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A promising probe to unmask particle dark matter is to observe its effect on neutron stars, the prospects
of which depend critically on whether captured dark matter thermalizes in a timely manner with the stellar
core via repeated scattering with the Fermi-degenerate medium. In this work we estimate the timescales for
thermalization for multiple scenarios. These include: (a) spin-0 and spin-1

2
dark matter, (b) scattering on

nonrelativistic neutron and relativistic electron targets accounting for the respective kinematics,
(c) interactions via a range of Lorentz-invariant structures, (d) mediators both heavy and light in
comparison to the typical transfer momenta in the problem. We discuss the analytic behavior of the
thermalization time as a function of the dark matter and mediator masses, and the stellar temperature.
Finally, we identify parametric ranges where both stellar capture is efficient and thermalization occurs
within the age of the universe. For dark matter that can annihilate in the core, these regions indicate
parametric ranges that can be probed by upcoming infrared telescopes observing cold neutron stars.

DOI: 10.1103/PhysRevD.103.043019

I. INTRODUCTION

By virtue of their steep gravitational potentials accel-
erating ambient particles to semirelativistic speeds, and
their large densities enabling efficient capture, compact
stars have served as valuable laboratories for studying dark
matter (DM) [1–34]. Neutron stars (NSs) in particular could
provide wide-ranging constraints through one of the fol-
lowing means: (a) a heat signature in old, isolated, nearby
NSs that may be observed by imminent infrared telescopes
[35] (the NS luminosity is sourced by the kinetic energy of
infalling DM [35–47], and in some scenarios, additionally
by the annihilation of captured DM as well); (b) their very
existence, since in certain models involving nonannihilat-
ing “asymmetric” DM, gravitational collapse may be
triggered in the core and a star-destroying black hole
may be formed. For captured DM to either collect and
annihilate efficiently in the stellar core or to form a black
hole, it must first thermalize with the core via repeated

scattering within timescales of interest. This is a model-
dependent process, and has direct bearing on observational
prospects.
NS-DM thermalization was studied in detail in Ref. [13],

but in a setting restricted to spin-1
2
DM and vector-vector

contact interactions with Standard Model (SM) fermions.
With the discovery and observation of relevant NSs
imminent [35,36], and no clarity yet on the identity of
DM, it is timely to expand the thermalization program to a
broader range of DM scenarios. In this study, we compute
the thermalization timescales, accounting for Pauli-blocked
phase space, for spin-0 and spin-1

2
DM interacting via

various Lorentz-invariant structures with neutron and
electron targets in the stellar core, as well as treat the case
of “light mediators” with masses smaller than the momen-
tum transfers involved in thermalization. We then discuss
the interplay of these thermalization timescales with NS
capture sensitivities. This study thereby identifies target
regions for infrared telescope astronomers looking for DM
annihilation heating of NSs. Several such regions are
identified, hence this work furthers the case for con-
straining the thermal luminosity of candidate NSs.
This paper is organized as follows. In Sec. II we review

some general considerations in computing energy loss rates
and thermalization in the stellar core for both nonrelativistic
neutron and relativistic electron targets. We also outline the
DM-SM interaction structures we consider. In Sec. III we
provide the thermalization timescales for all our scenarios,
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and discuss their analytic behavior with respect to DM
mass, mediator mass, and the core temperature. We also
identify regions in the space of DM and mediator masses
that are promising for upcoming astronomical observa-
tions. In Sec. IV we summarize our findings and discuss the
future scope of our work. In the Appendixes we collect
technical details of our estimation of the thermalization
timescales.

II. THERMALIZATION: GENERAL
CONSIDERATIONS

In treating DM-NS thermalization we implicitly assume
that incident DM is gravitationally captured by the NS. In
Sec. III we will check this assumption explicitly and
discuss the phenomenological implications.
Captured DM particles thermalize with the NS by losing

energy via repeated scattering with particles in the medium.
The time taken to achieve thermalization may be divided
into two epochs. In the first epoch of interval t1, the orbits
of gravitationally bound DM particles, which are highly
eccentric, shrink as the DM loses energy during transits,
until they become confined to within the NS radius. In the
second epoch of interval t2, the confined DM particles
scatter further with the NS medium; their orbits continue to
shrink down to the “thermal radius” determined by the NS
core density and temperature. When this is completed the
DM kinetic energy equals the NS temperature TNS. As
shown in Refs. [7,37], t2 exceeds t1 by a few orders of
magnitude, thus the total thermalization timescale is deter-
mined by the second epoch. (Briefly, this is because
throughout the first epoch DM has energies close to the
escape energy, whereas in the second epoch t2 is deter-
mined by slow scatters with energy transfers comparable to
TNS, many orders of magnitude smaller than the escape
energy.) Consequently, in this work we focus solely on this
second epoch.
The interaction rate of DM with fermion degenerate

matter is described by Fermi’s golden rule that accounts for
the phase space available for scattering. Consider the elastic
scattering of a DM particle χ off a distribution of target
particles T: χðkÞ þ TðpÞ → χðk0Þ þ Tðp0Þ. The interaction
rate per DM particle reads [13]

dΓ ¼ 2
d3k0

ð2πÞ3 Sðq0; qÞ;

