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Multimessenger astronomy is of great interest. The localization speed of gravitational wave sources is
important for the success of electromagnetic follow-up. Although current gravitational wave source
localization methods take up to a few seconds, even that is not sufficient for some electromagnetic bands.
Therefore, one needs a more rapid localization method even if it is less accurate. Building upon an excess
power method, we describe a new localization method for compact object collisions that produces posterior
probability maps in only a few hundredmilliseconds. Some accuracy is lost, with the searched sky areas being
approximately 10 times larger. We imagine this new technique playing a role in a hierarchical scheme where
fast early location estimates are iteratively improved upon as better analyses complete on longer timescales.
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I. INTRODUCTION

In August 17 2017, the Advanced LIGO [1,2] and the
Advanced Virgo [3] observed a gravitational wave (GW)
from binary neutron star (BNS) merger, dubbed as
GW170817 [4]. Then, many electromagnetic (EM) tele-
scopes followed it to find the EM counterpart with multi-
wavelength from radio wave to gamma ray [5]. By these
observations, BNS merger was corroborated to be the
origin of short gamma ray burst (sGRB), which had been
discussed for a long time [6]. The coordinated observa-
tion by different means of astronomical signals, for
example, GW and EM wave is so-called multi-messenger
astronomy. GW170817 is one of the successful cases of
multi-messenger astronomy. By multi-wavelength obser-
vations, information of systems is much more increased.
Furthermore, the third observing run (O3) with improved
sensitivity was done in 2019 and many observations with
higher sensitivity have been already planned. GW obser-
vation is expected to play a more important role in physics.
So far, all detected GW events are compact binary

coalescence (CBC). The GW signal stays in the sensitive
band of ground-based detectors for minutes during the
early inspiral phase, which the waveform is well known.
Thus if CBC signals are sufficiently loud, one can detect
them before the merger by accumulating enough signal to
noise ratio (SNR) to detect, which is called early warning
[7]. This could bring scientific benefits for multimessenger
astronomy because one can prepare for transient events and
observe precursor events. For example, there are prompt
optical flash from BNS [8], characteristic EM emission
from tidal disruption of neutron star-black hole (NSBH)

before merger [9], resonant shattering of neutron star (NS)
crusts [10], NS magnetospheric interactions [11], and
fast radio burst driven by black hole (BH) battery [12].
There should be many such undiscovered events over
multiwavelength.
In an early warning context, location estimates can be

iteratively improved. There are currently two stages of
refinement, BAYESTAR [13,14] which takes about 3 s,
and LALInference [15] which takes hours to days.
However, there is a need for a still faster location estimate
even at the expense of localization accuracy. A rough
location estimate available in Oð100 msÞ could trigger the
slewing of fast facilities like Cherenkov telescopes, allow
better data retention decisions by low-frequency radio
facilities, and it might even be used to inform the ranking
statistic and improve GW signal identification. The speed
difference between the BAYESTAR and LALInference
algorithms is mainly due to LALInference marginalizing
over intrinsic parameters such as source mass, whereas
these are fixed near the peak of the likelihood by
BAYESTAR, which costs only a small loss of accuracy.
In this work we present a new method [16] that reduces the
localization time further by fixing additional parameters
such as the distance to the source and orbit inclination. This
brings with it a yet further loss of accuracy, but provides an
algorithm that fills a niche for ultra-fast location estimates.
Other source localization techniques, such as [17], have

been developed with a similar objective. The work [17] is
motivated by BAYESTAR [13,14], which is the different
approach from our new method built up on excess power
method. Although the motivation of our new method is
similar to the one of [17], we compare performances
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between the new method and BAYESTAR, because
BAYESTAR worked in the current detection pipeline.

