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To approximately compute the nonrelativistic ground state of an electrically nonneutral star, an exactly
solvable model was recently introduced, and partly solved, in Krivoruchenko et al. [Phys. Rev. D 97,
083016 (2018)]. The model generalizes the well-known Lane-Emden equation of a polytropic gas ball of
index n ¼ 1 to a two-fluid setting. Here its complete solution is presented in terms of simple elementary
functions; it is also generalized to a more-than-two-fluid setting where it remains exactly solvable. It is
shown that, given the number of nuclei, a maximal negatively charged solution and a maximal positively
charged solution exist, plus a continuous family of solutions which interpolates between these extremes.
Numerical comparisons show that this exactly solvable model captures the qualitative behavior of the more
physical model it is supposed to approximate. Furthermore, it correctly answers the question: how
nonneutral can the star be? The answer is independent of the speed of light c and the Planck quantum h. It
supports Penrose’s weak cosmic censorship hypothesis, in the sense that the bounds on the excess charge
are compatible with the bound on the charge of a Reissner-Weyl-Nordström black hole.
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I. INTRODUCTION

In the theory of stellar structure [1–3], it is common
practice to work with an effective two-fluid approximation
and to reduce it further to an effective single-density model
by invoking a local neutrality approximation. The two-fluid
approximation simply means that charge and mass den-
sities are computed with the density function νeðsÞ of the
electrons and a single effective density function νþðsÞ for
all the species of positively charged nuclei, with νeðsÞ and
νþðsÞ normalized to the number of electrons, Ne, and
nucleons, Nn, in the star; here, s is the space point at which
the densities are considered. The charge density is then
given by σðsÞ ¼ −eνeðsÞ þ ez̄νþðsÞ, where z̄ denotes the
average number of elementary charges per nucleon in the
star. Neglecting small differences between the proton mass
and the average mass per nucleon, the mass density is
essentially given by μðsÞ ¼ meνeðsÞ þmpνþðsÞ (the mass
me of the electrons is usually neglected here, due to its
smallness relative to the nuclear masses). Imposing on this
the local-neutrality approximation σðsÞ ¼ 0 ∀ s, based on
the argument that the electrical coupling between electron
and proton is about 1039 times stronger than their gravi-
tational coupling so that any local electric imbalance must
be negligible for the purpose of computing the overall mass
density function μðsÞ, one eliminates νþðsÞ in favor of

νeðsÞ, say. Further arguments are still needed to obtain a
closed equation for νeðsÞ.
For example, we recall Chandrasekhar’s theory of non-

rotating white dwarfs [2]. Based on Fowler’s insight [4] that
white dwarfs are stabilized against their gravitational inward
pull by the Pauli principle for electrons [5], modeled in the
form of the gradients of the pressure peðsÞ of a degenerate
ideal gas of electrons, Chandrasekhar computed first the
nonrelativistic and subsequently also the special-relativistic
relationship between νeðsÞ and peðsÞ for a completely
degenerate Fermi gas, expected to characterize the fate of
the electrons in a white dwarf after it has radiated away
all its available energy and settled into a black dwarf.
(Chandrasekhar himself often spoke of models for black
dwarfs rather than white dwarfs.) In the locally neutral
approximation to the two-fluid approximation, for a star
whose angular momentum vanishes the hydrostatic force
balance reads −μðsÞ∇ϕNðsÞ −∇peðsÞ ¼ 0, with ϕNðsÞ the
gravitational Newton potential; it satisfies Poisson’s equa-
tionΔϕNðsÞ ¼ 4πGμðsÞ. WithpeðsÞ given in terms of νeðsÞ,
and with μðsÞ also given in terms of νeðsÞ through the locally
neutral approximation to the two-fluid model, it is clear that
a closed equation for νeðsÞ ensues. In the nonrelativistic
setting it has a radially symmetric solution for any finite
mass M > 0, but in the special-relativistic setting this is
true only if M < MCh ¼ C

ffiffiffiffiffiffi
3π

p ðNe=NnÞ2ðℏc=GÞ3=2=m2
p,

the critical mass discovered by Chandrasekhar, with
C ≈ 1.01; cf. [6]. When M → MCh, the mass density
function degenerates into a Dirac δ function concentrated
at a point.
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In general relativity it is not possible to continuously
shrink a mass density to a δ function with finite mass
M > 0; before that could happen, a dynamical instability
sets in and causes the collapse of the so-modeled star,
forming a black hole in the process. The critical mass
MGR < MCh, but not by much; it corresponds to the
smallest nonzero radius which such a star could have.
The critical mass is affected also by the finite size of the

nucleons, and their strong and weak interactions. In
particular, inverse β decay causes electrons to be absorbed
by nuclei (converting their protons into neutrons), when the
central density exceeds a critical value.
All these investigations have not challenged the local

neutrality approximation, which seems to have been per-
ceived as so compelling (see [7]; cf. [8], Chap. 16, Sec. 9.5)
that research into the large scale electric structure of stars has
for a long time lived a life in the shadows by comparison; one
of the few early papers on the subject is [9]. However, since
the local neutrality approximation trivially implies global
neutrality,Q ¼ 0, it cannot be used to address the following
important problems,which in the past dozen or so years have
rekindled the interest in nonneutral stars. Thus there is a
desire to better understand the formation of charged black
holes, such as the Reissner-Weyl-Nordström black holes or,
if angular momentum is included, the Kerr-Newman black
holes, through the collapse of charged stars [10,11]. In
particular, since there is a limit as to how nonneutral a
charged black hole can be, given its ADM mass M (named
after Arnowitt, Deser, and Misner) and angular momentum
aM, it is important to find out whether this limit is also
obeyed in models of nonneutral stars, or whether stars could
be more nonneutral, in which case Penrose’s weak cosmic
censorship hypothesis [12] could be in jeopardy. Also
certain collapse-unrelated questions, concerning hypotheti-
cal quark and strange stars, seem to require an understanding
of their large-scale electrostatic fields for answers [13].
Their charge densities then become interesting subjects of
research; see [10,13,14].
In this paper we pick up on the recent publication [13]

where a two-fluid model of a star was studied without
invoking the local neutrality approximation. One fluid
component represents the electrons, and the other fluid
component represents the mix of positively charged nuclei
in the star, in the spirit of the reasoning recalled above. For
both fluids a pressure-density relation in the form of a
polytropic power law is assumed, with special emphasis on
the power γ ¼ 5=3 which is predicted by nonrelativistic
quantum mechanics for a completely degenerate gas of
spin-1=2 fermions, in the spirit of Chandrasekhar’s pioneer-
ing calculations [2]. We note already that while the
assumption of a polytropic γ ¼ 5=3 pressure-density rela-
tion is, of course, compelling for the electrons and inherited
by the mix-of-nuclei fluid if the local neutrality approxi-
mation is made in the two-fluid model, without the local
neutrality approximation the assumption of a polytropic

γ ¼ 5=3 pressure-density relation for the nuclei fluid would
need to be justified separately; we will come back to this
point below. But first, we summarize what is done about
this two-fluid model in [13], and which new results our
paper contributes.
The nonlinear system of equations of this nonneutral

stellar Thomas-Fermi model are more complicated than
those of its neutral approximation, and so the authors of
[13] have looked for other approximations which facilitate
the study of the nonneutral models. Since the ratio of
gravitational to electrical coupling constants are fantasti-
cally tiny numbers, e.g., Gm2

e=e2 ≈ 2.40 × 10−43 for two
electrons,Gmpme=e2 ≈ 4.41 × 10−40 for an electron proton
system, and Gm2

p=e2 ≈ 8.09 × 10−37 for two protons, one
approach has been to utilize these small numbers for a first-
order perturbative expansion in their powers to access, and
assess, the nonneutral neighborhood of a neutral stellar
model; cf. [13]. Unfortunately, as noted in [13], such a
perturbation is singular: one effectively perturbs around the
zero-gravity case, but without gravity there are no non-
trivial stellar equilibrium configurations. Thus, instead of
simplifying matters, such a singular expansion introduces
artificial new difficulties, which are absent from the non-
linear Thomas-Fermi equations.
To gain further qualitative insights into their nonlinear

two-fluid model, the authors of [13] also introduced a linear
proxy model; see Sec. IV.B of [13]. The approximation
consists in changing the polytropic power γ ¼ 5=3 in the
pressure-density relation of a nonrelativistic, completely
degenerate ideal Fermi gas to γ ¼ 6=3. This alteration is
small, but it has the advantage that the structure equations
become exactly solvable in terms of elementary functions,
as already noted in [13]. The solutions of this “6/3 model”
can then be compared with numerically computed solutions
of the “5/3 model” which it is meant to approximate.
The discussion in [13] is, however, confined to the

structure in the interior (the “bulk”) of the star where both
two-fluid density functions are nonzero. A complete under-
standing of the model requires also a discussion of what
we call the “atmospheric region” where one or the other
density function, but not both, vanishes. It is the interplay
between the bulk region and the atmospheric region which
selects the admissible solutions.
In this paper we present the complete set of finite mass

solutions of this exactly solvable 6=3 two-fluid model,
covering bulk and atmosphere. In the Appendix A we
explain that the model can be generalized to an arbitrary
number of fluid components while remaining exactly
solvable in terms of simple elementary functions.
We compare our exact solutions for the 6=3 model with

numerical evaluations of the 5=3model which it is meant to
approximate, and also with numerical solutions of a
Chandrasekhar-type special-relativistic model. We also
supply rigorous arguments to back up the numerical results.
An important by-product of our results is that the bounds on
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how nonneutral a star can be support Penrose’s weak
cosmic censorship hypothesis [12].
Thus, the exactly solvable 6=3 model introduced in [13]

can serve several purposes. First of all, it provides insight
into the qualitative structure of the possible solutions to the
physically more realistic 5=3model. Second, it can serve as
a test case for numerical methods designed to solve these
physically more realistic sets of nonlinear equations that
cannot be solved in closed form. Third, there seem to be
some “universal” electrical facts that are largely indepen-
dent of the details of the stellar ground state model, and
these are readily reproduced by the exactly solvable 6=3
model. Finally, a power 2 pressure-density relation is, of
course, well known in the general theory of stellar structure
[1–3] and yields a polytrope of index n ¼ 1. Aside from
being discussed in the astrophysical literature, polytropes
also appear in pedagogical papers; e.g., they are found in
[15–19]. In this vein we believe that this exactly solvable
model could also be incorporated in a course on stellar
structure.
We have reached the point where we need to come

back to the question of how realistic the two-fluid 5=3
model is, which is approximated by the 6=3 model.
We already recalled that the treatment of the electrons
as a completely degenerate Fermi gas is justified for stars
in their ground state, and a reasonable approximation for
white dwarf stars which are energetically near their ground
state, an insight which goes back to Fowler. On the other
hand, each and every noncollapsed star in the heavens
contains more than one species of nuclei, presumably, and
with the electrons treated as one of the fluid components, a
two-fluid approximation for a star is a plausible approxi-
mation only as long as the various positive nuclei species are
sufficiently mixed by convective and turbulent motions so
that throughout the star any species of nuclei with z
elementary charges per nucleus and mass Azmp, where Az

is the mass number (for each z we only take the dominant
isotope into account, for simplicity), has a number density in
essentially constant proportion to the number density of free
protons νpðrÞ, viz. νzðrÞ ≈ CzνpðrÞ (with “¼” instead of “≈”
when z ¼ 1, and C1 ¼ 1). Since nuclei of type z carry
positive integer multiples z of the elementary charge e, the
positive charge density function ez̄νþðrÞ ≔ e

P
z zνzðrÞ≈

eðPz zCzÞνpðrÞ, and the two-fluid approximation con-
sists of replacing “≈” by “¼,” so one can work with the
electron density νe, and either νþ or νp, as one pleases. For
the mass density, one then has μðrÞ ≔P

z mzνzðrÞ þ
meνeðrÞ ≈ ðPz mzCzÞνpðrÞ þmeνeðrÞ and “≈” is replaced
by “¼” in the two-fluid approximation (and me may be
neglected).
However, white dwarfs are stars where nuclear fusion

processes have expired, and the distribution of nuclei is no
longer mixed up by convection and other processes,
featuring instead an onion layer structure, as addressed
long ago by Hamada and Salpeter [7]. Moreover, while

the protons are fermions, the other important species in a
low-to-medium mass white dwarf are bosons (for instance,
α particles, 12C, and 16O nuclei). Treating such a segregated
ensemble of nuclei species as a single completely degen-
erate Fermi fluid with effective mass and charge parameters
is not a compelling approximation.
The only special case of the two-fluid 5=3 model in [13]

which is not subject to the just leveled criticism is an
idealized model star with only one species of nuclei:
protons, which are fermions. Even though no astronomer
will presumably ever see a star made of only electrons and
protons, in particular not one that is in its energetic ground
state, it is certainly not absurd to contemplate this model as
a valid simplifying approximation to a model for a first
generation star with such a low mass that it failed to ignite
(a “failed star,” like a brown dwarf [20]) and essentially
cooled down to its lowest energy state: a black dwarf with a
very low mass, between ≈13 and ≈80 Jupiter masses. To
emphasize that the star never ignited, we prefer to rather
speak of a “failed white dwarf.” As per the cosmological
standard model [21], on average such a star’s nuclei
composition would consist of ≈92% free protons and
≈8% α particles, and the suggestive approximation which
leads to the 5=3model of two completely degenerate Fermi
gases consists in replacing the ≈8% α particles by protons.
By some statistical fluke there may well be regions in the
early universe where the percentages are even more
lopsided toward the protons. A nonrelativistic model
suffices, with Newton’s gravity and Coulomb’s electricity
stabilized by the gradients of the degeneracy pressures. The
latter are then approximated by replacing γ ¼ 5=3 with
γ ¼ 6=3ð¼ 2Þ.
Furthermore, as we pointed out in [22] already, though

without giving any details, the 6=3 model gives the same
answer to the question howmany electrons per proton fit on
a failed white dwarf as does the 5=3 model, and it allows
one to demonstrate by explicitly writing down the solution
pairs, that the bounds on Ne=Np can be saturated. To come
to the same conclusions in the 5=3 model requires more
work. In the special-relativistic model one has to stay away
from the critical Chandrasekhar mass, but this, of course, is
implicitly understood because the critical mass beyond
which degeneracy pressure no longer stabilizes against
collapse is far greater than the critical mass beyond which a
star’s nuclear fuel ignites.
In Sec. II we recall the Thomas-Fermi equations of a

failed white dwarf star made of protons and electrons that
are treated as ideal Fermi gases of spin-1

2
particles. This

section is essentially identical with Sect. IV of [22].
Then, in Sec. III, we will apply the 5=3 → 6=3 approxi-

mation to this two-species model. We solve the approxi-
mate model explicitly in terms of elementary functions and
compute the allowed interval of Ne=Np values.
Section IV explains that the allowed interval of Ne=Np

values is the same also in more physical models; cf. [22].
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In Sec. V we explain that in the more physical models the
electron and proton numbers, Ne and Np, can be computed
in terms of the zeros of the particle densities and the
derivatives of the densities at the zeros.
In Sec. VI we illustrate our findings and compare the 6=3

model with the physical 5=3 model, and also with the
Chandrasekhar-type special-relativistic model, for which
we have carried out numerical evaluations.
Section VII has the Kepler problem of charged binaries.
In Sec. VIII we convert the bounds on Ne=Np into

bounds on the total charge Q which imply a bound on
Q2 proportional to M2, valid also for Reissner-Weyl-
Nordström black holes. In this sense our results support
Penrose’s weak cosmic censorship hypothesis.
The conclusions are presented in Sec. IX.
In Appendix A we formulate the generalization of the

exactly solvable two-species model to more than two
species. We leave its solution to some future work.
In Appendix B we present some exact solutions to the

two-species polytropic n ¼ 5 and the isothermal model,
and also for the 5=3 model.
In Appendix C we invoke the usual local neutrality

approximation which yields the single-density model dis-
cussed in [1–3]. We will take the opportunity, in a
subsection in that Appendix, to explain our 5=3 → 6=3
approximation for the locally neutral single-density model,
which produces the Lane-Emden polytrope of index n ¼ 1
and its elementary solution.

