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The future space-based gravitational wave observatory laser interferometer space antenna (LISA) will
consist of a constellation of three spacecraft in a triangular constellation, connected by laser interferometers
with 2.5 million-kilometer arms. Among other challenges, the success of the mission strongly depends on
the quality of the cancellation of laser frequency noise, whose power lies 8 orders of magnitude above the
gravitational signal. The standard technique to perform noise removal is time-delay interferometry (TDI).
TDI constructs linear combinations of delayed phasemeter measurements tailored to cancel laser noise
terms. Previous work has demonstrated the relationship between TDI and principal component analysis
(PCA). We build on this idea to develop an extension of TDI based on a model likelihood that directly
depends on the phasemeter measurements. Assuming stationary Gaussian noise, we decompose the
measurement covariance using PCA in the frequency domain. We obtain a comprehensive and compact
framework that we call PCI for “principal component interferometry” and show that it provides an optimal
description of the LISA data analysis problem.
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I. INTRODUCTION

Only five years since the historic first detection of
an astrophysical signal, the field of gravitational-wave
astronomy continues to rapidly advance through upgrades
to ground-based facilities [1], plans for ambitious follow-
on terrestrial detectors [2], and a steady increase in
sensitivity of pulsar timing arrays [3]. Adding to this in
the 2030s will be the space mission known as the Laser
Interferometer Space Antenna (LISA) [4]. LISA will open
the source-rich frequency window between 0.1 mHz and
1 Hz, enabling the detection of thousands of gravitational-
wave emitting systems of varied origin and at distances
ranging from our galactic neighborhood (kpc) to cosmo-
logical redshift (z ¼ 15 and beyond). The types of sources
will include compact binary stars, the capture of stellar-
remnant black holes by massive black holes, and mergers of
(super)massive black hole binaries. LISA will form a
triangular constellation of three satellites trailing Earth
on heliocentric orbits. Each satellite will house inertial test
masses whose trajectories will be monitored through a
network of interferometric laser links, connecting the
spacecrafts separated from each other by 2.5 million kilo-
meters. Incoming gravitational waves (GW) will affect the
space-time across the constellation, introducing a character-
istic shift in the light travel time along the six one-way
optical links.

Due to the large distance between the inertial references,
LISA needs multiple interferometric measurements to
operate optimally [5]. In this setup, the phasemeter mea-
surements are sensitive to noise fluctuations of the laser
frequencies at a level of 10−13 Hz−1=2. The typical metric
perturbations induced by the target GW sources being
about 10−21, the laser noise dominates them by 8 orders of
magnitude. Recovery of the GW signal is possible because
the correlations between the individual link signals differ
for GWs and laser noise. Laser frequency noise is almost
entirely canceled by a postprocessing technique called
time-delay interferometry (TDI) [6], which constructs
linear combinations of delayed phasemeter measurements
tailored to cancel the laser frequency noise up to ranging
errors. Some TDI variables can be interpreted physically by
synthetically retracing the path of light rays traveling in a
classical Michelson interferometer. The feasibility of TDI
has been studied extensively over the past decade (see, e.g.,
Ref. [7] for an overview), including the implementation of
interpolation filters needed to produce the laser-free data
streams [8]. Further analyses have recently been tackled,
revealing expected TDI noise artifacts, such as flexing
filtering [9] and clock jitters effects [10].
Different generations of TDI variables achieving differ-

ent accuracy levels can be formed depending on assump-
tions about the spacecraft motion. TDI generations 1.0, 1.5,
and 2.0, respectively, assume a rigid and static constella-
tion, a rigid and rotating configuration, and a flexing,
rotating configuration where the arm lengths are linearly
varying in time. Recent work also identified new TDI*quentin.baghi@protonmail.com
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combinations by using the explicit dependence of arm
delays on the satellites’ velocities and accelerations [11].
In addition to its geometric interpretation, TDI can be

viewed algebraically as the group of solutions of an
equation involving six-tuples polynomials in the delay
operators [12], which encodes the cancellation of noise.
Beyond laser noise cancellation, the analysis of LISA’s
measurement can also be interpreted as an inference
problem. We observe the same physical effect (the pertur-
bation of the metric due to incoming gravitational waves)
through different sensors (interferometric arms) affected by
fundamental errors (the laser noise and other stochastic
noises). Everything works as if we recorded the same sound
using different microphones. The goal of the analysis is
generally to estimate parameters of astrophysical sources
emitting GWs. Thus, we can infer them by directly writing
the likelihood to observe the phasemeter measurements
given a prescribed model. The model describes how we
expect the GW signal to appear in the various measure-
ments and the relationships between the noises present in
each data stream. In Ref. [13], Vallisneri et al. recently
formalized this idea in the time domain by marginalizing
the likelihood with respect to laser noises. In this study, we
develop a similar approach in the frequency domain, using
an eigendecomposition of the covariance.
Typically, the likelihood depends on the inverse cor-