II. NOTATION

We have GW detectors, LIGO-Hanford, LIGO-
Livingston, Virgo, KAGRA [18,19] and so on. Each
detector outputs time series data. From here, those are
written as a vector:

d½j� ¼ ðd1½j�; d2½j�;…; dD½j�ÞT ð1Þ

where j is an integer index enumerating discrete time, and
D is the number of detectors such that D ≥ 2. Fourier
transformation to the Ith data whose length is N is given by

d̃I½k� ≔
XN−1

j¼0

dI½j� exp
�
−2πi

k
N
j

�
Δt ð2Þ

and

dI½j� ≔
XN−1

k¼0

d̃I½k� exp
�
2πi

k
N
j

�
Δf ð3Þ

where Δt and Δf are units of, respectively, discrete time
and frequency satisfying ΔtΔf ¼ 1=N. Also correspond-
ing antenna responses [20] with polarization angle ψ for
GW source direction Ω are written as a matrix:

FðΩ;ψÞ ¼
�
F1;þðΩ;ψÞ � � � FD;þðΩ;ψÞ
F1;×ðΩ;ψÞ � � � FD;×ðΩ;ψÞ

�T

ð4Þ

The data is composed of the signal and noise dI½j� ¼
FI;þhGW;þ½j� þ FI;×hGW;×½j� þ nI½j�, where hGW;þ=× is the
GW for each of the two modes. We assume that the noise
nI½j� is uncorrelated between any pair of detectors:

hñI½k�ñ�J½k0�i ≔
1

2
δIJ

δkk0

Δf
Sn;I½k� ð5Þ

where Sn;I is noise power spectral density (PSD) for an Ith
detector. Using this, complex SNR is defined as follows,

ρI½j� ≔ ðdI½jþ j0�jh½j0�Þ ð6Þ

≔ 4
XN−1

k¼0

d̃�I ½k�h̃½k�
Sn;I½k�

exp

�
2πi

j
N
k

�
Δf ð7Þ

where h ¼ hþ þ ih× is a template, that is, a theoretical
waveform normalized by ðh½j�jh½j�Þ ¼ 2. Then, SNR PSD
is defined as noise PSD of the output of the matched filter
(See Appendix A)

hρ̃I½k�ρ̃�J½k0�ijd¼n ¼
1

2
δIJ

δkk0

Δf
Sρ;I½k� ð8Þ

Sρ;I½k� ≔ 4
h̃½k�h̃�½k�
Sn;I½k�

ð9Þ

Then, the data of Ith detector on (discrete) time domain
is shifted to represent the data at geocenter. If GW comes
from Ω, the discrete time delay is τIðΩÞ ≔ rI ·Ω=ðcΔtÞ
between Ith detector at rI and geocenter. When this delay is
applied, the time shifted data on frequency domain should
be written as

d̃½k;Ω� ¼

0
BB@

T̃1½k;Ω�d̃1½k�
..
.

T̃D½k;Ω�d̃D½k�

1
CCA ð10Þ

where

T̃I½k;Ω� ≔ exp

�
2πi

k
N
τIðΩÞ

�
ð11Þ

is the time delay operator. For this data, time shifted SNR
series are written as ρ½j;Ω� ≔ ðd½jþ j0;Ω�jh½j0�Þ.
The objective is to compute the likelihood of obtaining a

vector of SNR data given a waveform model which, here,
includes the sky location. Because they have been obtained
from a colored linear filter, SNR time series samples are not
independent random variables, therefore we obtain the
likelihood using the standard frequency-domain whitening
transformation, for which we introduce the whitened SNR
and whitened time shifted SNR:

ˆ̃ρ½k� ¼

0
BB@

ρ̃1½k�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sρ;1½k�

p
..
.

ρ̃D½k�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sρ;D½k�

p

1
CCA ð12Þ

ˆ̃ρI½k;Ω� ¼ T̃I½k;Ω� ˆ̃ρI½k� ð13Þ

and whitened antenna response:

F̂½k;Ω;ψ � ≔ ðF̂þ½k;Ω;ψ �; F̂×½k;Ω;ψ �Þ ð14Þ

≔

 
F1;×ðΩ;ψÞ=Sn;1½k�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sρ;1½k�

p
; � � � ; FD;×ðΩ;ψÞ=Sn;D½k�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sρ;D½k�

p
F1;þðΩ;ψÞ=Sn;1½k�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sρ;1½k�

p
; � � � ; FD;þðΩ;ψÞ=Sn;D½k�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sρ;D½k�

p
!