Sðq0; qÞ ¼
Z

d3p0

ð2πÞ32Ep02Ek0

Z
d3p

ð2πÞ32Ep2Ek

× ð2πÞ4δ4ðkþ p − k0 − p0Þ
× jMj2fðEpÞð1 − fðEp0 ÞÞ; ð1Þ

where the second line above is the response function. The
Fermi distribution function of the target particles with
chemical potential μ is

fðEpÞ ¼
1

expððEp − μÞ=TNSÞ þ 1
: ð2Þ

The rate of energy loss is given by

Φ ¼
Z

dΓ × ðEi − EfÞ; ð3Þ

where k0 is integrated from 0 to k. Using this we can write
down the time taken to thermalize with the NS, i.e., to reach
a final energy Ef ¼ 3=2TNS starting with an initial energy
E0 ¼ mχv2esc=2:

τtherm ¼ −
Z

Ef

E0

dEi

Φ
: ð4Þ

We thus see that the key quantity determining thermal-
ization is the response function, which in turn depends on
χ − T interaction structure via the squared amplitude jMj2.
We now inspect these ingredients in more detail.

A. The response function

Integrating Eq. (1) over p0, the response function
becomes

Sðq0; qÞ ¼
Z

d3p
ð2πÞ22

jMj2
16Ep0Ek0EpEk

× δðq0 − Ep þ Ep0 ÞfðEpÞð1 − fðEp0 ÞÞ; ð5Þ

where the δ3 has simply enforced momentum conservation,
q ¼ p0 − p. While DM particles move at semirelativistic
speeds during NS capture, thermalization occurs after they
have slowed down to nonrelativistic speeds, thus we always
set Ek ¼ Ek0 ¼ mχ . On the other hand, the target could be
either relativistic or nonrelativistic. Neutrons (as well as
protons and muons) in the stellar core typically have Fermi
momenta pF smaller than their rest mass mT and are
thus expected to be nonrelativistic, whereas electrons are
highly degenerate (pF ≫ mT) and hence ultrarelativistic.
We consider DM scattering on both neutrons and electrons
in the core.
For nonrelativistic scattering targets, we have Ep ¼

mT þ p2=ð2mTÞ. Assuming the squared amplitude depends
only on the Mandelstam variable t [if the squared amplitude
depends on both t and s, integration over the azimuthal
angle in Eq. (5) is nontrivial and analytic results are not
easily obtained. Since t-only-dependent squared ampli-
tudes already span the range of interesting behavior for
thermalization, we study only interactions giving rise to
them], the response function in the limit μ ≫ TNS is
obtained, following the treatment in Ref. [48], as
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Snon−relðq0; qÞ ¼
jMj2
16πm2

χ

q0
q
Θ
�
μ −

1

4

ðq0 − q2=2mTÞ2
q2=2mT

�
;

ð6Þ

where q≡ jqj, a notation we use for the remainder of
the paper. Note that we recover the approximate response
function quoted in Refs. [13,48] by rewriting the Heaviside
theta function above in terms of q0, and by keeping only the
leading order term in the Fermi velocity (vF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ=mT

p
):

Snon−relapprox ðq0; qÞ ≈
jMj2
16πm2

χ

q0
q
Θðqvf − q0Þ: ð7Þ

This form of the response function holds true only in the
deeply nonrelativistic limit, whereas Eq. (6) is valid also in
the quasirelativistic regime, thus allowing us to smoothly
transition from the nonrelativistic to the relativistic limit.
Despite these analytical differences in the response func-
tions, as we shall see later, for DM-NS thermalization they
matter little.
Next we examine relativistic electron targets. It is

expected that electrons inside old NSs are completely
relativistic [49–51], with typical chemical potentials
μF ¼ Oð0.1Þ GeV. In this limit, integrating Eq. (1) over
p0; p gives the following response function in the μ ≫ TNS
limit, as derived in Appendix A:

Srelðq0; qÞ ¼
jMj2
16πm2

χ

q0
q
Θð2μþ q0 − qÞ: ð8Þ

We notice that the response functions for neutron and
electron targets have similar forms, except for the theta
functions that enforce Pauli blocking in nonrelativistic and
relativistic regimes, respectively. To understand this phase
space restriction better, we display in Fig. 1 regions where
the response functions in Eqs. (6) and (8) are nonzero. We
also show the region q0 < vescq, which depicts the phase
space occupied by DM after capture. Here vesc ¼ 0.6c is
the surface escape speed of a typical NS. For reference, the
diagonal black line denotes q0 ¼ q. Successful scattering
can occur in regions that overlap with DM phase space.
The allowed regions in the response functions could

