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Neutron stars could contain a mixture of ordinary nuclear matter and dark matter, such that dark matter
could influence observable properties of the star, such as its mass and radius. We study these dark matter
admixed neutron stars for two choices of dark matter: a free Fermi gas and mirror dark matter. In addition to
solving the multifluid Tolmon-Oppenheimer-Volkoff equations for static solutions and presenting mass-
radius diagrams, we focus on two computations that are lacking in the literature. The first is a rigorous
determination of stability over the whole of parameter space, which we do using two different methods. The
first method is based on harmonic time-dependent perturbations to the static solutions and on solving for
the radial oscillation frequency. The second method, which is less well-known, conveniently makes use of
unperturbed, static solutions only. The second computation is of the radial oscillation frequency, for
fundamental modes, over large swaths of parameter space.
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I. INTRODUCTION

If sufficient amounts of dark matter mix with the
ordinary matter in a neutron star, then dark matter could
influence measurable properties of the star. This suggests
the exciting possibility that neutron stars could act as
laboratories for indirectly measuring dark matter properties.
An important question is how dark matter could become

mixed with ordinary matter in a neutron star. One well-
studied possibility is through capture [1–7]. If, in addition
to gravitational interactions, dark matter has nongravita-
tional interactions with the ordinary matter in neutron stars,
the extreme densities of neutron stars make them excellent
targets. Captured self-annihilating dark matter could poten-
tially heat the star [2–4], while non-self-annihilating dark
matter would accumulate. For bosonic dark matter, this
accumulation could lead to the formation of a small black
hole which destroys the parent neutron star [1,3–6], while
for fermionic dark matter, degeneracy pressure is able to
stabilize the star unless the dark matter particle mass
exceeds 106 GeV [8]. Over the lifetime of a neutron star,
the mass of the accumulated dark matter does not typically
exceed 10−10 M⊙ [1,2,9,10], which has a negligibly small
effect on the mass of the star.
Another possibility for mixing is that the accumulation

of dark matter occurs during stellar formation. In [10], it is
argued that a natural possibility is that the formation of a
dark matter minihalo causes a neutron star to form from
collapse. (For other possibilities, see [9,11].) Detailed
studies of this process are lacking and would be interesting.
In this paper, we focus on bulk properties of the star, such
as its mass and radius, and have this latter possibility for
mixing in mind.

An appealing model for non-self-annihilating dark mat-
ter is asymmetric dark matter [12,13], in which a conserved
charge keeps dark matter from self-annihilating and an
imbalance in the early universe between dark matter and
anti–dark matter leads to the abundance of dark matter
observed today. A common description is a gas of Dirac
fermions, possibly with self-interactions (see, for example,
Ref. [8]). Another description is as mirror dark matter [14],
which is motivated by the assumption that the Universe is
parity symmetric. The addition of new particles to restore
parity to the Standard Model leads to mirror baryons as
viable candidates for dark matter (see [15–18] and refer-
ences therein).
Dark matter admixed neutron stars are two-fluid sys-

tems, in which the first fluid describes ordinary nuclear
matter through an equation of state for a neutron star
without dark matter and the second fluid describes dark
matter. Properties such as the mass and radius of the star are
found by solving the multifluid Tolmon-Oppenheimer-
Volkoff (TOV) equations [15,19,20]. Null results from
dark matter direct detection experiments [21–23] have
placed stringent constraints on the dark matter–nucleon
coupling strength. From the perspective of the TOV
equations, this is generally taken to mean that the dark
matter–nucleon coupling strength is negligibly small [8,11]
and that dark matter admixed neutron stars are two-fluid
systems in which the only interfluid interactions are
gravitational.
Early work on dark matter admixed neutron stars was

undertaken by Henriques, Liddle, and Moorhouse
[20,24,25] in their study of boson-fermion stars. In these
papers, the fermions were a free Fermi gas of neutrons and
the scalar bosons could be interpreted as dark matter,
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though this was not explicitly stated. Reference [25]
presented an underappreciated method for determining
stability in two-fluid systems, which we make use of in
Sec. III. Ciarcelluti and Sandin [15,16] used mirror baryons
as dark matter. Subsequent studies with mirror dark matter
by Goldman et al. [17,18] allowed for a mirror baryon mass
smaller than the ordinary baryon mass. A series of papers
by Leung et al. [26–28] used a free Fermi gas as dark matter
and studied situations in which dark matter forms either the
core or the halo of the star. As far as we are aware,
Refs. [26–28] are the only papers that have computed radial
oscillation frequencies for such systems using two-fluid
methods. A large number of studies have since followed
[8–11,29–37], studying such things as self-interacting dark
matter [29,30], ordinary matter that includes hyperons
[29,36] or strange quark matter [33], and a computation
of the tidal deformability [9,11,37].
In this paper, we study dark matter admixed neutron stars

using two different models for asymmetric dark matter. For
the first model, we use a free Fermi gas. Although self-
interactions have been considered in a number of works and
shown to lead to interesting effects (see, for example,
Refs. [8,10,11,29,30]), for simplicity we do not include
them. For the second model, we use mirror dark matter,
which was one of the first considerations in the study of
dark matter admixed neutron stars [15].
In addition to solving the TOV equations for static

