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Using the third quantization formalism we study the quantum entanglement of universes created in pairs
within the framework of standard homogeneous and isotropic cosmology. In particular, we investigate
entanglement quantities (entropy, temperature) around the maxima, minima and inflection points of the
classical evolution. The novelty from previous works is that we show how the entanglement changes in an
extended minisuperspace parametrized by the scale factor and additionally, by the massless scalar field. We
study the entanglement quantities for the universes which classically exhibit big bang and other than big
bang (exotic) singularities such as big brake, big freeze, big separation, and little rip. While taking into
account the scalar field, we find that the entanglement entropy is finite at the big bang singularity and
diverges at the maxima or minima of expansion. As for the exotic singularity models we find that the
entanglement entropy or the temperature in all the critical points and singularities is either finite or infinite,
but it never vanishes. This shows that each of the universes of a pair is entangled to a degree parametrized
by the entanglement quantities which measure the quantumness of the system. Apart from the von
Neumann entanglement entropy, we also check the behavior of the Tsallis and the Renyi entanglement
entropies, and find that they behave similarly to the meters of the quantumness. Finally, we find that the
best-fit relation between the entanglement entropy and the Hubble parameter (which classically marks
special points of universe evolution) is of the logarithmic shape, and not polynomial, as one could initially
expect.
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I. INTRODUCTION

Since its beginning [1], the canonical quantum cosmol-
ogy has suffered from lack of explanations, like, for
example, what happens with the arrow of time or finding
a unique solution for the wave function of the Universe or
the wave function interpretation (see for example [2,3]).
There is, however, the formalism of the third quantiza-

tion [4] which is quite natural, if we believe in the existence
of a wave function of the Universe Ψ. This formalism
interprets universes as particles, i.e., the perturbations
around the vacuum of the virtual universes, where the
most natural way to create them is in pairs, as is the case in
quantum field theory. One universe plays the role of a
particle and the other (the antiuniverse) of an antiparticle. In
the simplest case, we associate wave functions to those

universes as complex scalar functions, and therefore, each
of them is described by complex conjugated wave functions
corresponding to particles and antiparticles.
The validity of the formalism is still under debate since

there are not any experimental results to confirm it yet. Here,
we present a recent formalism to analyze the quantumness of
a pair of universes using their entanglement quantities,which
could shed light on some aspects of quantum cosmology
such as, for instance, the question of if the quantumness is
restricted to the initial singularity of the universe or takes
place throughout the whole evolution of the universe. There
have been some studies during last decades that have tried to
test the existence of the multiverse as the collection of the
universes (see for example [5–10]). They considered the
phenomenon of quantum entanglement between universes
within the multiverse as essential for the task. The point was
to calculate the entanglement entropy explicitly and to draw
attention to some particularities of this approach.
In fact, the underlying Wheeler-DeWitt equation of

canonical quantum cosmology is nothing else than the
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Hamiltonian constraint HΨ ¼ 0 of the minisuperspace
which we work with. It describes the wave function of
each individual universe in a set of universes–the multi-
verse. However, the application of quantum theory to the
Universe as a whole challenges some of its fundamentals
and forces us to rethink them. How to interpret the wave
function Ψ is clearly one of those fundamentals.
Let us point out that there are two main interpretations

of Ψ in quantum theory. The first one, the more “wavelike”
interpretation of quantum mechanics, where the wave
function represents the state of a system, possibly with an
internal structure (let us think on a hydrogen atom), and
whose quantum state can be described in terms of the
elements of some basis of the corresponding Hilbert space.
The second one, the more “particlelike” interpretation of the
quantum field theory,which describes a fieldwhose quantum
state can be interpreted in terms of particles that can, in
principle, be measured separately. They are related, but there
are subtle differences in the interpretation. For instance, in the
former the basis state jni does not represent any entity by
itself but a specific level (e.g., an energy level) in terms of
which we can describe the state of the whole system. In the
latter, the basis state jni does represent the number ofmore or
less independent entities called particles. In fact, a possible
way to characterize this dichotomy is to ask what is exactly
the entity: the field Ψ or the particles.
In quantum cosmology the former is the customary

interpretation given to the wave function Ψ [11–13], where
it represents the state of the whole Universe with its internal
structure (spacetimeþmatter fields). The latter is exactly
the interpretation adopted in the third quantization formal-
ism [14,15] (see also Ref. [1]), where the universes are
interpreted as particles moving in the superspace of spatial
geometries and matter field configurations. Here, we are
going to pose and analyze a phenomenon that is naturally
contextualized in the third quantization formalism, the
creation of a universe-antiuniverse pair, but from the point
of view of their wave functions. This is justified because
we do not want to study the “many-particle” state of the
multiverse but only the state and the quantum correlations
of a couple of these newborn pairs of universes.
At the beginning of the evolution, the global state of a

pair of universes is taken as the ground state j00i for all
quantum representations [16]. Once the evolution takes
place, the vacuum state changes differently in different
representations. For instance, the diagonal representation of
the Hamiltonian H is not invariant under the evolution of
the universes which means that any instantaneous eigen-
state jN0id at a given moment in time spreads into the
infinite set of the basis components, fjNidgN∈N, of the
diagonal representation at any later time. On the other hand,
the invariant representation of the Hamiltonian H is
invariant under the evolution [17,18]. This means that a
particular state jN0ii of the invariant representation remains
the same state along the entire evolution. It seems therefore

a very plausible boundary condition to be imposed that the
universes of a universe-antiuniverse pair are in the ground
state of the invariant representation which implicitly
assumes that the universe-antiuniverse pair is isolated,
i.e., noninteracting with the rest of universe-antiuniverse
pairs of the multiverse. As we have said, at the beginning
of the evolution these two representations coincide, so
the universes are also initially in the ground state of the
instantaneous diagonal representation. However, as the
universes evolve, their quantum states are represented at
any later time by a superposition of excited states of the
diagonal representation. It turns out that this state is a mixed
state for which the entropy can be computed and is different
from zero [16].
As we know from quantum optics and quantum mechan-

ics, the entropy of entanglement is a good measure of the
quantumness of a physical system, being interpreted in
terms of the quantum correlations existing between the
states of the components. Thus, we can use the entropy of
entanglement between a universe and its corresponding
antiuniverse to study the degree of quantumness of the
universe. It was shown in Ref. [16] that the entanglement
entropy is infinite at the maximum point of classical
expansion of any universe in the multiverse. A possible
weak point of these calculations could be the usage of the
WKB approximation, where the wave function diverges
precisely at the maximum. In this paper we are not going to
make any such approximations and want to analyze the
entanglement at any critical point during the evolution of
the universe in time that in quantum cosmology is supposed
to be directly represented by the scale factor. Our procedure
is going to be as exact as possible.
In Sec. II, we deal with mathematical details of the third

quantization: the existence of conjugated solutions of the
Wheeler-DeWitt equation, their physical meaning and the
distribution of modes of the scalar field. In Sec. III, we
analyze the exact entropy of entanglement of a universe
with a massless scalar field as a second degree of freedom
in the minisuperspace, in that way generalizing and
checking the results of [16]. In Sec. IV, after confirmation
that the entanglement entropy is infinite at the maximum,
we study what happens at other critical points of the
classical evolution (minima in oscillating models and the
inflection points). We analyze the entanglement quantities
for the universes with some exotic (non-big-bang) singu-
larities in Sec. V, and in Sec. VI we suggest how the
entanglement entropy behaves in the vicinity of singular-
ities using our simple model. Finally, in Sec. VII, we give
our conclusions.