be further understood through the following. During
thermalization, DM particles (targets) continuously lose
(gain) energy, i.e., q0 ≥ 0. Thus from Eqs. (6) and (8) we
have the condition q <

ffiffiffiffiffiffiffiffiffiffiffi
8μmT

p
for successful scattering on

neutrons, and similarly q < 2μ for electrons. These con-
ditions imply that scattering in all directions is allowed
for neutron targets, whereas scattering could be restricted to
forward directions for electron targets. To see this, consider
the scattering angle in neutron scattering, cos θpq ¼
ð2mTq0 − q2Þ=ð2pqÞ, obtained from energy conser-
vation. Using q0 ≥ 0 and the above condition, we have
cos θpq > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μnmT

p
=p. For neutron targets the numerator

is Oð0.1Þ GeV, whereas p is much smaller, hence this
inequality is weaker than the condition cos θpq > −1. On
the other hand, for electron targets we have cos θpq ¼
ð2pqÞ−1ðq20 þ 2pq0 − q2Þ, implying cos θpq > −μe=p.
Since p ∼ μe, this condition could be more restrictive on
backward scattering.
These considerations, however, have little effect on our

final estimates. The timescale for thermalization is set
primarily by the last stages of the process, involving dark
matter kinetic energies approaching the stellar temperature.
It can be seen that the rate of energy loss in Eq. (3) is small
for these final soft scatters, and therefore that the times
taken for these are the longest. In this regime q, q0 are much
smaller than μ and target masses, i.e., the phase space here
is the bottom left corner of Fig. 1, where all response
functions overlap with the DM phase space. In this region
the theta functions in Eqs. (6) and (8) are trivially unity.

B. Equation of state and neutron star properties

The macroscopic properties of a NS such as its mass
and radius, as well as thermodynamic quantities like the
chemical potential of constituent fermions (neutrons,
protons, electrons and muons), are estimated from the
equation of state (EoS) of matter at nuclear densities.

electrons neutrons

n 400 MeV
e 175 MeV

TNS

q0 vesc q

FIG. 1. Regions of phase space allowed in the response
functions in Eqs. (6) and (8) for neutron and electron targets,
encapsulating nonrelativistic and relativistic kinematics respec-
tively, as well as Pauli blocking. Also shown is the region
q0 < vescq, depicting dark matter kinematics after capture. Dur-
ing dark matter thermalization with the neutron star core, scatters
only occur where the above two regions overlap. The timescale
for the thermalization process is set by the last few scatters with
q; q0 much smaller than target masses, i.e., by the bottom left
region of this plot.
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The EoS is derived from fits to available data at large finite
densities [50,51].
From the discussion above, the thermalization time is

mostly independent of the chemical potential in the limit
μ=TNS ≫ 1, as well as other macroscopic properties of the
NS. As mentioned before, small energy and momentum
transfers govern the thermalization time. Physically, the
target particles that participate in scattering are extremely
close to their Fermi surface, with the minimum number
of target particles participating in scattering proportional
to q0 ∝ 2TNS > 0. For a typical old NS with TNS ¼
103–105 K ≃ 10−10–10−8 GeV and μ ∼ 0.1 GeV, we are
always in the degenerate limit. In other words, τtherm is a
function of masses and TNS only.
For DM capture in the NS it is well known that the NS

profile dependence of the capture rate could be as large
as an order of magnitude [35,37,47]. In presenting the
interplay of our results with NS capture we choose the
following benchmark predicted by the unified equation of
state BSk-24 [52]:

MNS ¼ 1.5 M⊙; RNS ¼ 12.6 km

μn ¼ 373 MeV; μe ¼ 146 MeV: ð9Þ

The chemical potentials here are the volume-averaged
values, which we adopt for our estimates of the capture
rate in Sec. III.

C. Interaction structures

In Table I we provide the spin-averaged squared ampli-
tudes for various contact operator interaction structures
for both spin-1

2
and spin-0 DM. These structures are chosen

to span the possibilities of jMj2 dominated by various
powers of the Mandelstam t, hence of the transfer momen-
tum and energy. This also results in a range of dominant

dependences in the cross section on target spin and/or DM
velocity at terrestrial direct detection experiments [53].
We assume that these interactions arise from t-channel

mediators of mass mϕ, thus the effective operator treatment
is only valid for mϕ exceeding the typical q in the
thermalization process. For more general mediator masses
we make the following substitutions in Table I. For spin-1

2

DM, we substitute Λ−4 → g2χg2T=ðm2
ϕ − tÞ2, where the gi are

the mediator’s couplings to χ and T. We set these to a
reference value gχ ¼ gT ¼ 10−5 throughout this paper. For
spin-0 DM, we substitute Λ−2 → a2χg2T=ðm2

ϕ − tÞ2, where
aχ is a trilinear coupling between χ and a spin-0 mediator.
We set these to a reference value aχ ¼ 0.1 MeV, gT ¼ 10−5

throughout this paper.
We see that for our choice of operators the jMj2 are

given by linear combinations of powers of t. Thus the
energy loss rate in Eq. (3) can be computed for separate
powers of t, which becomes useful in the heavy mediator
limit for nonrelativistic targets, for which analytical expres-
sions may be obtained. We provide these expressions in
Appendix B.

