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We investigate the application of volume statistics to probe the distribution of underdense regions in the
large-scale structure of the Universe. This statistic measures the distortion of Eulerian volume elements
relative to Lagrangian ones and can be built from tracer particles using tessellation methods. We apply
Voronoi and Delaunay tessellation to study the clustering properties of density and volume statistics. Their
level of shot-noise contamination is similar, as both methods take into account all available tracer particles
in the field estimator. The tessellation causes a smoothing effect in the power spectrum, which can be
approximated by a constant window function on large scales. The clustering bias of the volume statistic
with respect to the dark matter density field is determined and found to be negative. We further identify the
baryon acoustic oscillation (BAO) feature in the volume statistic. Apart from being smoothed out on small
scales, the BAO is present in the volume power spectrum as well, without any systematic bias. These
observations suggest that the exploitation of volume statistics as a complementary probe of cosmology is
very promising.
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I. INTRODUCTION

Modern large-scale structure surveys probe both the
background expansion and the growth of structure, which
can be used to constrain the energy content of the Universe
and help resolve the mystery behind the cosmic expansion
[1]. These surveys have been remarkably successful in
constraining the parameters in lambda cold dark matter
(ΛCDM) and its extensions [2–9]. Because most observed
galaxies trace the high-density regions of the Universe [10],
previous analyses typically focus on the clustering statistics
of overdensities. However, the dominant part of the
Universe exhibits a low density compared to its mean
value. The clustering of underdensities may therefore
contain additional information that is complementary to
that obtained via conventional methods.
Cosmic voids are extended regions of relatively low

matter content in the large-scale structure; they are poten-
tially ideal proxies for studying the underdense parts of the
Universe [11–13]. Because of their unique environment,
interesting phenomena such as the dark energy [14–17],
modified gravity [18–22], and the influence of massive
neutrinos [23–26] become more visible in voids. Recently,
there have been numerous studies on the clustering of
voids using samples derived from cosmological surveys,
exploiting effects such as redshift-space distortions (RSDs)
in the void-galaxy correlation function [27–35], the

Alcock-Paczynski test [36–41], and the baryon acoustic
oscillations (BAOs) [42,43]. However, the spatial number
density of voids is generally low due to their large size;
hence, their auto-clustering statistic exhibits a considerable
shot-noise contribution [44–46].While small voids aremore
abundant, they actually reside in regions of higher density
(so-called void-in-clouds [13]), only larger voids truly
trace the underdense regime of large-scale structure. To
mitigate the shot noise, cross-correlations with other more
abundant tracers, such as galaxies [44] or clusters [47,48],
are considered. Another option is the use of overlapping
spherical voids, as demonstrated by Ref. [43] in the
measurement of the BAO in the void auto-correlation
function. Allowing voids to overlap increases their number
density by up to 2 orders of magnitude, but the signal-to-
noise ratio of the resulting clustering statistic is more
difficult to interpret.
In practice voids are identified via sparse tracers, as the

full mass distribution cannot be observed directly in all
three dimensions. Since many tracers are needed to define a
single void, the resulting void distribution is even more
sparse. Therefore, the question arises whether one can
construct a field estimator for the low-density regions with
low level of shot noise and without overlap. The volume
statistic proposed in this paper satisfies these conditions. In
Sec. II, we define the volume statistic in detail. In order to
implement it in data, we need to estimate the density field
using tessellation methods. We briefly review two tessel-
lation interpolation methods and contrast them with the*chankc@mail.sysu.edu.cn
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conventional mass assignment scheme in Sec. III. The
possibility of approximating its impact on the power
spectrum by an effective window is discussed in Sec. IV.
Section V is devoted to studying the overall clustering
properties of the volume statistic, such as the bias parameter
and the BAO feature. We conclude in Sec. VI. In the
Appendices, we review the kernel density estimation
(KDE) method (Appendix A) and the effects of a window
function on the power spectrum (Appendix B).

II. VOLUME STATISTICS

Voids are extended underdense regions in the Universe
and it has been shown that they furnish a biased tracer
of the large-scale structure [13,25,44,49–53]. Small voids
tend to reside in overdense environments and therefore
exhibit positive bias parameters; they are in the so-called
void-in-cloud regime [13]. Large voids, on the contrary, are
anticorrelated with overdense structures and thus exhibit a
negative clustering bias [44], i.e., they trace large-scale
underdensities (it is interesting to note that the quadratic
bias of voids follows a similar trend to that of halos [52]).
However, their number density is significantly lower than
that of small voids (owing to their size), which results in a
high shot-noise contribution and hence a low signal-to-
noise ratio of their large-scale auto-power spectrum. In this
work, instead of defining single objects from a large
number of tracers, we assign a volume to each individual
tracer particle, which helps to mitigate the shot noise.
In the Lagrangian picture of large-scale structure, we

can think of each tracer particle carrying a volume element
that is being distorted over time. This evolution is governed
by mass conservation, and for the case of dark matter we
have [54]

d3q ¼ ð1þ δÞd3x; ð1Þ

where d3q and d3x are the volume elements in the
Lagrangian (initial) and Eulerian (evolved) space, respec-
tively, and δ is the matter density contrast in Eulerian space.
Then we define

J ≡ d3x
d3q

¼ 1

1þ δ
: ð2Þ

J is the Jacobian of the transformation from the
Lagrangian coordinate q to the Eulerian coordinate x. It
quantifies the change in volume compared to that in the
Lagrangian space. When the displacement is small, J
reduces to 1 − δ with a symmetric distribution around a
mean equal to 1. For large displacements and hence
nonlinear δ, J has a mean larger than 1 and the distribution
becomes skew symmetric with a singular tail at δ ¼ −1.
This indicates that inside empty regions in Eulerian space, a
tremendous amount of expansion in volume has occurred.
After shell crossing, the volume element d3q can split into

multiple parts and the fluid description by Eq. (1) is no
longer valid. Nonetheless, shell crossing occurs mainly in
the high-density regions, which are down-weighted in J ,
and hence its impact on our statistic is minimal.
In analogy to the density contrast, we can define the

volume statistic as

V ≡ J
J̄

− 1 ¼ 1

J̄ ð1þ δÞ − 1; ð3Þ

where J̄ is the mean of J . For small δ, it reduces to −δ.
For halos, the situation is more complicated, because the

density is no longer uniform in Lagrangian space, and we
have instead (e.g., [55,56])

ð1þ δLÞd3q ¼ ð1þ δhÞd3x; ð4Þ

where δL and δh are the halo-density contrast in Lagrangian
and Eulerian space, respectively. However, in observations,
we have no direct access to δL. One practical way to bypass
this difficulty is to define J as

J ≡ d3x
ð1þ δLÞd3q

¼ 1

1þ δh
; ð5Þ

even for the case of halos. We can think of it as the
volume change inversely weighted by the halo density in
Lagrangian space.
The advantage of the volume statistic is as follows. First,

it is a fundamental measure of the volume change induced
by the large-scale structure evolution. From a theoretical
perspective, it is likely more amenable to models than the
statistics of voids, which are defined by the complicated
nonlinear topology of the cosmic web. In the linear regime,
the volume statistic reduces to the one of linear density
fluctuations. In the weakly nonlinear regime, it can be
treated with perturbation theory or other analytic methods.
Second, the volume statistic makes use of all the available
tracer particles, resulting in a shot-noise level comparable
to its original tracer field. Nevertheless, because the
majority of particles are located inside collapsed regions,
the sampling is still poor compared to the conventional
density statistic. On the other hand, because of the
denominator 1þ δ, V is undefined when δ ¼ −1. This
can pose problems in the density estimation for sparse
samples, such as massive halos. We will therefore consider
tessellation methods to avoid such singularities.
The volume statistic up-weights underdense regions and

down-weights overdense ones; hence, it is similar to certain
types of marked correlation functions in spirit.1 If each
particle is assigned a mark m, the marked correlationM for
the mark can be generally defined as [59]