II. MATHEMATICAL FORMALISM OF THIRD
QUANTIZATION

First of all, lets write the total action for gravity and a
scalar field [2]:
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S ¼ 1

2

Z
dtN

�
−
a _a2

N2
þ aK −

Λa3

3

�

þ 1

2

Z
dtNa3

�
_ϕ2

N2
− 2VðϕÞ

�
; ð1Þ

where a is the scale factor, ϕ a scalar field, N the lapse
function, K the curvature index, Λ the cosmological
constant and VðϕÞ the potential of the scalar field. From
here we see that the canonical momenta are

pa ¼ −
_a
N
; pϕ ¼ a3 _ϕ

N
; ð2Þ

which let us write the associated Hamiltonian as

H ¼ N
2

�
−
p2
a

a
þ p2

ϕ

a3
− aK þ Λa3

3
þ 2a3VðϕÞ

�
: ð3Þ

Taking the quantization of the momenta as

p2
a ≔ −

1

a
∂
∂a

�
a
∂
∂a

�
; p2

ϕ ≔ −
∂2

∂ϕ2
; ð4Þ

where ℏ ¼ 1, the most general Hamiltonian constraint we
are going to consider, using the parametrization α ¼ lnðaÞ,
is written as

∂2

∂α2 −
∂2

∂ϕ2
−
�
e4αK − e6α

�
Λ
3
þ 2VðϕÞ

��
¼ 0: ð5Þ

Avery interesting case is the case for which the scalar field
has no potential VðϕÞ, which leads to a very simple
Hamiltonian constraint, where the function in brackets in
(5) is only a function of the scale factor.
Lewis and Riesenfeld in Ref. [17] described how to find

an invariant operator for the time-dependent quantum
harmonic oscillator such that the number operator is
constant [17]. Years after, Kim [18] found how to simplify
the method by knowing any two linearly independent
solutions on the diagonal representation. Our first task is
to find the solutions to the Wheeler-DeWitt equation which
for a minisuperspace ða;ϕÞ built on the massless scalar
field ϕ and the scale factor a ¼ eα has the hyperbolic form

� ∂2

∂α2 −
∂2

∂ϕ2
þ fðα;Λ;…Þ

�
Ψðα;ϕÞ ¼ 0: ð6Þ

This is analogous to the quantum harmonic oscillator
equation, where fðα;Λ;…Þ is the function which depends
on the scale factor and other parameters of the chosen
model but the scalar field, since we consider that VðϕÞ ¼ 0,
such as the cosmological constant Λ, and Ψðα;ϕÞ is the
wave function of the universe.

We opt for making the choice of Ψðα;ϕÞ to be separable
by Fourier modes such as

Ψðα;ϕÞ ¼
Z
k
dkAðkÞe�ikϕφkðαÞ; ð7Þ

where k refers to the number of a mode of the scalar field ϕ,
AðkÞ is a weight function representing the distribution of
the modes k and φkðαÞ is the wave function of the universe
for each mode k that after inserting (7) into (6) fulfills the
differential equation

� ∂2

∂α2 þ k2 þ fðα;Λ;…Þ
�
φkðαÞ ¼ 0: ð8Þ

Taking k as constant, the solutions of this equation are
usually a combination of Bessel functions.
If we follow the analytic Frobenius method to find the

general solution to (8), we find that the solutions always
exist, and that they strictly depend on the structure ik, and

hence the two linearly independent solutions φð1;2Þ
k ðαÞ of

(8) can be found to be complex conjugated. Furthermore,
since the solutions depend on the structure ik, the trans-
formation k → −k is equivalent to the complex conjugation
i → −i, and therefore the wave functions of both universes
can be interpreted as a particle and an antiparticle due to the
complex conjugation or because they share an opposite
distribution of modes.
This is an indication that the modes of the scalar field can

be distributed, as a very physical example, such that the
positive modes are taken by one of the universes and the
negative modes for the other, making us take the global
solutions in (7) as

Ψð1Þðα;ϕÞ ≔
Z

∞

0

dkAðkÞe−ikϕφð1Þ
k ðαÞ; ð9Þ

Ψð2Þðα;ϕÞ ≔
Z

0

−∞
dkAðkÞe−ikϕφð2Þ

k ðαÞ; ð10Þ

where we use the symmetry of the solutions and choose the
sign for e�ikϕ as a plane wave that travels toward positive
modes. Besides, we can prove thatΨð1;2Þðα;ϕÞ are complex
conjugated if and only if AðkÞ is symmetric around k ¼ 0,
which clearly shows the conservation of the energy of
the whole system. Thus, AðkÞ is going to be taken as a
symmetric Gaussian distribution around k ¼ 0 with σ as its
standard deviation–taken as the constant

AðkÞ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−
k2

2σ2 ; ð11Þ

which is more sophisticated than the choice made in
Ref. [19]. The reconstruction of Ψðα;ϕÞ from φkðαÞ cannot
in general be made analytically, so we cannot get analytic
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results for even the simplest model we analyze, and the
results also depend on σ. In view of that, we perform just
numerical calculations. Anyway, this method works gener-
ally in order to find solutions and afterwards the entangle-
ment entropy of any model with the Hamiltonian constraint
like (6).
The function AðkÞ was taken to be compared with the

distribution of Ref. [19], where it was taken as the simplest
example. In our case, it was demonstrated to be the only
possible option since AðkÞ must be symmetric around zero.
In our approach there is no need to look for renormalization
of the theory, since the term inside the integral where Bessel
functions appear gives a finite contribution to the integral
over k for any square integrable AðkÞ. That is probably the
only constraint to AðkÞ, it must not diverge at infinity, and
that is even in the most logical case for the distribution of
modes; high probability for the ground state k ¼ 0, and null
probability for k ¼ ∞. Introducing the cutoffs into the
integral could perhaps be a solution, but we prefer a more
natural way of proceeding. What is more, the explicit form
of AðkÞ can be taken as a boundary condition for the state of
the universe, which cannot be known a priori in cosmol-
ogy. The best we can do is to try different, a priori
plausible, boundary conditions, and to check whether they
evolve into the universe we observe and to expect distin-
guishing features that hopefully might discriminate among
them. We cannot speculate on the “initial” quantum state of
the universe at the very onset, since for that we should have
and should use a full quantum theory of gravity. Instead, we
can consider quantum states that represent small fluctua-
tions around known (observable) states of the universe. In
that sense, we should notice that the value of k is essentially
an expected value (i.e., classical) of the momentum of the
scalar field, and thus, the value k ¼ 0 describes an ideal
inflationary regime of the universe, for which _ϕ ¼ 0 and
VðϕÞ ¼ Vðϕ0Þ ¼ constant. From that point of view, we can
interpret the constructed wave packets as representing a
semiclassical state (i.e., a classical state with small fluctua-
tions) of the inflationary universe. Thus, the Gaussian wave
packets represent a good starting point to study the
expected small departures from the classical state stemming
from the existence of the entanglement between states of
our Universe and a hypothetical partner antiuniverse. Other
boundary states should perhaps be considered in some
future investigations.
The algorithm starts with writing the Wheeler-DeWitt

equation ([5]) as a quantum harmonic oscillator equation.