III. RESULTS

We now numerically compute the thermalization time
using Eq. (4), and display it as a function of mχ for spin-12
DM and neutron targets in Fig. 2, for spin-1

2
DM and

electron targets in Fig. 3, and for spin-0 DM and both
targets in Fig. 4. We show this for four choices of mediator
masses: mϕ ¼ GeV, which serves as the “heavy mediator”
limit as it is well above the regime of q relevant for DM-NS
thermalization; mϕ → 0, which serves as an asymptotic
limit as we dial down the mediator mass; and mϕ ¼ keV
and mϕ ¼ MeV to capture the intermediate behavior. We
also choose two NS temperatures down to which DM
thermalizes: 105 K, roughly the smallest observational
upper bound placed on NS temperatures so far (see
Table I of [54]), and 103 K, roughly the temperature of
DM kinetic and/or annihilation heating signals, to which
upcoming IR telescopes are sensitive [35,36]. We mark
τNS ¼ 1010 yr as a benchmark for the oldest observable
neutron stars. Hence parametric regions with τtherm > τNS
are unlikely to have led to complete thermalization with the
star. In these regions DM could still have partially ther-
malized, i.e., not sunk entirely to the center of the star, and
the ensuing DM annihilation (if allowed) could occur at
nontrivial rates, and may or may not contribute to the
observable heat signature. We leave the investigation of
these partial thermalization regimes to future work. We do
note that for electroweak-sized annihilation cross sections
and DMmasses, thermalization with just the km-thick crust
of the NS is sufficient to result in the maximum stellar
luminosity arising from DM annihilations [38]. We cut off
our plots at a minimum DM mass of keV as we expect

TABLE I. Effective contact operator interactions with cutoff Λ
between the dark matter field (χ) and neutrons/electrons (ξ),
and the corresponding squared tree-level scattering amplitudes.
Operators with superscript F(S) correspond to spin-1

2
(spin-0)

DM. For lighter mediator masses mϕ where the effective
treatment breaks down, we schematically substitute Λ−4 →
ðcouplingÞ4=ðm2

ϕ − tÞ2. See Sec. II C for more details.

Name Operator
P

spins jMj2

OF
1 ðχ̄χÞðξ̄ξÞ Λ−4ð4m2

χ − tÞð4m2
T − tÞ

OF
2 ðχ̄iγ5χÞðξ̄ξÞ Λ−4tðt − 4m2

TÞ
OF

3 ðχ̄χÞðξ̄iγ5ξÞ Λ−4tðt − 4m2
χÞ

OF
4 ðχ̄iγ5χÞðξ̄iγ5ξÞ Λ−4t2

OS
1 ðχ†χÞðξ̄ξÞ Λ−2ð4m2

T − tÞ
OS

2 ðχ†χÞðξ̄iγ5ξÞ Λ−2ð−tÞ
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lighter DM to evaporate from a TNS ¼ 105 K NS over
10 Gyr timescales [37].
We have omitted displaying the plots for electron

targets for the operators OF
3 , O

F
4 , and OS

2 to avoid the
following redundancy. As can be seen in Table I, their
jMj2 is independent of the target mass, and thus the
response functions for neutrons and targets are identical
[Eqs. (6) and (8)], modulo the Heaviside theta function

enforcing kinematic conditions. Since, as discussed, these
conditions are satisfied in our parametric ranges, it
effectively takes DM just as long to thermalize with the
NS by scattering on electrons versus neutrons. We choose
the lower end of our mχ range to satisfy Gunn-Tremaine
bounds on fermionic DM [55]; lower masses are allowed
for spin-0 DM, but we do not display them here for
brevity.

FIG. 2. Time taken for spin-1
2
dark matter to thermalize with neutron stars with temperatures 103 and 105 K via repeated scattering on

neutron targets. Shown are the τtherm for mediator masses zero, keV, MeV, and GeV. The panels correspond to interaction structures
described in Sec. II C and Table I; specifically, the labels in the top right must not be interpreted as effective operators. The color code for
all the panels is given by the first one. See text for further details.