T

ð15Þ
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This whitening SNR and antenna response simplify the
formalism in the next section.
Under this notation, if GW is contained in data, a

whitened SNR frequency series is written as

ˆ̃ρI½k;Ω� ¼ ðF̂I;þ½k;Ω;ψ �; F̂I;×½k;Ω;ψ �Þ
�
h̃þ½k�
h̃×½k�

�
h̃�GW½k�

þ ñ�I ½k�ðh̃þ½k� þ h̃×½k�Þ
Sn;I½k�

exp ½2πi kN τIðΩÞ�ffiffiffiffiffiffiffiffiffiffiffiffi
Sρ;I½k�

p ð16Þ

where hGW ¼ hGW;þ þ hGW;×, which is introduced for a
simple formalization. A detail of the derivation is in
Appendix B. We will use this series for the localization
instead of the strain data.

III. COMPACT BINARY COALESCENCE
PARAMETRIZED LIKELIHOOD

Here, we assume that the source is CBC without
precession, therefore the two polarizations are related by
h̃× ¼ iβh̃þ where β ¼ 2 cos {

1þcos2 { with the inclination {. Then if

the noise is Gaussian, the probability of obtaining ˆ̃ρ in the
presence of h̃GW with given parameters Ω, β, ψ is

pð ˆ̃ρjΩ; h̃GW; β;ψÞ

∝ exp
�
−2
XN−1

k¼0

j ˆ̃ρ½k;Ω�

− ðF̂þ½k;Ω;ψ � þ iβF̂×½k;Ω;ψ �Þh̃þ½k�h̃GW½k�j2Δf
�

ð17Þ

Since h̃GW is not known a priori, this probability
should be maximized with respect to h̃GW. This was
solved by Sutton et al. in [21] for the case of general
GWs. This probability is maximized by h̃þh̃GW ¼
½jF̂þj2 þ β2jF̂×j2�−1ðF̂þ þ iβF̂×Þ† ˆ̃ρ, which is in effect
maximizing the probability over the distance to the source
for arbitrary choice of inclination parameter β and polari-
zation angle ψ

pð ˆ̃ρjΩ; β;ψÞ ∝ exp

�
2
XN−1

k¼0

ˆ̃ρ†½k;Ω�P̂½k;Ω; β;ψ � ˆ̃ρ½k;Ω�
�

ð18Þ

where

P̂½k;Ω; β;ψ � ≔ ðF̂þ½k;Ω;ψ � þ iβF̂×½k;Ω;ψ �Þ ⊗ ðF̂þ½k;Ω;ψ � − iβF̂×½k;Ω;ψ �Þ
jF̂þ½k;Ω;ψ �j2 þ β2jF̂×½k;Ω;ψ �j2 ð19Þ

is a projection operator to extract the GW component from
the data.1 Also, ⊗ is direct product.
We nowmaximize (18) with respect to the remaining two

parameters β, ψ . The solutions of 0 ¼ ∂
∂βpð ˆ̃ρjΩ; β;ψÞ ¼

∂
∂ψ pð ˆ̃ρjΩ; β;ψÞ are β ¼ 0;�1 with ψ depending on SNR

data ˆ̃ρ respectively, which are extremizing points. We
cannot estimate which condition is a global maximum
before observations, therefore we simply marginalize (18)
over the extremizing points, β ¼ 0;�1. Here, remind that
our localization target is a detected CBC. However the
likelihood pðρjΩ; β;ψÞ does not include the condition and
then a prior should be needed. In this condition, from
Appendix C the marginalized posterior for the detected
GW is derived with a prior of β for the detected GWs,
pðβjdetectÞ ∼ ðδβ¼þ1 þ δβ¼−1Þ=2, which drops the β ¼ 0

term:

pð ˆ̃ρjΩ;ψÞ ∝
X

β¼0;�1

pðρjΩ; β;ψÞpðβjdetectÞ ð20Þ

∝
X
β¼�1

exp

�
2
X

IJ∈IFO

XN−1

k¼0

ˆ̃ρ�I ½k� ˆ̃ρJ½k�

× P̂IJ½k;Ω; β;ψ ¼ 0�T̃�
I ½k;Ω�T̃J½k;Ω�

�
ð21Þ

where the projection operator P̂ for β ¼ �1 can neglect a
dependence of ψ , so that ψ ¼ 0 is set.2

Coalescence phase has not been fixed yet because of
maximizing h̃GW ∝ ˆ̃ρ, which is embedded in the complex
phase of ρI at the merger, and is same value for all ρI .
Then, the coalescence phase dependence can be neglected
because (20) does not depend on it.
Here, P̂IJT̃�

I T̃J is independent of the SNR data, allowing
it to be precomputed for speed. Following the approach
presented in [22], we expand the ρ-independent factor in
spherical harmonics Ylm:1P̂ satisfies P̂P̂ ¼ P̂ and P̂ðF̂þ þ iβF̂×Þh̃þh̃GW ¼

ðF̂þ þ iβF̂×Þh̃þh̃GW. Therefore P̂ is a projection operator to
extract GW contributions from the given data. Since P̂ is
constructed by only F̂þ þ iβF̂×, the dimension of the GW space
where P̂ project data onto is one (see Fig. 1).

2F̂þ� iF̂×→ ðF̂þ� iF̂×Þexpð�iψÞ is satisfied by rotating ψ ;
F̂þ → F̂þ cos 2ψ þ F̂× sin 2ψ , F̂× → −F̂þ sin 2ψ þ F̂× cos 2ψ .
This phase factor is canceled in P̂.
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pð ˆ̃ρjΩÞ ∝
X
β¼�1

exp

�
2R
X
lm

� X
IJ∈IFO

XN−1

k¼0

ðP̂T̃�T̃ÞlmIJ ½k; β� ˆ̃ρ�I ½k� ˆ̃ρJ½k�
�
YlmðΩÞ

�
ð22Þ

To calculate this inverse spherical harmonic transformation,
HEALPY [23–25] is used.
In this paper, an isotropic prior is assumed to obtain a

posterior:

pðδ; αÞ ¼ 1

4π
cos δ ð23Þ

where δ is declination and α is right ascension.
Hence one gets a below posterior from Bayes’ theorem:

pðΩjρÞ ∝ pðρjΩÞpðδ; αÞ ð24Þ

We use this probability to produce sky maps.

IV. REGULATOR

In the definition of the whitened SNR in (12) the ratio
ρ̃½k�= ffiffiffiffiffiffiffiffiffiffi

Sρ½k�
p

is not well defined for all frequency bins k. In
particular, because inspiral templates have 0 signal energy
above some high-frequency cutoff Sρ is 0 for some k and the
whitened SNR is undefined. In futurework, this problemwill
be addressed with a more sophisticated treatment, but at
presentwe have found it is sufficient to regulate the instability
by multiplying each term in pð ˆ̃ρjΩÞ by 2

ffiffiffiffiffiffiffiffiffiffiffi
SρI½k�

p ffiffiffiffiffiffiffiffiffiffiffiffi
SρJ½k�

p
.3

By this process, thewhitened SNRseries becomeSNRseries,
and then especially autocorrelation terms differ from an
expected values. Thus, to obtain a reasonable value, a
probability from cross-correlation terms pð ˆ̃ρjΩÞ is used for
the localization. Also, by the same unstable reason, P̂ is
replaced with PðΩ; β;ψ ¼ 0Þ ≔ P̂jF̂¼F.

4:

pcrossð ˆ̃ρjΩÞ ∝
X
β¼�1

exp

�
8R
X
lm

� X
I>J∈IFO

XN−1

k¼0

ðPT̃�T̃ÞlmIJ ½k; β�ρ̃�I ½k�ρ̃J½k�
�
YlmðΩÞ

�
ð25Þ

V. RESULTS AND DISCUSSION

We will compare the new method with current methods,
BAYESTAR [13,14].

A. Injection test

We evaluated the performance from an injection test. The
setup is below:
(1) TaylorT4threePointFivePN was injected into second

observing run (O2) data from 1186624818s to
1187312718s in GPS time, that is, August 13-21
in 2017.

(2) The threedetectors,LIGO-Hanford,LIGO-Livingston,
and Virgo were used.

(3) The component masses are randomly sampled for
m1; m2 ∈ ½1.08 M⊙; 1.58 M⊙� from Gaussian with
the mean of 1.33 M⊙ and the standard deviation
of 0.05 M⊙.

(4) no component spins.
(5) The distance was randomly sampled from a log-

uniform distribution for r ∈ ½20 Mpc; 200 Mpc�.
(6) ðα; δÞ and ð{;ψÞ were distributed isotropically.
(7) Triggers which is searched with the matched filter

technique of a CBC detection software, GSTLAL

[26,27] were selected with satisfying:
(a) Those are contained within 1 s around injected

time.