II. THE THOMAS-FERMI EQUATIONS
OF A FAILED WHITE DWARF STAR

The basic equations of the structure of a nonrotating
white dwarf star composed of electrons and nuclei can be
found in Chandrasekhar’s original publications composed
into his classic book [2], in [3], and also in [16,17], for
instance. For a nonrotating star one may assume spherical
symmetry, so all the basic structure functions are then
functions only of the radial distance r from the star’s center,
and the differential equations involved in the discussion
reduce to the ordinary type.
We specialize the discussion to a failed star composed

only of protons and electrons, both of which are spin-1
2

fermions. Each species is treated as an ideal Fermi gas. The
number density functions νpðrÞ ≥ 0 and νeðrÞ ≥ 0 are
assumed to integrate to the total number of protons and
electrons, respectively, viz.Z

R3

νpðrÞd3r ¼ Np; ð1ÞZ
R3

νeðrÞd3r ¼ Ne: ð2Þ

The protons have rest mass mp and charge þe, and the
electrons have rest mass me and charge −e. Thus the mass
density of the star is given by

μðrÞ ¼ mpνpðrÞ þmeνeðrÞ ð3Þ

and its charge density by

σðrÞ ¼ eνpðrÞ − eνeðrÞ: ð4Þ

The star is overall neutral if Np ¼ Ne; otherwise it carries
an excess charge which may have either sign.
The electrons and protons jointly produce a Newtonian

gravitational potential ϕNðrÞ and an electric Coulomb
potential ϕCðrÞ. The Newton potential ϕN is related to
the mass density μ by a radial Poisson equation,

ðr2ϕ0
NðrÞÞ0 ¼ 4πGμðrÞr2; ð5Þ

where G is Newton’s constant of universal gravitation.
Similarly, the Coulomb potential ϕC is related to the charge
density σ by a radial Poisson equation,

−ðr2ϕ0
CðrÞÞ0 ¼ 4πσðrÞr2: ð6Þ

As usual, the primes in (5) and (6) mean derivative with
respect to the displayed argument, in this case r.
Each species, the electrons and the protons, satisfies an

Euler-type mechanical force balance equation,

νpðrÞ½−mpϕ
0
NðrÞ − eϕ0

CðrÞ� − p0
pðrÞ ¼ 0; ð7Þ

νeðrÞ½−meϕ
0
NðrÞ þ eϕ0

CðrÞ� − p0
eðrÞ ¼ 0: ð8Þ

Here, pp and pe are the degeneracy pressures of the ideal
proton and electron gases, respectively. For a nonrelativistic
gas of spin-1

2
fermions (subscript f) of massmf and number

density νf one has (see e.g., [2,8,23])

pfðrÞ ¼
ℏ2

mf

ð3π2Þ2=3
5

ν5=3f ðrÞ; ð9Þ

here, f stands for either p or e, and ℏ is the reduced Planck
constant. We remark that (9) is of the type p ¼ Kγν

γ for
some constant Kγ , called a polytropic law of power γ, here
with γ ¼ 5=3. Associated with γ is a polytropic index
n ¼ 1=ðγ − 1Þ; here n ¼ 3=2.
The system of structure equations can be reduced to a

closed system of equations for the densities νpðrÞ and νeðrÞ
alone, but one needs to distinguish three regions:
(a) νpðrÞ > 0 and νeðrÞ > 0 (the bulk region),
(b) νpðrÞ > 0 and νeðrÞ ¼ 0 (positive atmosphere),
(c) νpðrÞ ¼ 0 and νeðrÞ > 0 (negative atmosphere).
We begin with the bulk region, where both Eqs. (7) and (8)
are nontrivial. We use (3) and (4) to express μ and σ in
terms of νp and νe in (5) and (6); now we multiply (5) by
−mp and (6) by e and add the resulting two equations, then
use (7) to replace −mpϕ

0
NðrÞ − eϕ0

CðrÞ in terms of νpðrÞ,
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and next we use (9) to express pp in terms of νp. Similarly,
we multiply (5) by −me and (6) by −e and also add these
equations; then we use (8) to replace −meϕ

0
NðrÞ þ eϕ0

CðrÞ
in terms of νeðrÞ and p0

eðrÞ, and next we use (9) to express
pe in terms of νe. This yields

− εζ
1

r2
d
dr

�
r2

d
dr

ν2=3p ðrÞ
�

¼ −
�
1 −

Gm2
p

e2

�
νpðrÞ þ

�
1þ Gmpme

e2

�
νeðrÞ; ð10Þ

− ζ
1

r2
d
dr

�
r2

d
dr

ν2=3e ðrÞ
�

¼
�
1þGmpme

e2

�
νpðrÞ −

�
1 −

Gm2
e

e2

�
νeðrÞ; ð11Þ

a system of nonlinear second-order differential equations
valid wherever both νpðrÞ > 0 and νeðrÞ > 0; here,
ε ≔ me=mp and ζ ≔ ð32=3π1=3=8Þℏ2=mee2 is approxi-
mately 50 reduced Compton wavelengths of the electron.
Coming to the atmospheric regimes, a positive atmos-

phere is governed by (10) with νeðrÞ ¼ 0, while a negative
atmosphere is governed by (11) with νpðrÞ ¼ 0.
Each equation is of second order and requires two initial

conditions. At the bulk-atmosphere interface at r ¼ r0 the
density of the species which forms the atmosphere needs to
be continuously differentiable. In the bulk, conditions are
posed at r ¼ 0. Naturally ν0pð0Þ ¼ 0 ¼ ν0eð0Þ. The values of
νpð0Þ and νeð0Þ are to be chosen such that Eqs. (1) and
(2) hold.
This system of coupled differential equations for the

density functions νp and νe in bulk and atmosphere regions
generalizes the single Lane-Emden equation for the poly-
trope of index n ¼ 3

2
, which has only a bulk interior; see

[2,3,16,17].
As for the numerical values of the parameters,

ε ≈ 1=1836 ≈ 5.54 × 10−4 and ζ ≈ 52.185 ℏ
mec

, where ℏ
mec

≈
3.86 × 10−13 m is the electron’s reduced Compton
wavelength. The three ratios of gravitational-to-electrical
coupling constants which appear in the coefficient matrix on
the right-hand sides of Eqs. (10) and (11) are fantastically
tiny numbers, viz. Gm2

e=e2 ≈ 2.40 × 10−43, Gmpme=e2 ≈
4.41 × 10−40, and Gm2

p=e2 ≈ 8.09 × 10−37. All the same,
the three tiny ratios of coupling constants are the only
places where Newton’s constant of universal gravitation,
G, enters the equations, and since it is gravity, not electricity,
which binds the ideal Fermi gases together to form a star,
one cannot neglect these tiny numbers versus 1 in the
cofficients—this would result in a singular coefficient
matrix, and there would not be any nontrivial solution
pair νp; νe.

The nonlinearity of Eqs. (10) and (11), coupled to each
other and to their atmospheric counterparts, stands in the
way of solving them generally in closed form, although one
special elementary solution can be found (see further
below). In principle one can evaluate them numerically
on a computer, but the tiny ratios of the coupling constants
do create problems. Also the small ratio of the masses,
me=mp ≈ 1=1836, is a source of numerical trouble. In this
situation it definitely is prudent to look for a solvable
model, to which we turn next.

III. THE 5=3 → 6=3 APPROXIMATION

Note that we cannot simply replace ν5=3f by ν6=3f , for νf
is not dimensionless. This can be overcome by switching
to dimensionless densities with the help of some reference
density. In the astrophysical literature one often finds the
central density as the reference density, a choice motivated
by seeking a definite initial value problem for the
numerical integration of the Lane-Emden equation on a
computer: the so-normalized dimensionless density takes
the value 1 at r ¼ 0, and its derivative vanishes there. We
will be able to solve the 6=3 model equations explicitly, so
we have no need for such a normalization. Instead, since
the fermionic degeneracy pressure already is expressed
with the microscopic constants ℏ; mp; me, we may as well
now choose as the reference length the electron’s reduced
Compton length ℏ=mec, where c is the speed of light in
vacuum. While this is somewhat unconventional, it is not
unnatural and the resulting formulas are easy to interpret.
Thus we set r≕ ðℏ=mecÞρ and νðrÞ≕ ðmec=ℏÞ3υðρÞ,
and we also set νpðrÞ≕ ðmec=ℏÞ3υpðρÞ and νeðrÞ≕
ðmec=ℏÞ3υeðρÞ. Inserted into the formulas for the
degeneracy pressures, we find ppðrÞ ∝ υpðρÞ5=3 and

peðrÞ ∝ υeðρÞ5=3, and now we can replace υ5=3p by υ6=3p

and υ5=3e by υ6=3e .
This hurdle cleared, we may for the sake of completeness

also introduce dimensionless potential functions through
ϕNðrÞ≕ c2ψNðρÞ and ϕCðrÞ≕ c2 me

e ψCðρÞ, but we will not
need this, given we already have the system of Eqs. (10)
and (11), plus their atmospheric specializations.
As in the 5=3 model we distinguish the regions:

(a) υpðρÞ > 0 and υeðρÞ > 0 (the bulk region),
(b) υpðρÞ > 0 and υeðρÞ ¼ 0 (positive atmosphere),
(c) υpðρÞ ¼ 0 and υeðρÞ > 0 (negative atmosphere).

A. The bulk region

In the bulk region we now have the following coupled
system of linear second-order differential equations for the
density functions υp and υe, which generalizes the single
Lane-Emden equation for the polytrope of index n ¼ 1,
(C7), in the common interior of the charged gases where
both υpðρÞ > 0 and υeðρÞ > 0:
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− ες
1

ρ2
ðρ2υ0pðρÞÞ0

¼ −
�
1 −

Gm2
p

e2

�
υpðρÞ þ

�
1þ Gmpme

e2

�
υeðρÞ; ð12Þ

− ς
1

ρ2
ðρ2υ0eðρÞÞ0

¼
�
1þ Gmpme

e2

�
υpðρÞ −

�
1 −

Gm2
e

e2

�
υeðρÞ: ð13Þ

Here, ς ≔ 32=3π1=3

10
ℏc
e2 ≈ 41.74766.

We now solve the system of Eqs. (12) and (13) explicitly.
A nonsingular system of linear second-order differential
equations has four linearly independent solutions, from
which we have to select the ones compatible with our
physical problem. This is done as follows.
We remark that similar to the Lane-Emden equation for the

polytrope of index n ¼ 1, Eq. (C7), a change of dependent
variables υpðρÞ ↦ ρυpðρÞ≕ χpðρÞ and υeðρÞ ↦ ρυeðρÞ≕
χeðρÞ transforms Eqs. (12) and (13) into a linear second-order
systemwith constant coefficients for χpðρÞ; χeðρÞ, and such a
system (whennot singular) can alwaysbe solvedby the ansatz
χfðρÞ ∝ expðκρÞ, with f standing for either p or e. In terms of
υp; υe this means that the ansatz υpðρÞ ¼ Bp expðκρÞ=ρ and
υeðρÞ ¼ Be expðκρÞ=ρ, with the same κ, will transform the
system of differential equations (12) and (13) into a linear
system of algebraic equations. Indeed, away from ρ ¼ 0 we
have

1

ρ2
d
dρ

�
ρ2

d
dρ

expðκρÞ
ρ

�
¼ κ2

expðκρÞ
ρ

; ð14Þ

and so we obtain the matrix problem

�
1 − Gm2

p

e2 − κ2ες; −1 − Gmpme

e2

−1 − Gmpme

e2 ; 1 − Gm2
e

e2 − κ2ς

��
Bp

Be

�
¼
�
0

0

�
; ð15Þ

here we have placed semicolons in the matrix to facilitate the
identification of the matrix elements. The solvability con-
dition for Eq. (15) is the characteristic equation

det

�
1 − Gm2

p

e2 − κ2ες; −1 − Gmpme

e2

−1 − Gmpme

e2 ; 1 − Gm2
e

e2 − κ2ς

�
¼ 0; ð16Þ

which yields

�
1 −

Gm2
e

e2
− κ2ς

��
1 −

Gm2
p

e2
− κ2ες

�

−
�
1þ Gmpme

e2

�
2

¼ 0; ð17Þ

a quadratic problem in κ2, viz. aκ4 þ bκ2 þ c ¼ 0, with
a ¼ ες2 > 0, b ¼ −ςð1þ ε − Gðεm2

e þm2
pÞ=e2Þ < 0, and

c ¼ −Gðme þmpÞ2=e2 < 0. By the quadratic formula we
have two real solutions,

ðκ2Þ� ¼ −
b
2a

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

ac
b2

r �
; ð18Þ

one of which is positive and the other one negative, with
ðκ2Þþ ≈ 44.0025, and ðκ2Þ− ≈ −1.94025 × 10−38. This now
yields the hyperbolic κh ≔

pðκ2Þþ ≈ 6.63344 and the trigo-
nometric κt ≔ jpðκ2Þ−j ≈ 1.3929 × 10−19. The latter step
obviously generates two imaginary κ values. Converted to
real solutions by taking appropriate linear combinations, the
set of four linear independent solutions consists of one
exponentially growing mode, one exponentially decaying
mode, one sine mode, and one cosine mode, each of them
divided by the independent variable ρ.
Next we recall the well-known fact that Newton’s and

Coulomb’s 1=r potentials correspond to a point source at
r ¼ 0, and this we need to rule out. This means that the
mode cosðκρÞ=ρ is not admissible, while sinðκρÞ=ρ is.
Similarly, only the linear combination of the exponential
modes into the hyperbolic sinhðκρÞ=ρ mode is admissible,
while all other linear combinations are not; in particular the
hyperbolic coshðκρÞ=ρ mode is not admissible.
Thus, the physically admissible general solution of

Eqs. (12) and (13) is of the form (cf. Sec. IV. B in [13])

υpðρÞ ¼ Bh
p
sinhðκhρÞ

ρ
þ Bt

p
sinðκtρÞ

ρ
; ð19Þ

υeðρÞ ¼ Bh
e
sinhðκhρÞ

ρ
þ Bt

e
sinðκtρÞ

ρ
; ð20Þ

where we have added superscripts h and t at the bulk region
coefficients Bp and Be to match with the hyperbolic and
trigonometric modes. Here, the pairs ðBh

p; Bh
e Þ and ðBt

p; Bt
eÞ

are eigenvectors of the coefficient matrix on the left-hand
side of Eq. (15) for the corresponding eigenvalues ðκ2Þ�,
respectively, and so only two of the four bulk coefficients
are independent in the general physical solution. Linear
algebra yields the relationships between Bh

p and Bh
e ,

respectively, between Bt
p and Bt

e, with the results

Bh
e

Bh
p
¼ 1 − Gm2

p

e2 − εςκ2h

1þ Gmpme

e2

≈ −5.45 × 10−4; ð21Þ

Bt
e

Bt
p
¼ 1 − Gm2

p

e2 þ εςκ2t

1þ Gmpme

e2

≈ 1 − 8.09 × 10−37: ð22Þ

We pause for a moment to take in the results obtained.
The trigonometric parts of the general solution obviously

correspond to the n ¼ 1 polytrope of the Lane-Emden
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equation for the single-density approximation, with κt ≈ κ
given by Eq. (C8) to a high degree of accuracy, which in
concert with Eq. (22) confirms that the positive and
negative large scale densities are very well approximated
by the single-density model almost all the way up to the
bulk radius. This confirms by explicit example what
everyone knows already, that the locally neutral single-
density approximation suffices to obtain the bulk structure
of the white dwarf star.
In addition we now have information on the charge

separation effects, which are accounted for by the hyper-
bolic parts of the general solution. These vary significantly
on a very short scale by comparison, and so their ampli-
tudes must be very tiny. Interestingly, the hyperbolic modes
of the positive and negative species have significantly
different bulk amplitudes, roughly corresponding in ratio
to the ratio of the rest masses of electrons and protons.
The remaining two independent bulk amplitudes, say Bh

p

and Bt
p, cannot be fixed with the bulk densities alone; this

requires also the atmospheric densities. By inspecting the
general bulk solution formulas (19) and (20) it is easy to
see, though, that υpðρÞ > 0 can only be achieved with
Bt
p > 0, while Bh

p can take either sign. The analogous
conclusion holds therefore for Bt

e > 0 and Bh
e . As soon as

one or the other density reaches zero, the system of
equations changes to describe the atmospheric region,
unless it happens that both densities reach zero simulta-
neously (the case of no atmosphere; it will be addressed
separately). An atmosphere can be populated either purely
with protons or purely with electrons, yet either version is
determined in a similar manner. We next turn to these
atmospheric cases.