FIG. 3. Same as Fig. 2, but for spin-1
2
DM and electron targets. For the operatorsOF

3 andO
F
4 , τtherm is the same as in Fig. 2, and we omit

displaying them.
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We notice several interesting features in these plots.
First, the slopes of the mϕ ¼ GeV and mϕ → 0 curves are
always distinctly different. This is because the propagator
term in jMj2 is dominated by m−4

ϕ in the first case and q−4ref
in the second, where qref ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mχTNS

p
is the typical q in the

final few scatters that set the thermalization timescale.
This difference leads to different powers of mχ feeding
into the energy loss rate in Eq. (3) and thus ultimately into
τtherm in Eq. (4). Second, we see that the keV and MeV
mediator curves are parallel to the GeV mediator curve for
small mχ—here they behave as heavy mediators, with
τtherm ∝ m4

ϕ; these curves change slope and follow the
massless mediator curve for large mχ—here they are “light
mediators” with τtherm ∝ q4ref . The turnaround point in mχ

corresponds to mϕ ≃ qref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mχTNS

p
. We also see that

while the mϕ ¼ GeV and mϕ → 0 neutron curves are
straight lines, the electron curves undergo changes in slope.
This is because the jMj2 for neutron scattering is domi-
nated by the term with the lowest power of t, giving simply
power law results (see Appendix B), whereas that for
electron scattering is dominated by different powers in
different mχ regimes due to relativistic kinematics. Third,
in small mχ regions where jtj ≪ m2

T;χ , we find for the
operators OF

1 , O
F
2 , and OS

1 that thermalization with elec-
trons is a factor ofm2

n=m2
e longer than that with neutrons, as

indeed expected from their jMj2, and Eqs. (6) and (8).
Fourth, comparing among the operators, we find that
thermalization times are orders of magnitude longer for
interactions whose jMj2 are dominated by more powers of
t. This is as expected, since the typical jtj ≃ q2 ≃ 3mχTNS is
much smaller than m2

χ;T , giving more suppressed jMj2 if
dominated by higher powers of t. Fifth, the heavy mediator
limit curves forOF

2 andO
S
2 are nearly flat versusmχ . This is

because their jMj2 is dominated by m2
χ in the numerator,

which cancels with the m−2
χ in the response function

expression in Eqs. (6) and (8); the deviation from flatness
for the OF

2 electron curves is due to competing effects from
the t2 term in the jMj2. Finally, we see that colder NSs
correspond to longer thermalization times, as expected. The
scaling of τtherm with temperature for OF

1 is seen to agree
with the analytical expression derived in Appendix B for
the heavy mediator limit and neutron targets. In Table II we
provide the limiting behavior of τtherm in the heavy and light
mediator limits for both neutron and electron targets; these
expressions provide close analytical fits to the plots just
examined.
The key features discussed above are reflected in our

results identifying regions where DM-NS thermalization
becomes important for observational prospects. We turn to
this next.

FIG. 4. Same as Fig. 2, but for spin-0 DM and both neutron (top panels) and electron (bottom panel) targets. For the operator OS
2 the

τtherm for electron scattering is the same as that of neutron scattering.
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Our final results are displayed in Figs. 5–7, correspond-
ing respectively to thermalizing interactions between spin-1

2

DM and neutrons, spin-1
2
DM and electrons, and spin-0 DM

and neutrons and electrons. The ordering of the panels
follows that of Figs. 2–4. We show in the mϕ vs mχ plane
contours of τtherm ¼ 107 yr, corresponding to the age of
a NS by which it is expected to have cooled down to

TNS ∼ 103 K [56,57], and of τtherm ¼ 1010 yr, correspond-
ing to the typical age of the oldest NSs. As before,
NS temperatures of 103 and 105 K are chosen as our
benchmark.
We indicate with a black dotted curve the mediator mass

below which we expect all incident DM to be captured by
our benchmark NS in Eq. (9); for mϕ larger than this

TABLE II. Limiting behaviors of thermalization time for the interaction structures in Table I for neutron and electron targets. These
expressions are good approximations to the numerically obtained plots in Figs. 2–4. Here T is the neutron star temperature.