1This can be generalized to the marked power spectrum
[57,58].
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MðrÞ ¼ 1

NðrÞm̄2

X
ij

mimj; ð6Þ

where NðrÞ is the total number of pairs with separation
r and m̄ is the mean of the mark. The mark can be chosen to
highlight any particular physics of interest. For example,
[60] proposed to consider a mark of the form

m ¼
�

ρ� þ 1

ρ� þ 1þ δ

�
p
; ð7Þ

where ρ� and p are free parameters. This mark has been
applied to study modified gravity [61]. If we set ρ� ¼ 0 and
p ¼ 1, it reduces to the volume statistic. However, the value
of ρ� is often taken to be order unity, e.g., in [61], so as to
avoid the singularity problem mentioned above.
Moreover, the definition of the volume statistic is similar

to the log-transform of the density field [62]

A ¼ logð1þ δÞ: ð8Þ

It was found that the field A is more Gaussian than δ at late
times, and some higher-order information in δ is pulled
back into the two-point statistics of A [62,63]. Both
transformations up-weight the low-density regions and
down-weight the high-density ones. In fact, both the log-
field and the volume statistic diverge at δ ¼ −1. The log-
transform aims to recover the information in the initial
density field, as it accommodates both the low-density and
the high-density regions. Our goal is less ambitious and we
merely want to recover the information from the under-
dense regions. By restricting our target, it is easier to define
a density reconstruction method that suits precisely this
purpose.

III. INTERPOLATION METHODS

In order to compute the volume statistic, one needs a
density estimate that is finite everywhere. To this end, we
use interpolation by tessellation to reconstruct the density
field from a discrete particle distribution. As this type of
method is rarely used directly for clustering analyses, we
shall first compare it against the commonly used mass-
interpolation method.

A. Mass interpolation

For the large-scale clustering analysis, the density field is
often interpolated to a grid.2 The interpolation methods
usually employed include nearest grid point (NGP), cloud-
in-cell (CIC), and triangular-shaped cloud (TSC). We
collectively denote them as mass-interpolation methods;
they are discussed extensively in the monograph [64].

In these methods, particles are smoothed by a window
function (or cloud function) W of fixed size and these
windows can overlap with each other. The density at the
grid point xp is given by

ρðxpÞ ¼
X
α

Z
½xp�

d3xWðx − xαÞ; ð9Þ

where ½xp� denotes the grid cell enclosing xp and the sum is
over all the particles.
The three-dimensional (3D) window can be constructed

from its 1D form as WðxÞ ¼ WðxÞWðyÞWðzÞ. In 1D, the
NGP window function is the Dirac delta, for CIC it is a top
hat, and for TSC it is a triangular-shaped cloud centered on
the particle position. In fact, these are the first three
members of an infinite hierarchy of interpolating functions
that can be generated via iterative convolution with the top-
hat window function [64]. In NGP, the particle mass is
interpolated to the nearest grid point, in CIC the mass is
assigned to the grid points of the cell enclosing the particle
(8 points in 3D), and the particle mass is interpolated to the
neighboring 27 points in TSC. Thus, the window becomes
more extended as the order of the interpolation scheme
increases. Because the window function is a constant linear
operator, its effect can be removed by division of W in
Fourier space. To represent the density field for clustering
analyses, the grid size is usually chosen sufficiently large to
mitigate resolution effects.3 Among the mass-interpolation
methods, CIC is the most common one, so we use it as our
benchmark.

B. Tessellation interpolation

The tessellation method can generate a space-filling field
with finite values (nonvanishing) everywhere in configu-
ration space; it is often used as an intermediate step to
obtain a smooth density field and to define extended
structures in the cosmic web, e.g., [67–73]. However, it
has rarely been used directly for clustering analyses of the
density field. Given a set of points (generators) xα, a
tessellation generates cells that are space-filling and mutu-
ally disjoint [74,75]. Applications of the tessellation meth-
ods in cosmology were introduced in [75–80].
In the Voronoi tessellation, each Voronoi cell encloses

one generator and every point x belongs to a Voronoi cell
Vα if the distance jx − xαj is smaller than jx − xβj for any
other β. The simplest possibility is to assume that the
particle mass spreads out uniformly within a Voronoi cell
and the density within each cell is estimated by the mass of
the particle and the volume of the Voronoi cell. This method

2The configuration-space estimation of correlation functions
uses counting of pairs directly without the need for a grid.

3Discrete sampling of the continuous field introduces
aliasing effect [64–66], which is especially serious for modes
close to the Nyquist frequency. We are limited to the large-scale
modes because of the tessellation interpolation, we shall not
consider it here.
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yields a piecewise constant field and the field value is
discontinuous across the boundaries. We shall refer to the
technique to estimate densities in this way as the Voronoi
tessellation field estimator (VTFE).
To obtain a continuous field, we can tessellate the space

into Delaunay cells. In 3D, a triangulation divides space
into tetrahedrons. A Delaunay tessellation is such a
triangulation with the additional property that the circum-
sphere of each tetrahedron does not contain any generators.
The field value inside a tetrahedron can then be obtained by
linear interpolation from the vertices. Explicitly, the num-
ber density at a point x inside a Delaunay cell with vertices
x0, x1, x2, and x3, is given by [75]

nðxÞ ¼ nðx0Þ þ ðx − x0ÞiJ−1iα Δnα; ð10Þ

where Δnα indicates the difference in density between
vertex xα and the reference vertex x0, nðxαÞ − nðx0Þ. A
Latin index denotes the spatial component of the vector
and a Greek index represents the vertex (also from 1 to 3).
The Jacobian J is the transformation matrix between the
coordinate x and the barycentric coordinate ζα,

Jiα ¼
∂xi
∂ζα ≈ ðxα − x0Þi: ð11Þ

The number density at the generator can be estimated
by [75,80]

nðxαÞ ¼
1þDP

Dadj
xα
VadjðxαÞ

; ð12Þ

where D is the dimension of space, Dadj
xα denotes all the

adjacent Delaunay cells with xα as one of their generators,
and Vadj is the volume of the adjacent Delaunay cells. This
construction ensures that the integral of the density field
obtained from Eq. (10) is equal to the total particle mass.
We refer to this method of estimating the density as the
Delaunay tessellation field estimator (DTFE) in this paper.
Effectively, tessellation methods smooth out the particle

mass adaptively based on the local density. For high-
density regions, the effective window size is small, while
it is large in the low-density regime. For the mass-
interpolation methods, such as the CIC, as the size of
the grid increases the resulting density field approaches a
sum of Dirac delta distributions. Thus, this method can
produce the same type of distribution as the point set. On
the other hand, the tessellation method aims at reconstruct-
ing a smooth (piecewise constant for VTFE and continuous
for DTFE) density field from the discrete particle distri-
bution. This additional requirement introduces a smoothing
to the small-scale power spectrum. The smoothing scale is
dictated by the mean particle separation of the distribution.
In summary, in the mass-interpolation scheme, the effective
window-function size is controlled by the grid size, while

that of the tessellation method is determined by the mean
particle separation.