B. The positive atmosphere

In the positive atmosphere the electron density vanishes,
υeðρÞ ¼ 0, while the proton density is still positive,
υpðρÞ > 0, so the electrons’ Eulerian force balance equation
is trivially satisfied, while that for the protons now is given
by (12) with υe ¼ 0, viz.

−ες
1

ρ2
ðρ2υ0pðρÞÞ0 ¼ −

�
1 −

Gm2
p

e2

�
υpðρÞ; ð23Þ

valid for ρ > ρ0, where ρ0 ¼ supfρ∶υeðρÞ > 0g is the
radius of the bulk region. If Gm2

p=e2 would be greater
than 1, Eq. (23) would be a Lane-Emden equation of the
n ¼ 1 polytrope (mathematically speaking). However,
since Gm2

p=e2 is the tiny number it happens to be,
Eq. (23) differs from this Lane-Emden equation by the
sign of its right-hand side. Analogous to solving for the
bulk region, the general solution of (23) now reads

υpðρÞ ¼ Aþ
p
expðϰpρÞ

ρ
þ A−

p
expð−ϰpρÞ

ρ
; ð24Þ

where ϰp > 0 is the positive root of

ϰ2p ¼
10

32=3π1=3
e2

ℏc

mp

me

�
1 −

Gm2
p

e2

�
: ð25Þ

Note that in this expression one may approximate the last
parenthetical factor by 1. Note furthermore that ϰp ≈ 6.63 is
essentially determined by the electrical coupling.
A few comments are in order right now.
First, it could seem reasonable to throw out the expo-

nentially growing mode, but note that a small negative Aþ
p

in concert with a large positive A−
p will result in a υpðρÞ

which rapidly goes to zero in the positive atmosphere
region, so an exponentially growing mode is not a problem
because it would be terminated as soon as the proton
density vanishes.
Second, since ρ > ρ0, there is no reason now to only

allow the linear combination of the exponential modes into
the hyperbolic sine, as was the case in the bulk region
where there would otherwise be a problem at the origin
ρ ¼ 0. Incidentally, equivalent to (24) we may write the
general solution of the positive atmosphere as

υpðρÞ ¼ Aþ
p
coshðϰpρÞ

ρ
þ A−

p
sinhðϰpρÞ

ρ
: ð26Þ

Third, the two atmospheric amplitudes Aþ
p and A−

p are
constrained by the requirement that the proton density
υpðρÞ be continuously differentiable at the boundary ρ ¼ ρ0
of the bulk region, so both are needed in general. We will
get to this shortly.

C. The negative atmosphere

The discussion of the negative atmosphere region mir-
rors the one for the positive atmosphere region, so we may
be brief. While υpðρÞ ¼ 0, the structure equation for υeðρÞ
is given by (13) with υp ¼ 0, viz.

−ς
1

ρ2
ðρ2υ0eðρÞÞ0 ¼ −

�
1 −

Gm2
e

e2

�
υeðρÞ; ð27Þ

valid for ρ > ρ0, where now the radius of the bulk region
is ρ0 ¼ supfρ∶υpðρÞ > 0g.
The general solution of (27) reads

υeðρÞ ¼ Aþ
e
expðϰeρÞ

ρ
þ A−

e
expð−ϰeρÞ

ρ
; ð28Þ

where ϰe > 0 is the positive root of

ϰ2e ¼
10

32=3π1=3
e2

ℏc

�
1 −

Gm2
e

e2

�
: ð29Þ
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Note that ϰ2e ≈
me
mp
ϰ2p, where the “≈” is due to some slight

differences beginning to show 36 decimal places after the
leading digit. Again, also in (29) one may approximate the
last parenthetical factor by 1. Note that also ϰe ≈ 0.155 is
essentially determined by the electrical coupling.
Of course, equivalent to (28) we may also write the

general solution of the negative atmosphere as

υeðρÞ ¼ Aþ
e
coshðϰeρÞ

ρ
þ A−

e
sinhðϰeρÞ

ρ
: ð30Þ

The two atmospheric amplitudes Aþ
e and A−

e are con-
strained by the requirement that the electron density υeðρÞ
be continuously differentiable at the boundary ρ ¼ ρ0 of
the bulk region.
We will now address this matching of a positive or

negative atmosphere to the bulk region.

D. The bulk-atmosphere interface

Having obtained the general physical solution type in the
bulk region and the general physical solution type in the
atmosphere region, which can be either an electron or a
proton atmosphere, we now match these general solutions
at their common bulk-atmosphere interface. Both cases,
positive and negative atmosphere, can be discussed in
parallel.
In the bulk region the two density functions together

feature four amplitudes, but Eqs. (21) and (22) express the
two electron amplitudes in terms of the two pertinent proton
amplitudes, or the other way round. The density function of
the atmosphere-forming species features two further ampli-
tudes in the atmosphere region. It has to vary continuously
differentiably across the boundary ρ0 of the bulk region,
where the other density reaches zero. In each case, whether
the atmosphere consists of protons or of electrons, the
requirement that the atmosphere-forming density function
υfðρÞ is continuously differentiable at the boundary ρ ¼ ρ0
of the bulk region allows us to express the two amplitudes
of the density function υfðρÞ in the atmosphere region in
terms of its two amplitudes in the bulk region.
We explain the procedure using the positive atmosphere

case. The negative atmosphere case is completely analo-
gous, and we will only state its final formulas.
The boundary ρ0 of the bulk region of a white dwarf star

with positive atmosphere is determined by the vanishing of
the right-hand side of (20), and canceling 1=ρ0 this yields

Bh
e sinhðκhρ0Þ þ Bt

e sinðκtρ0Þ ¼ 0; ð31Þ

where Bh
e ∝ Bh

p and Bt
e ∝ Bt

p; see Eqs. (21) and (22). This is
an implicit equation for ρ0, given Bh

e and Bt
e (equivalently,

given Bh
p and Bt

p), which can easily be solved numerically
on a computer, but generally not in a closed form. It should
be noted, though, that Eq. (31) permits Bh

e to vanish [in

which case also Bh
p vanishes by (21)], given any Bt

e > 0

(equivalently, given Bt
p > 0), namely when ρ0 ¼ π=κt. This

is perhaps the only case in which ρ0 is explicitly obtained
from the bulk amplitudes, i.e., from Bh

e ¼ 0. We have
already remarked that only positive trigonometric bulk
amplitudes are permitted, due to the requirement that the
bulk densities must not be negative.
At this point, a change of perspective will yield a

decisive simplification: From Eq. (31) we obtain

Bh
e

Bt
e
¼ −

sinðκtρ0Þ
sinhðκhρ0Þ

: ð32Þ

We will think of (32) as yielding the ratio Bh
e=Bt

e (equiv-
alently, Bh

p=Bt
p) explicitly as a function of ρ0, and hence

treat the interface location ρ0 as an independent
parameter.
Coming now to the matching of atmospheric amplitudes

with the bulk amplitudes, we note that for the protons we
have, first of all, the continuity of their density function
υpðρÞ at ρ ¼ ρ0, which (after canceling 1=ρ0) yields

Bh
p sinhðκhρ0Þ þ Bt

p sinðκtρ0Þ
¼ Aþ

p eϰpρ0 þ A−
p e−ϰpρ0 ; ð33Þ

equivalently,

Bh
p sinhðκhρ0Þ þ Bt

p sinðκtρ0Þ
¼ Aþ

p coshðϰpρ0Þ þ A−
p sinhðϰpρ0Þ: ð34Þ

Second, we need the continuity of the derivative of their
density function υpðρÞ at ρ ¼ ρ0. By the product rule, the
ρ-derivative of each term in the general solution is a sum of
the ρ-derivative of the numerator, divided by ρ, plus the
numerator times the derivative of 1=ρ. Yet all terms
proportional to the derivative of 1=ρ can be grouped
together and, with the help of (33), this group can be seen
to vanish by itself. Thus, and after canceling the remaining
overall factor 1=ρ0, continuity of the ρ-derivative of υpðρÞ at
ρ ¼ ρ0 yields

Bh
pκh coshðκhρ0Þ þ Bt

pκt cosðκtρ0Þ
¼ Aþ

p ϰpeϰpρ0 − A−
p ϰpe−ϰpρ0 ; ð35Þ

equivalently

Bh
pκh coshðκhρ0Þ þ Bt

pκt cosðκtρ0Þ
¼ Aþ

p ϰp sinhðϰpρ0Þ þ A−
p ϰp coshðϰpρ0Þ: ð36Þ

Using either the pair of equations (33) and (35) or the
pair (34) and (36), we can write a linear transformation
from the pair of Bp amplitudes to the pair of Ap amplitudes.
We choose the pair (33) and (35) and obtain
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�
sinhðκhρ0Þ; sinðκtρ0Þ

κh coshðκhρ0Þ; κt cosðκtρ0Þ

��
Bh
p

Bt
p

�

¼
�

expðϰpρ0Þ; expð−ϰpρ0Þ
ϰp expðϰpρ0Þ; −ϰp expð−ϰpρ0Þ

��
Aþ
p

A−
p

�
: ð37Þ

This linear transformation is valid as long as the left- (and
therefore the right-)hand side of Eq. (33) is strictly positive,
as required for having a positive atmosphere.
We note that the determinant of the coefficient matrix at

the right-hand side of Eq. (37) equals −2ϰp < 0, and
therefore the matrix is always invertible and the pair
ðAþ

p ; A−
p Þ is uniquely given by (37) in terms of the pair

ðBh
p; Bt

pÞ, for any physically meaningful choice of ρ0 > 0.
How to choose the physically meaningful ρ0 wework out in
the next subsection. But first we list the analogous formulas
for the case of a star with a negative atmosphere.
The pertinent formulas are easily obtained from the

formulas of the positive atmosphere setting. Thus, given
Bh
p=Bt

p (equivalently, given Bh
e=Bt

e), from the vanishing of
the right-hand side of (19), and after canceling 1=ρ0, we
obtain

Bh
p

Bt
p
¼ −

sinðκtρ0Þ
sinhðκhρ0Þ

: ð38Þ

Moreover, we now obtain the linear relationship

�
sinhðκhρ0Þ; sinðκtρ0Þ

κh coshðκhρ0Þ; κt cosðκtρ0Þ

��
Bh
e

Bt
e

�

¼
�

expðϰeρ0Þ; expð−ϰeρ0Þ
ϰe expðϰeρ0Þ; −ϰe expð−ϰeρ0Þ

��
Aþ
e

A−
e

�
ð39Þ

between the Be and Ae amplitudes. This linear trans-
formation is valid as long as υeðρ0Þ > 0, as required for
having a negative atmosphere.

E. Two intervals of admissible ρ0 values

By now we have determined the density functions υpðρÞ
and υeðρÞ of the two-species 6=3 model uniquely in terms
of three parameters: (i) a choice of sign, as to whether the
positive or negative species defines the bulk radius, (ii) the
location ρ0 of the interface between the bulk region and
atmosphere, and (iii) the positive trigonometric bulk
amplitude Bt of the species defining the bulk radius.
However, the resulting solution may not be integrable to
yield the finite total number of particles Np and Ne. The
requirement that it should determines the physically
allowed interval of ρ0 values in the positive and negative
amplitude situation. We note that similar to the n ¼ 1
polytropic single-density model, the value of the trigono-
metric amplitude Bt > 0 is chosen independently of ρ0.

Again, having the answer worked out for the case of a
star with a positive atmosphere, the answer for a star with a
negative atmosphere will follow analogously.
Therefore, assume that the star has a positive atmos-

phere. Then ρ0 is the point where the electron bulk density
υeðρÞ has declined to zero. We already know from our
discussion that the trigonometric mode of the bulk regime
essentially captures the density distribution, so Bt

e > 0.
Moreover, from (32) we see that Bh

e < 0 if ρ0 < π=κt, and
Bh
e > 0 if ρ0 > π=κt, with Bh

e ¼ 0 if ρ0 ¼ π=κt. By (21) and
(22), then also Bt

p > 0, while Bh
p and Bh

e have opposite
signs, except when both vanish.
Of course, the case ρ0 ¼ π=κt which leads to Bh

e¼0¼Bh
p

is the case without atmosphere at all, and the bulk densities
υpðρÞ and υeðρÞ are then given by essentially the same
Lane-Emden n ¼ 1 polytrope as in the single-density
approximation, Eq. (C9), except for minute differences
in the parameter values. Therefore, to have a nonempty
atmosphere we need to consider ρ0 ≠ π=κt. In fact, we will
need ρ0 < π=κt.
Indeed, if ρ0 < π=κt, then since Bt

e > 0 we have Bh
e < 0

by (32), and therefore now both Bt
p > 0 and Bh

p > 0, by
(21) and (22). Now, by assumption υeðρ0Þ ¼ 0, but υpðρ0Þ
is the same linear combination of the Bp amplitudes as
υeðρ0Þ is of the Be amplitudes, with Bt

p ≈ Bt
e > 0 yet Bh

p>0

while Bh
e < 0, and so we conclude that υpðρ0Þ > 0, as

claimed.
Proceeding analogously when ρ0 > π=κt, we find that

now both Bt
e > 0 and Bh

e > 0 by (32), and therefore now
Bt
p > 0while Bh

p < 0. Thus, since by assumption υeðρ0Þ¼0

with two positive amplitudes, the left-hand side of (19) with
one positive and one negative amplitude evaluated at ρ0 is
actually negative, in violation of the requirement that
particle densities cannot be negative. Thus a positive
atmosphere is not possible with ρ0 > π=κt, which cannot
be a zero of υeðρÞ in the bulk.
Next, since υpðρ0Þ > 0 in the case of a positive-

atmosphere star, it is clear that Aþ
p and A−

p cannot both
be (strictly) positive or both be negative: two negative Ap

amplitudes cannot produce a strictly positive particle
atmospheric density. Two strictly positive Ap amplitudes
do yield a positive particle density, but this density grows
rapidly beyond any upper bound and cannot integrate to a
finite particle number. On the other hand, the combination
Aþ
f ≤0 and A−

f > 0 is manifestly admissible, for it will
always lead to an atmospheric density function υfðρÞ which
is integrable.
We now rule out the combination Aþ

f > 0 and A−
f < 0. It

suffices to discuss one of these cases, for the other follows
by analogy.
Thus, consider the positive atmosphere. Suppose Aþ

p > 0

and A−
p < 0. Recall that ρ > ρ0 in the atmosphere, and that

ρ0 ≈ π=κt ≫ 1 is huge. Now ϰp ≈ 6.6, so ϰpρ ≫ 1 is also
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huge, and therefore the function ρ ↦ ðAþ
p eϰpρ þ

A−
p e−ϰpρÞ=ρ is increasing for all ρ > ρ0. Since it has to

be positive at ρ ¼ ρ0, it cannot be integrable over ρ > ρ0,
which finishes the argument.
A similar reasoning rules out the combination Aþ

e > 0
and A−

e < 0. Even though ϰe ≈ 0.155 is smaller than 1, ϰeρ
is still so huge for ρ > ρ0 that the function ρ ↦ ðAþ

e eϰeρ þ
A−
e e−ϰeρÞ=ρ is increasing for all ρ > ρ0.
This proves that Aþ

f > 0 & A−
f < 0 is not allowed.