Ψ̈ðα;ϕÞ þ ω2ðα;ϕÞΨðα;ϕÞ ¼ 0; ð12Þ

where _Ψ ≔ ∂αΨ, and we recognize the momentum
PΨ ≔ _Ψ, and the frequency as

ω2ðα;ϕÞ ≔ −∂2
ϕ þ fðα;Λ;…Þ: ð13Þ

As soon as we are able to, we split the Hamiltonian
constraint into two equations: the first for the scale factor

� ∂2

∂α2 þ fðα;Λ;…Þ
�
Ψðα;ϕÞ ¼ EαΨðα;ϕÞ; ð14Þ

and the second for the scalar field

−
∂2

∂ϕ2
Ψðα;ϕÞ ¼ EϕΨðα;ϕÞ; ð15Þ

recognizing Eα and Eϕ as the energies associated for each
variable and fulfilling Eα þ Eϕ ¼ 0; the Wheeler-DeWitt
equation is only dependent on the scale factor and the
energy Eϕ, which is fixed. Hence, the frequency in (13) is
given by

ω2ðα;ϕÞ≡ ω2ðαÞ ≔ Eϕ þ fðα;Λ;…Þ: ð16Þ

In the following, we are assuming that the universes are
created in pairs. The notation jU−Uþi≡ jU−ijUþi repre-
sents a state in which jU−i has been typically interpreted as
describing an expanding universe and jUþi a contracting
one. However, in terms of the physical time experienced by
their internal observers, whose physical time variables are
reversely related [20,21], they can alternatively be inter-
preted as two expanding universes with conjugated charge
and parity properties of their matter contents. Thus, the
state jU−Uþi can equivalently be interpreted as represent-
ing a universe-antiuniverse pair. In the present development
we shall assume that interpretation. At the beginning, the
pair is in the ground state j00i for all representations.
However, such a state does not represent here the “no-
particle” state, but the state of minimal excitation of the
universes. In the invariant representation of the
Hamiltonian that leads to (12) (see Appendix), the state
j00i remains being the ground state along the entire
evolution of the universes. In other words, the universe-
antiuniverse pair stays in the ground state of the invariant
representation along the entire evolution of the universes.
That is the boundary condition which we impose on the
state of the universe-antiuniverse pair, which seems to be
quite natural provided that the universe-antiuniverse pair
does not interact with other universes of the multiverse.
However, as the universes expands, i.e., as the scale factor
grows, the ground state j00i splits into a linear combination
of excited states of the instantaneous diagonal representa-
tion, which we shall assume represents the state of the
single universes at a given moment of time (i.e., at a given
value of the scale factor).
Following Ref. [16] (cf. Appendix) we can write that the

invariant representation is described by the annihilation and
the creation operators (or perhaps more appropriately the
“ladder operators” c� and c†�)
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cþ ¼
ffiffiffi
1

2

r �
1

R
Ψðα;ϕÞ þ iðR _Ψ − _RΨðα;ϕÞÞ

�
; ð17Þ

c†− ¼
ffiffiffi
1

2

r �
1

R
Ψðα;ϕÞ − iðR _Ψ − _RΨðα;ϕÞÞ

�
; ð18Þ

where, in this specific case (see Ref. [18] for further
explanations), we can take

R ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ψ2

ð1Þðα;ϕÞ þΨ2
ð2Þðα;ϕÞ

q
; ð19Þ

with Ψð1;2Þðα;ϕÞ being any two real solutions of (6). Since
the functions in (9) are complex conjugated, satisfying the
Wheeler-DeWitt equation (6), the real and the imaginary
parts of any of them are also solutions, such that both are
real functions and are very nice candidates for the functions
in (19).
On the other hand, the diagonal representation of the

Hamiltonian is given by

bþðαÞ ≔
ffiffiffiffiffiffiffiffiffiffi
ωðαÞ
2

r �
Ψðα;ϕÞ þ i

ωðαÞ
_Ψðα;ϕÞ

�
; ð20Þ

b†−ðαÞ ≔
ffiffiffiffiffiffiffiffiffiffi
ωðαÞ
2

r �
Ψðα;ϕÞ − i

ωðαÞ
_Ψðα;ϕÞ

�
: ð21Þ

The Bogoliubov transformation between representations
(17) and (18) and also (20) and (21) is [22]

ĉ− ¼ αBb̂− − βBb̂
†
þ; ð22Þ

ĉ†− ¼ α�Bb̂
†
− − β�Bb̂þ; ð23Þ

where αB and βB are the Bogoliubov coefficients, that
written in terms of R from (19) and the frequency from (15)
are

αB ¼ 1

2

�
1

R
ffiffiffiffi
ω

p þ R
ffiffiffiffi
ω

p
−

i _Rffiffiffiffi
ω

p
�
; ð24Þ

βB ¼ −
1

2

�
1

R
ffiffiffiffi
ω

p − R
ffiffiffiffi
ω

p
−

i _Rffiffiffiffi
ω

p
�
: ð25Þ

Therefore, the ground state of the invariant representa-
tion can be expanded in terms of vectors in the Fock space
of the diagonal representation as

j00ii ¼
1

jαBj
X∞
n¼0

�jβBj
jαBj

�
n
jn−nþid; ð26Þ

where the states jn−id and jnþid refer to the excited levels
of the universe and the antiuniverse, respectively, in the
diagonal representation. The diagonal representation is

denoted by the index d, and the invariant representation
by the index i.
The quantum state of each single universe of the

universe-antiuniverse pair is described by the reduced
density matrix that is obtained by tracing out from the
composite quantum state the degrees of freedom of the
partner universe. This yields

ρ− ¼
X∞
n¼0

hnþjρjnþid

∝
X
n

e
ωðαÞ
TðαÞðnþ1

2
Þjn−ihn−jd; ð27Þ

where ρ ¼ j0−0þih0−0þj in any representation and TðαÞ is
the temperature of entanglement of the obtained thermal
state

TðαÞ ¼ ωðαÞ
2 ln½cothðrÞ� ; ð28Þ

where (cf. [16])

q ≔ tanhðrÞ ¼ jβBj
jαBj

; ð29Þ

whose values are into the interval [0, 1]. For some fixed,
finite R, we can see that q ¼ 1, if ω ¼ 0.
The state (27) shows that in the diagonal representation

the quantum state of each single universe of the universe-
antiuniverse pair is given by a nonseparable or mixed state
whose associated entropy of entanglement measures the
degree of quantum correlations between the two universes.
In Ref. [16] it was stated that the temperature of entangle-
ment is a good measure of the quantumness of the state. We
shall use the temperature of entanglement (28) as well as
the entropy of entanglement associated to the state (27) as
the measures of the quantumness of the state of the
universes.
The entanglement entropy is then calculated as the von

Neumann entropy of the system

SentðαÞ ≔ −Tr½ρ lnðρÞ� ¼ cosh2ðrÞ ln ½cosh2ðrÞ�
− sinh2ðrÞ ln ½sinh2ðrÞ�: ð30Þ

Next, we fix the model and calculate the entropy of
entanglement. If we want to calculate it for a one-
dimensional scenario, we just need to set Eϕ ¼ 0 in
(16), and solve the Wheeler-DeWitt equation.
We notice that the entanglement entropy diverges when

the frequency ω2ðaÞ is zero, since it plays the role of the
potential in the Hamiltonian constraint (12). Therefore r in
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(30) and the entropy of entanglement in (29) are directly
affected, giving r ¼ 0, and hence Sent → ∞. Something
similar happens with the parameter q in (30), which
approaches the unity when ω → 0.