C. Effects of the tessellation: An analytic estimate

In the mass-interpolation scheme, a fixed window is used
to smooth the particle distribution. An analytic estimate
can be made if the particles are assumed to Poisson sample
the underlying density field.4 The density estimated by
smoothing the particle distribution is akin to the KDE
method in statistics, which is used to estimate the prob-
ability density distribution (see, e.g., [83]). In Appendix A,
we review the KDE and show that given a sample of
particles it can be used to estimate the number density of
the sample, n [Eq. (A11)]. In particular, it is shown that
smoothing introduces a bias to the density estimate
[Eq. (A12)]. At a peak (trough) of the density field, the
window-estimated density field is biased low (high).
However, the advantage of smoothing the density field is
that it can suppress the variance of the estimator
[Eq. (A13)]: it is inversely proportional to the average
volume of the window size. In statistics, the mean squared
error, which is a sum of the variance and the bias squared,
matters if the signal-to-noise ratio of the measurement is
not high. Thus, the KDE is useful if its suppression to the
variance is larger than its bias.
For the case of density estimation by tessellation, the

density at the position x depends on the particles spanning
the cell. It is hard to make an analytic estimate of its bias
and variance, because of the irregular shape of the cell and
the interpolation scheme depending on all the points in the
cell. For the case of VTFE, because there is only one
generator inside a Voronoi cell, we can write down the
density estimate as (N ¼ 1)

n̂VTFEðxÞ ¼
1

h3α
WVTFE

�
x − xα
hα

�
; ð13Þ

where WVTFE describes the Voronoi cell around a point
x, xα is the generator of the Voronoi cell, and hα
schematically represents the characteristic size of the cell.
Because the Voronoi cell is generally not symmetric

about its generator, the bias reads

hn̂ðxÞi−nðxÞ¼−hα
X
i

Ið1Þi
∂n
∂xiþ

h2α
2

X
ij

∂2n
∂xi∂xj I

ð1Þ
ij ; ð14Þ

where the function I is defined in general in Eq. (A6). In
particular, because of the irregular shape of the Voronoi
cells, Ið1Þ is in general nonvanishing. However, if we now
further average over the shape of the Voronoi cell WVTFE,

hIð1Þi i vanishes and we obtain

4In the case of halos and voids, there are exclusion effects that
violate this assumption [44,49,81,82].

KWAN CHUEN CHAN and NICO HAMAUS PHYS. REV. D 103, 043502 (2021)

043502-4



hn̂ðxÞi − nðxÞ ¼ hh2αi
2

X
ij

∂2n
∂xi∂xj hI

ð1Þ
ij i: ð15Þ

Similar to the standard KDE case [Eq. (A12)], we recover
the result that the bias is sourced by the second derivatives
of the density. The variance of the estimator reads

Varðn̂ðxÞÞ ¼ 1

h6α
Var

�
WVTFE

�
x − xα
hα

��

≈
Ið2Þ

h3α
nðxÞ: ð16Þ

Further averaging over the shape of the Voronoi cell, we
have

Varðn̂ðxÞÞ ¼
�
1

h3α

�
hIð2ÞinðxÞ: ð17Þ

For DTFE, the density at x [Eq. (10)] depends on the
position of the vertices nonlinearly and the previous
analytic arguments do not apply. Nonetheless, we shall
see that the features of the DTFE are qualitatively similar to
those of the VTFE.

IV. EFFECTIVE WINDOW FUNCTION

In this section, we investigate whether the effects of the
tessellation can be modeled by an effective window
function. The width of the window involved in the mass
interpolation is controlled by the grid size, which can be
chosen such that the grid effects are negligible, or the
window function effect can be divided out in Fourier space.
Hence, we may treat the density field obtained from the
CIC, δCIC, as the unsmoothed field for comparison.
In Appendix B, we review the effects of the window

function on the power spectrum. We show that if the
particle distribution is smoothed by a constant window
functionW, the effect on the power spectrum is captured by
an overall factor of jWj2 (or W for the case of cross-power
spectrum). Note that the same window function factor
applies to both the continuous clustering and the shot-noise
term. Thus, if the effective window function can be taken to
be a nonstochastic function, the power spectrum of the
density field obtained with the tessellation method, δtess,
can be written as5

hδtessðkÞδtessðk0Þi¼ ð2πÞ6jWtessðkÞj2hδCICðkÞδCICðk0Þi:
ð18Þ

Similarly, for consistency, the cross-correlation is given by

hδtessðkÞδCICðk0Þi ¼ ð2πÞ3WtessðkÞhδCICðkÞδCICðk0Þi: ð19Þ

We test these relations using simulation data, the details of
which are described in the following. The assumed cosmol-
ogy is a flat ΛCDM model with parameters Ωm¼0.3,
ΩΛ ¼ 0.7, h0 ¼ 0.7, ns ¼ 0.967, and σ8 ¼ 0.85. Each
simulation consists of a cubic box of 1000 Mpc h−1 side
length and contains 5123 particles. The Gaussian initial
conditions are generated by CLASS [84] at redshift z ¼ 49. In
order to study the BAO signature, we ran another set of
simulations with Einsenstein-Hu initial conditions without
the BAO wiggles [85] (NoWiggle). The particle displace-
ments are implemented using 2LPTIC [86] and are evolved
with the N-body code GADGET2 [87]. Halos are identified
using the halo finder AHF [88]. They are defined via a
spherical overdensity threshold of 200 times the back-
ground density and contain at least 20 particles. For each
simulation set, 20 realizations are used. The results
derived from the halo samples will be our primary interest
in this paper. We shall illustrate our results using four halo
samples at z ¼ 0 and 1, with two sets of initial conditions,
respectively. Unless otherwise stated, the error bars are the
standard error of the mean of the measurements among all
realizations.
The procedures for density estimation using the tessel-

lation method are similar to those in the public code DTFE

[89], which implements the density estimation by the
Delaunay tessellation efficiently. We implement both
Voronoi and Delaunay tessellation methods using the
python libraries based on the Qhull code [90]. After
generating the tessellation cells, we use a cubic grid to
estimate the density at the grid points, which can then be
used for the estimation of power spectra. We use a grid size
of 2563 and average over 23 uniformly spaced sampling
points within each grid cell to calculate the mean density at
the grid point. We have checked that these choices are
sufficiently accurate for our results.