solutions, which gives the mass and radius of the star,
we make a careful study of the stability of these solutions.
Rigorous determinations of stability with respect to small
perturbations over large swaths of parameter space is
lacking in the literature. We present two different methods
for determining stability. The first method is to perturb the
static solutions with harmonic perturbations and to solve
for the squared radial oscillation frequency. We do this
using an approach developed in [38], which derived a
system of pulsation equations for an arbitrary number of
perfect fluids with only gravitational interfluid interactions
and whose solution gives the squared radial oscillation
frequency. The second method we use was developed in
[25] and conveniently makes use of only unperturbed, static
solutions. Interestingly, we find regions of stable parameter
space for which a naive analysis of the single-fluid
equations of state would not have deemed stable.
Using the pulsation equations of [38], we also make a

systematic determination of the radial oscillation frequen-
cies for large swaths of stable parameter space. This too
appears to be lacking in the literature. Although radial
oscillation modes do not couple to gravitational waves,
they are, in principle, observable [39] and the hope is that
their study and detection can reveal details of the inner
structure of the star. We find interesting results here as well,
in that the oscillation frequencies of dark matter admixed
stars can be larger than the maximum possible frequencies
of single-fluid stars made from the same equations of state.

In the next section, we review the multifluid TOV
equations and the equations of state that we will be using.
In Sec. III, we study stability, with some of the details given
in Appendix. In Sec. IV, we present mass-radius diagrams.
In Sec. V, we compute radial oscillation frequencies. We
conclude in Sec. VI.

II. EQUATIONS AND EQUATIONS OF STATE

Dark matter admixed neutron stars are solutions to the
multifluid TOV equations [15,19,20]. The TOV equations
follow from the Einstein field equations and the equations
of motion in a spherically symmetric spacetime with static
matter. In writing equations, we use units such that
c ¼ G ¼ ℏ ¼ 1. The spherically symmetric metric may
then be written as

ds2 ¼ −eνðrÞdt2 þ dr2

1 − 2mðrÞ=rþ r2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and the metric function
mðrÞ gives the total mass inside a radius r. For static
solutions, the metric function νðrÞ decouples and is not
needed. It is needed when determining radial oscillation
frequencies and is discussed in the Appendix.
Null results from direct detection experiments for dark

matter have placed stringent constraints on the dark matter–
nucleon coupling strength [21–23]. From the perspective of
the TOVequations, this is generally taken to mean that any
interaction between dark matter and the ordinary matter of
the neutron star is negligibly small [8,11] and that dark
matter and ordinary matter can be modeled as separate
fluids with only gravitational interfluid interactions. The
energy-momentum tensor, then, separates, Tμν ¼ P

i T
μν
i ,

where the subscripted i indicates the fluid (either ordinary
or dark matter), and each energy-momentum tensor takes
the perfect fluid form,

Tμν
i ¼ diagðϵi; pi; pi; piÞ; ð2Þ

where ϵiðrÞ and piðrÞ are the fluid’s energy density and
pressure. Each energy-momentum tensor is also conserved,
∇μT

μν
i ¼ 0, which gives the equations of motion. The TOV

equations are then

dmi

dr
¼ 4πr2ϵi;

dpi

dr
¼ 4πr3pþm

r2ð1 − 2m=rÞ ðϵi þ piÞ; ð3Þ

where the first equation follows from the Einstein field
equations, the second from the equations of motion,
m ¼ P

i mi, and p ¼ P
i pi. In addition to the above

equations, we shall need an equation for the number of
particles inside a radius r, N iðrÞ, which is
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dN i

dr
¼ 4πr2niffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2m=r
p ; ð4Þ

where niðrÞ is the number density.
With only gravitational interfluid interactions, the equa-

tions of state also separate, ϵi ¼ ϵiðpiÞ, where the energy
density only depends on the pressure of the same fluid. For
ordinary matter, we use the analytical fit [40] to the SLy
equation of state [41]. SLy is a unified equation of state,
obtained from a single effective nuclear Hamiltonian,
allowing for a smooth transition between core and crusts
of a neutron star. The analytical fit further smooths the
equation of state. This level of smoothness is unnecessary
for one of the methods we use to determine stability in the
next section, but is helpful for the other method, which is
also used to compute radial oscillation frequencies, because
it requires taking derivatives of the equation of state.
It is worth noting that many equations of state in the

literature for the ordinary matter of a neutron star, including
[40], list the baryonic number density and not the number

density for the fluid (i.e., the density of fluid elements). But,
as we will see, it is the fluid’s number density that is needed
for determining stability. From the thermodynamic identity
at zero temperature, ϵþ p − μn ¼ 0, where μ ¼ dϵ=dn is
the chemical potential for the fluid, one finds that the
number density for the fluid can be computed from the
energy density and pressure,

n ∝ exp
�Z

dϵ
ϵþ p

�
; ð5Þ

where the proportionality constant does not affect the
determination of stability and therefore does have to
be known.
As mentioned in the Introduction, we consider two

possibilities for asymmetric dark matter. For the first
possibility, we use a simple and common description,
modeling dark matter as a free Fermi gas. The well-known
equation of state and number density for a free Fermi gas
are [42,43]