Furthermore, as ω2ðα;ϕÞ is real, being negative for a
classically permitted region and positive for the classically
forbidden region, then ωðα;ϕÞ can be real or purely
imaginary, respectively, and from (30) one can obtain that

cosh2ðrÞ ¼ 1

1 − q2
¼

8<
:

ð1RþRjωjÞ2þ _R2

4jωj ; if ω2 ≥ 0 ðclassically allowedÞ

−
1

R2
þðRjωj− _RÞ2
4jωjR _R

; if ω2 < 0 ðclassically forbiddenÞ
: ð31Þ

After substitution into (29), we check that the entropy is
real for the classically allowed region, and imaginary for
the classically forbidden one. This reveals a relation
between the entanglement entropy and the classical avail-
ability of the universe for certain regions in the phase space
ðα;ϕÞ. Unless ω2ðα;ϕÞ reaches an extremum, a point
where the entropy is infinite indicates a wall between
the classical region and the quantum region, where the
entropy of entanglement can even take complex values.
If the universe shows a maximum where the entangle-

ment entropy diverges, and at the initial singularity we
assume that the universe is extremely quantum, it is clear
that in the middle of its evolution there is, at least, a
minimum of this entropy which seems, a priori, unrelated
to any specific event of the evolution, though still it can
have some meaning in the context of information theory
which we have not yet discovered.
Another interesting variable is the temperature defined in

(28). It was stated in [16] that the temperature could be a
better measurement of the quantumness of a system than
the entanglement entropy. Let us analyze this temperature
together with the entanglement entropy. Using Eqs. (24),
(25), (28) and (30), the temperature when the universe
approaches a singularity (ω → 0) can be approximated to

lim
ω→0

TðαÞ ≈ 1þ R2 _R2

4R2
; ð32Þ

since R > 0 and ω2 > 0 for the classically allowed region.
This temperature is never divergent around singularities if
R is finite or R and _R are not divergent at the same time,
which is, in general, the case. Therefore, the temperature is
finite in general.
In cases when the universe does not recollapse, by

assumption the wave function of the universe is made to
vanish at infinity and the parameter R in (19) also vanishes.
Then the temperature, in general, diverges for most of the
frequencies ωðαÞ.
Finally, it is worth exposing another alternative to the

entanglement entropy calculated as von Neumann entropy.
First, we could track the behavior of the parameter q from
(30), and other entropic measurements like, for example,

Tsallis entropy SðTÞq [23,24] or Renyi entropy SðRÞq [25,26],

which are defined and written in terms of r, as we did for
the von Neumann entropy (30). For example,

SðTÞq ðρÞ ≔ 1

1 − q
½TrðρqÞ − 1�

¼ 1

1 − q

�
sechqðrÞ

1 − tanh2qðrÞ − 1

�
; ð33Þ

and

SðRÞq ðρÞ ≔ 1

1 − q
ln½TrðρqÞ�

¼ 1

1 − q
ln

�
sechqðrÞ

1 − tanh2qðrÞ
�
; ð34Þ

respectively. These entropies are related to each other by

SðRÞq ¼ 1

1 − q
ln½1þ ð1 − qÞSðTÞq �: ð35Þ

III. EXTENDED MINISUPERSPACE
ENTANGLEMENT ENTROPY

In order to extend the discussion of Ref. [16] into the
matter of degrees of freedom, we consider massless scalar
field as another coordinate in minisuperspace as it was
presented in Sec. II.
We consider a closed universe (K ¼ þ1) without the

cosmological constant and a massless scalar field [i.e., no
potential term, so VðϕÞ ¼ 0] with an arbitrary distribution
of modes k. In this scenario, we write (8) as (see, e.g., [2])

� ∂2

∂α2 þ k2 − e4α
�
φkðαÞ ¼ 0; ð36Þ

whose solutions are modified Bessel functions of the first
kind with complex order

φð1;2Þ
k ðαÞ ∝ I�ik

�
e2α

2

�
; ð37Þ

that are complex conjugated. To reconstruct the wave
function of the universe as the first solution of (9), we
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perform a numerical procedure including the distribution
function (11). Of the solutions we get for the wave function
of the universe, both are complex conjugated as we
explained in Sec. II if and only if AðkÞ is symmetric
around k ¼ 0. Taking the distribution of the modes as in
(11), that condition is fulfilled. Once they are complex
conjugated functions, the real and the imaginary parts solve
the differential equation (6) by themselves, so we will use
them as the input for the calculation of the invariant
representation.
Using this numerical wave function, we calculate the

parameter R in (19) and its derivative with respect to α, the
Bogoliubov coefficients using (24) and (25), and
the entropy of entanglement through the parameter r from
(29) and (30). The outcome, which is now given over a two-
dimensional minisuperspace (a;ϕ) is plotted in Fig. 1.
Here we find a very important result. The entanglement

entropy, which is a measurement of the quantumness of the
system, is infinite at the maximum of expansion as we
expected. However, the entropy at the big bang singularity
a ¼ 0 is not infinite. As a conclusion, we claim that
according to our two-dimensional minisuperspace calcu-
lations (the scale factor and the scalar field) the quantum-
ness of the system is larger at the maxima of the evolution
of the universe than at the initial singularity, where _a is
nonvanishing, even though it is important to notice that all
entanglement entropy is locally decreasing in the neighbor-
hood of the initial singularity. However, still in all the
considered classical points (big bang singularity, maxima),
both the entropy and temperature of entanglement have
nonzero values showing the entanglement of the universes
and some degree of quantumness of the system. Another

speculation could be that more degrees of freedom in
minisuperspace reduce the entanglement on a similar basis
as it happens with the chaotic systems for which adding
more particles can stabilize its behavior and reduce
disorder.
Furthermore, compared with previous results for the

entanglement entropy [16], the main difference is the
existence of a quantized scalar field, that is, we did not
treat the scalar field classically. It seems now that it may
regularize the value of the entropy of entanglement at the
origin. However, it does not change the general interpre-
tation. The generalized second principle of quantum
thermodynamics [27] states that the entropy of entangle-
ment cannot be increased by means of any local operation
and classical communications alone. In the cosmological
scenario, that means that the classical processes that happen
inside a single universe, which in this context are all local
irrespective of the distances between them,1 cannot increase
the entropy of entanglement between the pair of universes.
Even more, they are expected to dissipate the quantum
correlations between the states of the universes. Thus, the
decreasing value of the entropy of entanglement from
the very onset of the universes, regardless of whether
the entropy of entanglement is infinite or not at the origin,
would be associated with a classical evolution of the
universes, which follows all the way up to the turning
point of maximum expansion where the universe enters
again into a highly nonclassical state [16,19].
We have checked that the other measurements of entropy

as Tsallis or Renyi entropy in (33) and (34), respectively,
are essentially analogous to the von Neumann entropy
shown in Fig. 1, and the same happens for the parameter q
from (30), but the value at the divergences is in unity.