Thus the only possible combinations are Aþ
f ≤ 0 and

A−
f > 0. The extremal case Aþ

p ¼ 0 and A−
p > 0 defines the

lower limit ρ−0 of the bulk boundary ρ0 if ρ0 is the zero of
υeðρÞ. It is straightforward to work out the equation
defining ρ−0 , and while it contains only simple elementary
functions, it is transcendental and cannot be solved in
closed form. However, because of the fantastically tiny
ratios of the gravitational to electric coupling constants, a
very accurate approximate expression for ρ−0 can be found
in terms of simple elementary functions (see our subsection
to this subsection below). It reads

ρ−0 ≈
π

κt
−

1

ð1 − qÞϰp − qκh
; ð40Þ

where

q ¼ 1 − Gm2
p

e2 þ εςκ2t

1 − Gm2
p

e2 − εςκ2h
≈ −1836: ð41Þ

Note that κtρ
þ
0 is just barely smaller than π.

The discussion for a negative-atmosphere star mirrors
the one for the positive-atmosphere star. Thus the
only allowed combinations are Aþ

e ≤ 0 and A−
e > 0.

Analogously to our computation in the positive atmosphere
case we now find (see below)

ρþ0 ≈
π

κt
−

q
ðq − 1Þϰe − κh

; ð42Þ

also κtρ
þ
0 is just barely smaller than π.

We summarize: The bulk radii ρ�0 are defined as the
smallest possible zeros of the positive, respectively, neg-
ative species in a solution pair. The ranges ½ρ�0 ; π=κt� of
possible bulk radii are very tiny intervals to the left of the
no-atmosphere value ρ0 ¼ π=κt, relative to that value. No
bulk radius is bigger than π=κt. Since κt agrees nearly
perfectly with the single-density model value κ given by
(C8), the bulk radii of all the failed white dwarf stars in the
5=3 → 6=3 approximation are essentially given by (C10).
However, the atmosphere of a star can nevertheless be very
extended. In particular, in the two extreme cases the
atmosphere extends all the way out to infinity, yet with
its density approaching zero exponentially fast.

1. Computing ρ�0
In the case of an extreme negative atmosphere, ρþ0 <

π=κt is determined by the matching of the bulk part of υeðρÞ
with its atmospheric part in the limiting case where Aþ

e ¼ 0.
So from (39) we obtain

�
sinhðκhρ0Þ; sinðκtρ0Þ

κh coshðκhρ0Þ; κt cosðκtρ0Þ

��
Bh
e

Bt
e

�

¼ A−
e e−ϰeρ0

�
1

−ϰe

�
; ð43Þ

and these are two different equations for A−
e expð−ϰeρ0Þ.

Elimination of A−
e expð−ϰeρ0Þ now yields, after some

simple manipulations,

Bh
e

Bt
e
sinhðκhρ0Þ þ sinðκtρ0Þ

¼ −
κh
ϰe

Bh
e

Bt
e
coshðκhρ0Þ −

κt
ϰe

cosðκtρ0Þ: ð44Þ

With the help of Eqs. (21), (22), and (38) we find

Bh
e

Bt
e
¼ −

1

q
sinðκtρ0Þ
sinhðκhρ0Þ

; ð45Þ

with q given in (41). Note that (45) is not in contradiction to
(32), for (45) holds for the extreme negative atmosphere,
while (32) holds for any positive atmosphere. Substituting
(45) in (44), dividing by sinðκtρ0Þ, and reshuffling now
yields

ðq − 1Þϰe ¼ κh cothðκhρ0Þ − qκt cotðκtρ0Þ ð46Þ

for the lower limit ρþ0 < π=κt of the zero of the bulk density
υpðρÞ. Since coth is a monotonic decreasing function on the
positive real line and cot is a monotonic decreasing function
on its first positive period, and since q < 0, we see that the
right-hand side of (46) is a strictly monotonic decreasing
function in the interval 0 < κtρ0 < π; thus it has a unique
solution ρþ0 . With the values of the parameters q, κt, κh, and
ϰe as given, this solution is in the left vicinity of ρ0 ¼ π=κt.
Recall that κh ≈ 6.6 and κt ≈ 2 × 10−19. Thus, if κtρ

þ
0 ≈ π,

then κhρ
þ
0 ≫ π is huge, and then cothðκhρþ0 Þ ≈ 1 asymp-

totically exact, with exponentially small corrections.
Moreover, in the left vicinity of ρ0 ¼ π=κt we have
cotðκtρ0Þ ≈ 1=ðκtρ0 − πÞ < 0 asymptotically exact, and
this yields (42).
Analogously we handle the case of an extreme positive

atmosphere, where ρ−0 < π=κt is determined by the match-
ing of the bulk part of υpðρÞ with its atmospheric part in the
limiting case where Aþ

p ¼ 0. This time
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Bh
p

Bt
p
¼ −q

sinðκtρ0Þ
sinhðκhρ0Þ

; ð47Þ

with q given in (41). Also (47) is not in contradiction to
(38), for (47) holds for the extreme positive atmosphere,
while (38) holds for any negative atmosphere. We find

ð1 − qÞϰp ¼ qκh cothðκhρ0Þ − κt cotðκtρ0Þ ð48Þ

for the lower limit ρ−0 < π=κt of the zero of the bulk υeðρÞ.
The right-hand side of (48) is a strictly monotonic increas-
ing function in ρ0 in the first positive period of the cot
function, with a solution in the left vicinity of ρ0 ¼ π=κt.
Using that κhρ0 ≫ π is huge we again can set cothðκhρ0Þ≈1
asymptotically exact, with exponentially small corrections.
Moreover, in the left vicinity of ρ0 ¼ π=κt we have
cotðκtρ0Þ ≈ 1=ðκtρ0 − πÞ < 0 asymptotically exact, and
this now yields (40).

F. Computing the ratio Ne=Np as function of ρ0
As in any set of homogeneous linear equations, so also in

the 6=3 model there is an amplitude invariance; i.e., if
ðνp; νeÞ is a solution pair, then so is ðλνp; λνeÞ for any λ
(with λ > 0 to be meaningful). Therefore there is no such
thing as the number of protons Np and the number of
electrons Ne associated with a solution. Incidentally,

although any total number of particles is mathematically
allowed in this linear model, as explained in the
Introduction, a failed white dwarf is a low-mass star,
and since the mass is essentially given by the number of
protons, Np should be restricted to about 1.5 × 1055 to
9 × 1055 protons to be physically meaningful.
The ratio Ne=Np is a well-defined quantity associated

with any solution pair ðνp; νeÞ, though. Given the choice of
either a positive or a negative atmosphere, the ratio Ne=Np

is uniquely determined by the allowed values of the bulk
boundary location ρ0. Its computation as a function of ρ0
can be effected by directly integrating the explicit solutions
parametrized by ρ0. Yet it is easier to work directly with the
differential equations.
Starting with the case of a negative atmosphere, we

multiply Eq. (13) with 4πρ2 and integrate from 0 to ρe,
obtaining

ς4πρ2eυ
0
eðρeÞ ¼

�
1−

Gm2
e

e2

�
Ne −

�
1þGmpme

e2

�
Np; ð49Þ

where υ0eðρeÞ is the left derivative of υeðρÞ at ρ ¼ ρe. We
next complement (49) by deriving its counterpart for the
positive species. Thus we multiply Eq. (12) with 4πρ2 and
integrate from 0 to ρ0, obtaining

−ες4πρ20υ0pðρ0Þ ¼ −
�
1 −

Gm2
p

e2

�
Np þ

�
1þGmpme

e2

�Z
ρ0

0

υeðρÞ4πρ2dρ: ð50Þ

Here, υ0pðρ0Þ is the left derivative of υpðρÞ at ρ ¼ ρ0. Noting that
R ρ0
0 υeðρÞ4πρ2dρþ

R
ρe
ρ0

υeðρÞ4πρ2dρ ¼ Ne, we multiply
Eq. (27) with 4πρ2 and integrate from ρ0 to ρe, the point where υeðρÞ has decreased to zero. This yields

4πςðρ20υ0eðρ0Þ − ρ2eυ
0
eðρeÞÞ ¼ −

�
1 −

Gm2
e

e2

�Z
ρe

ρ0

υeðρÞ4πρ2dρ: ð51Þ

Now we multiply (51) by ð1þ Gmpme

e2 Þ=ð1 − Gm2
e

e2 Þ and subtract the result from (50), which yields

4πς

�
ðρ20υ0eðρ0Þ − ρ2eυ

0
eðρeÞÞ

1þ Gmpme

e2

1 − Gm2
e

e2

þ ερ20υ
0
pðρ0Þ

�
¼
�
1 −

Gm2
p

e2

�
Np −

�
1þ Gmpme

e2

�
Ne: ð52Þ

Equations (49) and (52) form a linear system forNp andNe in terms of their coefficients and their left-hand sides. This linear
system is easily solved formally for Np and Ne, from which we obtain Ne=Np. Symbolically,

�
Np

Ne

�
¼ 4πς

 
1 − Gm2

p

e2 ; −1 − Gmpme

e2

−1 − Gmpme

e2 ; 1 − Gm2
e

e2

!−1
0
B@ ðρ20υ0eðρ0Þ − ρ2eυ

0
eðρeÞÞ

1þGmpme

e2

1−Gm2
e

e2

þ ερ20υ
0
pðρ0Þ

ρ2eυ
0
eðρeÞ

1
CA; ð53Þ

and the inverse matrix is easily computed as
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1 − Gm2

p

e2 ; −1 − Gmpme

e2

−1 − Gmpme

e2 ; 1 − Gm2
e

e2

!−1

¼ e2

Gðmp þmeÞ2
 

−1þ Gm2
e

e2 ; −1 − Gmpme

e2

−1 − Gmpme

e2 ; −1þ Gm2
p

e2

!
: ð54Þ

This gives ðNp; NeÞ uniquely in terms of the zeros of the densities and the derivatives at the zeros. Recall, though, that a
choice of the sign of the atmosphere (negative in this case) plus a choice of ρ0 do not uniquely determine a solution pair, by
the linearity of the equations. If ðυp; υeÞ is a solution pair, then so is ðλυp; λυeÞ, and this changes the derivatives ðυ0p; υ0eÞ to
ðλυ0p; λυ0eÞ everywhere, and hence also ðNp; NeÞ to ðλNp; λNeÞ. Therefore (53) does not yield ðNp; NeÞ uniquely as a function
of ρ0 and the sign of the atmosphere. However, the fraction Ne=Np is scaling-invariant, and uniquely given as a function of
ρ0 and the sign of the atmosphere. It reads

Ne

Np
¼
�
1 −

ρ2eυ
0
eðρeÞ GðmpþmeÞ2

e2

ρ20υ
0
eðρ0Þð1þ Gmpme

e2 Þ2 þ ερ20υ
0
pðρ0Þð1 − Gm2

e
e2 Þð1þ

Gmpme

e2 Þ

�
1þ Gmpme

e2

1 − Gm2
e

e2

: ð55Þ

Next we compute the pertinent derivatives at ρ0 and ρe ¼ ð1=2ϰeÞ lnð−A−
e =Aþ

e Þ. We find

υ0eðρeÞ ¼ 2Aþ
e ϰe

expðϰeρeÞ
ρe

; ð56Þ

υ0eðρ0Þ ¼
�
ϰe −

1

ρ0

�
Aþ
e
expðϰeρ0Þ

ρ0
−
�
ϰe þ

1

ρ0

�
A−
e
expð−ϰeρ0Þ

ρ0
; ð57Þ

υ0pðρ0Þ ¼ Bh
pκh

coshðκhρ0Þ
ρ0

þ Bt
pκt

cosðκtρ0Þ
ρ0

: ð58Þ

Since the derivatives of the densities enter linearly at the numerator and at the denominator of (55), the expression (55) is a
manifestly amplitude-scaling invariant. Thus (55) is an explicit formula for Ne=Np as a function of ρ0 in the negative
atmosphere regime. We note that the term in square parentheses is smaller than 1, yet it converges upward to 1 when
ρ2eυ

0
eðρeÞ → 0 and ρ0 ↘ ρþ0 . In that case Ne=Np reaches its upper limit given by the right-hand side of (66).
In a similar manner we can treat the case of a positive atmosphere and find

Ne

Np
¼
�
1 −

ερ2pυ
0
pðρpÞ GðmpþmeÞ2

e2

ερ20υ
0
pðρ0Þð1þ Gmpme

e2 Þ2 þ ρ20υ
0
eðρ0Þð1 − Gm2

p

e2 Þð1þ
Gmpme

e2 Þ

�−1
1 − Gm2

p

e2

1þ Gmpme

e2

: ð59Þ

The pertinent derivatives at ρ0 and ρp ¼ ð1=2ϰpÞ lnð−A−
p =Aþ

p Þ read

υ0pðρpÞ ¼ 2Aþ
p ϰp

expðϰpρpÞ
ρp

; ð60Þ

υ0pðρ0Þ ¼
�
ϰp −

1

ρ0

�
Aþ
p
expðϰpρ0Þ

ρ0
−
�
ϰp þ

1

ρ0

�
A−
p
expð−ϰpρ0Þ

ρ0
; ð61Þ

υ0eðρ0Þ ¼ Bh
eκh

coshðκhρ0Þ
ρ0

þ Bt
eκt

cosðκtρ0Þ
ρ0

: ð62Þ

Again all amplitudes are proportional to Bt
p (equiva-

lently, Bt
e), which actually cancels out from (59). Thus (59)

is an explicit formula for Ne=Np as a function of ρ0 in the
positive atmosphere regime. We note that the term in square
parentheses is smaller than 1, yet it converges upward to 1
when ρ2pυ

0
pðρpÞ → 0 and ρ0 ↘ ρ−0 . In that case Ne=Np

reaches its lower limit given by the left-hand side of (66).

Consistency check: when ρ0 ¼ π=κt, then ρe ¼ ρp ¼ ρ0,
and both (59) and (55) reduce to

Ne

Np
¼

υ0eðπκtÞð1 −
Gm2

p

e2 Þ þ ευ0pðπκtÞð1þ
Gmpme

e2 Þ
υ0eðπκtÞð1þ

Gmpme

e2 Þ þ ευ0pðπκtÞð1 −
Gm2

e
e2 Þ

; ð63Þ
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with the derivatives reducing to υ0eðπκtÞ ¼ −Bt
eκ

2
t =π

and υ0pðπκtÞ ¼ −Bt
pκ

2
t =π. Now factoring out υ0eðπκtÞ from

both numerator and denominator produces the ratio
υ0pðπκtÞ=υ0eðπκtÞ ¼ Bt

p=Bt
e [cf. (78)], which can be read from

(22). From this expression one then finds that in this special
no-atmosphere case the ratio Ne=Np < 1.
Equations (55) and (59) are easy to implement on a

computer. We used them to generate Figs. 3 and 5.