3SNR PSD is defined as the double-sided PSD. However, on
discrete domain, the single-sided PSD is used. Then, the factor 2
is needed.

4P̂ → P corresponds to an assumption that all detector have
same PSD because, if so,

ffiffiffiffiffi
Sρ

p
in denominator and numerator are

canceled.

FIG. 1. Schematic representation of the concept of P̂ for a three
detectors case, which is in a SNR data space spanned by those
detectors. Red vector ˆ̃ρ is an observed data in the data space. Blue
dashed line is the GW space.
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(b) The SNRs of more than two detectors are
exceeded over 8.

(c) All detectors are worked on Science mode.
(d) The network SNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
I∈IFO SNR2

I

p
is maxi-

mized in the triggers.
(8) 935 injections were used.

Under the above setting, complex SNR time series are
generated in 0.17 s around the triggered time when
detecting the trigger. Figure 2 is an example of the
localization of the injections.

1. Consistency

From the above complex SNR time series, We produce
skymaps and a p-p plot (Fig. 3) for the new method and
BAYESTAR [13,14]. From the definition of p value, the
fraction of the injections with a p from the peak of maps to
the injected direction should be equal to the p, that is,
the cumulative lines should be on the diagonal. From Fig. 3,
the average of the cumulative line of the new method is
on the diagonal. Then, the average of the new method
is statistically consistent. Nevertheless, parts of the cumu-
lative line are out of the 95% error region. The origin
should be from the approximation of P̂ → P (see Sec. III),
because both methods assumed Gaussian noise and CBC
waveform, that is, the difference was from the other. That
approximation is the sole one to be able to shift the peak
of maps.

2. Accuracy

From the used detectors, the maximum spherical har-
monic degree l is 184. Then the accuracy is relevant by ∼1°.
Fig. 4 is the area size distribution recognized as accuracy.

Then, the square root of it can be recognized as the opening
angle which the telescopes require. From Fig. 4, the new
method is about 10 times less accurate than BAYESTAR
[13,14]. Since the area size is ∼65 deg2, the opening angle
is ∼8 deg. This opening angle is comparable with the field
of view of the cherenkov telescope array (CTA) (see
Table I), so that it is sufficiently accurate for early warning.

FIG. 3. p-p plot [28] of the new method and BAYESTAR.
Cumulative fractions of the injections are a ratio included in a p
value. Gray region is error region in 95%.

FIG. 2. All sky and zoom maps of the localization results of the
newmethod andBAYESTAR [13,14] for one of the injectionswith
ðSNRHanford;SNRLivingston; SNRVirgoÞ ¼ ð22.0; 15.8; 7.24Þ, m1 ¼
1.76 M⊙; m2 ¼ 1.06 M⊙ and no spin at 1187094629.9577243s
at geocenter. The right ascension and the declination are respec-
tively 22.5 hour and 19.2° marked by a star in all sky maps and
a blue plus in zoom maps. Purple line is a 90% contour whose
region size is 70 deg2 for the new method and 26 deg2 for
BAYESTAR. In this example, bothmethods have the true direction
inside the 90% contour.

FIG. 4. Area size distribution of pixels from the peak of maps to
the injected direction. Sample ratio is a ratio with an area size.
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This worse accuracy than BAYESTAR should be due to the
regulator, that is, no whitening approximation (see Sec. III).
However, the no whitening effect should be recognized
as 3.7 times rather 10 times, from Fig. 5 which compares
those area sizes for each injections. Summarizing the
above, the new method and BAYESTAR have comple-
mentary relation with each other in terms of speed and
accuracy. Using more information by the marginalizing,
BAYESTAR is more robust than the new method.
Therefore BAYESTAR should have better accuracy even
if all approximations are removed.

3. Computational cost

The main advantage of the new method is its reduced
computational cost and its speed. We measured the relative
computational cost of this algorithm and BAYESTAR
in single-threaded mode on an Intel Core i7-7600U
CPU@2.80 GHz, and also measured the relative run-times
of BAYESTAR in that configuration to a fully parallel
configuration on an Intel XeonGold 6136 CPU@3.00GHz.
Taking the single-threaded run times to be dominated by
arithmetic operations (I/O is not significant) then this
comparison provides an estimate of the ratio of arithmetic
operation count required by the two techniques to produce a
location estimate. BAYESTAR is a mature code that has
been optimized for the highly parallel Xeon hardware, sowe
also report a speed comparison of the BAYESTAR code in
its production configuration.