ϵ ¼ 1

2π2

Z
kF

0

dk k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

f

q

¼ 1

8π2

2
64kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

f

q
ð2k2F þm2

fÞ −m4
f ln

0
B@kF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

f

q
mf

1
CA
3
75;

p ¼ 1

6π2

Z
kF

0

dk
k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
f

q

¼ 1

24π2

2
64kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

f

q
ð2k2F − 3m2

fÞ þ 3m4
f ln

0
B@kF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

f

q
mf

1
CA
3
75;

n ¼ k3F
3π2

; ð6Þ

where mf is the fermion mass and kF is the Fermi
momentum. The Fermi momentum is eliminated when
forming ϵ ¼ ϵðpÞ and n ¼ nðpÞ, making the fermion mass
the only free parameter.
For the second possibility, we consider mirror dark

matter. For this case, following [15–18], we use the same
equation state for dark matter that we use for ordinary
matter.
It is straightforward to show that the inner boundary

conditions for the TOV equations in (3) and the particle
number equation in (4) are miðrÞ ¼ Oðr3Þ, piðrÞ ¼
pc
i þOðr2Þ, where pc

i is the central pressure for fluid i,
and Ni ¼ Oðr3Þ. The central pressures uniquely identify
solutions. Upon specifying central pressures, the TOV and
particle number equations may be integrated outward from
some small r. At some point during the integration, the

pressure of one of the fluids will hit zero, piðRiÞ ¼ 0,
marking the edge of fluid i at r ¼ Ri. At this point, the
integration is broken and restarted using the single-fluid
equations and the equation of state of the remaining fluid.
When the pressure of the remaining fluid hits zero,
pjðRjÞ ¼ 0, the edge of fluid j, as well as the edge of the
star, is at r ¼ Rj. We then have for the total mass of the star,
M ¼ P

i miðRiÞ, and for the total number of particles for
fluid i, Ni ¼ N iðRiÞ.
Solutions to the TOV equations, when using the equa-

tions of state presented in this section, are examples of dark
matter admixed neutron stars. If Rdm < Rom, the star has a
dark matter core, while if Rdm > Rom, it has a dark matter
halo. In the following, we display the parameter space of
solutions using the central pressures (pc

om, pc
dm), since they

uniquely identify solutions.
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III. STABILITY: CRITICAL CURVES

Once a solution is found, an important question is
whether it is stable with respect to small perturbations.
In systems with only a single fluid, this question is
straightforward to answer, since it is well-known that the
transition from stable to unstable occurs at the solution with
the largest mass [42–44]. Since each solution is uniquely
identified by a single quantity (the central pressure of the
fluid), the static solution with the largest mass constitutes a
single point in the parameter space of solutions and is called
the critical point. The critical points for single-fluid stars
constructed with the SLy and free Fermi gas equations of
state from the previous section are

ðpc
SLyÞcrit ¼ 860.24

MeV
fm3

;

ðpc
FermiÞcrit ¼ 291.20

�
mf

1 GeV

�
4 MeV
fm3

: ð7Þ

The situation is more complicated in two-fluid systems,
such as dark matter admixed neutron stars. Solutions are
identified by two quantities (the central pressure of each
fluid). The transition from stable to unstable is then marked
by a critical curve in parameter space. Determining the
critical curve is not as straightforward as determining the
critical point in the single-fluid case. We offer two methods
for its determination.
The first method is to perturb the static solutions with

time-dependent harmonic perturbations, which depend on
the radial oscillation frequency. This leads to a system of
pulsation equations, whose solutions give the squared
radial oscillation frequency. If the squared radial oscillation
frequency is positive for the fundamental solution, the
corresponding static solution is stable; otherwise it is
unstable. Such a system of pulsation equations was derived
in [38] for an arbitrary number of perfect fluids with only
gravitational interfluid interactions and is reviewed in
Appendix (see also [45]).
The second method was developed by Henriques, Liddle,

and Moorhouse in their study of boson-fermion stars [25].
The details are reviewed in Appendix. The conclusion of
their analysis is that the critical curve is defined by

dM
dp

¼ dNom

dp
¼ dNdm

dp
¼ 0; ð8Þ

whereM andNi are the totalmass and fluid number of a static
solution and p is a vector in parameter space that is
simultaneously tangent to the level curves of M and Ni. It
can be shown that if two of the quantities in (8) are zero, then
the third is also [25,46].We stress thatNom is the total number
of fluid elements and not the baryonic number. This is the
reason why the number density for the fluid must be known,
which can be computed from the energy density and pressure
using Eq. (5).