relation matrix of all measured variables. Applying its
inverse to the model residuals yields the weighed, uncorre-
lated squared errors involved in any optimal parameter
estimation scheme. We refer to the process of generating
orthogonal variables as principal component analysis
(PCA). In a pioneering work [14], Romano and Woan
show that we can derive the TDI combinations from the
eigenvectors of the single-link covariance matrix through a
demonstration based on a simplified time-domain analysis
assuming white noise and short time series. Leighton
further analyzes the noise covariance matrix structure
and its principal components in Ref. [15], extending it
to the frequency domain. The aim of the present work is to
make this idea readily usable for gravitational-wave data
analysis and demonstrate it on an inference problem. For
this purpose, we build an analytic formalism implementing
PCA, based on a matrix formulation in the frequency
domain. We refer to this approach as “principal component
interferometry” or PCI for short.
PCI implements the generalized analog of the orthogonal

TDI channels A, E, T [16]. While A, E, T’s original con-
struction relies on assumptions such as equal arms and
uncorrelated acceleration noises, PCI yields the optimal
variance in a unified, data-driven formalism. We first
decompose the data on the eigenvector basis of the
laser-noise covariance matrix. We then estimate the fre-
quency-domain covariance matrix (or spectral matrix) of
eigenstreams, assuming that the acceleration noise is sta-
tionary. The resulting model likelihood allows us to fit for

noise parameters encoding all types of noise correlations,
which we account for by construction in the inference
process.
In Sec. II, we present the algebraic formalism used to

develop PCI. In Sec. III, we derive the principal compo-
nents of the covariance in the simple case of rigid arm
lengths. In Sec. IV, we demonstrate PCI’s performance
through simple numerical simulations, with an example of
an application where we estimate conjointly the laser light
propagation delays (ranging), the noise covariance ele-
ments, and the parameters of a compact galactic binary
source. We conclude and discuss the further generalization
to more complex cases in Sec. V.

II. MODELING SINGLE-LINK MEASUREMENTS
USING MATRIX OPERATORS

A. Derivation of the likelihood

In this section, we present the conventions and the
formalism that we adopt throughout the study. Using
conventions in Fig. 1 of Ref. [9], we consider a spacecraft,
labeled i, and the signal, si, obtained by comparing the laser
light coming from the distant spacecraft iþ 1 to the local
oscillator of optical bench i. The measurement si is where
gravitational waves imprint their presence and is called the
science interferometer signal. The science interferometer
measurements siðtÞ ¼ ðνiðtÞ − ν0Þ=ν0 are expressed as the
relative deviation of instantaneous frequency with respect
to the carrier frequency ν0. For the two optical benches
onboard spacecraft i, we have, at each time t:

si ¼ hiþ2 þDiþ2pi0þ1 − pi þ ni;

si0 ¼ hiþ1 þDi0þ1piþ2 − pi0 þ ni0 ; ð1Þ

whereDixðtÞ ¼ xðt − c−1LiÞ denotes the operator applying
the light travel time delay c−1Li along arm i, hi is the
integrated frequency shift along arm i due to incoming
gravitational waves, pi is the frequency noise contribution
of the laser in optical bench i, and ni gathers all other noises
affecting the science measurement on that bench for all
i ∈ f1; 2; 3g. We adopt the convention of cyclic indexing
where pi actually means pi−3bði−1Þ=3c, and simple indices
refer to links and light travel times pointing clockwise,
whereas prime indices denote counterclockwise directions.
In the following, we assume that the lasers in the two
optical benches are identical, so that

pi ¼ pi0 ∀ i ∈ f1; 2; 3g: ð2Þ

This assumption allows us to simplify the analysis but can
be adopted without loss of generality. Note that although
the laser sources are different in reality, they will be
compared through reference interferometer measurements.
The measurements si in Eq. (1) will be sampled at a

cadence of fs ¼ 2 Hz or more over a finite duration T.
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The resulting time series can be represented by a column
vector si of size N ¼ fsT. In this discretized version of the
measurement, the delay operatorsDi acting on any variable
xðtÞ can be represented by N × N matrices depending on
the arm lengths Li. Using consistent notation, all lines in
Eq. (1) can be rewritten as

y ¼ hþMpþ n; ð3Þ

where y ∈ R6N is the column vector stacking the
phasemeter measurements for all spacecrafts and all
optical benches so that yðði − 1ÞN þ jÞ ¼ siðj=fsÞ and
yððiþ 2ÞNþ jÞ ¼ si0 ðj=fsÞ∀ i ∈ f1;2;3g; ∀ j ∈ ½0;N − 1�.
Vectors h, p, and n, respectively, represent the GW signals,
laser noises, and other noises. They have in general the
same structure and dimensions as y. Note that under the
assumption outlined in Eq. (2), we keep only the first half
of p so that p ∈ R3N .
Matrix M encodes the mixing and delaying of laser

noises and can be written as a block matrix:

M ¼

0
BBBBBBBBB@

−IN D3 0N
0N −IN D1

D2 0N −IN
−IN 0N D20

D30 −IN 0N
0N D10 −IN

1
CCCCCCCCCA
: ð4Þ

Now that the observation equation is written in matrix
form, we can derive the corresponding likelihood.
Gravitational-wave source parameters θ are usually
extracted using Bayesian inference, which estimates
their posterior distribution given the data,

pðθjyÞ ¼ pðyjθÞpðθÞ
pðyÞ ; ð5Þ

where pðyjθÞ is the model likelihood, pðθÞ is the prior
distribution of the parameters, and pðyÞ is the evidence,
acting as a normalization.
Assuming a zero-mean Gaussian distribution for all

noises, the likelihood follows from Eq. (3):

pðyjθÞ ¼ exp f− 1
2
ðy − hÞ†Σ−1ðy − hÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ6N jΣj

p ; ð6Þ

where † denotes the Hermitian conjugate, and Σ is the
6N × 6N covariance matrix of the observations y, whose
expression derives from Eq. (3),

Σ ¼ MΣpM† þ Σn; ð7Þ

where Σp and Σn are, respectively, the covariance matrices
of the laser noises p and of the other noises n, assuming no
intrinsic correlation between the two.
In the following, we make the convenient but realistic

assumption that all noises are stationary (at least for a
relatively short period of time). In that case, their covari-
ance matrices are Toeplitz, and for a sufficiently large N,
they are approximately diagonalizable in the discrete
Fourier basis W that forms its eigenvectors and writes

Wðk; nÞ ¼ e
2πjnk
N , with j ¼ ffiffiffiffiffiffi

−1
p

being the complex number.
We can therefore rewrite the covariance matrix in Eq. (7) in
the Fourier domain as

Σ̃ ¼ M̃SpM̃
† þ Sn; ð8Þ

where Sp and Sn are the covariance matrices of the discrete
Fourier-transformed data that we call spectral matrices.
Due to stationarity, Sp (respectively, Sn) includes 3 × 3

(respectively, 6 × 6) blocks, which are N × N diagonal
matrices, whose diagonal elements are given by the
noise cross spectra. Spectral matrices are Hermitian, with
real positive diagonal blocks and complex conjugate off-
diagonal blocks. If we restrict the analysis to a specific set
of Nf frequencies, then each block has size Nf × Nf. In the
following, we look for the principal components of the
covariance matrix.

III. PRINCIPAL COMPONENT ANALYSIS OF
SINGLE-LINK MEASUREMENTS

A. Principle of PCA

PCA aims at finding a transformation of the observations
that converts them into uncorrelated variables, ordered
according to their variance. The process is often used to
reduce the dimension of the problem by discarding the
highest variance components. Here, we aim at finding a
unitary transformation matrix V, where the covariance
matrix can be diagonalized as

Σ ¼ VΛV†; ð9Þ

where Λ is a diagonal matrix. Then the log-likelihood can
conveniently be rewritten as

logpðyjθÞ ¼ −
1

2
ðy− hÞ†VΛ−1V†ðy− hÞ− 1

2
log jΛj: ð10Þ

However, finding a full decomposition like Eq. (9) can
be tricky, unless we make a few key assumptions, which we
do in the following.
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B. PCI for equal noises

Away to find a decomposition of the form (9) is to find
the eigenvectors of the covariance matrix. To ease their
calculation, we make two assumptions.
First, we assume that all delays are constant in time,

which implies that the delay operators are commutative;
i.e., D1D2 ¼ D2D1. In this case, the Fourier basis also
provides approximate eigenvectors for the delay operators
Di. Hence, in the Fourier basis, the delay operators are
approximately diagonal, and in the limit of large N, we can
write their elements as