A. Measurement of the effective window

We measure the effective window function of the
tessellation using random catalogs and halo samples.
Without intrinsic clustering, it is easier to identify the
impact of the effective window on the power spectrum,
since the remaining clustering amplitude is simply white
noise. To generate the random catalogs, particle positions
are randomly placed in a cubic box of size 1000 Mpc h−1

until the desired number density is reached (we match it
with the halo sample density). Assuming that halos
Poisson sample the underlying continuous density field,
the shot-noise contribution to their power spectrum is
given by [91]

Pshot ¼
1

ð2πÞ3n̄ ; ð20Þ
5The Fourier convention used in this paper is fðkÞ ¼R
d3x
ð2πÞ3 e

−ik·xfðxÞ and fðxÞ ¼ R
d3keik·xfðkÞ.
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where n̄ is the mean halo density. We show in Appendix B
that there is an additional factor of jWj2, if the particle
distribution is smoothed by a window W.
The effective VTFE window obtained using Eqs. (18)

and (19) from the random catalog is shown in Fig. 1. In this
case, the CIC power spectrum is given by Eq. (20). The size
of the effective window can be characterized by the mean
separation wave number kms ≡ πn̄1=3. We find that using
the variable q≡ k=kms, the effective window obtained from
different tracers falls on a universal curve. Thus, kms
represents the characteristic size of the tessellation cell
in Fourier space.6 Although the window from the auto- and
cross-power spectra (denoted as Wa and Wc, respectively)
agree with each other at low k, Wa is more extended than
Wc. In fact,Wc turns negative at q ∼ 1.8, whileWa remains
positive everywhere. Equations (18) and (19) imply that we
can extract the same window function from the auto- and
cross-power spectrum measurements. However, in practice,
this only works on large scales, so the assumption that
WðkÞ factorizes and does not explicitly depend on the
density field δðkÞ must fail on smaller scales.

Even if the particle distribution is intrinsically clustered,
the window function still factors out. In Fig. 1, we also
show the effective window function extracted from
Ptess=PCIC and Ptess;CIC=PCIC, with Ptess and PCIC being
the halo auto-power spectra obtained with the tessellation
and the CIC method, and Ptess;CIC the cross-power spectra
between them. Note that we have not subtracted shot noise
in any of those cases. The curves from halo samples are
somewhat less universal than for the randoms, especially at
high q. This is expected, as the halos exhibit intrinsic
clustering that is scale dependent, making their effective
window more extended due to stronger clustering on
smaller scales.
We find that the overall window function shape can be

described well by the functional form

ð2πÞ3WðqÞ ¼ 1

ð1þ aqÞ½1þ ðbqÞn� ; ð21Þ

with q ¼ k=kms.
We have shown the best-fit values obtained from the

VTFE and the DTFE in Table I. The results for the halo and
random samples obtained with Wa and Wc are compared.
These best fits are also plotted in Figs. 1 and 2. Up to q≲ 1,
the accuracy of the fit is about 10% within the scatter of the
data. As there are significant differences between Wa and
Wc, obtaining a universal fit that is accurate at q≳ 1 is not
possible. Overall, the DTFE results are in qualitative
agreement with the VTFE ones. However, we find that
the measurements of WDTFE are slightly more extended
than WVTFE. This implies that the DTFE window is more
compact in configuration space.

B. Power spectrum ratio

After having measured the effective window functions of
the tessellation methods, we are now in the position to test
whether we can use this window to recover the unsmoothed
power spectrum. We utilize the ratio

R ¼
PX
tess

½ð2πÞ3WðkÞ�n − Pshot

PCIC − Pshot
ð22Þ

to quantify the accuracy of this reconstruction, where X
denotes auto- (n ¼ 2) or cross-power spectra (n ¼ 1). In
Fig. 3, we show the ratio R for the auto-power spectrum

FIG. 1. Top: the VTFE effective window function measured
from the random catalog (triangles) and the halos (circles).
Measurements from the auto-power spectrum (blue) and the
cross-power spectrum (red) are shown. The fits using Eq. (21) are
overplotted (cyan forWa from halos, green forWa from randoms,
orange for Wc from halos, and purple for Wc from randoms).
Bottom: the ratio between the fits and the measurements (circles
for halos and triangles for randoms, blue for auto- and red for
cross-power spectra).

TABLE I. The best-fit parameters for Eq. (21) for the VTFE and
DTFE methods. The results derived from Wa and Wc for the
random and halo samples are shown.

VTFE random VTFE halo DTFE random DTFE halo

Wa Wc Wa Wc Wa Wc Wa Wc

a 0.09 0.50 −0.08 0.37 0.07 0.37 −0.09 0.20
b 1.49 1.36 1.55 1.35 1.36 1.29 1.37 1.28
n 2.47 3.94 2.08 3.14 2.75 4.18 2.20 3.25

6We note that in Lagrangian space, the typical extension of
halo-density profiles is controlled by halo mass. When the density
profile is rescaled by this characteristic extension, most of the
mass dependence is removed and the halo-density profiles fall on
a rather universal curve [92]. Thus, kms is analogous to the role of
mass for Lagrangian halos.
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using the VTFE windows Wa and Wc from halo and
random samples. For the rest of this paper, we will
exclusively show the results based on these four samples.
At low k, Wa appears to yield a better agreement than Wc.
However, inspection of Fig. 1 reveals that this can be
explained by the fact thatWc is a bit lower thanWa at small
q. This is an artifact of the fitting formula. On the other
hand, when k is close to kms, the ratio deviates substantially
from 1. A division by the window function is prone to noise
and systematic error, which become inflated at high k when
W is small. Even if we use Wc from a direct measurement,

the pattern at high k in R remains unchanged. Also, the
trends are very similar for both the halo and the random
samples. In Fig. 4, we show the corresponding results for
the DTFE, which are qualitatively similar to the VTFE
case. The ratios using the cross-power spectra in Eq. (22)
are very similar, so we do not show them here.
Our results suggest that approximating the tessellation

with a constant effective window function is valid on large
scales, but above kms the density-dependent nature of the
tessellation method is important and smoothing effects
cannot be removed by division of a window function. In
this case, it is necessary to determine the tessellation-
smoothed density field numerically.

V. CLUSTERING OF THE VOLUME FIELD

A. The shot noise of the volume field

We estimate the shot noise of the volume field PVn using
the random catalog again and showcase the auto-power
spectra of the volume statistic before and after shot-noise
subtraction in Fig. 5. Although the volume statistic is
obtained via nonlinear transformation of the halo tracer
field, on large scales the shot noise still approaches Pshot as
given by Eq. (20). However, it is suppressed by the effects
of the tessellation on smaller scales. After shot noise is
subtracted from the power spectra, the results from the
VTFE and DTFE agree with the shot-noise subtracted CIC
case. Thus, since all available tracer particles are used to
construct the volume field, its shot-noise contamination is
indeed similar to that of the original tracer field.

B. The bias of the volume field

The volume field can be regarded as a biased tracer of the
underlying dark matter density field. As it traces the

FIG. 2. As Fig. 1, but for the DTFE results.

FIG. 3. Auto-power spectrum ratio Eq. (22) from the VTFE
window for Wa (blue) and Wc (red) from the halo (circles) and
random (triangles) samples. The mean mass and redshift of the
halo samples are shown on top of each panel.