In the original paper [25], the critical curve was found by
plotting contour lines for Nom and Ndm and determining
those points where the contour lines meet, but do not cross,
so that their tangents are equal. Such points give the critical
curve. An alternative procedure [47], which is the one we
use here, is to first compute contour lines of either Nom or
Ndm in the two-fluid system. Moving along a single contour
line, we determine the point where M is an extremum (in
practice, we find that it is a maximum). These points give
the critical curve.
A benefit of the first method is that it can do more than

just determine stability, since it can compute the radial
oscillation frequency for an arbitrary static solution. Its
disadvantages are that it is time consuming to find a
solution and it requires taking derivatives of the equation
of state, which may be difficult to do if the equation of state
is insufficiently smooth. The second method does not suffer
from either of these disadvantages, but can only determine
stability. We have confirmed numerically that both methods
give the same answer, which gives confidence that the code
we are using is working properly. The figures presented in
this section were made using the second method. As far as
we are aware, this is the first time that the second method
has been applied to dark matter admixed neutron stars when
a realistic equation of state is used for the ordinary matter.
In Fig. 1, we show results for the free Fermi gas with

fermion mass mf ¼ 1 GeV. The thick black line is the
critical curve. The colored parameter space indicates stable
static solutions, with green indicating static solutions with a
dark matter halo and red a dark matter core. For sufficiently
small pc

om or pc
dm, the critical curve is seen to agree with the

single-fluid critical points in (7). This is expected, since if

FIG. 1. The parameter space of static solutions is shown as a
function of the central pressures pc

om and pc
dm, where dark matter

is taken to be a free Fermi gas with fermion mass mf ¼ 1 GeV.
Each point represents a static solution to the multifluid TOV
equations. The thick black line is the critical curve, separating
stable static solutions from unstable ones. Stable solutions are
colored, with green indicating a static solution with a dark matter
halo and red indicating a dark matter core.
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one of pc
om or pc

dm is small while the other is large, the fluid
with the large central pressure dominates and we effectively
have a single-fluid system. Interestingly, there is a region of
stable parameter space, in the upper-right corner, where
pc
om and pc

dm are greater than their single-fluid critical
values ðpc

omÞcrit and ðpc
dmÞcrit in (7).

mf ¼ 1 GeV can be taken to approximate the transi-
tional mass, where masses above and below this value lead
to qualitatively different results. The transitional mass is
expected to be somewhere near the baryon mass of
938 MeV. This is evident in Fig. 2, where we show critical
curves for fermion masses above and below 1 GeV. First,
for mf below 1 GeV, we see from Figs. 2(a) and 2(b) that
the critical curve moves toward extending beyond the
single-fluid ðpc

dmÞcrit, but not beyond the single-fluid
ðpc

omÞcrit. This flips for mf above 1 GeV, where we see
from Figs. 2(c) and 2(d) that now the critical curve moves
toward extending beyond the single-fluid ðpc

omÞcrit, but not
beyond the single-fluid ðpc

dmÞcrit. We do not compute the
precise mass where this transition occurs, but simply take
mf ¼ 1 GeV to approximate its value.
In Fig. 3 we show the critical curve for mirror dark

matter. Since the same equation of state is used for both
ordinary and dark matter, both the critical curve and the line
separating a dark matter core from a dark matter halo are
symmetric in parameter space. We find again that there is a
stable region of parameter space where pc

om and pc
dm are

greater than their single-fluid critical values, although the
region is smaller than with the free Fermi gas.
In Sec. V, when we look at radial oscillation frequencies,

we will gain some insight as to why the critical curves
extend past their single-fluid critical values and how this
depends on fermion mass.

IV. MASS-RADIUS DIAGRAMS

Two of the most important properties to compute are the
mass and radius of the star, since these properties are
observable. They are typically presented in mass-radius
(MR) diagrams by plotting the mass as a function of radius
for a given solution to the TOV equations. In systems with

only a single fluid, the mass-radius parameter space is
a curve.
Things are not as simple in two-fluid systems, such as

dark matter admixed neutron stars, since the parameter
space is larger. In the literature, a single MR curve or a
sequence of MR curves is often presented. Unfortunately,
this can give the false impression that there is an important
property that connects two points on the same curve that
does not connect two points on different curves. While this
is sometimes the case, commonly the property that con-
nects two points on the same curve is arbitrary. Another
way to understand this is that any curve that slices through
the parameter space in Figs. 1–3 gives an MR curve, but
there are infinitely many ways to slice through the
parameter space.
As an alternative, we present MR diagrams that show

mass-radius relations for the entire stable parameter space
shown in Figs. 1–3. In Fig. 4, we display the MR diagram
for the free Fermi gas with fermion mass mf ¼ 1 GeV. We
plot the total mass of the system versus the visible radius,
which is the radius of ordinary matter. The thick black line
gives the MR curve for the single-fluid star with the SLy
equation of state, i.e., for a neutron star without dark matter.

FIG. 2. The same as Fig. 1, except with fermion masses, mf, as indicated above each plot.