New method BAYESTAR

Single-threaded 0.73 s 47 s
Parallelized � � � 3.3 s

VI. SUMMARY AND FUTURE WORK

We developed a rapid localization method which is 64
times faster than BAYESTAR [13,14] at the cost of
accuracy by an order of magnitude.
Our method assumes the Gaussian noise. To estimate the

direction, the new method takes into account the time
delays, the amplitude ratios and the phase differences
between SNR time series from different detectors. By
maximizing or marginalizing the probability model (18)
and extracting precalculated factors, the number of param-
eters to estimate during the calculation is reduced, which
leads to speeding up the localization.
The new method has three differences from excess power

method [21] and BAYESTAR [13,14] as follows:
(1) Compared to BAYESTAR which marginalizes the

posterior sky map over distance to source and source
orbit inclination, the new method maximizes the
posterior with respect to these two parameters. This
sacrifices some accuracy in the map, but allows for
some expressions to be factored into terms that
depend only on data and terms that do not, which
can then be precomputed for greater speed.

(2) SNR time series are used instead of strain data. By
this, one can generate sky maps optimized for CBC
templates, and suppress the noise contamination
which is orthogonal to the template. This is the
difference from excess power method.

(3) The CBC parametrization is used instead of the
general parametrization used by Excess power
method. By this, our target is only CBC, which is
same as BAYESTAR. Then, the new method is more
accurate than excess power method, but not BAYES-
TAR. Also the new method can localize GW sources
for more than single detector working case but
excess power method can localize for more than
the double detector working case.

As a potential of further improvements, the approxima-
tions applied in Sec. III are enumerated:
(1) All detectors have the same PSD, that is, neglecting

frequency dependence of Projection operator to cor-
rect distortions from the antenna responses and extract
the GW components from data: P̂½k;Ω; β;ψ ¼ 0� →
PðΩ; β;ψ ¼ 0Þ.

(2) The PSDs of SNR time series are flat, that is, no
whitening approximation: ˆ̃ρ½k� → ρ̃½k�. Since, by this
regulator, the autocorrelation terms become far from
expected values, those terms are neglected.

The both approximations are meant to avoid numerical
instability. Removing these approximations is future work.

FIG. 5. Area size ratio distribution between the new method
and BAYESTAR for each injections. The ratio is (area of the new
method)/(area of BAYESTAR).

TABLE I. Cherenkov Telescope Array has three size tele-
scopes, SST, MST, and LST [29].

Name Field of view Target energy Slew speed

SST 8.8 deg 1–300 TeV ≲1 min
MST 7.5–7.7 deg 80 GeV–50 TeV <90 s
LST 4.5 deg 20 GeV–3 TeV <20 s
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First one could shift the peak of maps to the correct peak
because our probability should be more affected from the
detector with higher sensitivities (more likely). Second one
could make error region of sky maps wavy (smaller)
because it makes complex phase variation fast, and our
probability picks up just real part from the correlations.
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APPENDIX A: DERIVATION OF THE
POWER SPECTRAL DENSITY OF

SIGNAL TO NOISE RATIO

We derive the PSD of SNR with no GW. For uncorre-
lated noise,

1

2
δIJδðf − f0ÞSρIðfÞ ðA1Þ

¼ hρ̃IðfÞρ̃�Jðf0Þi ðA2Þ

¼
Z

dtdt0hρIðtÞρ�Jðt0Þie−2πiðft−f0t0Þ ðA3Þ

¼ 4

Z
dtdt0

Z
∞

−∞
dgdg0

hñIðgÞñ�Jðg0Þih̃ðgÞh̃�ðg0Þ
Sn;IðgÞSnJðg0Þ

× e−2πiðft−f0t0Þþ2πiðgt−g0t0Þ ðA4Þ

¼ δIJ
2
4

Z
∞

−∞
dg

h̃ðgÞh̃�ðgÞ
Sn;IðgÞ

δðf − gÞδðf0 − gÞ ðA5Þ

¼ 1

2
δIJδðf − f0Þ4 h̃ðfÞh̃

�ðfÞ
Sn;IðfÞ

ðA6Þ

Comparing the left-hand side (lhs) and the right-hand side
(rhs), (8) is obtained.