FIG. 4. As Fig. 3, but for the DTFE results.
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underdense regions of large-scale structure, we expect it to
exhibit a negative clustering bias, similar to large voids
[13,44,49]. To guide our interpretation of the volume
statistic, we first investigate the bias of the more common
density field obtained via the tessellation method in
Fig. 6. We compare the bias parameters bhh and bhm
derived from the halo auto- and halo-matter cross-power
spectra, Phh and Phm,

bhh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Phh − Phn

Pmm

s
; ð23Þ

bhm ¼ Phm

Pmm
; ð24Þ

where Pmm denotes the matter auto-power spectrum and
Phn is the halo shot-noise contribution obtained from the
random catalog. As a comparison, we also show bhh and
bhm obtained from the CIC method.
On large scales, the density-bias parameter obtained

via the tessellation methods approaches the one obtained
via the CIC mass assignment, which already reaches a
constant value at k≲ 0.08 Mpc−1 h. On smaller scales, the
bias parameter from the tessellation is damped by the
effective window function, as discussed in the previous
section. The differences between bhh and bhm are apparent
for k≳ 0.1 Mpc−1 h. Consistent with the findings in

Sec. IVA, Fig. 6 shows that the DTFE window is more
compact than the VTFE window in configuration space. To
fit the large-scale bias function, the scale dependence of the
window must be taken into account and a possible func-
tional form is a quartic polynomial

bðkÞ ¼ c0 þ c2k2 þ c4k4; ð25Þ

where c0, c2, and c4 are the fit parameters. In Fig. 6, we
have also plotted the best-fit curves, using modes up to
kmax ¼ 0.06 Mpc−1 h, yielding a good agreement with the
simulation data.
We now turn to the bias of the volume field, presented in

Fig. 7. The auto- and cross-bias for the volume field is
defined in analogy to Eqs. (23) and (24),

bVV ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PVV − PVn

Pmm

s
; ð26Þ

bVm ¼ PVm

Pmm
; ð27Þ

with PVV being the auto-power spectrum of the volume
field and PVm the cross-power spectrum between the
volume field and the matter density field. The shot noise
of the volume field PVn is estimated using the random
catalog again. Note that because the volume field

FIG. 5. Auto-power spectra of the volume statistic before (triangles) and after shot-noise subtraction (circles) for the VTFE (left
panels, red) and the DTFE (right panels, green). The conventional halo-density power spectra are shown for comparison (blue), along
with the shot-noise contamination estimated from the randoms (stars). The vertical dashed line indicates the mean tracer separation scale
kms and the horizontal one shows the Poisson power spectrum Pshot. The mean mass and redshift of the halo samples are shown on top of
each panel. On large scales, the shot-noise level of the volume field is comparable to that of the halo sample used to construct it.
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FIG. 7. As Fig. 6, but for the clustering bias of the volume field V. To compare with the magnitude of the conventional halo-density
bias, the negative of bhm is shown. The properties of the halo samples used to construct the volume statistics are indicated on top of each
panel. The bias of the volume field is negative and its magnitude is similar to that of the halo sample.

FIG. 6. The clustering bias of the halo-density field obtained with the CIC, VTFE (left panels), and DTFE (right panels) methods. The
measurements originate from the halo auto-power spectrum, bhh (CIC: gray stars, VTFE: red triangles, DTFE: green triangles) and the
halo-matter cross-power spectrum, bhm (CIC: black stars, VTFE: red circles, DTFE: green circles). The fit using Eq. (25) is overplotted,
dashed for bhh and solid for bhm; cyan, orange, and purple for CIC, VTFE, and DTFE measurements, respectively. Redshifts and mean
halo masses are indicated on top of each panel. On large scales, the bias measurements obtained with the tessellation methods are in
good agreement with the CIC ones.
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anticorrelates with the dark matter density field, its bias is
negative. To ease comparison with the magnitude of the
halo bias, we have also shown −bhm. The overall shape of
the bias functions of the volume field is similar to the
density ones. On large scales, the bias of the volume field
approaches the halo bias in magnitude. This is expected for
large-scale fluctuations that are small, since in that limit V
reduces to −δh. However, although bVm agrees with the
halo bias well, there is a marked deviation of bVV from
the former. We presume there to be loop corrections to the
power spectrum of quadratic order in density, analogous to
the shot-noise renormalization effect in the local bias case
([93], see also [63]). These additional shot-noise-like
contributions cause deviations from the linear bias on large
scales. On small scales, the density field is suppressed by
the tessellation and the definition of V is designed such that
it approaches zero in the limit of vanishing δh. Hence, the
behavior of the bias of V is qualitatively similar to that of
the tessellation density field.
Like cosmic voids, the volume field furnishes a neg-

atively biased tracer of large-scale structure. Although the
small-scale power is suppressed by the tessellation, the
large-scale field is proportional to the underlying density
field. In scenarios involving local primordial non-
Gaussianity (PNG), the void bias exhibits a scale depend-
ence on large linear scales [51]. Because the amplitude of
void bias can be negative, this may be used to complement
the traditional halo bias in constraining PNG [94].
Reference [51] demonstrated that a combination of halos
and voids, taking advantage of the so-called multitracer
approach [95,96], allows to substantially tighten constraints
on the non-Gaussianity parameter fNL. However, the gain
in the constraining power of that analysis is limited by the
shot noise in void autoclustering statistics. As the volume
field also exhibits a negative bias, similar gains can be
expected, but with a lower level of shot-noise contamina-
tion. One can think of the volume field as a “dual” of the
density field with negative bias within the same survey
volume. Thanks to their very different bias amplitudes, but
comparable shot-noise levels, the density and volume fields
together may provide optimal conditions for conducting a
multitracer analysis [97–99].
Although bVm is not directly observable in galaxy

surveys, this can be circumvented by considering

bhV ¼ PhV

Pmm
; ð28Þ

where PhV is the observable cross-power spectrum between
δh and V. The dark matter power spectrum Pmm can be
modeled numerically or using perturbation theory. On large
scales, where the fluctuations are small and the bias is
linear, we have bhV ≈ bhmbVm. In Fig. 8, we plot the bhV
measurement from our simulation. We note that since the
volume field is constructed from the halos, there is a residual
correlation analogous to the standard shot noise in the halo

auto-power spectrum. We measure the cross-power spec-
trum between the density field and the volume field obtained
from the random catalog with the same number density as
the halo field and subtract it from PhV . Both the results
before and after this shot-noise subtraction are shown. We
indeed find that the shot-noise subtracted results are in good
agreement with the prediction bhmbVm, for which we have
used the fit results from bhm and bVm obtained with Eq. (25).

C. The BAO in the volume field

In the early Universe, photons and baryons couple to
form a hot plasma in which acoustic oscillations are
excited. These oscillations leave important imprints in
large-scale structure of the late Universe [100,101]. The
BAO features are regarded as one of the most important
probes of the large-scale structure and have been detected
in numerous galaxy surveys [1].
Physically, the BAO manifests itself as an excess

probability of finding galaxies at a distance rd, the sound
horizon at the drag epoch. This appears as a peak at the
scale rd in the galaxy density correlation function and as
oscillations (wiggles) in Fourier space. Analogously, given
a depression of V at some location, it is more likely to find
another depression of V at a distance of rd. This also gives
rise to a positive enhancement in the correlation function of
V at the scale of rd. We now go on to investigate the
anticipated BAO signals in the volume statistic in more
detail. To do so, we use two sets of simulations, one with
the fiducial setup and another one with the Eisenstein-Hu
initial conditions without BAO wiggles [85].