FIG. 3. The same as Fig. 1, except for mirror dark matter, in
which dark matter has the same equation of state as ordinary
matter.
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The color scheme is the same as in Figs. 1–3, with green
indicating a dark matter halo and red indicating a dark matter
core. For mf ¼ 1 GeV, we can see that much of the MR
parameter space is takenupby a darkmatter core. Further, the
inclusion of dark matter does not allow the mass or radius to
extend past the values for a neutron star without dark matter.
In this sense, the inclusion of dark matter leads to a decrease
in the mass and radius of the star [15].
We mention again that all points plotted in Fig. 4 are

stable, as determined using the methods of the previous
section. Those points underneath the thick black line
correspond to static solutions in which ordinary matter is
dominating and we effectively have a single-fluid system.
As expected in such a case, stable static solutions do not
extend past the peak of the thick black line.
We previously mentioned that mf ¼ 1 GeV is a

transitional mass, in that larger and smaller masses give

qualitatively different results. This was evident in the
previous section with stability and is also evident with
MR diagrams. In Fig. 5, we showMR diagrams for fermion
masses above and below 1 GeV. Beginning with Fig. 5(b),
we see that as the fermion mass is lowered, the parameter
space with a dark matter halo expands and the total mass of
the system is able to increase past the values for a neutron
star without dark matter. This continues in Fig. 5(a) with an
even smaller fermion mass. We conclude that by decreasing
the fermion mass, the total mass of the system can increase
[17] and dark matter generally encompasses ordinary
matter, forming a halo. What is happening is that as the
fermion mass is decreased, which requires decreasing the
dark matter central pressure to retain stability, dark matter
has an increasingly weaker effect on ordinary matter. In
other words, as the fermion mass is decreased, ordinary
matter begins acting as if it is a single fluid given by the
black curve. Not shown is that when dark matter forms a
halo, the smaller fermion mass allows dark matter to extend
farther out. With dark matter extending farther out, more
dark matter particles can stably exist, which can compen-
sate for the smaller fermion mass and increase the total
mass of the system. On the other hand, when dark matter
forms a core, there are not enough dark matter particles to
compensate for the smaller fermion mass, which is why the
red region is squeezing close to the black curve.
Now consider when the fermion mass is increased above

1 GeV. We can see in Figs. 5(c) and 5(d) that as the fermion
mass is increased, the parameter space becomes increas-
ingly dominated by a dark matter core. Not shown is that
the radius of the dark matter core tends to decrease with
increasing fermion mass. If ordinary matter has a relatively
large central pressure, then the small dark matter core has
little effect, as seen by the red region squeezing close to the
black curve in 5(d). On the other hand, if ordinary matter
has a relatively small central pressure (which, in the
absence of dark matter, would be located on the tail end
of the black curve with large radii), the dark matter core
pulls this ordinary matter in to smaller radii, giving the low

FIG. 4. The mass as a function of the visible radius, which is the
radius of ordinary matter, for the stable static solutions shown in
Fig. 1 (dark matter is a free Fermi gas with fermion mass
mf ¼ 1 GeV). The thick black curve is for the single-fluid star
with only ordinary matter, i.e., for a neutron star without dark
matter. The color scheme is the same as in Fig. 1, with green
indicating a dark matter halo and red a dark matter core.

FIG. 5. The same as Fig. 4, except for the stable static solutions shown in Fig. 2 (dark matter is a free Fermi gas with fermion masses,
mf , as indicated above each plot). In (a), note that the vertical axis has a log scale and that the red region is plotted above the black curve
so that it is visible. In (b) note that the entire red region for a dark matter core overlaps green for a dark matter halo.
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mass solutions that can be seen at the very bottom of
Fig. 5(d). As the fermion mass is increased further, one
continues to find these lowmass solutions with ever smaller
masses and radii around 10 km. Eventually solutions with
planetlike masses are found, which have been dubbed “dark
compact planets” in [32].
In Fig. 6 we show the MR diagram for mirror dark

matter. Compared to the free Fermi gas with mf ¼ 1 GeV
in Fig. 4, the region with a dark matter core is similar. A
notable difference is an expanded region with a dark matter
halo, in which we find 1–2M⊙ solutions, but with visible
radii in the 2–8 km range.

V. RADIAL OSCILLATIONS

Chandrasekhar initiated the study of stellar oscillations
of neutron stars when he derived a pulsation equation
whose solution gives the squared radial oscillation fre-
quency [48]. His pulsation equation was subsequently
rewritten in various ways [49–52], in some cases to facilitate
numerical solutions. As mentioned in Sec. III, the squared
radial oscillation frequency can be used to determine the
stability of a static solution. Although radial oscillation
modes do not couple to gravitational waves, they are, in
principle, observable by the emission of electromagnetic
radiation from the surface of the star (see, for example,
Ref. [39]). The hope is that their study can reveal details of the
inner structure of the star. Radial oscillation frequencies have
been computed for a large number of equations of state (see,
for example, Refs. [39,51–56]).
Chandrasekhar derived his pulsation equation for a

single-fluid system. Recently, a system of pulsation equa-
tions was derived for an arbitrary number of perfect fluids
with only gravitational interfluid interactions [38] (see also
[45]). In [38], these equations were used to compute radial
oscillation frequencies in one-, two-, and three-fluid sys-
tems, where all fluids were taken to be a free Fermi gas. In
this section we use these equations to study radial oscil-
lations of dark matter admixed neutron stars. This is the

first time the pulsation equations of [38] have been applied
to a system where one of the fluids is described with a
realistic equation of state. The pulsation equations and how
they are solved is reviewed in Appendix.
Radial oscillations of dark matter admixed neutron