IV. ENTANGLEMENT ENTROPY AT CRITICAL
POINTS OF CLASSICAL EVOLUTION

After our first result where the entanglement entropy
diverges at the maximum point of the expansion of the
universe, it is necessary to ask if it always happens at any
critical point of the oscillating evolution: the maxima, the
minima or the inflection points.
In order to figure out how the entropy behaves at these

points, we apply a simple one-dimensional model such that
the evolution of the universe shows all kinds of points–an
oscillatory universe. A simple model explored in Ref. [28]
is one with wall-like matter, stringlike matter and a negative
cosmological constant Λ < 0. This model without string-
like matter was later reconsidered and dubbed a simple
harmonic universe in the quantum context in Refs. [29–33]
based on the early Ref. [34]. Some new aspects of the
stability of such models were recently studied in Ref. [35].
In this model the scale factor behaves as

FIG. 1. Entanglement entropy (blue surface) and the temper-
ature of entanglement (orange surface) of a pair of universes in a
two-dimensional minisuperspace (a;ϕ). Here: σ ¼ 1, Eϕ ¼ 1.
The entanglement entropy is infinite exactly at the maximum
expansion diverging for any ϕ, and finite for any point in the
phase space of the classical evolution of the universe, even for
a ¼ 0; at least for the precision of the numerical method we use.
The temperature has been multiplied by a factor of 1=5 to
equalize both surfaces and it shows no divergences at any point of
the phase space.

1In the present context, a nonlocal operation is any that involves
the composite state of the two universes of the entangled pair.
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aðtÞ ¼ −
3

2Λ

�
A sin

� ffiffiffiffiffiffiffiffi
−
Λ
3

r
t

�
þ Cw

�
; ð38Þ

where Cw is a constant density parameter due to wall-like
matter, such that

Cw > A ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
w þ 4

3
Λk0

r
; ð39Þ

with k0 ¼ K − Cs where K is the curvature index and Cs a
constant density parameter due to stringlike matter. The
universe is oscillating between the minimum (−) and the
maximum (þ) defined by

a� ¼ −
3

2Λ
ð�Aþ CwÞ: ð40Þ

An example of the oscillation in this model is plotted
in Fig. 2.
The Friedmann equation for this model is simply

H2 ¼ Λ
3
þ Cw

a
−

k0

a2
; ð41Þ

and the Lagrangian is calculated as

L ¼ 1

2

Z
dNa3

�
H2

N2
−
Λ
3
−
Cw

a
þ k0

a2

�
; ð42Þ

where N is the lapse function. The corresponding
Hamiltonian is

H ¼ −
p2
a

a
− k0aþ Cwa2 þ

Λ
3
a3; ð43Þ

and the Wheeler-DeWitt equation reads as

�
−p̂2

a − k0a2 þ Cwa3 þ
Λ
3
a4
�
ΨðaÞ ¼ 0; ð44Þ

where ΨðaÞ is the wave function of the universe.
Quantizing the Hamiltonian with the proper factor ordering
as described in (4), one rewrites (44) as

�
1

a
d
da

�
a
d
da

�
− k0a2 þ Cwa3 þ

Λ
3
a4
�
ΨðaÞ ¼ 0: ð45Þ

Using the parametrization α ¼ lnðaÞ yields a kind of
harmonic oscillator equation

�
d2

dα2
þ ω2ðαÞ

�
ΨðαÞ ¼ 0; ð46Þ

with the frequency

ω2ðαÞ ¼ −k0e4α þ Cwe5α þ
Λ
3
e6α: ð47Þ

A priori, this equation has no easy analytic solution, but
following the same procedure as in Sec. II with Eϕ ¼ 0 and
the solutions of (46), we get the entropy of entanglement as
plotted in Fig. 3. As expected, we can see that the blow-up
of the entanglement entropy coincides precisely with the
minimum and the maximum of the expansion of the
universe. However, the inflection point is shown to be of
less importance since the entropy remains smooth (finite)
around it. This result is a bit disappointing since the
universe we inhabit has passed an inflection point between
the matter-dominated and the dark-energy-dominated era
not long ago.

FIG. 2. Oscillation of the universe. Here: Λ ¼ −1, K ¼ þ1,
Cs ¼ 0.1 and Cw ¼ 2. The critical points are shown explicitly.

FIG. 3. Entanglement entropy of an oscillating closed universe
(38). Here a� stands for the maximum and the minimum size of
the oscillation as given by (40), and ai:p: stands for the inflection
point. We have chosen: Λ ¼ −1, Cs ¼ 0.1 and Cw ¼ 2. The
black line represents the real part of the entropy while the red line
represents its imaginary part. The entropy is finite though
nonzero at the inflection point and diverges at those critical
points where _a ¼ 0.
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For completeness, we calculate the value of the entan-
glement temperature (28) for this model, and the result is
plotted in Fig. 4 together with the parameter q from (30).
Both have been plotted qualitatively since their values
are not so important as their behavior. Again the temper-
ature shows no divergences, while the parameter q, which
is closely related to the entanglement entropy, maintains
a similar shape and approaches unity close to the
singularities.

V. ENTANGLEMENT OF EXOTIC SINGULARITY
UNIVERSES

A. Other than big bang singularities

As one can consult from Table I, the first example of a
non-big-bang type (from now on type 0) of a singularity in
cosmology which is compatible with observations is a big
rip (BR or type I) associated with phantom dark energy
[36,37]. Other examples are: a sudden future singularity
(SFS or type II) [38] which includes big brake [39], finite
scale factor singularities (FSF or type III) which includes

big freeze, big separation singularities (BS or type IV) [40],
and w-singularities (type V) [41]. There is also a version of
big rip known as little rip [42]. It seems fascinating that
some of these singularities are “weaker” and some are
“stronger” than a big bang in the sense of leading to
infinities of some specific type and not to the other type
[43–45].
In order to understand what we mean by “weaker” and

“stronger” we have to refer to some mathematical tools to
investigate the problem. According to the definition of
Tipler [46] a singularity is strong if an extended object
represented by three linearly independent, vorticity-free,
geodesic deviation vectors at p parallelly transported along
causal geodesic l is crushed to zero volume at the
singularity by infinite tidal forces. In mathematical terms
it means that at least one component of the tensor IijðτÞ ¼R
τ
0 dτ

0 R τ0
0 dτ00jRi

ajbuaubj (Ri
ajb is the Riemann tensor, ua is

the four-velocity vector, a, b, i, j ¼ 0, 1, 2, 3 and τ is proper
time) diverges on the approach to a singularity at τ ¼ τs. On
the other hand, according to the definition of Królak [47], a
singularity is strong if the expansion of every future-
directed congruence of null (timelike) geodesics emanating
from the point p and containing l becomes negative
somewhere on l or, in mathematical terms, if at least
one component of the tensor IijðτÞ ¼

R
τ
0 dτ

0jRi
ajbuaubj

diverges on the approach to a singularity at τ ¼ τs. For
the null geodesics one replaces the Riemann tensor with the
Ricci tensor components.