Operator mϕ ≳ ffiffiffiffiffiffiffiffiffi
mχT

p
mϕ ≲ ffiffiffiffiffiffiffiffiffi

mχT
p

neutrons mϕ ≲ ffiffiffiffiffiffiffiffiffi
mχT

p
electrons

OF
1 35π3

12g2Tg
2
χT2

m4
ϕ

mχm2
T

24π3mχ

g2Tg
2
χm2

T

10π3mχ

3g2Tg
2
χm2

T
ln
�
m3

χþ3m2
Tmχð2mχ=Tþ5Þ

33m2
Tmχþm3

χ

�

OF
2 7π3

3g2Tg
2
χT3

m4
ϕ

m2
T

16π3

g2Tg
2
χT

m2
χ

m2
T

20π3mχ

7g2Tg
2
χm4

TT

h
7m2

Tðmχ − 3TÞ þ 3Tðm2
χ þ 2m2

TÞ × ln
�

3Tðm2
χþ9m2

T Þ
7mχm2

Tþ3m2
χTþ6m2

TT

�i

OF
3 7π3

3g2Tg
2
χT3

m4
ϕ

m2
χ

16π3

g2Tg
2
χT

20π3

7g2Tg
2
χmχT

h
7ðmχ − 3TÞ þ 9T ln

�
30T

7mχþ9T

�i

OF
4 55π3

36g2Tg
2
χT4

m4
ϕ

mχ

140π3mχ

3g2Tg
2
χT2

140π3mχ

3g2Tg
2
χT2

OS
1 35π3

3g2Ta
2
χT2

m4
ϕmχ

m2
T

96π3m3
χ

g2Ta
2
χm2

T

40π3m3
χ

3g2Ta
2
χm2

T
ln
�
6ðmχ=TÞm2

Tþm2
χþ14m2

T
m2

χþ32m2
T

�

OS
2 28π3

3g2Ta
2
χ

m4
ϕ

T3

64π3m2
χ

g2Ta
2
χT

80mχπ
3

7g2Ta
2
χT

h
7ðmχ − 3TÞ þ 6T ln

�
27T

7mχþ6T

�i

FIG. 5. Contours of constant thermalization time ¼ 107 and 1010 yr for NS temperatures 103 and 105 K, for interactions between
spin-1

2
DM and neutron targets. Also shown is the curve corresponding to DM capture at saturation on a 1.5 M⊙ mass, 12.6 km radius

NS. The color code for all the panels is given by the first one. See text for further details.
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“saturation” limit, we expect a fraction of incident DM
to capture. For neutron targets this curve is obtained
by equating the capture cross section computed in, e.g.,
Ref. [35], to the interaction-dependent cross section σ ¼R
d cos θð32πsÞ−1jMj2, where we take s → ðmT þmχð1þ

v2escÞ=2Þ2 and t → −2μ2χTv2esc, with μχT the χ − T reduced
mass. For electron targets we obtain an approximate
capture cross section by following the treatment of neutrons
but replacing mn with μe and accounting for the reduced
number of targets: electrons are 0.065 times as numerous as
neutrons in our benchmark star. Similarly we estimate the

interaction-dependent cross section as above but with the
replacement mn → μe. A more detailed estimate of capture
via electrons obtained by following the treatment of
Refs. [45,46] results in a rate which differs from the above
naive estimates by at most an order of magnitude.
The significance of the capture curve is that it depicts the

regions where DM-NS thermalization becomes interesting
from an observational viewpoint. To illustrate with an
example, suppose that a nearby, isolated neutron star were
discovered, and its age determined to be ∼1010 yr. To place
constraints on DM interactions based on the NS’ thermal

FIG. 6. Same as Fig. 5, but for spin-1
2
DM and electron targets.

FIG. 7. Same as Figure 6, but for spin-0 DM and both neutron (top panels) and electron (bottom panel) targets.

GARANI, GUPTA, and RAJ PHYS. REV. D 103, 043019 (2021)

043019-8



luminosity, we must first ask whether annihilations in the
core are efficient, for which we check if the thermalization
process has completed. For OF

1 and neutron targets, the
τtherm ¼ 1010 yr contour lies entirely outside the capture
region, implying that thermalization is guaranteed in the
candidate star. For all other operators and for electron
targets, there are ranges ofmχ—prominently at low mass—
where the τtherm ¼ 1010 yr contour lies inside the capture
region. This implies that we cannot expect thermalization to
have completed in the space between this contour and the
dotted curve.
We see that the τtherm contours indeed agree with

Figs. 2–4 at the relevant mediator masses; the vertical
falloff in some of these curves correspond to the rapid turn-
around and following-along of mϕ → 0 curves in those
plots. Our results as a whole (Figs. 2–7) give a represen-
tative picture of thermalization and its relationship with
capture; similar results can be obtained by varying the
benchmark couplings we had chosen in Sec. II C, but we do
not expect the qualitative conclusions to be different. Parts
of the parameter space in Figs. 5–7 are constrained by
direct searches for DM scattering, indirect searches for
galactic DM annihilation, the relic abundance of DM if set
by thermal freeze-out, and collider searches. These con-
straints, found in e.g., Refs [36,43,45,46], are not displayed
here as the focus of our work is to explore regions of
thermalization vis-à-vis capture in NSs.

IV. DISCUSSION

We have shown that, in several DM scenarios, thermal-
ization in NSs postcapture is an important process that
impacts observation prospects of candidate stars. State-of-
the-art infrared telescopes such as the James Webb Space
Telescope (JWST), Thirty Meter Telescope (TMT), and
Extremely Large Telescope (ELT) are scheduled to be
operational in the coming decade. These are sensitive to
extremely faint objects at 10 pc distances with blackbody
surface temperatures down to 1000 K [36]. In the so-called
minimal cooling paradigm [56,57], neutron stars (in the
absence of exotic phases in the core) can ideally cool to
temperatures well below 1000 K within Gyr timescales. On
the other hand, DM can capture in NSs via scattering on its
constituents, and the instantaneous transfer of kinetic
energy can heat a typical NS to 1750 K in the solar
neighborhood [35]. Additionally, if DM annihilations occur
efficiently in the NS core, the star can heat up to a maximal
temperature of 2500 K, which could reduce telescope
integration times by Oð10Þ factors [35]. But for successful
annihilation heating to happen, DM must first thermalize
with the stellar core medium via repeated scattering within
Gyr timescales, i.e., the typical ages of the oldest NSs.
In this work, we have computed the DM thermalization

time for DM-SM interaction Lorentz structures listed in
Table I, for nonrelativistic (neutrons) and relativistic
(electrons) target particles, in both the effective “heavy”

mediator and “light” mediator limits. We have also pro-
vided analytical functions for the thermalization time that
reproduce well the asymptotic behavior of numerical
results. We find that, except for the operator OF