stars is understudied. As far as we are aware, the only
works that have computed such oscillation frequencies
using two-fluid methods are [26–28], using the equations
of [45], and only [27] presented results beyond those used
in determining stability. (References [57,58] computed
radial oscillation frequencies of two-fluid systems, but
did so using Chandrasekhar’s single-fluid pulsation equa-
tion.) Frequencies have also been computed by Fourier
transforming results from simulations using full numerical
relativity [47]. Our aim in this section is to make a
systematic computation of oscillation frequencies for the
fundamental radial mode.
We begin first by solving Chandrasekhar’s single-fluid

pulsation equation for the radial oscillation frequency, ω, of
the fundamental solution for single-fluid stars using the
SLy and free Fermi gas equations of state. The results are
shown in Fig. 7 as a function of the central pressure, which
uniquely identifies the static solution. The solid black line
is for SLy and the dashed blue line is for the free Fermi gas.
Note that the frequencies hit zero at the critical central
pressures given in (7). This is expected, since the critical
central pressures mark the point at which the static
solutions transition from stable to unstable, which occurs
when the (squared) radial oscillation frequency (of the
fundamental mode) transitions from positive to negative.

FIG. 6. The same as Fig. 4, except for the stable static solutions
shown in Fig. 3 (dark matter is mirror dark matter).

FIG. 7. The fundamental radial oscillation frequency, ω, is
plotted as a function of the central pressure for single-fluid stars
using the SLy (solid black curve) and free Fermi gas (dashed blue
curve) equations of state. The curves are seen to hit zero at the
critical central pressures given in Eq. (7). For SLy, the maximum
frequency is ω ¼ 19.96 kHz, which occurs for a central pressure
of pc ¼ 36.02 MeV=fm3. For the free Fermi gas, the maximum
frequency is ω ¼ 7.91ðmf=1 GeVÞ2 kHz, which occurs for a
central pressure of pc ¼ 61.70ðmf=1 GeVÞ4 MeV=fm3.
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Note also that the frequencies of a free Fermi gas with
fermion mass mf ¼ 1 GeV are smaller than those for the
neutron star (with the SLy equation of state) over much of
the parameter space. For mf ¼ 0.5 GeV, the dashed blue
curve drops by a factor of 4, making it much smaller than
the neutron star, while for mf ¼ 2 GeV, the dashed blue
curve grows by a factor of 4, making it larger than the
neutron star over much of the parameter space. It is useful
to keep these facts in mind in the following.
Unfortunately, the computation of the radial oscillation

frequency in a two-fluid system is time consuming. For this
reason, we do not present results for all cases, nor over the
entirety of the parameter space, that we considered pre-
viously. In Fig. 8 we show results for a free Fermi gas with
fermion masses mf ¼ 0.5, 1, and 2 GeV. In each plot, the
thick black line is the critical curve first shown in Figs. 1
and 2. We can see that near the critical curves, the
oscillation frequencies head toward zero, as expected.
This offers some visual evidence that the two methods
for determining stability [25,38] discussed in Sec. III agree,
though we note that we have confirmed that they agree to
much higher precision than that shown in Fig. 8.
Consider now the bottom of the plot in Fig. 8(a) for

mf ¼ 0.5 GeV. The frequencies match well the single-
fluid frequencies given by the solid black line in Fig. 7.
This tells us that dark matter has a very small effect on the
oscillation frequency in this region of parameter space. As
we move up from the bottom in Fig. 8(a), we do not see
much change in frequency, and nearly no change in
frequency for larger values of pc

om. This tells us that only
when we have larger values of pc

dm and smaller values of
pc
om is dark matter able to affect substantially the frequency.

Once we compare this to the other plots in Fig. 8, we
conclude that this is because of the smaller fermion mass of
mf ¼ 0.5 GeV. We also gain insight as to why the critical
curve extends past the single-fluid value of ðpc

dmÞcrit, but

not ðpc
omÞcrit, first noticed in Sec. III. With the small fermion

mass of mf ¼ 0.5 GeV, it is only after increasing pc
dm

substantially is dark matter able to affect the system and
cause it to be unstable. Even then, for large pc

om, the
ordinary matter is always dominating and we do not find
stability past the single-fluid value of ðpc

omÞcrit.
Now consider Fig. 8(b), where we see some, though not

significant, changes compared to (a). That the changes are
not significant is expected, because for both mf ¼ 0.5 and
1 GeV, the single-fluid frequencies for a free Fermi gas, as
given by the dashed blue curve in Fig. 7, are smaller than the
single-fluid frequencies for ordinary matter, as given by the
solid black curve in Fig. 7. Still, we can see in Fig. 8(b) that
with the larger fermion mass, dark matter has a bigger
influence over the frequency. This connects with the fact that
pc
dm does not have to be raised as high before it makes the

system go unstable and that for large pc
dm, we can push p

c
om

past its single-fluid critical value and still have stable
solutions.
We do see significant changes in Fig. 8(c). This is

expected, since for mf ¼ 2 GeV the single-fluid frequency
for a free Fermi gas can be larger than the single-fluid
frequency for ordinary matter in Fig. 7. The larger
frequencies in Fig. 8(c) coming from dark matter, in a
sense, “collide” with the smaller frequencies coming from
normal matter in the center of the figure. Interestingly, this
causes the frequency to increase, as can be seen by the
darker region near the center, to values larger than the
maximum possible single-fluid frequencies.
In Fig. 9 we show results for mirror dark matter. The

thick black line is the critical curve first shown in Fig. 3.
The figure is symmetric in parameter space, since the same
equation of state is used for dark matter as is used for
ordinary matter. Similar to Fig. 8(c), we find a “collision” in
the center of the plot with a frequency that is larger than the
maximum single-fluid frequency given by the solid black
line in Fig. 7.