G. The interval of allowed Ne=Np ratios

We now ask: “What does the 6=3 model say about the
possible numbers of electrons per proton, Ne=Np, in a
failed white dwarf?” (cf. [22]).
Since the successful single-density models are based on

the local neutrality approximation, which impliesNp ¼ Ne,
one should expect that any nonneutral pair ðNp; NeÞ will
have a ratio Ne=Np ≈ 1 to a high degree of precision.
It is clear that the extreme values of the ratio Ne=Np will

be obtained by inserting the extremal values ρ�0 for ρ0 into
the Ne=Np formulas, which we have already computed as
an elementary function of ρ0. However, to obtain these
extreme ratios we can resort to a simpler argument (cf. [22])
for which we here can use that we have full knowledge of
the solution family of the 6=3 model.
Namely, consider the extreme case of a star with negative

atmosphere, i.e., ρ0 ¼ ρþ0 . We multiply Eq. (13) by 4πρ2

and integrate over ρ from 0 to ∞. [Strictly speaking,
Eq. (13) is a priori only valid inside the bulk region, but
comparison with the atmospheric equation (27) reveals that
we can extend (13) to all ρ by noting that υpðρÞ ¼ 0 for
ρ ≥ ρþ0 .] Using that

R
υpðρÞd3ρ ¼ Np and

R
υeðρÞd3ρ ¼

Ne, and using that υ0eð0Þ ¼ 0 and that υ0eðρÞ → 0 exponen-
tially fast when ρ → ∞, we obtain

0 ¼
�
1þGmpme

e2

�
N−

p −
�
1 −

Gm2
e

e2

�
N−

e ; ð64Þ

where the negative superscript at Np and Ne indicates an
extreme negative atmosphere case. Similarly, consider the
extreme case of a star with positive atmosphere, i.e.,
ρ0 ¼ ρ−0 . We multiply Eq. (12) by 4πρ2 and integrate over
ρ from 0 to ∞; again we extend also Eq. (12) to all ρ by
noting that υeðρÞ ¼ 0 for ρ ≥ ρ−0 . Using once again thatR
υpðρÞd3ρ ¼ Np and

R
υeðρÞd3ρ ¼ Ne, and using now that

υ0pð0Þ ¼ 0 and that υ0pðρÞ → 0 exponentially fast when
ρ → ∞, we obtain

0 ¼ −
�
1 −

Gm2
p

e2

�
Nþ

p þ
�
1þ Gmpme

e2

�
Nþ

e ; ð65Þ

where the positive superscript at Np and Ne indicates an
extreme positive atmosphere case. From Eqs. (64) and (65)
we now obtain the allowed range of ratiosNe=Np in the 6=3
model as

1 − Gm2
p

e2

1þ Gmpme

e2

≤
Ne

Np
≤
1þ Gmpme

e2

1 − Gm2
e

e2

: ð66Þ

We have boxed formula (66), for it will turn out to be
“universal,” in a sense we will explain next.
Note that the bounds (66) are independent of ℏ and c.

IV. “UNIVERSALITY” OF THE Ne=Np BOUNDS

We will present a compelling argument for why (66) is
the correct Ne=Np interval for a failed white dwarf star
made of protons and electrons, and not merely in the
nonrelativistic theory.
In the 6=3 model the two extreme values of Ne=Np are

attained by the only two solutions which extend all the way
out to spatial infinity, and the densities of the infinitely
extended extremal atmospheres decay faster than exponen-
tially to zero when the radial variable goes to infinity. All
other solutions have density function pairs ðνpðrÞ; νeðrÞÞ
which have finite radial extent and a Ne=Np ratio sand-
wiched between the bounds in (66). This suggests that also
among all the solutions of the structure equations of the
physically more realistic models the solutions with an
extreme surplus of charge are those which have one of their
two density functions extend to spatial infinity, approaching
zero sufficiently rapidly together with its radial derivative so
that some surface integrals vanish in the limit—note that we
cannot expect a decay to zero to be exponentially fast or even
faster; this is a model-specific detail. We will now confirm
this. The gist of the discussion can also be found in [22].

A. Proof that an atmospheric density has to reach zero
with zero slope to saturate the bounds (66)

For simplicity we present the proof for the 5=3 model,
but it will be clear from the proof how to adjust it to also
apply to the special-relativistic failed white dwarf model.
Starting with the case of a negative atmosphere, we

multiply Eq. (11) with 4πr2 and integrate from 0 to re, the
point where the density νeðrÞ reaches 0, obtaining

4πζr2eν
2
3
e
0ðreÞ¼

�
1−

Gm2
e

e2

�
Ne−

�
1þGmpme

e2

�
Np: ð67Þ

Since ν0eðreÞ is the left derivative of νeðrÞ at the point re,
and since an otherwise positive function cannot reach 0

with a positive slope, it follows that ν
2
3
e
0ðreÞ ≤ 0, and so

Ne

Np
≤
1þ Gmpme

e2

1 − Gm2
e

e2

; ð68Þ

which is the upper bound on Ne=Np given in (66). We
abbreviate the right-hand side of (68) by ðNe=NpÞ−. In the
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limit in which the upper bound is saturated, from (67) we
now obtain

lim
Ne
Np
↗ðNe

Np
Þ−
r2eν

2
3
e
0ðreÞ ¼ 0; ð69Þ

where we consider re as a function of Ne=Np. Since here

re > rp > 0, it follows that ν
2
3
e
0ðreÞ → 0 in the limit.

In a completely analogous manner we obtain in the case
of a positive atmosphere that

4πεζr2pν
2
3
p
0ðrpÞ ¼

�
1 −

Gm2
p

e2

�
Np −

�
1þGmpme

e2

�
Ne;

ð70Þ

from which we deduce that

Ne

Np
≥

1 − Gm2
p

e2

1þ Gmpme

e2

; ð71Þ

which is the lower bound on Ne=Np given in (66).
Abbreviating the right-hand side of (71) by ðNe=NpÞþ,
in the limit in which the lower bound is saturated, from (70)
we now obtain

lim
Ne
Np
↘ðNe

Np
Þþ
r2pν

2
3
p
0ðrpÞ ¼ 0; ð72Þ

where we consider rp as a function of Ne=Np. Since now

rp > re > 0, it follows that ν
2
3
p
0ðrpÞ → 0 in the limit.

B. Proof that the atmosphere of an extremely
surcharged solution is infinitely extended

Consider an extremal solution with negative atmosphere.
We have just seen that both νeðreÞ ¼ 0 and ν0eðreÞ ¼ 0.
Now suppose re < ∞. Then by a familiar uniqueness result
for (11), and using that νpðrÞ ¼ 0 for rp < r < re in a
negative-atmosphere star, it now follows that νeðrÞ ¼ 0 for
all r > rp. But this violates the negative-atmosphere
hypothesis which says that νeðrÞ is strictly positive for
rp ≤ r < re. Hence an extremal negative atmosphere
extends to infinity.
The analogous conclusion holds for an extremal positive

atmosphere.

C. Existence of extremely surcharged solutions

The arguments presented in the previous two subsections
establish that any extremely surcharged solution must be
infinitely extended, and that in the limit where the radial
variable goes to infinity, the derivative of the atmospheric
density must vanish very rapidly [see (69) and (72)].

It remains to show that such extremely surcharged solutions
do exist. Of course, we are only interested in solutions with
a finite total mass.
Here is the argument, which involves continuous

dependence of solutions on the data, plus a priori bounds.
We already established the existence of the no-atmosphere
solution, where both densities go to zero at the same
distance from the center. Both densities, in this case, are
rescaled standard n ¼ 3=2 polytropes.
Note that the central electron density is smaller than the

central proton density. Now, keeping the central density of
the protons fixed, start lowering the central density of the
electrons. Considering the system of ordinary differential
equations for the densities as an initial value problem at the
origin, with vanishing slope, one can extract the informa-
tion that the electron density function decreases together
with its central density, and so its zero now moves to the
left, while the proton density increases and its zero moves
to the right. Thus Ne decreases and Np increases. The ratio,
of course, can never violate the a priori bounds in (66), and
so, given the opposite monotonicity of the particle num-
bers, Np in particular cannot increase to infinity, and Ne

cannot decrease to zero. How far can one push this?
Answer: As long as both densities hit zero with a finite
slope, one can continue into the neighborhood of the
solution to find a new solution. This process can therefore
be continued until the slope of the proton density vanishes
when the proton density reaches zero. As shown already,
this can happen only if the proton density vanishes only at
infinity.
In a similar manner one can proceed keeping the central

electron density fixed and lowering the central proton
density. This leads to a sequence of decreasing Np and
increasing Ne, which can be continued until the electron
density extends all the way to infinity, with a vanishing
slope at infinity.
We still need to show that in either of these borderline

cases the density vanishes sufficiently rapidly so that (69)
and (72) hold. So suppose this would not hold. Then (and
assuming convergence here, for simplicity) in the case of
the negative atmosphere we necessarily have that
r2 d

dr ν
2=3
e ðrÞ → C < 0 for r → ∞; this implies that νeðrÞ ∼

1=r3=2 for r → ∞, but such a νeðrÞ is not integrable at∞, in
violation of the fact that we know that Ne < ∞ and
Np < ∞. Similarly one can rule out that r2 d

dr ν
2=3
p ðrÞ →

C < 0 for r → ∞ for the positive atmosphere case. This
shows that (69) and (72) do hold.
This establishes the existence of two extremal atmos-

phere solutions in the 5=3 model, satisfying (69), respec-
tively, (72).
But then we can multiply Eq. (11) by 4πr2 and integrate

over r from 0 to ∞, with the understanding that νpðrÞ ¼ 0

for r ≥ rp. Using that r2 d
dr ν

2=3
e ðrÞ → 0 for r → ∞, the

result of this integration is again Eq. (64). Similarly we can
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proceed in the case of an extreme positive atmosphere, and
once again find Eq. (65).
Thus our bounds (66) are also valid when working with

the proper 5=3 power law of the nonrelativistic degeneracy
pressures of the protons and the electrons, as claimed.

D. Relativity

Our discussion of the 5=3 model can be adapted to the
special-relativistic setting in the manner done by
Chandrasekhar [2] for the single-density model, which in
the structure equations (10) and (11) changes the ν2=3f into
some nonlinear function of νf that interpolates continu-

ously between ν2=3f and ν1=3f . Explicitly, introducing

Pf ¼ ð1=24π2Þm4
fc

5=ℏ3 and lf ¼ ð3π2Þ1=3ℏ=mfc, and
kf ¼ mfc2=4πe2, the nonrelativistic pressure law (9) gets
replaced with the somewhat intimidating expression

pfðrÞ ¼ Pflfν
1=3
f ðrÞð2l2

fν
2=3
f ðrÞ − 3Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

fν
2=3
f ðrÞ

q
þ sinh−1ðlfν

1=3
f ðrÞÞ: ð73Þ

Wherever both νpðrÞ > 0 and νeðrÞ > 0 one can follow the
same steps used in the derivation of (10) and (11) to get

− kp
1

r2
d
dr

�
r2

d
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

pν
2=3
p ðrÞ

q �

¼ −
�
1 −

Gm2
p

e2

�
νpðrÞ þ

�
1þ Gmpme

e2

�
νeðrÞ; ð74Þ

− ke
1

r2
d
dr

�
r2

d
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

eν
2=3
e ðrÞ

q �

¼
�
1þGmpme

e2

�
νpðrÞ −

�
1 −

Gm2
e

e2

�
νeðrÞ: ð75Þ

All the same, the integration of the pertinent structure
equations will always produce Eqs. (64) and (65), and
therefore (66).
There is one caveat to what we just said, and that is that

we have tacitly assumed that we stay away from the
Chandrasekhar mass ∝ ðℏc=GÞ32=m2

p. However, since we
are only discussing failed white dwarfs, which are low-
mass stars, with Np restricted to about 1.5 × 1055–9 × 1055

protons, we certainly are on the safe side.
All our results so far are based on Newtonian gravity,

though. We suspect that (66) also holds general relativis-
tically, again for failed white dwarfs whose mass is far
away from any critical mass beyond which no stellar
equilibrium is possible in a general-relativistic setting.
To show this in the detailed manner as done for the
nonrelativistic, and by analogy special-relativistic models,
is a more complicated problem which requires the dis-
cussion of the Einstein field equations coupled with both

the matter equations for the Fermi gases and the Maxwell
equations of the electrostatic field in curved spacetime;
cf. [9,10,14]. We plan to do this in a future work. Here we
are content with the remark that the key argument in our
derivation of (66) is the behavior of the atmospheric
densities at spatial infinity, and in an asymptotically flat
spacetime this is the region where the general-relativistic
equations are expected to go over into the nonrelativistic
equations of Newtonian physics—hence the independence
of ℏ and c, and our conjecture that (66) is truly universally
valid for failed white dwarfs which never ignited, and
assumed to consist of electrons and protons.
More realistic models of ground states of failed white

dwarfs and white dwarfs (black dwarfs) require other
compositions of particles, not just electrons and protons,
and this will, of course, change the bounds on the excess
charge in terms of nuclear-chemical composition. It is an
interesting question whether they will be independent
of ℏ and c, all the way up to Chandrasekhar’s critical
mass, ∝ ðNe=NnÞ2ðℏc=GÞ32=m2

p, where Nn is the number of
nucleons in the star.

E. Other pressure-density relations

It is clear from our discussion so far that the key to (66) is
the existence of infinitely extended density solutions which
vanish rapidly at infinity such that (analogs of) (69),
respectively, (72) hold, where the ν2=3f at the left-hand side
is replaced by some nonlinear function of νf obtained from
any pressure-density law which leads to solutions which are
integrable. This is a large class of models which all lead to
the same surcharge bounds for a failed star, which then is not
necessarily considered to be in thewhite dwarf stage already.
There are also many laws which do not produce solutions

with finite Np and Ne; e.g., polytropic laws with index
n > 5. Also the isothermal pressure law with finite temper-
ature will not lead to integrable density functions. Yet there
is an analog of (66); see Appendix B.

V. DETERMINING Np AND Ne OF
NONEXTREMAL SOLUTIONS

Having numerically computed a solution pair for the
nonlinear 5=3 model or the special-relativistic model, the
number of protons Np and electrons Ne of the solution can,
of course, be obtained by integrating 4πr2νpðrÞ over r from
0 to rp, and 4πr2νeðrÞ over r from 0 to re. However, there is
a simpler way to get to these numbers directly after
integrating the differential equations, in the manner done
earlier for the 6=3 model.
Thus, for the 5=3 model, we obtain ðNp; NeÞ uniquely in

terms of the zeros of the densities and the derivatives at the
zeros by simply replacing υ0fðρÞ by 5

4
ðυ2=3f Þ0ðρÞ in Eq. (53),

f ¼p or e, where we have tacitly switched to the dimen-
sionless variables of the 6=3 model. So when solving the

ELECTRICALLY NONNEUTRAL GROUND STATES OF STARS PHYS. REV. D 103, 043004 (2021)

043004-15



system of equations for ðυp; υeÞ as an initial value problem
with prescribed central densities and vanishing central
radial derivatives, all one needs to compute are the zeros
of the densities and their left derivatives at the zeros. This
reduces the computational effort.
In an analogous manner one can compute ðNp; NeÞ uni-

quely in terms of the zeros of the densities and the
derivatives at the zeros for the special-relativistic
Chandrasekhar-type setup.