1 with
neutron targets, in all other scenarios there are regions
where despite efficient capture of DM it does not thermal-
ize with the NS within Gyr timescales. Thus DM will not
maximally heat the NS via annihilations; for such regions,
kinetic heating of NSs may be the only signature. This
effect appears at first glance to be a contradiction, since one
would naively expect capture to be efficient in regions
where thermalization is quick, and vice versa. However the
dynamics of the two processes are governed by distinctly
different scales. Capture is determined chiefly by the
escape energy, determined by macroscopic parameters of
the star such as its mass and radius (and subsequent
retention or evaporation is determined by the stellar
temperature); Pauli blocking comes into play, in a simple
manner, only for mχ below the Fermi momentum. On the
other hand, the thermalization timescale is set by the final
kinetic energy of DM particles, i.e., the temperature of the
NS core TNS. As discussed before, q ≪ μ during the
longest intervals of thermalization. In this regime, only
those target particles close to their respective Fermi
surfaces allow for DM to continuously lose energy and
thermalize.
As discussed in Ref. [13], the above treatment of DM

kinematics and Fermi-degenerate phase space yields non-
trivial results that are otherwisemissed by simpler treatments
of Pauli blocking such as in Ref. [10]. For instance, for
momentum-independent jMj2, τtherm scales as m−1

χ T−2
NS for

mχ ≫ mT in our treatment. This differs from the result of
Ref. [10]: τtherm ∝ m2

χT−1
NS. Not only does the thermalization

time decrease as a different power of the NS temperature in
our result, but counterintuitively, itdecreases as theDMmass
(hence initial kinetic energy) is increased. This behavior is
only captured by the full treatment as above. Another
counterintuitive result in our treatment is the total number
of scatters that DM undergoes before thermalizing with the
NS. As estimated in Appendix C, it only takes Oð10–100Þ
scatters for the DM kinetic energy to fall from mχv2esc=2 to
TNS ≃ 0.1–10 eV, whereas the calculation of Ref. [10]
predicts that the number of scatters could be orders of
magnitude more.
If DM thermalizes with the NS, the next question to

address would be whether the DM capture and annihilation
rates equilibrate. Once DM is thermalized, their distribution
is confined to the thermal radius, given by [13]

rth ¼
�
3TNSR3

NS

GMNSmχ

�
1=2

¼ 0.1 m

�
GeV
mχ

TNS

103 K

�
1=2

: ð10Þ

Among the operators we have considered, s-wave
annihilation to SM fermions dominates for OF

2, O
F
4 , O

S
1

and OS
2 , whereas the p-wave dominates for OF

1 and OF
3 .
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For sufficiently light mediators, DM annihilation to a pair
of mediators will also be allowed. Below the electron
kinematic thresholdmχ ≃ 0.5 MeV, only DM annihilations
into γγ could possibly heat the NS; annihilations into
neutrinos will deposit heat only formχ > 100 MeV [48]. In
order to estimate the typical annihilation cross section
required for equilibration we parametrize hσviann ¼ aþ
bv2 and demand that τNS=τeq ≲ 5, with the equilibration
time τeq ¼ ðV th=ChσviannÞ1=2. Here C is the DM capture
rate and V th ¼ 4=3πr3th is the thermal volume. This results
in the condition

a > 7.5 × 10−54 cm3=s

�
Gyr
τNS

�
2
�
Csat

C

��
GeV
mχ

TNS

103 K

�
3=2

when the annihilation is s-wave dominated, and

b > 2.9 × 10−44 cm3=s

�
Gyr
τNS

�
2
�
Csat

C

��
GeV
mχ

TNS

103 K

�
1=2

ð11Þ

when it is p-wave dominated, and where Csat is the
saturation capture rate.
Current available data allow for some exotic phases such

as hyperons and quark matter to persist in the NS core [58–
60]. As shown in Ref. [13], DM does not thermalize with a
NS core in a color-flavor-locked phase for vector operators.
Similar results hold for scalar operators. We note that in
such a scenario only light DM, whose thermal radius
extends beyond the core, can thermalize. We also remark
that when the core is dominated by exotic phases DM
capture is likely effected by the NS crust [38], in which case
the subsequent thermalization with the crust material,
which is not Fermi degenerate in most regions, can be
treated in a more simple manner than done in our work.
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APPENDIX A: RESPONSE FUNCTION FOR
RELATIVISTIC (ELECTRON) TARGETS

For ultrarelativistic targets such as electrons we have
Ep ¼ jpj and Ep0 ¼ jpþ qj, so that the response function
in Eq. (5) becomes