1. Real space

We begin with the BAO features measured in the real-
space density field using the tessellation methods. To
highlight the BAO features, we show the ratio between
power spectra from the fiducial and the no-wiggle initial
conditions in Fig. 9. The results for different halo groups
obtained with three interpolation methods are compared.
The BAO feature in the dark matter field is also shown for
reference, which is determined with the CIC method. The
number density of dark matter particles is so high that its
density field can be regarded as continuous here.
On large scales (small k), all methods produce similar

results, as the large-scale modes are unaffected by the
interpolation methods. At higher k (compared to kms), the
CIC halo field is still able to reproduce the BAO features
imprinted in the dark matter density field, albeit with more
noise. On the other hand, for the VTFE and DTFE fields,
the BAO wiggles start to be smoothed out close to kms and
are suppressed significantly at k≳ kms. Following
Appendix B, when the particle distribution is smoothed
by a constant window function, the window factors out and
cancels in the power spectrum ratio. Thus, the fact that
there is smoothing of the ratio between the wiggle and no-
wiggle power spectrum implies that the smoothing effect
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FIG. 8. The clustering bias bhV obtained from the cross-power spectrum between the halo-density field and the volume field using the
VTFE (left panels, red) and the DTFE (right panels, green) methods. Because the volume field is derived from the halo distribution, there
is a shot-noise contribution. Both the results before (triangles) and after shot-noise subtraction (squares) are compared. The halo bias bhm
(black stars) and volume bias bVm (VTFE: red circles, DTFE: green circles) are shown for reference. The solid curves (cyan for VTFE
and orange for DTFE) are the predictions obtained using the fit results from Eq. (25), which are in good agreement with the direct
measurements.

FIG. 9. Ratio between real-space halo-density power spectra from simulations with fiducial and no-wiggle initial conditions. The
results for different halo-density fields obtained with the CIC (blue), VTFE (red), and DTFE (green) method are shown. The
corresponding measurements from the dark matter (black solid curve) are overplotted as reference. The vertical dashed line indicates the
mean separation scale kms of the halos. The halo-density power spectra from the tessellation methods can reproduce the BAO features on
large scales, while the power beyond kms is suppressed.
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cannot be attributed to a constant window and it must arise
from the density-dependent nature of the tessellation
methods. Numerous works have shown that the nonlinear-
ity of density fields causes a smoothing of the BAO and its
effect on the power spectrum can be approximated by a
Gaussian window [55,102–104]. This damping of the BAO
is primarily driven by the large-scale bulk flow motion.
Because the tessellation methods adaptively track the
evolution of the particle distribution, the associated window
has a similar effect, resulting in a smoothing of the BAO
wiggles. This interpretation on the tessellation window is
consistent with results in Sec. IV.
We now turn to the BAO imprints in the volume field, as

presented in Fig. 10. The BAO measurement in the volume
field is noisier than that in the density. In particular,
although the VTFE and DTFE behave similarly for the
density case, the DTFE yields more noisy results than the
VTFE for the volume field. Overall, the BAO wiggles
imprinted in the volume field follow those in the matter
density field without any systematic bias. As in the density
case above, beyond kms the BAO signature is washed out.
In the standard CIC interpolation, V is ill-defined for

regions with δh ¼ −1, which happens for empty grid cells.
To overcome this problem, we can instead define

J ϵ ¼
1

1þ δh þ ϵ
;

Vϵ ¼
J ϵ

J̄ ϵ
− 1; ð29Þ

with some constant ϵ > 0, which ensures that Vϵ is always
well defined. We show the results for ϵ ¼ 0.1 in Fig. 9. This

method yields noisier results than the tessellation methods.
We have checked that other values of ϵ, such as 0.01 or 0.2,
do not improve this.

2. Redshift space

Observationally, we can only perform BAO measure-
ments in redshift space. As the coordinates of the
galaxies along the line-of-sight direction are deduced from
redshifts in galaxy surveys, the density field is subject to
additional perturbations due to their peculiar motion. These
perturbations cause RSD, and we shall consider them in
the plane-parallel limit, with the comoving coordinate in
the z-direction xz modified to

sz ¼ xz þ
vz
aH

; ð30Þ

where vz is the peculiar velocity in z-direction and H is the
Hubble parameter. We can adapt Eq. (4) to redshift space as

ð1þδLÞd3q¼ð1þδhðxÞÞ
����∂x∂s

����d3s¼ð1þδhðsÞÞd3s: ð31Þ

Accordingly, we have

J ¼ d3s
ð1þ δLÞd3q

¼ 1

1þ δhðsÞ
: ð32Þ

Hence, the extension of the volume statistic to redshift
space is straightforward.

FIG. 10. As Fig. 9, but for the volume field constructed from the halo distribution. The black curve shows the BAO from the dark
matter density field. The blue data points are the CIC measurement of the modified Vϵ statistic with ϵ ¼ 0.1. On large scales, the volume
statistics computed with the tessellation methods exhibit BAO features without systematic bias.
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The redshift-space power spectrum can be expressed in
terms of multipoles,

Pl ¼ 2lþ 1

2

Z
1

−1
dμPsðk; μÞLlðμÞ; ð33Þ

where Ps is the power spectrum in redshift space, μ the
cosine of the angle between k̂ and the line of sight, and Ll
is the Legendre polynomial of order l. Here we only
show results for the monopole of the halo power spectrum,
as the quadrupole measurements are noisy even for 20
realizations.
The monopole power spectrum for the halo-density field

in redshift space is shown in Fig. 11. The results are similar
to the real-space case. The halo monopole from the CIC
interpolation appears to trace the wiggles in the dark matter
monopole power spectrum well. While the tessellation
results are slightly less noisy than the CIC ones for
k < kms, they are suppressed for k≳ kms. Figure 12 dis-
plays the monopole power spectrum for the volume
statistics. As in real space, Vϵ yields the most noisy
estimator and the VTFE results are the most robust in
reproducing the dark matter BAO. We note that the BAO
amplitude in the volume field appears slightly enhanced at
some scales. This is particularly apparent for the Vϵ

estimator, which is most sensitive to noise. We therefore
attribute this effect to the discreteness of the tracer
distribution.

3. Discussion

Besides the auto-power spectrum, we can measure the
BAO using the cross-power spectrum between δh and V.

The results are similar to those obtained from the auto-
power spectrum on large scales, but they are more noisy for
k≳ kms, since the volume field lacks the BAO feature on
small scales. So far, we have exclusively investigated
Fourier-space statistics. In configuration space, the effect
of the tessellation is a smoothing of the BAO peak as well.
Thus, the BAO feature measured from the correlation
function of the volume field is broadened and becomes
less sharp, making it harder to differentiate from the
broadband correlation function.
In order to fully capture the BAO features in the power

spectrum of the volume statistics, the number density of the
tracer sample must be sufficiently high. For example, at
z ¼ 0, the halo sample with mean mass 1.8 × 1013 M⊙ h−1

and number density 2.3 × 10−4 ðMpc h−1Þ−3 is sufficient.
At higher redshift, the BAO wiggles are less damped by
nonlinearities, so a higher number density is necessary to
push kms to a larger value. For instance, at z ¼ 1, the halo
number density needs to be at least 7 × 10−4 ðMpc h−1Þ−3
to fully capture the BAO wiggles.
To summarize the virtues of each method: for the density

statistics, the CIC interpolation method is recommended, as
it offers an unbiased estimate of the small-scale density
field, while the VTFE and DTFE smooth out the field for
scales above kms. The tessellation imposes additional
conditions such that the resultant field is smooth and
space-filling. These requirements modify the small-scale
behavior of the field. On the other hand, in order to exploit
volume statistics, the tessellation method is preferred, as it
is able to construct a space-filling field with nonvanishing
density everywhere. The results from the VTFE are similar