VI. COMPARISON OF THE MODELS

Having a complete set of solution formulas for the 6=3
model one can generate figures which illustrate the find-
ings, and compare these with the results of numerical
evaluations of the 5=3 model and also with the
Chandrasekhar-type special-relativistic model. As empha-
sized earlier, the 6=3model serves also as a test case for the
numerical algorithm, which has to reproduce the exact
solutions to the degree of accuracy demanded.
There are two compromises to be made, though.
Namely, the fantastically tiny ratios of the gravitational

to electrical coupling constants between electron and
proton are definitely a numerical problem, but also the
small mass ratio me=mp ≈ 1=1836 is a source of trouble.
Both these small numbers taken together make it sheer
impossible to produce any useful graphs at all.
For instance, let us try to resolve the interval of the

allowed values of the ratio Ne=Np. From (66) we see that
Ne=Np varies between about 1 − 8.1 × 10−37 and about
1þ 4.4 × 10−40. This can be ameliorated a little bit by
centering the Ne=Np axis at 1 and scaling up the units by a
factor of ð1=4.4Þ × 1040. Incidentally, the construction just
described is equivalent to using a rescaled lnðNe=NpÞ as the
base variable. This has eliminated the problems with the
tininess of the coupling constant ratios. However, the small
mass ratio me=mp still poses a hurdle, for the negatively
charged stars will occupy about 1 positive unit in the
allowed interval of lnðNe=NpÞ and the positive stars 1836
negative units. To resolve such a lopsided asymmetry
graphically without introducing otherwise obscuring trans-
formations is impossible. We therefore decided to work
with the SciFi value me=mp ¼ 1=10.
Furthermore, while the discussion just given shows that

for certain questions the tiny ratios of the coupling
constants can be dealt with and only the small ratio of
me=mp is a problem, when one wants to plot both electron
and proton density functions in one panel, they will appear
indistinguishable when attempted with the actual values
of Gm2

p=e2, etc. To illustrate this, we plot Ne=Np for the
no-atmosphere solution of the 6=3 model, computed
analytically with formula (63), versus log10ðGm2

p=e2Þ for
the actual me=mp ¼ 1=1836 and for the SciFi value
me=mp ¼ 1=10; see Fig. 1.

Figure 1 shows that to qualitatively visualize the differ-
ence of the particle densities one needs to replace the actual
value ofGm2

p=e2 with science fiction values. In this vein, in
the following we illustrate our findings for the SciFi values
Gm2

p=e2 ¼ 1=2 and me=mp ¼ 1=10ð¼ εÞ; for consistency,
therefore, Gmpme=e2 ¼ ε=2 and Gm2

e=e2 ¼ ε2=2. The
other physical constant, αS ¼ 1=137.036.
We have tested our numerical algorithm (essentially a

Runge-Kutta 45 scheme) by comparing the plots of the
exact solution formulas with those produced by numeri-
cally solving the 6=3model for the science fiction values of
the constants; see Fig. 2 for a representative error plot.

FIG. 1. Shown is Ne=Np computed analytically as a function of
Gm2

p=e2 for the no-atmosphere solutions of the 6=3 model
[formula (63)], once for the physical ratio me=mp ¼ 1=1836
and once for the science fiction ratio me=mp ¼ 1=10. Note that
the physical value of log10ðGm2

p=e2Þ is located on the horizontal
axis at ≈ − 36.

FIG. 2. Shown is log10 j1 − υðaÞf =υðnÞf j, where υðaÞf and υðnÞf
denote the analytically and the numerically computed scaled
densities for the no-atmosphere solutions of the 6=3 model,
for electrons ( f ¼e) and for protons ( f ¼p), as functions of
the scaled radial distance ρ (for the units, see Sec. III, first
paragraph), though for science fiction values Gm2

p=e2 ¼ 1=2 and
me=mp ¼ 1=10.
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Figure 2 demonstrates that the numerical algorithm
approximates the exact analytical solutions with a relative
error of less than 10−4, and even less than 10−7 over most of
the bulk region. This indicates that our Runge-Kutta 45
scheme also computes the solutions to the physically more
realistic models accurately, where we do not have analytical
solutions to compare.
We next graph the bulk radius ρ0 which the star adapts in

response to Ne=Np, in Fig. 3 for the 6=3 model (analytical)
and in Fig. 4 for the 5=3 model (numerical).
In the 6=3 model, thanks to the amplitude scaling

invariance of its linear set of structure equations, there is
only one equal-Np curve representing all solutions; this is,
of course, a degenerate situation. Each point on the curve
corresponds to a whole scaling family of solution pairs
ðνp; νeÞ with the same ratio Ne=Np. The nonlinear set of
structure equations of the 5=3 model breaks the amplitude
scaling invariance of the 6=3 model. To each Np there now
corresponds a separate curve representing solution pairs.
On each such curve, every point belongs to a unique
solution with the given Np and an associated Ne, which
varies along the curve. It is, however, too time consuming
to push all the way to the extreme solutions, which is
noticeable by comparing Figs. 3 and 4.
Next we show the sets of equal-Np curves in the plane of

radii, in Fig. 5 for the analytical 6=3 solutions, and in Fig. 6
for the numerical 5=3 solutions. The no-atmosphere sol-
utions are situated on the diagonal in these two diagrams.
We next compare the numerically computed particle

density functions of the 5=3 model with the analytically
computed ones of its 6=3 approximation, with the same
SciFi values given to the physical constants. The central

proton bulk density in the 5=3 model is the same in all
examples. In the comparisons of 5=3 with pertinent 6=3
densities, the two solutions have the same Np.
We begin with the distinguished pair of solutions

consisting of the densities of a star without atmosphere,
when both υpðρÞ and υeðρÞ vanish at the same dimension-
less bulk radius ρ0. We show the density functions of both
the 5=3 and the 6=3 models; see Fig. 7. The no-atmosphere
solutions in the two models behave qualitatively similar;
however, note the difference in the scales. The no-atmos-
phere solutions of the 6=3model with equal proton number
Np have a much more spread-out bulk than those of the 5=3

FIG. 3. Shown is the bulk radius ρ0 (units in Sec. III, first
paragraph) vs log10ðNe=NpÞ, computed analytically, for the full
range of allowed values, though for SciFi values Gm2

p=e2 ¼ 1=2
and me=mp ¼ 1=10. Most solutions carry a positive surcharge,
but only a small fraction of them has a positive atmosphere. This
strong twofold asymmetry is caused by me=mp ≪ 1.

FIG. 4. Shown is the bulk radius ρ0 (units in Sec. III, first
paragraph) vs log10ðNe=NpÞ, for an (not the full) interval of
allowed Ne=Np values, computed numerically, for three different
values of Np. Along each of the curves Np is constant. We use
science fiction values Gm2

p=e2 ¼ 1=2 and me=mp ¼ 1=10.

FIG. 5. Shown is the radius ρe of the electron density vs the
radius ρp of the proton density (for the units, see Sec. III, first
paragraph), computed analytically, for science fiction values
Gm2

p=e2 ¼ 1=2 and me=mp ¼ 1=10. Any point on the curve is
a scaling family of solution pairs with fixed ratio Ne=Np.
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model, and the central densities are much smaller in the 6=3
model than in the 5=3 model.
In the 6=3 model a star without an atmosphere has

ρ0 ¼ π=κt, as we discussed earlier, and both densities then
are scaled n ¼ 1 polytropes. For the proper 5=3 model it
can also be shown that both densities are scaled polytropes,
though for n ¼ 3=2, of course.

Note that in the 6=3 model one has υeðρÞ ¼ λυpðρÞ
when ρ0 ¼ π=κt, with λ given by the right-hand side of
Eq. (22). Let us instead make the ansatz υeðρÞ ¼ λυpðρÞ in
Eqs. (12) and (13) of the 6=3 model. We then obtain two
equations for υpðρÞ (say), and this generally overdetermines
the problem. Their compatibility condition is the quadratic
problem aλ2 þ bλþ c ¼ 0, with a ¼ ð1þ Gmemp=e2Þ=
ε > 0, b ¼ −ð1 −Gm2

p=e2Þ=εþ ð1 −Gm2
e=e2Þ < 0, and

c ¼ −ð1þGmemp=e2Þ < 0. The “quadratic formula”
yields two real solutions,

λ� ¼ −
b
2a

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

ac
b2

r �
; ð76Þ

one of which is positive and the other one negative. Now a
particle density cannot be negative, so λ ¼ λþ, and this is
precisely the right-hand side of Eq. (22).
Similarly one can insert the ansatz νeðrÞ ¼ λνpðrÞ also

into the equations of the 5=3model, i.e., Eqs. (10) and (11),
and now the compatibility condition is the vanishing
of the degree-5 polynomial aη5 þ beη3 þ bpη2 þ d ¼ 0,
where η ≔ λ1=3, and a ¼ ð1þGmemp=e2Þ=ε > 0, be ¼
ð1 −Gm2

e=e2Þ > 0, bp ¼ −ð1 −Gm2
p=e2Þ=ε < 0, and

c ¼ −ð1þGmemp=e2Þ < 0. There generally does not exist
a solution in closed form, but from the signs of the
coefficients in this polynomial one can deduce right away
that there exists a unique positive solution ηþ, say, very
close to 1, and for λ ¼ η3þ both (10) and (11) reduce to the
equation (cf. [22])

εζ
1

r2
ðr2ν2

3
p
0ðrÞÞ0 ¼

�
1 −

Gm2
p

e2
− λ

�
1þGmpme

e2

��
νpðrÞ;

ð77Þ

which is equivalent (not identical) to the polytropic
equation of index n ¼ 3=2, Eq. (C4). Indeed, setting

ν
2
3
pðrÞ ¼ ν

2
3
pð0ÞθðξÞ and scaling r ¼ Cξ appropriately con-

verts (77) into the standardized format − 1
ξ2
ðξ2θ0ðξÞÞ0 ¼

θ3=2þ ðξÞ (cf. [1,2]), and thus the no-atmosphere densities are
obtained by rescaling the standardized n ¼ 3=2 polytrope.
We remark that inserting the dimensionless bulk radius

of a star without an atmosphere, ρ0 ¼ π=κt, into our
formula for the ρ0-dependent number of electrons per
proton in the 6=3 model yields

Ne

Np
¼ λð1 − Gm2

p

e2 Þ þ εð1þ Gmpme

e2 Þ
λð1þ Gmpme

e2 Þ þ εð1 − Gm2
e

e2 Þ
; ð78Þ

with λ ¼ Bt
e=Bt

p given by (22). Alternatively, knowing that
υe ¼ λυp in this case, Eq. (78) follows directly from
multiplying Eq. (12) by λ4πρ2 and Eq. (13) by ε4πρ2,

FIG. 6. Shown is the radius ρe of the electron density vs the
radius ρp of the proton density (for the units, see Sec. III, first
paragraph), computed numerically, for science fiction values
Gm2

p=e2 ¼ 1=2 and me=mp ¼ 1=10. Each point on a given curve
represents a unique solution pair with the same Np.
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FIG. 7. Shown are the density functions υpðρÞ and υeðρÞ (units
in Sec. III, first paragraph), computed numerically for the 5=3
model and analytically for the 6=3 model, of a star without
atmosphere, for SciFi values Gm2

p=e2 ¼ 1
2
and me=mp ¼ 1

10
.

PARKER HUND and MICHAEL K.-H. KIESSLING PHYS. REV. D 103, 043004 (2021)

043004-18



then integrating over ρ, and then subtracting the first result
from the second, followed by simple algebra.
Similarly the number of electrons per proton of the no-

atmosphere solution of a failed white dwarf star as
computed with the physical 5=3 model is obtained from
Eqs. (10) and (11). With λ ¼ η3þ one finds [22]

Ne

Np
¼ λ2=3ð1 − Gm2

p

e2 Þ þ εð1þ Gmpme

e2 Þ
λ2=3ð1þ Gmpme

e2 Þ þ εð1 − Gm2
e

e2 Þ
: ð79Þ

Finally we turn to the extremely surcharged stars, whose
densities are shown in Figs. 8 and 9.
It is manifest that the extreme solutions in the 6=3 model

also behave qualitatively similar to those in the 5=3 model.
The extreme solutions of the 6=3 model have a much more
spread-out bulk than those of the 5=3 model with equal
proton number Np, but their central densities are much
smaller than those in the 5=3 model. Interestingly, the ratio
of the two central densities in the 6=3 model seems to
roughly equal the one in the 5=3 model.
In all density function plots the central proton density is

larger than the central electron density. In Fig. 10 we
display the ratio of the central proton density over the
central electron density as a function of the ratio Ne=Np, or

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16  18  20

D
en

si
ty

Radial Distance

Particle Densities for extreme negative star (5/3 case)

 0

 10

 20

 30

 40

 50

 60

 70

 0  5  10  15  20  25  30  35

D
en

si
ty

Radial Distance

Particle Densities for extreme negative star (6/3 case)

FIG. 8. Shown are the density functions υpðρÞ and υeðρÞ (for the
units, see Sec. III, first paragraph) of the upper extreme ratio

Ne=Np ¼ ð1þ Gmpme

e2 Þ=ð1 − Gm2
e

e2 Þ, with science fiction values
Gm2

p=e2 ¼ 1=2 and me=mp ¼ 1=10. The top graph is computed
numerically, the bottom graph analytically.
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FIG. 9. Shown are the density functions υpðρÞ and υeðρÞ (for the
units, see Sec. III, first paragraph) of the lower extreme ratio

Ne=Np ¼ ð1 − Gm2
p

e2 Þ=ð1þ
Gmpme

e2 Þ, with science fiction values
Gm2

p=e2 ¼ 1=2 and me=mp ¼ 1=10. The top graph is computed
numerically, the bottom graph analytically.

FIG. 10. Shown is the ratio of the central proton density over
central electron density vs log10, computed analytically, of the
number of electrons per proton, Ne=Np, covering the full range of
allowed Ne=Np ratios, though for SciFi values Gm2

p=e2 ¼ 1=2
and me=mp ¼ 1=10. Note that the central proton density is
always larger than the central electron density. Also this asym-
metry is caused by the mass ratio me=mp < 1.

ELECTRICALLY NONNEUTRAL GROUND STATES OF STARS PHYS. REV. D 103, 043004 (2021)

043004-19



rather its decadic logarithm, in the 6=3 model. Note the
strong asymmetry caused byme=mp ≪ 1. In the 5=3model
there will be such a curve for each value of Np separately;
all such curves coincide in the 6=3 model.
Overall our algorithm worked sufficiently accurately so

that we decided to trust it also for the special-relativistic
model of the Chandrasekhar type. Figures 11, 12, 13, and
14 are the Chandrasekhar-type special relativistic model
equivalents of Figs. 7, 8, and 9; see Sec. IV for a theoretical
discussion and the presentation of the equations of this
model. The figures indicate that the solutions of this model
behave qualitatively in the same way as the 6=3 and 5=3
models, although we have done no rigorous analysis to
estimate the similarity. It is difficult to see a difference
between the plots with no atmosphere and with an
extremely positive atmosphere when viewing the entire
density curves. We have therefore included an extra plot
(Fig. 15) of the positive atmospheric model at a smaller
scale so that one can see that the behavior is indeed the
same qualitatively as in the other models.
Here we can make some observations about the numerics

of this model. As in the case of comparing the 6=3 to the

5=3 model, the special relativistic model has bulk radius
smaller than the 5=3 model. This makes sense as the
pressure law interpolates between 5=3 and 4=3.
Another characteristic of these solutions which cannot

easily be shown in figures is that the decay rate of the
extreme solutions is smaller than those of the 5=3 model.
Again, this makes sense when one considers the exact
atmospheric solution for the 5=3 model presented in
Appendix B.3. An ultrarelativistic 4=3 model would have
an exact atmospheric solution with a (nonintegrable) decay
rate of η ¼ −3 compared to η ¼ −6 for the 5=3 model.
A final interesting observation is that it appears that the

possible masses for the special-relativistic model exists in a
small band; that is, one cannot scale the solutions and
increase the total number of protons and electrons as in the
6=3 or 5=3 models. Figure 12 shows that as the central
densities of the model are increased, the radius decreases.
The result is that the total mass changes by a small amount,
hardly at all.
Of course, these observations are only based on numeri-

cal results, and therefore need to be verified mathematically

 0

 2000

 4000

 6000

 8000

 10000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

D
en

si
ty

Radial Distance

Particle Densities for no atmosphere star (Special Relativistic Case)

FIG. 12. Shown are the density functions υpðρÞ and υeðρÞ (units
in Sec. III, first paragraph), computed numerically, of a star
without atmosphere and higher central densities, for science
fiction values Gm2

p=e2 ¼ 1=2 and me=mp ¼ 1=10.
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FIG. 13. Shown are the density functions υpðρÞ and υeðρÞ (for
the units, see Sec. III, first paragraph), computed numerically, of

the upper extreme ratio Ne=Np ¼ ð1þ Gmpme

e2 Þ=ð1 − Gm2
e

e2 Þ, with
science fiction values Gm2

p=e2 ¼ 1=2 and me=mp ¼ 1=10.
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FIG. 14. Shown are the density functions υpðρÞ and υeðρÞ (units
in Sec. III, first paragraph), computed numerically, of the lower

extreme ratio Ne=Np ¼ ð1 − Gm2
p

e2
Þ=ð1þ Gmpme
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Þ, with science

fiction values Gm2
p=e2 ¼ 1=2 and me=mp ¼ 1=10.
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FIG. 11. Shown are the density functions υpðρÞ and υeðρÞ (units
in Sec. III, first paragraph), computed numerically, of a star
without atmosphere, for SciFi values Gm2

p=e2 ¼ 1=2 and
me=mp ¼ 1=10.
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to make any definitive statement. This will be the subject of
our future work.