B. Type II singularity universes entanglement

Physically, it is a singularity for which the tidal forces
manifest here as the (infinite) impulsewhich reverses for SFS
(or stops to zero for big brake) the increase of separation of
geodesics and the geodesics themselves can evolve further–
the universe can continue its evolution through a singularity.
This behavior is like the turning point of a harmonic
oscillator. In a specific example of type II singularity–big
brake–the effect of a scalar fieldwhich fulfills the equation of
state of a generalized Chaplygin gas is

FIG. 4. Representation of the temperature in black and the
parameter q in red. The temperature has been multiplied by 1=10
to make easier the comparison of the oscillations. The temper-
ature is finite, showing a weaker signal of the quantumness of the
universe at any point.

TABLE I. Classification of basic singularities in Friedmann cosmology. Here ts is the time when a singularity appears, w ¼ p=ρ is the
barotropic index, T is Tipler’s definition and K is the Królak definition. In this paper we mainly concentrate on types 0, Il, IIa, IIIa and
IV.

Type Name t aðtsÞ ϱðtsÞ pðtsÞ _pðtsÞ wðtsÞ T K

0 big bang (BB) 0 0 ∞ ∞ ∞ finite strong strong
I big rip (BR) ts ∞ ∞ ∞ ∞ finite strong strong
Il little rip (LR) ∞ ∞ ∞ ∞ ∞ finite strong strong
II sudden future (SFS) ts as ϱs ∞ ∞ finite weak weak
IIa big brake (BBr) ts as 0 ∞ ∞ finite weak weak
III finite scale factor (FSF) ts as ∞ ∞ ∞ finite weak strong
IIIa big freeze (BF) ts 0 ∞ ∞ ∞ finite weak strong
IV big separation (BS) ts as 0 0 ∞ ∞ weak weak
V w-singularity (w) ts as 0 0 0 ∞ weak weak
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p ¼ −
A
ρβ

; ð48Þ

where p is the pressure, ρ the density, A < 0 a constant and,
throughout this section, β ¼ 1. The dependence of the scalar
field with the scale factor is found through the continuity
equation which takes the form

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B
a6

− A

r
; ð49Þ

where B > 0, and where at the singularity time ts one has
as ¼ aðtsÞ ¼ ðB=AÞ1=6. The evolution of the scale factor
begins with the big bang singularity at time t ¼ 0 where
að0Þ ¼ 0 and stops at the big brake singularity at time ts
where aðtsÞ ¼ as > 0. The exotic big brake singularity that
appears in this model has the properties

_aðtsÞ ¼ 0; äðtsÞ → −∞;
A
p
¼ ρðtsÞ → 0: ð50Þ

The scalar field which leads to such a singularity is treated as
classical, so we are going to proceed with quantization using
(3) with N ¼ 1, i.e.,

H ¼ 1

2

�
−
p2
a

a
− aK þ Λa3

3
þ 2a3ρ

�
: ð51Þ

After quantization, the Wheeler-DeWitt equation is

� ∂2

∂α2 − e4αK þ e6α
�
Λ
3
þ 2ρðαÞ

��
ΨðαÞ ¼ 0; ð52Þ

where, in the case described in [39], there is no cosmological
constant (Λ ¼ 0), the density of the scalar field ρðαÞ is as
in (49) and the flat case (K ¼ 0) is considered.
The entanglement entropy for B ¼ −A ¼ 1 is plotted in

Fig. 5. There we see the divergence at the initial big bang
singularity (a ¼ 0) as well as the big brake singularity at
ða ¼ as ¼ 1Þ. Again the temperature does not show any-
thing relevant, but its value is nonzero.

C. Type III singularity universes entanglement

Another exotic singularity–the big freeze–is studied in
[48], and appears when there is a scalar field with
polytropic equation of state (48), where β is any constant.
It is a special case of type III singularity. If the model is
considered for a flat universe without a cosmological
constant, then the density for which the null, strong and
weak energy conditions are fulfilled can be written in terms
of the scale factor as

ρ ¼ jAj1=ð1þβÞ
��

as
a

�
3ð1þβÞ

− 1

�
1=ð1þβÞ

; ð53Þ

where

as ¼ aðtsÞ ¼
����BA

����
1=3ð1þβÞ

; ð54Þ

and is the minimum size of the universe, A < 0, 1þ β < 0,
and B > 0 is a constant of integration. At as the initial big
freeze singularity appears, and its properties are

ρðasÞ; pðasÞ → ∞; _aðasÞ → ∞: ð55Þ

Besides, there is no maximum size, the minimum size is not
zero in general and it occurs at a finite time ts.
Again, the scalar field is treated classically, so we stick

to the Wheeler-DeWitt equation (52) to proceed. The entan-
glement entropy in Fig. 6 shows nothing special, even a
divergence at as that was already expected since ρðasÞ→∞.
Therefore the frequency ω2ðαÞ in (52) also diverges, the
parameter q in (30) approaches unity and finally the entan-
glement entropy in (29) diverges. Since there is no maximum
size for this universe, the envelope of the oscillations of the
entanglement entropy decreases as the universe grows.
As the universe expands, the temperature, also showed in

Fig. 6, increases since R in (19) goes to zero due to the
vanishing behavior of thewave function,which is imposed as
a boundary condition for the wave function of the universe.
A priori, it is said that the quantumness of the universe
vanishes when the universe expands. Hence, the temperature
cannot be a good indicator of the quantumness, at least in this
scenario.

FIG. 5. Entanglement entropy and temperature for a model
whose scalar field follows the equation of state (48). We have
chosen: B ¼ −A ¼ 1. There is a divergence at the big brake
singularity for a ¼ as ¼ 1, as well as for the initial big bang
singularity where a ¼ 0. The black line is the real part of the
entropy, and the red line is the imaginary part. The temperature
(blue) has been multiplied by a factor of 5 to make the
comparison easier.
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D. Big separation (type IV) singularity universes
entanglement

The model for which the next exotic singularity arises
also takes into account a flat universe without a cosmo-
logical constant, and a scalar field in which equation of
state is (48) and where A < 0 and β is any constant. The
density in terms of the scale factor which fulfills all the
energy conditions is (53), where B > 0 and β ∈ ð−1=2; 0Þ,
but as is now the maximum of the expansion of the universe
defined by (54).
The type IV singularity appears at a ¼ as for t ¼ ts, and

its characteristics are

pðtsÞ; ρðtsÞ ¼ 0; _aðtsÞ ¼ 0: ð56Þ

The entanglement entropy is calculated from the
Hamiltonian constraint (52) and represented in Fig. 7
together with the temperature, which shows a divergence
at the initial singularity and another at the type IV
singularity. It was expected since _aðtsÞ ¼ 0, because the
universe reaches a maximum at as. The temperature shows
no divergences at any point, remaining approximately
constant during the evolution. The parameter q behaves
as expected; it is the unity at a ¼ 0 and a ¼ as ¼ 1, and it
follows the same shape as the entanglement entropy.