APPENDIX B: DERIVATION OF (16)

In nature, true GW on time domain should be written as
hGW½j� ¼ hGW;þ½j� þ hGW;×½j� ∈ R. For example, hGW;þ is
cos-mode and hGW;× is sin-mode. The output data with
the GW contaminated by noise nI from I-th detector is
dI½j� ¼ FI;þhGW;þ½j� þ FI;×hGW;×½j� þ nI½j�. To this data,
the SNR time series for a complex template hþ½j� þ h×½j� is

ρI½j� ¼ FI;þðhGW;þ½jþ j0�jhþ½j0�Þ
þ FI;×ðhGW;×½jþ j0�jh×½j0�Þ
þ ðnI½jþ j0�jhþ½j0� þ h×½j0�Þ ðB1Þ

Assuming ðhþjhGW;×Þ ¼ ðh×jhGW;þÞ ¼ 0,

ρI½j� ¼ FI;þðhGW½jþ j0�jhþ½j0�Þ
þ FI;×ðhGW½jþ j0�jh×½j0�Þ
þ ðnI½jþ j0�jhþ½j0� þ h×½j0�Þ ðB2Þ

Doing Fourier transformation and whitening,

ˆ̃ρI½k� ¼ F̂I;þ½k;Ω;ψ �h̃þ½k�h̃�GW½k�T̃�
I ½k;Ω�

þ F̂I;×½k;Ω;ψ �h̃×½k�h̃�GW½k�T̃�
I ½k;Ω�

þ ñ�I ½k�ðh̃þ½k� þ h̃×½k�Þ
Sn;I½k�

1ffiffiffiffiffiffiffiffiffiffiffiffi
Sρ;I½k�

p ðB3Þ

For convenience, time at geocenter is used. Thus, shifting
time τIðΩÞ, we can obtain (16).

APPENDIX C: PRIOR OF β

The probability of detecting GWs with an inclination {
should be proportional to an observable volume if the
number density of CBC is uniform.

pðdetectj{Þ ∝ D3
rangeð{Þ ∝ g3ð{Þ ðC1Þ

gð{Þ ≔
�
1þ cos2 {

2

�
2

þ cos2 { ðC2Þ

where Drange is the range of detectors [20,32]. Since our
universe should not have special direction, the prior is
similar to (23):

pð{Þ ∝ sin { ðC3Þ

From Bayes’ theorem, the probability of the inclination {
for GWs to be detected is
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pð{jdetectÞ ∝ pðdetectj{Þpð{Þ ∝ g3ð{Þ sin {: ðC4Þ

Next, a probability of obtaining β ¼ 2 cos {=ð1þ cos2 {Þ
for detected events in general is derived. From
jpð{jdetectÞd{j ¼ jpðβjdetectÞdβj,

pðβjdetectÞ ¼ pð{jdetectÞ
				 d{ðβÞdβ

				 ðC5Þ

∝ g3ð{ðβÞÞ
				 sin {ðβÞ
βð1−β2Þ

				
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−β2

q
− ð1−β2Þ

r

ðC6Þ

{ðβÞ ¼ cos−1
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
β

�
ðC7Þ

Figure 6 shows pðβjdetectÞ as a function of β. We note that
pð{jdetectÞd{ is well defined, that is,

∞ >
Z

π

0

pð{jdetectÞd{ ðC8Þ

¼
Z

1

−1
pðβjdetectÞdβ ðC9Þ

Therefore pðβjdetectÞ is normalized. Nevertheless,
pðβjdetectÞ has strong peak for β ¼ �1. Hence it is
approximated with Kronecker-δ:

pðβjdetectÞ ∼ δβ¼þ1 þ δβ¼−1

2
ðC10Þ

Considered in Sec. III, the probability model is extremized
at β ¼ 0 or �1. Our purpose is not marginalizing posterior
with respect to all β but the extrema. Therefore, this
approximation is reasonable.
Despite of β ¼ �1 ({ ¼ 0; π), this prior does not mean

that the detected GW is from the angle. Statistically, the
angle is just preferred from the fact that GW flux is highest
along the orbital axes.
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