FIG. 8. The fundamental radial oscillation frequency, ω, is plotted as a function of the central pressures pc
om and pc

dm, where dark
matter is taken to be a free Fermi gas with fermion masses,mf , as indicated above each plot. The thick black lines are critical curves, first
shown in Figs. 1 and 2.
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VI. CONCLUSION

We studied dark matter admixed neutron stars, which are
two-fluid systems with only gravitational interfluid inter-
actions. The first fluid describes ordinary nuclear matter
and the second fluid describes dark matter. We considered
two possibilities for dark matter: a free Fermi gas and
mirror dark matter. Static solutions were found by solving
the two-fluid TOV equations.
Our study focused on three computations. The first was

the stability of static solutions with respect to small
perturbations. Rigorous determinations of stability over
large swaths of parameter space were lacking in the
literature. We presented two different ways to determine
stability and computed critical curves, which separate
stable solutions from unstable ones in parameter space.
Interestingly, we found stable regions of parameter space
for which a naive analysis of the individual equations of
state would not have deemed stable.
The second computation was for mass-radius relations

from static solutions. As an alternative to what is commonly
presented in the literature, we gave mass-radius diagrams
over the whole of the stable static parameter space, high-
lighting when dark matter acts as a core or as a halo in
the star.
The third computation was the radial oscillation fre-

quency. As with stability, computations of the radial oscil-
lation frequency over large swaths of parameter space were
lacking in the literature. Interestingly, our results showed that
the frequencies of dark matter admixed neutron stars could
be larger than the maximum possible frequencies of single-
fluid stars made with the individual equations of state.

APPENDIX: RADIAL OSCILLATIONS
AND STABILITY

In Sec. III, we discussed two methods for computing the
critical curve, which separates stable static solutions from
unstable ones in parameter space. In Sec. V, we computed

radial oscillation frequencies. In this Appendix we review
the equations used in these computations.

1. Radial oscillations

The method we use to solve for the radial oscillation
frequencies was derived in [38]. We briefly review the
equations and how they are solved here and refer the reader
to [38] for details. To make a time-dependent perturbation
around a static solution, we must first write the energy-
momentum tensor, Tμν ¼ P

i T
μν
i , in terms of the full

perfect fluid form,

Tμν
i ¼ ðϵi þ piÞuμi uνi þ pigμν; ðA1Þ

where uμi is the four-velocity of the fluid, and not in terms
of the static form, as was done in Eq. (2). Spherical
symmetry sets uθ ¼ uϕ ¼ 0 and we define vi ≡ eν=2 uri ,
where ν is the metric function in (1) (but now with a time
dependence). We can then write the metric functions,
energy densities, and pressures as perturbations about their
static solutions and then write the Einstein field equations
and equations of motion to first order in the perturbations.
Note that vi is at the level of a perturbation, since it vanishes
in the static limit.
Defining the quantity ξi through ∂tξi ≡ vi, the pertur-

bations are all taken to be of harmonic form,

ξiðt; rÞ ¼ ξiðrÞeiωt; ðA2Þ

which defines the radial oscillation frequency, ω. We
further define

ζiðrÞ≡ r2e−ν0ðrÞ=2ξiðrÞ; ðA3Þ

where a subscripted 0 in this section refers to a static
solution. The idea is to combine the Einstein field equations
and equations of motion such that we obtain a system of
pulsation equations which depend on ζi and its derivatives,
and not on any other perturbations.
Before presenting the pulsation equations, we rewrite the

metric in (1) as

ds2 ¼ −Hðt; rÞσ2ðt; rÞdt2 þ dr2

Hðt; rÞ þ r2dΩ2; ðA4Þ

where

Hðt; rÞ≡ 1 −
2mðt; rÞ

r
; σðt; rÞ≡ eνðt;rÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Hðt; rÞp ; ðA5Þ

which is better suited for numerical solutions. The equation
for the static metric function σ0ðrÞ is

dσ0
dr

¼ 4πrσ0
H0

ðϵ0 þ p0Þ; ðA6Þ

FIG. 9. The same as Fig. 8, except for mirror dark matter, in
which dark matter has the same equation of state as ordinary
matter. The thick black line is the critical curve, first shown in
Fig. 3.
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which follows from the Einstein field equations and is one of the TOVequations, but was not listed in (3) because, for static
solutions, it decouples and is not needed.
The system of pulsation equations is [38]

