (A1), the parameter covariance shift ΔΦ is
thus positive semidefinite.
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APPENDIX B: PARAMETER SHIFTS FROM
NOISY DATA AND NOISY COVARIANCES

We here derive the expected stochastic shift in the best fit
parameters from both noisy data and a noisy covariance
matrix estimate. Much of these derivations parallel
Refs. [2,4], but we include them here for completeness.
To begin, consider the observed χ2 using noisy precision
matrix Ψ̂ ¼ Ψþ δΨ (Ψ≡ C−1D in the notation of Sec. II)
and data ĉ ¼ cðθ�Þ þ n̂ where θ� are the true parameters
and n is some vector of noise (with each element drawn
from a unit Gaussian for a diagonal subspace metric),

χ̂2ðθÞ ¼ ðcαðθÞ − ĉαÞΨ̂αβðcβðθÞ − ĉβÞ; ðB1Þ

assuming implicit index summation for brevity. The best-fit
parameter vector, θ̂, is found by minimization,

∂χ̂2
∂θi
����
θ̂

¼ 0 ⇒
∂cα
∂θi
����
θ̂

Ψ̂αβðcβðθ̂Þ − ĉβÞ ¼ 0 ðB2Þ

for all i. Assuming the deviation from the true parameters,
θ�, to be small, we can Taylor expand to first order in
δθ≡ θ̂ − θ�,

cαðθ̂Þ ¼ cαðθ�Þ þ
∂cα
∂θi
����
θ�
δθi;

∂cα
∂θi
����
θ̂

¼ ∂cα
∂θi
����
θ�
þ ∂2cα
∂θi∂θj

����
θ�
δθj: ðB3Þ

Inserting these into Eq. (B2) and simplifying, we obtain

�∂cα
∂θi ðΨαβ þ δΨαβÞ

∂cβ
∂θj −

∂2cα
∂θi∂θjΨαβn̂β

�
δθj

¼ ∂cα
∂θi ðΨαβ þ δΨαβÞn̂β; ðB4Þ

implicitly assuming all terms to be evaluated at θ�. A
further simplification is obtained by noting that the term in
curly parentheses in Eq. (B4) is simply the Fisher matrix of
a noisy realization, F̂ ij ¼ F ij þ δF ij. The parameter shift
is thus

δθi ¼ ðF þ δF Þ−1ij
∂cα
∂θj ðΨαβ þ δΨαβÞn̂β; ðB5Þ

agreeing with standard results [e.g., Eq. (23) of Ref. [2]]. To
simplify this further, note that

ðF þ δF Þ−1ij ¼ Φij −ΦikδF klΦlj ðB6Þ

at first order, where the Φ ¼ F−1 is the standard parameter
covariance.

A number of well-known results are apparent from
Eq. (B5): (a) the best-fit parameters are shifted by noisy
data; (b) the amplitude of the shift is proportional to the
parameter covariance; (c) noise on the precision matrix
gives an additional shift in parameters, though is only
present when the data is itself noisy. Note we have made no
assumptions thus far on the number of SVs used in the α, β
summation; thus the above results indicate that, for noise-
free data, we will never have a bias from using too few SVs.
To quantify the extent of these parameter shifts, it is

easiest to consider two regimes separately, first setting
δΨ ¼ 0. The covariance of δθ is then

hδθijδΨ¼0δθjjδΨ¼0
i ¼ ΦikΦjl

∂cα
∂θk

∂cβ
∂θl hn̂αn̂βi

≡ΦikΦjlF kl ¼ Φij; ðB7Þ

using hn̂αn̂βi ¼ CD;αβ ¼ Ψ−1
αβ and ignoring noise contribu-

tions to δF ij. This is a standard result; the covariance in the
parameter shift δθ is just the inverted Fisher matrix.
Combining Eqs. (B5) and (B6), we find that the precision
matrix noise induces an extra shift in the best-fit parameter
vector

Δθi≡δθi−δθijδΨ¼0

¼
�
Φijn̂β

∂cα
∂θj −ΦikΦjlΨγδn̂γ

∂cα
∂θk

∂cβ
∂θl

∂cδ
∂θj
	
δΨαβ: ðB8Þ

When the error in the precision matrix arises from estimat-
ing the sample covariance with too few mocks, the
covariance of the extra parameter shift can be shown to be

hΔθiΔθji¼
ðNmock−NSVÞðNSV−NparamÞ

ðNmock−NSV−1ÞðNmock−NSV−4ÞΦij ðB9Þ

[2], where Nparam is the length of the parameter vector.20

This just inflates the usual parameter estimate by a constant
factor, which, for Nmock ≫ NSV is well approximated
by ðNSV − NparamÞ=Nmock.

APPENDIX C: ANALYTIC MARGINALIZATION
OF THE POWER SPECTRUM LIKELIHOOD

For efficient sampling of high-dimensional parameter
spaces, it is useful to marginalize over nuisance parameters
analytically, as in Refs. [66,67]. While one may perform
this approximately for any parameters, those which enter
the likelihood quadratically can be marginalized exactly,
given some choice of prior, assuming that the likelihood is
Gaussian. Here, we consider the log-likelihood of Eq. (17)
for parameters θ ¼ fψ ; ηg, where nuisance parameters η

20Note that this includes the Hartlap factor required to invert
the noisy covariance without bias.
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enter the model cðθÞ linearly. As shown in Ref. [66],
marginalizing over η, assuming Gaussian priors, we obtain

χ̂2D;MðψÞ ¼
X
αβ

ðĉα − cαðψÞÞC−1D;M;αβðψÞðĉβ − cβðψÞÞ

þ log jCD;MðψÞj; ðC1Þ

where the model is evaluated at the mean values of η.
Now the covariance matrix inherits dependence on
cosmology via

CD;M;αβðψÞ ¼ CD;αβ þ
X
ij

∂cαðψÞ
∂ηi

∂cβðψÞ
∂ηj Pij; ðC2Þ

where Pij is the prior parameter covariance (usually
diagonal) and i, j run over the elements of η.
In our context, the counterterms cs;0, cs;2, b4, and Pshot

enter the power spectrum model linearly [and thus also the
window convolved PðkÞ and rotated cðθÞ coefficients].
Analytic marginalization is possible via the methods above,
using the broad Gaussian parameter priors of Ref. [47].
While the likelihood becomes more complex in this case
(and requires additional window function derivatives for
the parameter derivatives), it is still fast to compute and the
parameter space can be reduced from ten to six elements.
In some scenarios, one has a parameter, say ζ, that is

additionally constrained to be positive (for example, the

shot noise, if an estimate has not already been subtracted).
Analytic marginalization can still be performed in this case,
though the expression for the log-likelihood is more
complex,

χ̂2D;MðψÞjζ>0
¼
X
αβ

ðĉα−cαðψÞÞC̃D;M;αβðψÞðĉβ−cβðψÞÞ

þ log jC̃D;MðψÞj

−2 log

"
1þ erf

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J1ðψÞþσ−2ζ

2

s !�
J2ðψÞ

J1ðψÞþσ−2ζ
þ ζ̄

�#
;

ðC3Þ

where C̃D;M is as Eq. (C2) including ζ in the nuisance
parameters η and we define

J1ðψÞ ¼
X
αβ

∂cαðψÞ
∂ζ

∂cβðψÞ
∂ζ C−1D;M;αβ;

J2ðψÞ ¼
X
αβ

∂cαðψÞ
∂ζ C−1D;M;αβðĉβ − cβðψÞÞ; ðC4Þ

where ζ̄ and σζ define the Gaussian prior on the positive
parameter and CD;M does not include ζ.
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