VII. CAN EXCESS CHARGE HAVE A
NOTICEABLE EFFECT ON THE ORBITS

OF A BINARY SYSTEM?

As an application of our surcharge bounds (66), consider
the following scenario. Suppose a maximal negatively
charged and a maximal positively charged failed white
dwarf have formed a binary system of two equal mass
components, each with mass M. The binary system is
supposed to be sufficiently separated to vindicate the
spherical approximation for their shapes. Moreover, the
atmospheric densities, which are rapidly decaying to zero,
will be treated as having an effectively finite radius
compared to the separation distance. The maximal charge
imbalance is tiny, true, but since the microscopic electric
coupling constants are so much stronger than the gravita-
tional ones, it is in principle conceivable that even a tiny
surcharge could be influencing the dynamics in a signifi-
cant way. So let us find out by doing a calculation.
Note that Ne ≈ Np ≔ N to high accuracy. From (66) we

obtain for the Coulomb coupling coefficient of a maximal
oppositely surcharged binary

−
Gmpme

e2
Gm2

p

e2
N2e2 ≈ −

Gmpme

e2
GM2; ð80Þ

where we have used that the mass M of each binary
component is ≈mpN. Since GM2 is the gravitational
coupling coefficient between the two binaries, Eq. (80)
reveals that the electrical attraction between the two binary
components is still 10−40 times smaller than their gravita-
tional attraction.
Thus astronomers can relax. The validity of the deter-

mination of the masses of binary components based on their
orbital data with the help of the gravitational Kepler
problem is not in question.

VIII. COSMIC CENSORSHIP

Formula (66) is equivalent to the two inequalities

ðNp − NeÞe2 ≤ GðNpmp þ NemeÞmp ð81Þ

and

ðNp − NeÞe2 ≥ −GðNpmp þ NemeÞme: ð82Þ

Noting that ðNp − NeÞe ¼ Q is the net charge of the star
and Npmp þ Neme ¼ M its mass, these yield the interval

−
GMme

e
≤ Q ≤

GMmp

e
ð83Þ

for the total charge a star made of electrons and protons can
carry. This interval is “universal” in the same sense as
formula (66) is; recall Sec. IV. Furthermore, Ref. [24], the
left inequality in (83) is also “universal” in a wider sense;
namely it holds also in a Thomas-Fermi-Hartree model for
the ground state of a star which consists of electrons,
protons, and several species of heavier nuclei that are
bosons (recall our discussion in the Introduction); the right
inequality is possibly no longer true in the presence of
bosons. This, of course, does not follow from our derivation
here, in which nuclei heavier than protons are absent.
From (83) we can derive an important inequality for Q2,

as follows. Considering first the left inequality in (83), we
multiply through with −Nee, which yields −NeeQ ≤
GMNeme. Considering next the right inequality in (83),
we multiply through with Npe, which yields NpeQ ≤
GMNpmp. Adding these then yields ðNp − NeÞeQ ≤
GMðNpmp þ NemeÞ, viz.

Q2 ≤ GM2 : ð84Þ

Inequality (84), here derived from a Thomas-Fermi model
for the ground state of a star made of protons and electrons,
is also valid for a Reissner-Weyl-Nordström black hole. A
Reissner-Weyl-Nordström spacetime which violates (84)
features a naked singularity, i.e., a singularity which is not
hidden from an infinitely remote observer behind a closed
event horizon. In Sec. IV D we explained why our bounds
(66) are to be expected to be valid also when Newtonian
gravity is replaced by Einsteinian gravity; hence a general-
relativistic treatment of a two-species Thomas-Fermi model
of a failed white dwarf should also obey the bounds (84)
on the stellar charge. This implies that if the quantum
mechanical stabilization was magically turned off, such a
star could not collapse to a charged naked singularity but
would turn into a charged black hole.
Thus we have arrived at an important result in support of

Penrose’s weak cosmic censorship hypothesis.
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FIG. 15. Zoom-in of the density functions υpðρÞ and υeðρÞ of
Fig. 14, revealing the positive atmosphere of the star.
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IX. CONCLUSIONS

In this paper we have presented the complete solution of an
approximate model of a failed white dwarf star, here for
simplicity assumed to consist of electrons andprotons only, in
which the polytropic power 5=3 of the pressure-density
relation, predicted by nonrelativistic quantum mechanics,
is replaced with the nearby 6=3, and which was introduced in
[13]. Based on the availability of the elementary exact
solutions of this model we were able to discuss the whole
solution family thoroughly. The model captures the qualita-
tive behavior of the solutions of the physical 5=3 and special
relativistic models correctly, and even gets the quantitative
answer to the question of the maximal relative surcharge
exactly right [see (66)]; this we have shown in Sec. IV (more
on that below). As was demonstrated with the 5=3 model, it
can serve as a test case for computer algorithms which tackle
physically more realistic many species models; see also the
Appendix for a brief discussion of how the model generalizes
to more than two species. The approximate model also can
easily be incorporated in an introductory astrophysics course
which covers the basic equations of stellar structure, in
particular for white and brown dwarf stars.
In this vein we can compare the 6=3 model of [13] with

examples from statistical mechanics that come to mind. The
most prominent ones, perhaps, are the two-dimensional
Ising model [25] and the two-dimensional ice models
[26,27], which have provided valuable qualitative insights
into the behavior of the more realistic physical models that
require heavy use of numerical methods.
The equations for two-species models corresponding to

different polytropic laws than those discussed above can easily
be written down, although the arguments presented here
concerning the structure of solutions may not hold. For
example, the reasoning behind the saturation of the Np=Ne

bounds does not hold for polytropic laws of index larger than
n ¼ 3, the ultrarelativistic white dwarf case. But the n ¼ 5
case is exactly solvable and represents a border case of Lane-
Emden equations, so it may be of some interest what can be
said about the corresponding two species model. While not
related to the structure of white dwarfs, the n ¼ 5 polytrope
does find uses in stellar dynamics and some fluid sphere
solutions in general relativity. We have included in the
Appendix an analytic solution of the two species model
corresponding to the n ¼ 5 polytrope. Of course, this is just
the beginning of a description of the solutions of such amodel.
Interesting by-products of our investigation are the

ℏ- and c-independent bounds (66) on Ne=Np. We have
presented compelling arguments for why our bounds (66)
are the correct bounds for a failed white dwarf star made of
electrons and individual protons, not only nonrelativistically
but also in the special- and general-relativistic theories,
because one is far away from the Chandrasekhar mass. A
more pedagogical account of these findings is presented in
[22]. As we explained in Sec. VIII, our bounds support
Penrose’s weak cosmic censorship hypothesis.

After submitting this paper we started to investigate more
realistic stellar ground state models that, inevitably, are no
longer exactly solvable; cf. [24] for a nonrelativistic
Thomas-Fermi-Hartree model of electrons, protons, and
several species of nuclei that are bosons (such as α
particles). The bounds on Ne=Np will then be replaced
by bounds on the ratios Nz=Ne, where Nz is the number of
nuclei in the star with z elementary charges. In regard to the
question of the maximal and minimal electric charges on a
star, we found that the lower bound expressed in (83) is
valid also in the Thomas-Fermi-Hartree model; the upper
bound in (83) is modified, though. Thus our negative
surcharge bound obtained in this paper with a highly
simplified model is very robust.
We also plan to investigate the special-relativistic for-

mulation of the problem all the way up to near to the critical
Chandrasekhar mass, taking a mixture of different nuclei
species into account with a mix of special-relativistic
Thomas-Fermi and Hartree type equations. We expect
the left inequality in (83) to remain valid.
We also want to investigate the general-relativistic

problem, with its effects on the critical mass; an interesting
question is whether (84) will hold.
In the pursuit of more realism also the weak and strong

nuclear forces should eventually be taken into account if
one considers stellar ground states with masses close to the
above-mentioned critical Chandrasekhar mass, respec-
tively, the general-relativistic critical mass, for then the
central densities exceed the threshold for inverse β decay,
which will turn a certain percentage of electrons and
protons (bound in the nuclei) into neutrons, thus changing
the composition of the star and affecting the critical mass.
Since inverse β decay preserves the total charge involved in
the process, it should not affect the allowed surplus charge
Q on a star.
So much on the excess charges of stellar ground states.

We close this discussion by reminding the reader that the
question of electrical surplus of charge on a star is mostly
meaningful for the ground state. Real stars in the universe
are estimated not yet to be in their ground state, and since
finite temperature effects include the phenomenon of solar
and/or stellar winds, real stars which constantly evaporate
render the question of their electrical surcharge pointless.
Back to the exactly solvable model, very much of interest

is to extend it, by including magnetism and rotation. This
will complicate the problem considerably, for the spherical
symmetry of the problem will be broken both by rotation,
due to centrifugal effects (obviously), and by magnetism’s
anisotropy; cf. [28–32].
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APPENDIX A: THE 6=3 MODEL FOR MORE
THAN TWO SPECIES

The 6=3 model can easily be generalized to an arbitrary
number of fermion species without affecting its exact solu-
bility. It is, of course, to be seen as a 5=3 → 6=3 approxi-
mation to a more-than-two species 5=3 model, and such a
model has the physical deficiency that all species are
fermions, whereas both the primordial nucleosynthesis [21]
and also nuclear fusion in stars [3] essentially produce
effectively bosonic heavier nuclei, in particular 4He (both
primordial nucleosynthesis and stellar fusion), 12C and 16O
(the latter predominantly only in stellar fusion). A multi-
species fermionmodel is surely to be takenwith somegrain of
salt. All the same, the usual local neutrality approximation,
traditionally used in astrophysical works on stellar structure,
throws all these differences out the window also, so that a
multispecies fermionic model is presumably not worse.
Of course, the combinatorial complexity increases, and for

more than four species the κ and ϰ eigenvalues can no longer
be expressed in closed form, but even for three and four
species, when one can, the closed form expressions are not
very illuminating. Fortunately this is not necessary, since
the fantastic tininess of the ratios of the coupling constants of
the various species allow a very efficient evaluation with
approximate expressions which are more accurate than any
typical numerical approximation on a machine.
Instead of presenting here the generalization to an

arbitrary number of fermion species, we present the
three-species version, pretending that because of some
unlikely fluke the primordial nucleosynthesis [21] has, in
some corner of the universe, produced a mix of only
protons and 3He, a spin-1=2 fermion with two elementary
charges known as helion, which together with the protons
and the electrons now constitutes our failed white dwarf, if
the total mass remains below ≈80 Jupiter masses. One may
also contemplate modeling a low mass white dwarf (no
longer failed) if the mass is a bit above the threshold for the
onset of nuclear fusion, but not too high so that no fusion
into heavier nuclei than helium happened; one has to
pretend that by some even more unlikely statistical fluke,
also in the star only 3He is produced. (Obviously, this
narrative is not meant to be taken literally.)
Choosing h as subscript for 3He we now have the

following coupled system of three linear second-order
differential equations for the dimensionless density func-
tions υh, υp, and υe in the bulk region,

−εhς
1

ρ2
ðρ2υ0hðρÞÞ0 ¼ −

�
4 −

Gm2
h

e2

�
υhðρÞ

−
�
2 −

Gmhmp

e2

�
υpðρÞ

þ
�
2þGmhme

e2

�
υeðρÞ; ðA1Þ

−ες
1

ρ2
ðρ2υ0pðρÞÞ0 ¼ −

�
2 −

Gmhmp

e2

�
υhðρÞ

−
�
1 −

Gm2
p

e2

�
υpðρÞ

þ
�
1þ Gmpme

e2

�
υeðρÞ; ðA2Þ

−ς
1

ρ2
ðρ2υ0eðρÞÞ0 ¼

�
2þ Gmhme

e2

�
υhðρÞ

þ
�
1þGmpme

e2

�
υpðρÞ

−
�
1 −

Gm2
e

e2

�
υeðρÞ; ðA3Þ

valid where υpðρÞ > 0, υeðρÞ > 0, and υhðρÞ > 0. Here,
mh ≈ 3mp is the mass of 3He and εh ≔ me=mh ≈ ε=3.
Sandwiched between the three-species bulk and the

single-species atmosphere regions there is now an inter-
mediate region where exactly one of the densities vanishes
and two of the densities are nonzero. The density functions
in the intermediate region satisfy precisely the bulk
equations of the two-species model, except perhaps that
we need to allow for the possibility that it is not a proton-
electron system now but a 3He-electron system, even
though astrophysical stellar models suggest that the helium
zone resides inside the hydrogen zone.
Different from the discussion of the bulk region of the

two-species model, though, the two-species intermediate
zone does not require using only sinðκtρÞ=ρ and
sinhðκhρÞ=ρ linear combinations, because one stays away
from the center of the star.
As for the three-species bulk region, it is clear that the

ansatz υfðρÞ ¼ Af
expðκρÞ

ρ will once again lead to an eigen-

value problem for κ, this time it is a cubic equation in κ2.
Initial conditions at ρ ¼ 0 are posed, namely the vanishing
of the radial derivatives, while the central densities are to be
chosen such as to satisfy the constraints that the particle
densities integrate to Nh, Np, and Ne; recall, Np is the
number of individual protons, not bound in nuclei with
Z > 1 elementary charges. At the interface between bulk
and intermediate regions, the two nonvanishing densities of
the intermediate region have to go over continuously
differentiable into the bulk region, and at the intermediary-
atmosphere interface, the earlier continuous differentiabil-
ity conditions for the atmospheric density are imposed.
It is clear that the combinatorial possibilities are already

daunting for this three-species setup, but it is also clear that
it can be worked out completely, and analogously one can
proceed with an arbitrary number of fermion species, in
principle at least.
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APPENDIX B: SOME EXACT SOLUTIONS
TO RELATED MODELS

1. An elementary no-atmosphere solution
for the two-species 6=5 model

As has been discussed, the multispecies 6=3 model is a
generalization of the Lane-Emden equation of index n ¼ 1,
and its no-atmosphere solutions are obtained by rescaling

the elementary solution of the Lane-Emden equation of
index n ¼ 1. Aside from the less interesting index n ¼ 0
case, there is also an elementary no-atmosphere solution to
the index n ¼ 5 case, which corresponds to a polytropic
pressure law with power γ ¼ 6=5. Following the procedure
in Sec. III, we can derive the two-species equivalent of (10)
and (11) for the index n ¼ 5 case:

−ετ
1

ρ2
d
dρ

�
ρ2

d
dρ

υ1=5p ðρÞ
�

¼ −
�
1 −

Gm2
p

e2

�
υpðρÞ þ

�
1þ Gmpme

e2

�
υeðρÞ; ðB1Þ

−τ
1

ρ2
d
dρ

�
ρ2

d
dρ

υ1=5e ðρÞ
�

¼
�
1þ Gmpme

e2

�
υpðρÞ −

�
1 −

Gm2
e

e2

�
υeðρÞ; ðB2Þ

here, τ ¼ ℏc
e2

π1=335=3

50
, and these equations are valid where both densities are positive. Let θfðρÞ ¼ υ1=5f ðρÞ on the set where υf

is positive. Then these equations become

−ετ
1

ρ2
d
dρ

�
ρ2

d
dρ

θpðρÞ
�

¼ −
�
1 −

Gm2
p

e2

�
θ5pðρÞ þ

�
1þ Gmpme

e2

�
θ5eðρÞ; ðB3Þ

−τ
1

ρ2
d
dρ

�
ρ2

d
dρ

θeðρÞ
�

¼
�
1þ Gmpme

e2

�
θ5pðρÞ −

�
1 −

Gm2
e

e2

�
θ5eðρÞ: ðB4Þ

Let us try θfðρÞ ¼ αfð1þ κf
ρ2

3
Þ−1=2, adapting the Lane-Emden index n ¼ 5 solution similarly to how we adapted the Lane-

Emden index n ¼ 1 solution for the γ ¼ 6=3 case. Then this system reduces to

εταpκp

�
1þ κp

ρ2

3

�−5=2
¼ −αp

�
1 −

Gm2
p

e2

��
1þ κp

ρ2

3

�−5=2
þ αe

�
1þGmpme

e2

��
1þ κe

ρ2

3

�−5=2
; ðB5Þ

ταeκe

�
1þ κe

ρ2

3

�−5=2
¼ αp

�
1þ Gmpme

e2

��
1þ κp

ρ2

3

�−5=2
− αe

�
1 −

Gm2
e

e2

��
1þ κe

ρ2

3

�−5=2
: ðB6Þ

To have equality, we then must take κp ¼ κe ¼ κ. So as
in the 6=3 case, we obtain a matrix problem:

�
1 − Gm2

p

e2 þ κετ; −1 − Gmpme

e2

−1 − Gmpme

e2 ; 1 − Gm2
e

e2 þ κτ

��
αp

αe

�
¼
�
0

0

�
: ðB7Þ

Again, the determinant must be zero, and we obtain the
following quadratic in κ, viz.: aκ2 þ bκ þ c ¼ 0, with
a ¼ ετ2 > 0, b ¼ τð1þ ε −Gðεm2

e þm2
pÞ=e2Þ > 0, and

c ¼ −Gðme þmpÞ2=e2 < 0. We find κþ ≈ −1837 and
κ− ≈ 3.2329 × 10−47. We cannot use κþ since θfðρÞ
would have a singularity at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ð−κpÞ

p
, and so we let

θfðρÞ ¼ αfð1þ κ−
ρ2

3
Þ−1=2. The matrix (B7) also gives

us that

αp ¼
1þ Gmemp

e2

1 − Gm2
p

e2 þ κετ
αe: ðB8Þ

We then obtain a one-parameter family of solutions to (B5)
and (B6) such that θp and θe are in proportion as given by
(B8) and have unbounded support. The same can therefore
be said about υp and υe, solutions to (B1) and (B2).

2. An elementary solution for the two-species
isothermal model

One of the earliest self-gravitating models, together with
Homer Lane’s polytropes, was Zöllner’s isothermal self-
gravitating ideal classical gas ball model. Its basic equa-
tions were later studied much more thoroughly by Emden
[1] and are nowadays named in his honor. We recall that the
pressure-density relation of the isothermal ideal classical
gas reads p ¼ kBTν, where kB is Boltzmann’s constant.
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Treating both electrons and protons as isothermal classical
perfect gases, with equal temperature T > 0, yields the
following system of nonlinear second-order differential
equations for the density functions νp and νe, valid
wherever both νpðrÞ > 0 and νeðrÞ > 0:

−ϖ
1

r2
d
dr

�
r2

d
dr

ln νpðrÞ
�

¼ −
�
1 −

Gm2
p

e2

�
νpðrÞ þ

�
1þ Gmpme

e2

�
νeðrÞ; ðB9Þ

−ϖ
1

r2
d
dr

�
r2

d
dr

ln νeðrÞ
�

¼
�
1þGmpme

e2

�
νpðrÞ −

�
1 −

Gm2
e

e2

�
νeðrÞ; ðB10Þ

here, ϖ ≔ kBT=4πe2. As the single-species Emden equa-
tion for the isothermal self-gravitating classical gas ball,
also the system (B9) and (B10) is not generally solvable in
closed form. However, following Zöllner’s treatment of the
single-species model, we can find one elementary solution
to this two-species model by making the Ansatz νfðrÞ ¼
2ϖAf=r2 with Af > 0, and f standing for either p or e, as
before. This Ansatz turns (B9) and (B10) into

1 ¼ −
�
1 −

Gm2
p

e2

�
Ap þ

�
1þGmpme

e2

�
Ae; ðB11Þ

1 ¼
�
1þ Gmpme

e2

�
Ap −

�
1 −

Gm2
e

e2

�
Ae: ðB12Þ

Thus

�
Ap

Ae

�
¼
� −1þ Gm2

p

e2 ; 1þ Gmpme

e2

1þ Gmpme

e2 ; −1þ Gm2
e

e2

�−1�
1

1

�
; ðB13Þ

and the inverse matrix is the negative of (54), so

�
Ap

Ae

�
¼ e2

Gðmp þmeÞ2
�
2þ Gðmp−meÞme

e2

2 − Gðmp−meÞmp

e2

�
: ðB14Þ

Both Ap > 0 and Ae > 0 thanks to the smallness of the ratio
of gravitational to electric coupling constants, and hence we
have found an exact solution pair to (B9) and (B10).
These 1=r2 densities are singular at the origin, but locally

integrable. Of course, they are not globally integrable,
so Np ¼ ∞ ¼ Ne. Interestingly, though, the number of
particles of species f inside a sphere of radius r, i.e.,
N fðrÞ ≔ 4π

R
r
0 νfðsÞs2ds ¼ ð2kBT=e2ÞAfr, yields the

r-independent ratio

N eðrÞ
N pðrÞ

¼ Ae

Ap
¼ 2 − Gðmp−meÞmp

e2

2þ Gðmp−meÞme

e2

: ðB15Þ

For general solution pairs of (B9) and (B10) one may
proceed analogously. Since Emden’s isothermal gas ball
solutions all tend asymptotically for large r to a 1=r2

behavior, we expect that limr→∞N eðrÞ=N pðrÞ exists for
each pair and plays the role ofNe=Np for such infinite-mass
solutions. Moreover, whenever limr→∞ N eðrÞ=N pðrÞ
exists, a small modification of our arguments in Sec. IV
shows that the limit obeys the bounds (66) without
saturation.

3. An exact atmospheric solution
of the two-species 5=3 model

The nonlinearity of Eqs. (10) and (11) stands in the way
of solving them generally in closed form, yet one atmos-
pheric density solution actually can be obtained explicitly.
We show this for the negative atmosphere case.
Consider (11) with υpðρÞ ¼ 0 for ρ > ρþ0 ; it does not

matter where ρþ0 is located, all we use is that it is a finite
distance. We now make the ansatz υeðρÞ ¼ Aeρ

η and find
η ¼ −6 and Ae ¼ 12ζ=ð1 −Gm2

e=e2Þ. While this is slower
than the exponential decay to zero, it still is fast enough to
be integrable at ρ → ∞, viz. ρ2υ0eðρÞ → 0 as ρ → ∞. This
solution would still have to be matched to the bulk interior,
which may or may not be possible.

APPENDIX C: THE LOCAL NEUTRALITY
APPROXIMATION

So suppose temporarily that νpðrÞ ¼ νeðrÞ≕ νðrÞ for all
r. Then σ ¼ 0 by Eq. (4), and Eq. (6) is then solved by
ϕC ¼ 0. Moreover, by Eq. (3) we now have μðrÞ ¼
ðmp þmeÞνðrÞ. This is usually approximated further by
neglecting the electron mass versus the proton mass, yet
technically this does not yield a simplification.
A subtler step is the next one. We still have to deal with

Eqs. (7) and (8), but having set νp ¼ νe≕ ν, we then have
two different equations for one unknown, νðrÞ, and this
overdetermines the problem, strictly speaking. What this
shows is that the strict local neutrality approximation
cannot be exactly correct, but, of course, it was never
assumed to be exactly correct. Therefore, to proceed in the
spirit of the approximation, one needs to mold the two
equations (7) and (8) into one. This is done by replacing
them by their sum, which in concert with ϕC ¼ 0 yields the
mechanical force balance equation

−μðrÞϕ0
NðrÞ − p0ðrÞ ¼ 0; ðC1Þ

where the pressure function pðrÞ ¼ ppðrÞ þ peðrÞ reads
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pðrÞ ¼ ℏ2

�
1

mp
þ 1

me

� ð3π2Þ2=3
5

ν5=3ðrÞ: ðC2Þ

This is usually approximated further by neglecting 1=mp

versus 1=me, yet again technically this does not yield a
simplification either.
Since μðrÞ ¼ ðmp þmeÞνðrÞ, Eq. (C1) with pðrÞ given

by (C2) can be integrated once to yield ϕN as a function of
ν, which can be inverted to yield

νðrÞ ¼
�

2

ð3π2Þ2=3
mpme

ℏ2
½ϕ�

N − ϕNðrÞ�þ
�

3=2
; ðC3Þ

here, the notation ½g�þ means “positive part,” i.e., ½g�þðrÞ ¼
gðrÞ > 0 for 0 < r < R, where R is the smallest r-value for
which gðrÞ ¼ 0, and ½g�þðrÞ ¼ 0 for r ≥ R. Furthermore,
ϕ�
N is a constant of integration determined byR
νðrÞd3r ¼ Np. Inserting this relation into the Poisson

equation (5) yields the familiar Lane-Emden equation of
the polytropic gas ball for γ ¼ 5=3, equivalently of index
n ≔ 1=ðγ − 1Þ ¼ 3=2,

1

r2
ðr2ϕ0

NðrÞÞ0 ¼ C½ϕ�
N − ϕNðrÞ�3=2þ ; ðC4Þ

C ¼ 27=2

3π

G
ℏ3

ðmp þmeÞðmpmeÞ3=2; ðC5Þ

see [1–3]. By shifting and scaling, Eq. (C4) can easily be
brought into the dimensionless standardized format
− 1

ξ2
ðξ2θ0ðξÞÞ0 ¼ θ3=2þ ðξÞ, complemented with the initial

conditions θð0Þ ¼ 1 and θ0ð0Þ ¼ 0; cf. [1,2,16]. The
equations for the polytropic gas balls, or gas spheres as
they are often called, have been studied extensively in the
astrophysical literature in dependence on their parameter γ,
respectively, n. For γ ¼ ∞, γ ¼ 2, and γ ¼ 6=5 (n ¼ 0,
n ¼ 1, and n ¼ 5) the polytropic gas ball equation can be
solved in terms of elementary functions, and in all other
cases the equation itself defines the polytropic density
functions. In particular, the case γ ¼ 5=3 has been studied
thoroughly due to its importance in the theory of white
dwarf structure [2].
For our purposes the case γ ¼ 2, viz. n ¼ 1, is of

particular interest because of our 5=3 → 6=3 approxima-
tion. As a primer we briefly discuss this approximation in
the context of the single-density model.

1. The 5
3 →

6
3 approximation in the single-density model

We again set r≕ ðℏ=mecÞρ and νðrÞ≕ ðmec=ℏÞ3υðρÞ.
Inserted into the formula for the degeneracy pressure, we
find pðrÞ ∝ υðρÞ5=3, and since υðρÞ is dimensionless, we
may now replace υ5=3 by υ6=3ð¼ υ2Þ. We also set
ϕNðrÞ≕ c2ψNðρÞ and proceed analogously to how we
arrived at the polytropic equation with index n ¼ 3

2
; this

time it is index n ¼ 1, except that there is little incentive

now to invert the linear relationship between ψN and υ,
which results from the force balance equation (C1) wher-
ever υðρÞ > 0,

−ψ 0
NðρÞ ¼ εKυ0ðρÞ: ðC6Þ

Here we introduced ε ≔ me=mp ≈ 1=1836 and

K ≔ 2ð3π2Þ23=5. We can even avoid the step of integrating
(C6) and instead use it directly to eliminate ψ 0

NðρÞ [viz.
ϕ0
NðrÞ] from Eq. (5) in favor of υ0ðρÞ to get

−
1

r2
ðr2υ0ðρÞÞ0 ¼ κ2υðρÞ; ðC7Þ

κ2 ¼ 10

32=3π1=3
Gmpðmp þmeÞ

ℏc
: ðC8Þ

Note that the Lane-Emden equation of index n ¼ 1,
Eq. (C7), is valid until υðρÞ runs into its first zero.
Several observations are in order.
First, we note that Gmpðmp þmeÞ=ℏc ≈ 6 × 10−39 is a

gravitational analog of Sommerfeld’s fine structure con-
stant e2=ℏc ≔ αS ≈ 1=137.036; it is much smaller, though.
This means that to see any appreciable effect in a solution
of Eq. (C7) the variable ρ has to reach very large values. But
this is only to be expected, for our unit of length is the
reduced Compton length of the electron, and sure enough
the structure of a star varies on scales which are gigantic in
terms of these units.
Second, the Lane-Emden equation of index n ¼ 1,

Eq. (C7), is not only linear, it is one of the three special
cases which can be solved in terms of elementary functions.
It is a special case of a Bessel-type differential equation,
and the solution relevant to our discussion is given by a
spherical Bessel function, explicitly

υðρÞ ¼ B
sinðκρÞ

ρ
; ρ ∈ ð0; π=κÞ; ðC9Þ

the bulk amplitude B is determined by
R
υðρÞd3ρ ¼ Np.

Third, the radius of the star in this approximate single-
density model is R ¼ π

κ
ℏ

mec
. Inserting the values for the

physical and mathematical constants yields

R ≈ 2.2566 × 1019
ℏ

mec
≈ 8; 714 km; ðC10Þ

i.e., ≈3=2 earth radii, compatible with the accepted radius
of white dwarf stars with half the mass of the sun.
Fourth, note that R is independent of Np (or Ne for this

matter). This, of course, is not physically reasonable.
However, we note that the physical range of acceptable
values for Np (hence, Ne) is very narrow. Indeed, to have
the interior of a gravitational object accurately modeled as
an ideal Fermi gas, the mass needs to be sufficiently big,
say Np > 1.5 × 1055 (13 Jupiter masses), and to be allowed
to work with the nonrelativistic approximation, it cannot be
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too big either, say Np < 1057 (a solar mass). Furthermore,
we also assumed that the white dwarf failed to ignite, yet
surely our sun did not. This assumption reduces the allowed
range of Np to Np < 9 × 1055. For such a narrow range of
Np values it is not too unrealistic to have the model predict

an Np-independent radius and a central density which
increases proportional to Np.
The 5=3 model breaks the scaling invariance, and

then the radii are Np-dependent, as visible in our Figs. 4
and 6.
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