∂2
rðΠ̂ζ0iÞ þ ðQ̂i þ ω̂2WiÞζ̂i þ R̂

��
ϵi0 þ pi0

r
− p0

i0

�X
j

ðϵj0 þ pj0Þζ̂j þ
r2ðϵi0 þ pi0Þ

σ̂20H0

X
j

ηj

�

¼ Ŝi
X
j

ðϵj0 þ pj0Þðζ̂j − ζ̂iÞ þ
r2

σ̂20H0

R̂2ðϵi0 þ pi0Þ
X
j

X
k

pj0γjðϵk0 þ pk0Þðζ̂k − ζ̂jÞ

þ R̂γipi0

X
j

½ðϵ0j0 þ p0
j0Þðζ̂j − ζ̂iÞ þ ðϵj0 þ pj0Þðζ̂j0 − ζ̂i

0Þ�; ðA7Þ

where a prime denotes an r derivative, where p0
i0 is given by the TOV equation in (3), and where

Π̂i ¼
1

r2
pi0γiσ̂

2
0H0;

Wi ¼
1

r2H0

ðϵi0 þ pi0Þ;

Q̂i ¼ −
σ̂20H0

r2

�
3

r
p0
i0 þ

�
8π

H0

p0ðϵi0 þ pi0Þ þ
�
4πr
H0

ϵ0 −
m0

r2H0

��
ϵi0 þ pi0

r
− p0

i0

���
;

R̂ ¼ 4π
σ̂20
r
;

Ŝi ¼ R̂

�
ðγi − 1Þp0

i0 þ γ0ipi0 þ γipi0

�
8πr
H0

ðϵ0 þ p0Þ −
1

r

��
;

γi ¼
�
1þ ϵi0

pi0

� ∂pi0

∂ϵi0 : ðA8Þ

Those quantities with a hat have been scaled by powers
of σc0, the central value of σ0. This has the effect of
changing the boundary conditions and making the equa-
tions easier to solve. Note that the right-hand side of
Eq. (A7) vanishes for a single fluid, in which case the left-
hand side is equivalent to Chandrasekhar’s pulsation
equation [48]. Though equivalent, the left-hand side of
Eq. (A7) is not written in an identical form to
Chandrasekhar’s because, in the presence of multiple
fluids, terms cannot cancel and combine in the same way.
To actually solve the pulsation equations, we define ηi ≡

Π̂iζ̂i
0 and solve the system of first order differential

equations made up of Eq. (A7), but written in terms of
ηi, and

ζ̂i
0 ¼ ηi

Π̂i
: ðA9Þ

In the two-fluid case, the inner boundary conditions are
m ¼ ζi ¼ 0 and σ̂0 ¼ η1 ¼ 1. The outer boundary con-
ditions for the static variables are as discussed in Sec. II and
for the perturbations are ηiðRiÞ ¼ 0. The undetermined
parameters are the inner boundary condition for η2 and the

value of scaled squared radial oscillation frequency ω̂2.
These are determined using the shooting method. Once a
solution to the pulsation equations is found, so too are σc0,
which follows from the outer value of σ̂0, and ω̂2. The
squared radial oscillation frequency is then given
by ω2 ¼ ðσc0ω̂Þ2.

2. Stability

In Sec. III, we discussed two methods for determining
whether a solution to the TOV equations is stable with
respect to small perturbations. The first method is to
compute the squared radial oscillation frequency using
the methods of the previous subsection. Importantly, one
must compute oscillation frequencies for the fundamental
solution, which has the smallest frequency, and not for
excited solutions. In practice, this is easily done by making
sure that the ηi do not have nodes, i.e., values for which
they equal zero before the edge of their respective fluid. If
ω2 < 0 for the fundamental solution, then the perturbation
in Eq. (A2) describes a growing mode and the correspond-
ing static solution is unstable; if ω2 > 0, the corresponding
static solution is stable. It is possible for the squared
frequency of the fundamental solution to be negative while
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the excited frequencies are positive, which is why it is the
fundamental frequency that must be computed. In this
paper, including in Sec. V, we only compute radial
oscillation frequencies for fundamental solutions.
The transition from stable to unstable for static solutions

occurs at those points in parameter space where ω2 ¼ 0.
Such points map out the critical curves shown in Figs. 1–3.
In this way, the computation of the squared radial oscil-
lation frequency using the methods of the previous sub-
section can be used to compute critical curves.
The second method we use for computing the critical

curve is from [25]. The idea is straightforward. We still
wish to find those points in parameter space where ω ¼ 0.

From Eq. (A2) we find that, in this case, the perturbation is
time independent, and thus the perturbed static solution is
itself a static solution. This is convenient, since it means we
need only deal with static solutions. Further, the perturba-
tions (including those with time-dependence) preserve the
total fluid number, Ni, and total mass, M, of the system.
Putting these facts together, if there is a point in the
parameter space of static solutions where ω ¼ 0, then there
must be some direction in parameter space, given by vector
p, that preserves ω ¼ 0 as well as the total fluid numbers
and mass of the system. This immediately gives Eq. (8),
which is what we used to compute the critical curves
in Sec. III.
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