FIG. 11. As Fig. 9, but for the monopole power spectrum of the density statistics in redshift space. Similar to the results in real space,
apart from the smoothing for k≳ kms, the tessellation methods accurately reproduce the BAO wiggles in redshift space.
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to the DTFE for the density statistics, but VTFE yields
more robust results for the volume statistics. Another
advantage of the VTFE is its lower computational overhead
compared to DTFE.7 Hence, for the clustering analysis of
volume statistics, we recommend usage of the VTFE.
A measurement of the BAO feature from the distribution

of underdense regions is interesting on its own, but it may
also provide valuable information on cosmology in addition
to what is available from halo clustering alone. We have
demonstrated that the volume statistic traces the large-scale
structure with a negative bias parameter. What remains to
be shown is how correlated the volume statistic and the
traditional halo-density statistic are. Since the volume
statistic is constructed via the halo tracer distribution,
the answer is not obvious. For example, one can construct
a trivial field −δh, which exhibits negative linear bias,8 but
perfectly correlates with δh. In order to investigate the
correlation between δh and V, one could determine the
covariance of the power spectrum from both the density and
the volume field using many different realizations, which is
beyond the scope of this paper.
A simple (albeit less conclusive) test is to consider the

cross-correlation coefficient between δh and V,

r ¼ PhVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PhhPVV

p ; ð34Þ

where Phh, PVV , and PhV are the halo auto-, volume auto-,
and halo-volume cross-power spectra.
The results for fields constructed from four different halo

groups are shown in Fig. 13. We have used the full redshift-
space monopole power spectra including shot noise. On
large scales, both δh (estimated via CIC) and V (estimated
via VTFE or DTFE) are (anti-)correlated with the dark
matter δ and with each other, but due to the presence of shot
noise and other sources of stochastic noise in the volume
field, r is slightly above −1. The characteristic shape of the
curve is due to the exclusion between δh and V. At smaller
scales, exclusion can lead to oscillations before r
approaches to zero, but they are quickly suppressed when
the shot noise kicks in at high k. If the volume statistics
were as trivial as −δh, r would be equal to −1 on all scales.
We note that the BAO features are also detectable using

overlapping voids [42,43], which are defined to be the
circumspheres of the tetrahedrons resulting from the
Delaunay tessellation of the galaxies [105]. Although this
approach is similar to ours in using the tessellation to
partition the point set, we do not define objects on it.
There can be substantial overlap between the circumspheres
of neighboring tetrahedrons. In the void construction algo-
rithm, the void center and size are determined entirely by the
four particles spanning the tetrahedron. The pointlike nature
of the void-center position prevents any additional smooth-
ing of the BAO; however, the resultant BAO measurement
may be more correlated with the density statistic.

FIG. 12. As Fig. 10, but for monopole power spectrum of the volume statistics in redshift space. Similar to the results in real space, the
large-scale BAO features are imprinted in the redshift-space volume power spectra without systematic bias.

7In a typical run with a single core on an Intel Xeon E5-2686
cluster, the VTFE takes about 40 minutes, while the DTFE about
24 hours. Perhaps the DTFE algorithm can be more efficient after
further optimization.

8However, for voids, the behavior of quadratic bias is similar to
that of halos [49,52], so at second order the bias of this artificial
field is opposite to that of the genuine underdense tracer.

KWAN CHUEN CHAN and NICO HAMAUS PHYS. REV. D 103, 043502 (2021)

043502-14



Finally, we comment on the possible effects of the BAO
reconstruction [103]. BAO reconstruction is often applied
in galaxy surveys (e.g., [106]) to undo part of the large-
scale gravitational evolution and RSD effect so as to boost
the BAO signal. This is because the reconstructed field
becomes more correlated with the initial conditions, so the
BAO signal in the volume field is expected to increase as
well. For example, V reduces to −δh for weak fluctuations
and we expect the BAO signal to be well correlated
between these two fields. However, a detailed study is
required to access the overall gain in BAO information
from the reconstructed volume field.

VI. CONCLUSIONS

In large-scale structure analyses, it is common to exploit
statistics based on the galaxy distribution, which predomi-
nantly traces high-density regions in the Universe.
However, a large fraction of its volume exhibits relatively
low density. Hence, the clustering of underdense regions
may bear cosmologically relevant information that is
complementary to the conventional clustering of over-
densities. In principle, cosmic voids are ideal proxies for
probing the underdense regions, but their auto-correlation
statistics suffer a large shot-noise contamination due to
their low number density. In this work, we propose to apply
the volume statistic V to probe the volume distribution of
large-scale structure. This statistic provides a measure of
the volume change between Eulerian and Lagrangian

space. As it makes use of all the tracer particles available,
its shot-noise level is similar to that of the conventional
tracer density field. Furthermore, the definition of the
volume statistic is closely related to the density contrast,
so it may be more amenable to theoretical models based on
perturbation theory than objects that are defined via non-
linear topological characteristics of the cosmic web, such as
voids. Also, an extension of its definition to redshift space
is straightforward.
Traditional mass-assignment methods, such as CIC

interpolation, yield empty regions with δh ¼ −1 for sparse
halo samples, which make the volume statistic estimator ill-
defined there. To overcome this difficulty, we apply
tessellation interpolation methods to estimate the volume
field. We study the clustering statistics obtained via the
tessellation methods in detail. The power spectrum from the
tessellated field is smoothed by an effective window
function, which on large scales can be approximated by
the same simple function for different tessellation methods.
On small scales, this approximation fails due to the density
dependence of the tessellation.
For the density clustering, the conventional mass-

interpolation methods are recommended because they
can reproduce the original discrete point distribution for
sufficiently large grid size. Because of the additional
smoothness condition imposed, the tessellation methods
cause smoothing of the field at scales smaller than the
mean particle separation. When the tessellation is used for
the volume statistics, the VTFE provides the most

FIG. 13. Cross-correlation coefficient between the halo-density field δh (estimated via CIC) and the volume field V. The latter is
estimated using the distribution halos as tracers, either via VTFE (blue triangles), or via DTFE (red squares).
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satisfactory results in terms of signal-to-noise ratio. At the
same time, the VTFE is computationally less expensive
than the DTFE.
The clustering amplitude of the volume statistic is

negatively biased with respect to the dark matter density
field δ on large scales, reflecting the fact that it traces
underdense regions in the Universe. This bias can also be
measured without knowledge of δ via the observable cross-
power spectrum between the fields δh and V, which are
strongly anticorrelated on large scales. Furthermore, the
BAO features are imprinted in the volume statistic as well.
Apart from a smoothing beyond the mean tracer separation
scale k≳ kms, they are reproduced without systematic bias.
Hence, to avoid loss of any clustering information, the
number density of the tracer used to generate the volume
statistic must be sufficiently high. An investigation of the
covariance between the BAO information in the density and
volume statistic is left for future work.
As the signal-to-noise ratio of void clustering is signifi-

cantly limited by shot noise, we expect volume statistics to
complement the available information from the clustering
of underdense regions. For example, a cross-correlation
with galaxy positions and shapes, quasars, the CMB,
and even three-point statistics of the volume statistic should
be detectable at high significance. Voids have been sug-
gested to be a sensitive probe for rich phenomena, such as
the imprints of dark energy, modified gravity, and massive
neutrinos [107]. The volume statistic opens up a new
avenue toward exploring these ideas. For example, in
analogy to Ref. [51], the bias of the volume statistic
can be used to constrain the inflationary paradigm via
PNG. This can be combined with the multitracer approach
[95–99] to optimize the statistical gain of this method.
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APPENDIX A: KERNEL DENSITY ESTIMATION