E. Little rip singularity entanglement

The little rip event described in [49] is an event for which
the scale factor, the Hubble parameter H and its derivative,
with respect to the cosmic time, diverge, which is not
precisely a singularity. This can be produced by a scalar
field with an equation of state like

p ¼ −ρ − A
ffiffiffi
ρ

p
< 0; ð57Þ

where A > 0 is a constant. If the universe contains this
scalar field, its curvature is flat and has no cosmological
constant, and the density can be written in terms of the scale
factor as

ρ ¼ ρo

�
3A

2
ffiffiffiffiffi
ρo

p ln

�
a
ao

�
þ 1

�
2

; ð58Þ

where ρo and ao are constants of integration which
correspond to the value of the density and the scale factor,
respectively. The density in (58) presents an interesting
point at

as ¼ aoe−
2
ffiffiffi
ρo

p
3A ; ð59Þ

where the density is zero. Looking at the Wheeler-DeWitt
equation (52), with K ¼ 0 and Λ ¼ 0, and comparing it
with (12), we see that the frequency ω2ðαÞ is directly
proportional to the density (58), and therefore the fre-
quency will also be zero so a divergence of the entangle-
ment entropy is expected there. Figure 8 shows the
temperature and the entanglement entropy of this model,
for which this singularity appears due to the vanishing of
the density of the scalar field. There is the initial singularity
at a ¼ 0, but there is no divergence as the universe is
getting closer to the little rip event, where the entanglement
entropy is infinitely oscillating and globally decreasing.
The temperature and the parameter q are also shown in

Fig. 8. The temperature is increasing for high values of the
scale factor. This is again meaningful, because the universe
is expected to lose its quantumness when it expands, and
thus, the temperature should decrease if it is a good
indicator of the quantumness of the universe. That is not

FIG. 7. Entanglement entropy and temperature for a model in
which the scalar field follows the equation of state (48). We have
chosen: A ¼ −1, B ¼ 1 and β ¼ −1=2. There is a divergence in
the type IV singularity, here at a ¼ as ¼ 1. The black line is the
real part of the entropy and the red line is the imaginary part. The
blue line is the temperature, which has been multiplied by a factor
of 10. It shows no special behavior at any singularity.

FIG. 6. Entanglement entropy and temperature for a model in
which the scalar field follows the equation of state (53). We have
chosen: A ¼ −1, B ¼ 1 and β ¼ −2. There is a divergence for the
Big-Freeze singularity, here at a ¼ as ¼ 1. The black line is the
real part of the entropy and the red line is the imaginary part.
The blue line shows the temperature multiplied by 1=10, which
increases as the universe expands.
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the case and the temperature increases as the universe
evolves. The parameter q is one at the singularities, and for
the rest, it moves slightly oscillating around 0.8.

VI. ENTANGLEMENT ENTROPY VERSUS THE
HUBBLE PARAMETER

Since the entanglement entropy diverges at the maxima
and minima, the question is if it is related somehow with the
Hubble parameter, since H ≔ ∂a lnðaÞ is null at those
points. In order to analyze this problem, we take the
simplest minisuperspace model (a;ϕ), described by (36),
that is the universe with only a scalar field and a unique
mode k ¼ 1. The wave functions for this model are those of
(37) with mode k ¼ 1.
The Lagrangian of the model is

L ¼ 1

2

Z
dNa3

�
H2

N2
þ 1

a2
−

_ϕ2

N2

�
; ð60Þ

and from this we get

pϕ ¼ _ϕa ¼ k≡ const; ð61Þ

which is the mode of the scalar field. Therefore, the
Friedmann equation is simply

H2 −
k2

a6
þ 1

a2
¼ 0; ð62Þ

and we obtain that, classically, the maximum size of the
universe is at a ¼ 1 if k ¼ 1 (note that k here means the
number of the mode, while the curvature index K ¼ þ1 is
“hidden” in the term 1=a2). The entanglement entropy is
shown in Fig. 9 with a blue line for this model. Again we
found a divergence at the maximum of the evolution of the
universe, and as in Sec. III, a finite initial entanglement
entropy.
As our task is to look for the relation with the Hubble

parameter, we use (62) to rewrite the entropy of entangle-
ment numerically and perform a fit as we wish. Our
objective is to find a relation like

SentðHÞ ∼ 1

H2
; ð63Þ

since it will indicate a relation to the entropy of horizons,
such as the Hubble horizon or the black hole horizon. In
order to check if this is the case, we approximate the
entropy very close to a singularity by the function

SentðHÞ ∼ co þ
c1
H

þ c2
H2

þ c3
H3

; ð64Þ

where we expect the condition c2 ≫ co; c1; c3 to be valid.
The result of the fit is shown in Fig. 10 with a an
unexpected result. The entropy of entanglement seems to
fit perfectly to a different function,

SentðHÞ ∼ co − c1 lnðHÞ; ð65Þ

where c1 ≈ 1, and we can see that this entropy has the shape
of the Shannon entropy [50] for an event with probability
H. The fit can be found in Fig. 10.
We wanted to check if this logarithmic shape holds for

alternatives of the von Neumann entropy, as Renyi or
Tsallis entropies. Using (33) and (34), we calculated both
entropies and drew them in Fig. 9, together with the von
Neumann entropy. The blue line shows the von Neumann
entropy, the solid lines show the Renyi (red) and Tsallis

FIG. 9. Different entropies vs the scale factor. The blue line
shows the von Neumann entropy, the solid lines show the Renyi
(red) and Tsallis (black) entropies for q ¼ 1.5, and the dashed
lines for q ¼ 0.7, respectively. For values q ∈ ð0; 1Þ, it diverges
to plus infinity.

FIG. 8. Entanglement entropy and temperature for a model in
which the scalar field follows the equation of state (57). We have
chosen: A ¼ 2=3, B ¼ 1, ρo ¼ 1 and ao ¼ 1. There are two
divergences: the initial singularity at a ¼ 0 and another at a ¼ as.
As the universe approaches the little rip event at a → ∞, nothing
special happens. The black line is the real part of the entropy, and
the red line is the imaginary part. The temperature, in blue,
increases and oscillates as the universe expands. It has been
multiplied by a factor 1=20. The orange curve is the parameter q,
which is around the unity in the beginning of the evolution, the
unity at the divergences and is oscillating around the value 0.8 as
the universe expands.
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(black) entropies for q ¼ 1.5, and the dashed line for
q ¼ 0.7, respectively. The fits of the form (65) of these
alternative entropies are in Fig. 11. The solid lines show the
Renyi (black) and Tsallis (blue) entropies in terms of H for
q ¼ 0.7, and their fits in red and green, respectively. The
dashed lines show the absolute values of the Renyi (black)
and Tsallis (blue) entropies for q ¼ 1.5, with their fits in red
and green, respectively.
The fits of Renyi and Tsallis entropies to a function like