Sðq0; qÞ ¼
jMj2
16m2

χ

Z
d3p
ð2πÞ3 ð2πÞδðq0 þ jpj − jpþ qjÞ

×
1

jpjjpþ qj fðjpjÞð1 − fðjpþ qjÞÞ: ðA1Þ

The delta function may be expressed in terms of the
scattering angle θpq:

δðq0 þ jpj − jpþ qjÞ ¼ −
jpþ qj
pq

δðcos θpq − cos θ�pqÞ

× Θðp − p−Þ;

cos θ�pq ¼
1

2pq
ðq20 þ 2pq0 − q2Þ;

p− ¼ 1

2
ðq − q0Þ: ðA2Þ

Note that fðjpþ qjÞ → fðpþ q0Þ upon integration over
the delta function. As the NS temperature we consider is
Oð0.1–10Þ eV, q0 > TNS is a good approximation up to the
last stages of thermalization. In the limit μ ≫ TNS in the
above integral, we have

Z
∞

p−

dpfðpÞð1− fðpþ q0ÞÞ ¼
q0

1− e−q0=TNS

× ð−1þΘð−q0 þ q− 2μÞÞ
→ q0Θð2μþ q0 − qÞ: ðA3Þ

Using this we obtain the response function for relativistic
targets written in Eq. (8).

APPENDIX B: ANALYTIC EXPRESSIONS FOR
ENERGY LOSS RATE FOR NONRELATIVISTIC

(NEUTRON) TARGETS

In this Appendix we provide analytic expressions
for the thermalization time for neutron targets in the heavy
mediator limit. These are obtained by writing out the
energy loss rate in Eq. (3) as

Φ ¼ 1

2π2

Z
k02dk0d cos θkk0Sðq0; qÞ

�
k2

2mχ
−

k02

2mχ

�
; ðB1Þ

where Sðq0; qÞ is given by Eq. (6).
From Table I, for mediator masses ≫ qref ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mχTNS

p
,

we can expand the squared amplitude as

jMj2 ¼
X

n¼0;1;2

αntn; ðB2Þ

where the coefficients αn can be read off of Table I. We can
then break down the response function into powers of
t ¼ ðq20 − q2Þ:
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Snðq0; qÞ ¼
αn

16πm2
χ

q0
q
tn:

This allows us to break down the energy loss rate as well
[Eq. (B1)], and we get

Φ0 ¼ α̃0
k6

105m2
χ
; ðB3Þ

Φ1 ¼ α̃1
2k8

63m2
χ

�
1

3
−

2k2

55m2
χ

�
;

Φ2 ¼ α̃2
8k10

495m2
χ

�
1 −

2k2

13m2
χ
þ k4

91m4
χ

�
; ðB4Þ

where α̃n ¼ αn=ð16π3m2
χÞ.

We note that using the expression for Φ0 above in
Eq. (4), and with khot ¼ mχvesc and kcold ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3mχTNS

p
, we

obtain

τtherm ¼ Λ4
105π3

4

mχ

m2
n

�
1

k4hot
−

1

k4cold

�
; ðB5Þ

in agreement with Ref. [13]. This also agrees with the first
entry in Table II.
More generally, Eq. (B4) implies that at leading order in

kcold, we have τtherm ∝ k−6cold ∝ T−3
NS for O

F
2, O

F
3 and OS

2 , and
τtherm ∝ k−8cold ∝ T−4

NS for OF
4, as reflected in Figs. 2–4 and

Table II.

APPENDIX C: NUMBER OF SCATTERS
TO THERMALIZE

It is instructive to estimate the number of scatters
required for DM-NS thermalization. Assuming the squared

amplitude is independent of Mandelstam variables, from
Eq. (1) the average energy lost in a collison for neutron
targets is given by

hΔEinon−rel ¼
R
k
0 dΓðEiÞðEi − EfÞR

k
0 dΓðEiÞ

¼ 4

7
Ei; ðC1Þ

where Ei is DM energy before collision. For electron
targets we similarly have

hΔEirel ≈ 2

3
Ei: ðC2Þ

These fractional energy losses are huge, hence we can
expect DM to thermalize after a small number of scatters.
This is obtained as the sum of a geometric series:

N T ¼ logðEth=E0Þ
log ð1 − αTÞ

: ðC3Þ

Here the thermal energy Eth ¼ 3=2TNS, the initial DM
energy E0 ¼ mχv2esc=2, and αT ¼ 4=7 (2=3) for neutron
(electron) targets. Thus for TNS ¼ 103–105 K, N T ¼
Oð101–102Þ over the whole range of DM masses consid-
ered, with a gradually increasing logarithmic dependence
on the mass. In particular, for TNS ¼ 103 K, we find that
N n spans 9–44 and N e spans 7–34. For squared ampli-
tudes that depend on tn, n ≥ 1, we find again that the
number of scatters is Oð10Þ, with Oð1Þ variation with
respect to the above.
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