In this Appendix, we show that the density can be
estimated using the method of KDE in statistics. See, e.g.,
[83] for more details on KDE. Given a number of data
points xα sampling the underlying probability distribution,
instead of estimating the probability density by histogram,

the sample points are smoothed by a window (or kernel)W
of characteristic size hα. Note that the stochastic variables
are the sampling points and the underlying probability
density is fixed. The probability density p can be estimated
by the estimator

p̂ðxÞΔV ¼ 1

N

XN
α¼1

W

�
x − xα
hα

�
; ðA1Þ

where N is the total number of particles contributing to
density estimation. For overlapping windows, it includes all
the particles available. The volume element ΔV is to be
fixed later on. The expectation of p̂ðxÞ is

hp̂ðxÞi ¼ 1

NΔV

XN
α¼1

�
W

�
x − xα
hα

��

¼ 1

NΔV

XN
α¼1

Z
d3xαW

�
x − xα
hα

�
pðxαÞ

¼ 1

NΔV

XN
α¼1

Z
d3yαh3αWðyαÞpðx − hαyαÞ: ðA2Þ

By expanding the probability density to second order, we
have

hp̂ðxÞi≈ 1

NΔV

XN
α¼1

Z
d3yαh3αWðyαÞ

×

�
pðxÞ−hα

X
i

yαi
∂p
∂xiþ

1

2

X
ij

h2αyαiyαj
∂2p
∂xixj

	
:

ðA3Þ

The window satisfies the property thatZ
d3yWðyÞ ¼ 1; ðA4Þ

and it is chosen to be an even function. Therefore, it
simplifies to

hp̂ðxÞi¼
P

N
α¼1h

3
α

NΔV
pðxÞþ

P
N
α¼1h

5
α

2NΔV

X
ij

∂2p
∂xi∂xj I

ð1Þ
ij ; ðA5Þ

where for convenience we define the notation

IðnÞij…k ≡
Z

d3yWnðyÞyiyj…yk: ðA6Þ

For p̂ to be unbiased to the lowest order, we require

ΔV ¼ 1

N

XN
α¼1

h3α: ðA7Þ
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Then the bias arises from the second derivative term

hp̂ðxÞi − pðxÞ ¼
P

N
α¼1 h

5
α

2
P

N
α¼1 h

3
α

X
ij

∂2p
∂xi∂xj I

ð1Þ
ij : ðA8Þ

In particular, at the peak (trough), the estimated probability
density is lower (higher) than the true one.
If we assume that the sampling points are independent of

each other, the variance of p̂ is given by

Varðp̂ðxÞÞ ¼ 1

ðNΔVÞ2
XN
α¼1

Var

�
W

�
x − xα
hα

��

¼ 1

ðNΔVÞ2
XN
α¼1


Z
dxαW2

�
x − xα
hα

�
pðxαÞ

−
�Z

dxαW

�
x − xα
hα

�
pðxαÞ

	
2
�
: ðA9Þ

To the lowest order in h, we have

Varðp̂ðxÞÞ ≈ Ið2ÞpðxÞP
N
α¼1 h

3
α
: ðA10Þ

Note that the variance is inversely proportional to the total
volume of the windows.
Now suppose that we have N particles, and we would

like to estimate the number density of the sample, nðxÞ, by
applying a smoothing window to the particles. This can be
done by simply replacing p by nðxÞ=N, which is non-
negative and normalized to 1. The estimator for n reads

n̂ðxÞ ¼ NP
N
α¼1 h

3
α

XN
α¼1

W

�
x − xα
hα

�
: ðA11Þ

The bias and the variance of the estimator are given by

hn̂ðxÞi − nðxÞ ¼
P

N
α¼1 h

5
α

2
P

N
α¼1 h

3
α

X
ij

∂2n
∂xi∂xj I

ð1Þ
ij ; ðA12Þ

Varðn̂ðxÞÞ ¼ nðxÞIð2Þ
1
N

P
N
α¼1 h

3
α
: ðA13Þ

These results apply to the density estimation using the usual
mass-interpolation method. It is important to remember that
these results are obtained assuming that the sampling points
Poisson sample the underlying density field.

APPENDIX B: EFFECTS OF THE WINDOW
FUNCTION ON THE POWER SPECTRUM

The standard shot-noise power spectrum result [Eq. (20)]
can be derived by considering the particle distribution given
by a sum of Dirac deltas; see, e.g., the Appendix of [108].
Using the number density given by

nðxÞ ¼
X
α

δDðx − xαÞ; ðB1Þ

the discrete two-point correlation can be written as

hnðx1Þnðx2Þi

¼ δDðx1 − x2Þ
�X

α

δDðx1 − xαÞ
�
þ n̄2½1þ ξðx12Þ�

¼ n̄δDðx1 − x2Þ þ n̄2½1þ ξðx12Þ�; ðB2Þ

where n̄ is the mean number density given by

n̄ ¼
�X

α

δDðx − xαÞ
�
; ðB3Þ

and ξ is the correlation function due to continuous
clustering. The discrete correlation function then reads

ξdðx1 − x2Þ ¼
1

n̄
δDðx1 − x2Þ þ ξðx12Þ: ðB4Þ

Upon Fourier transform, we obtain

PdðkÞ ¼
1

ð2πÞ3n̄þ PðkÞ: ðB5Þ

with the first term being Eq. (20).
The Dirac delta function can be thought of as a special

kind of window function. We now consider the case when
the particles are smoothed by an extended window function
W. The number density then reads

nWðxÞ ¼
X
α

Wðx − xαÞ: ðB6Þ

Note that because the window smoothing respects mass
conservation, n̄ ¼ hnWi. Then the two-point correlation
reads

hnWðx1ÞnWðx2Þi

¼ n̄2
Z

d3x0
Z

d3x00Wðx1 − x0ÞWðx2 − x00Þξðjx0 − x00jÞ

þ n̄2 þ n̄
Z

d3x0Wðx1 − x0ÞWðx2 − x0Þ: ðB7Þ

The discrete correlation can then be written as

ξWWðjx1 − x2jÞ ¼
1

n̄

Z
d3x0Wðx1 − x0ÞWðx2 − x0Þ

þ
Z

d3x0
Z

d3x00Wðx1 − x0Þ

×Wðx2 − x00Þξðjx0 − x00jÞ: ðB8Þ
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In Fourier space, we have

PWWðkÞ ¼ ð2πÞ6jWðkÞj2
�
PðkÞ þ 1

ð2πÞ3n̄
	
: ðB9Þ

The first term in the square bracket is analogous to the two-
halo term and the second is the analog of the one-halo term
in the halo model [109]. For both the continuous and the
shot-noise term, the effect of the window function is the
same and can be accounted for by a jWðkÞj2 factor.
Similarly, the cross-correlation function between n and

nW is given by

ξWðjx1−x2jÞ¼
1

n̄
Wðx1−x2Þþ

Z
d3x0

Z
d3x00

×Wðx1−x0ÞδDðx2−x00Þξðjx0−x00jÞ; ðB10Þ

and the cross-power spectrum reads

PWðkÞ ¼ ð2πÞ3WðkÞ
�
PðkÞ þ 1

ð2πÞ3n̄
	
: ðB11Þ

Again, we find that the effect of the window function is
captured by a factor of WðkÞ.
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