(64) or (65) are not as appropriate as for von Neumann
entropy. Nevertheless, as shown in Fig. 9, all of them
behave similarly if q > 1, and therefore they could be taken
as good indicators of the quantumness of the universe. They
even yield an imaginary part of the classical region as the
von Neumann entropy. If q ∈ ð0; 1Þ, the entropy diverges to
−∞ at the maximum expansion of the universe and a

maximum of entropy appears, which is also unrelated to
any special event.
What is important to discuss is the possible physical

meaning of the infinite values of the entanglement entropy
which appears not only in our quantum cosmology con-
siderations, but also in holographic theories and for black
holes, where some cutoffs of entropy are applied. In our
opinion, a divergent entropy of entanglement indicates that
the modes of the quantum states of the universes are highly
correlated in a composite state in which a wide range of
modes would have a relevant contribution (not only those
entropically closed to the classical one). At those points one
should expect therefore a strong departure from the
classical behavior, delving into a regime that is beyond
the range of the present work. Let us point out that we
consider semiclassical quantum states in the sense that we
assume small departures from the classical state (and
besides assume homogeneity and isotropy, which are
essentially quite simple conditions for the spacetime
geometry). Precisely, what the divergent value of the
entropy of entanglement seems to say is that at those
regimes the semiclassical approximation fails because the
universes enter into a very quantum region of their
evolution domains. One would expect that a complete
quantum theory of gravity would smooth out the diver-
gences, but our aim is to look for some small imprints of the
entanglement between the universe-antiuniverse pairs, so
that the semiclassical approach is fully justified.
It is worth saying that the Shannon entropy S ¼

− logðHÞ can be interpreted as the information (or more
precisely, information is negentropy) and so the divergence
of entropy would indicate infinite information. However, as
it was mentioned already, in our opinion the entropy of
entanglement (or information) is a measure of the degree of
correlations between the states of the universes. In fact, our
formulas (63)–(65) are only approximated expressions to
have a glimpse at the problem.

VII. CONCLUSIONS

We have used the third quantization formalism to
calculate the entanglement entropy of two universes created
in pairs within the framework of the Friedmann cosmology.
Our main concern has been to calculate the entanglement
entropy and the entanglement temperature around the
maxima, minima and inflection points of the classical
evolution. This has been done in an extended two-dimen-
sional minisuperspace, parametrized by the scale factor a
and the massless scalar field ϕ.
We have found that after the Fourier expansion of the

wave function of the universe Ψðα;ϕÞ [cf. ([6])], the only
way to have two complex conjugated functionsΨð1;2Þðα;ϕÞ
representing both the universe and the antiuniverse is to
have symmetric distribution AðkÞ of the modes of the scalar
field around k ¼ 0. This is quite a strong, though necessary,
constraint on the distribution of the scalar field into a pair of

FIG. 10. Entanglement entropy vs the Hubble parameter. The
black line is the exact entanglement entropy, while the blue line is
the fit for the entropy at (64) and the red line is the fit for the
entropy given by the relation (65).

FIG. 11. Different entropies vs the Hubble parameter. The solid
lines show the Renyi (black) and Tsallis (blue) entropies in terms
of H for q ¼ 0.7, and their fits in red and green, respectively. The
dashed lines show absolute values of the Renyi (black) and Tsallis
(blue) entropies for q ¼ 1.5, with their fits in red and green,
respectively.
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universes. This has proven the symmetry of the system, i.e.,
that the energy is conserved.
We have found that, while taking a scalar field ϕ into

consideration, the entanglement entropy is finite at the
classical place of the big bang singularity, and diverges at
the maxima and minima of expansion. We cannot give,
a priori, any reason to the finite value of the entanglement
entropy at the initial singularity, but it seems to be related to
the inclusion of another degree of freedom such as the
quantized scalar field. Indeed, when we consider the scalar
field as classical and give some relation between its energy
and the scale factor as we did in Secs. IV and V, the scalar
field is no longer an independent variable, and the entan-
glement entropy blows up at that singular point.
It is worth mentioning that every statement about a

critical point or a singularity which one infers from the
canonical quantum cosmology is dependent on the con-
struction of the theory far from the semiclassical point of
view. The problem is, the factor ordering which affects
small scales and/or high curvatures makes the quantization
as we took it in (4) to be one of the choices one can make,
but there are infinitely many other possibilities which could
lead to completely different results (see, e.g., [51]).
We have also studied the entanglement quantities for the

universes which classically exhibit singularities other than
big bang singularities such as big brake, big freeze, big
separation and little rip. We have found that the entangle-
ment entropy or the entanglement temperature in all the
critical points and singularities is either finite or infinite but
never vanish. This has proven that the universes within each
pair are entangled and so subject to some quantumness
within the system. Furthermore, we have found in Sec. V,
when we analyzed the big freeze singularity, that an earlier
statement made in Ref. [16] about the temperature as a
proper measure of the quantumness is not always true,
since in this specific example, the temperature diverges
when the universe expands infinitely, while it was expected
that the entanglement of a pair of universes should vanish
asymptotically as the universe expands.
Apart from the von Neumann entanglement entropy, we

have also calculated the Tsallis and Renyi entanglement
entropies and found that they exhibit similar behavior to the
measures of quantumness as the von Neumann entropy.
This seems to show the robustness of our entanglement
calculations and the appropriate conclusions.
Finally, we have been looking for the relation between the

entanglement entropy and the Hubble parameter which
classically marks special points of the evolution of the
universe. In the example analyzed in Sec. VI, we have found
the logarithmic relation (65) to be a very good approximation
to the behavior of the entanglement entropy in terms of the
Hubble parameter around critical points, where the Hubble
parameter vanishes. Further investigations should be aimed
to find explanations and consistency for this result.
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APPENDIX: INVARIANT REPRESENTATION OF
EQUATION (12)

The invariant representation of the Hamiltonian that in
the third quantization formalism leads to the Wheeler-
DeWitt equation (12) [with the frequency given by (16)]
can easily be obtained in the following way. Let us first
notice that if we make the change in the wave function of
the universe, Ψ → ξ ¼ 1

RΨ, with R being a function that
satisfies

R̈þ ω2R ¼ 1

R3
; ðA1Þ

and a change in the scale factor, α → α̃, defined by

α̃ðαÞ ¼
Z

α dα0

R2ðα0Þ ; ðA2Þ

then, the Wheeler-DeWitt equation (12) transforms into

ξ00 þ ξ ¼ 0; ðA3Þ
where, ξ0 ≡ ∂ξ

∂α̃. Equation (A3) is the equation of a harmonic
oscillator with constant unit frequency. The associated
creation and annihilation operators, defined as usual by

c� ¼
ffiffiffi
1

2

r
ðξþ iξ0Þ; ðA4Þ

c†� ¼
ffiffiffi
1

2

r
ðξ − iξ0Þ; ðA5Þ

determine a representation jNi, given by the eigenstates of
the number operator N ¼ c†�c�, that is invariant under
the evolution of the scale factor. Now, taking into account
that

ξ ¼ 1

R
Ψ; ðA6Þ

and

ξ0 ≡ ∂ξ
∂α̃ ¼ R _Ψ − _RΨ; ðA7Þ

one can write the operators (A4) and (A5) of the invariant
representation as (17) and (18).
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