D̃ijk;l ¼ e−2πjfkc
−1Liδkl. ð11Þ

Second, we assume for now that all nonlaser noises have
the same power spectral density (PSD). Thus, all diagonal
blocks Sn;i of the spectral matrix Sn are equal: Sn;i ¼ λn ∀ i.
Based on these assumptions, from the calculation of

the characteristic polynomial of matrix Σ̃, we find that
there are six eigenvalues per frequency bin, hence, 6Nf

eigenvalues for the full problem. Half of them (which we
label Λn) are degenerate and equal to the nonlaser noise
PSD values so that Λn ¼ diagðλn; λn; λnÞ. We can write the
6Nf × 3Nf matrix gathering their associated eigenvectors
Ṽn analytically as

Ṽn ¼

0
BBBBBBBBBBBB@

D̃†
2ðD̃†

10D̃
†
1 − IÞ D̃†

30 − D̃†
1D̃

†
2 D̃†

20D̃
†
2 − I

D̃†
10 − D̃†

2D̃
†
3 D̃†

30D̃
†
3 − I D̃†

3ðD̃†
20D̃

†
2 − IÞ

D̃†
10D̃

†
1 − I D̃†

1ðD̃†
30D̃

†
3 − IÞ D̃†

20 − D̃†
1D̃

†
3

0 0 I− D̃†
1D̃

†
2D̃

†
3

0 I− D̃†
1D̃

†
2D̃

†
3 0

I− D̃†
1D̃

†
2D̃

†
3 0 0

1
CCCCCCCCCCCCA

:

ð12Þ

Note that Ṽn is also a basis for the null space of the laser-
noise part of the covariance so that we have Σ̃Ṽn ¼ SnṼn.
The 3Nf other eigenvalues, which we label as

Λp ¼ diagðλp1; λp2; λp3Þ, have more complicated expres-
sions but are all proportional to the laser noise PSD Sp.
We denote by Ṽp the associated eigenvector matrix, which
has the same dimensions as Ṽn. We plot the laser-noise
dominated eigenvalues λpi in gray as a function of
frequency in Fig. 1, along with the degenerate laser-noise
free eigenvalues λn in blue. This figure confirms that the
former are much larger than the latter.
As a result, we can partition the eigenvector matrix as

Ṽ ¼ ðṼpṼnÞ. Let us consider the data transformation
ẽ≡ Ṽ†ỹ. As they correspond to different eigenvalues,
the eigenvector matrices Ṽn and Ṽp are orthogonal.
Therefore, the covariance of ẽ is block diagonal,

CovðẽÞ ¼
�
V†

pΣVp 0

0 V†
nSnVn

�
≡

�
Cp 0

0 Cn

�
; ð13Þ

where we defined the 3Nf × 3Nf matrix Cn (respectively,
Cp) as the covariance of the projected data ẽn ≡ Ṽ†

nỹ
(respectively, ẽp ≡ Ṽ†

pỹ) onto the laser-noise free (respec-
tively, laser-noise dominated) basis.
Then it is possible to separate the laser noise-dominated

eigenbasis Ṽp from the laser noise-free eigenbasis Ṽn in the
calculation of the likelihood,

logpðyjθÞ ¼ −
1

2
ðỹ − h̃Þ†ṼpC−1

p Ṽ†
pðỹ − h̃Þ

−
1

2
ðỹ − h̃Þ†ṼnC−1

n Ṽ†
nðỹ − h̃Þ

−
1

2
ðlog jCpj þ log jCnjÞ: ð14Þ

Similarly to Romano and Woan’s example in Ref. [14],
the laser noise variance being much larger than other
noises, the term in the second line in Eq. (14) is almost
constant as a function of θ compared to the term in the first
line. Therefore, for parameter inference purposes, we can
safely approximate the log-likelihood by

logpðyjθÞ≈−
1

2
ðỹ− h̃Þ†ṼnC−1

n Ṽ†
nðỹ− h̃Þ−1

2
log jCnj: ð15Þ

In the next section, we detail how we compute the inverse
of Cn.

C. Orthogonalization with respect to nonlaser noise

In the previous section, we saw that the approximate
log-likelihood depends on the covariance C of the data

FIG. 1. Laser-noise dominated eigenvalues λpi (gray) and laser-
noise free eigenvalues λn (blue) of the phasemeter covariance
matrix as a function of frequency.
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projected onto the eigenbasis associated with null eigen-
values of the laser-noise covariance. If the noise parameters
(PSD levels and light travel time delays) are assumed to
be known and fixed in the inference scheme, this matrix
and its inverse can be computed once for all. However, if
we need to update the delays and the noise model along the
way, we must compute C−1

n at every parameter update for
all frequencies. In this work, we perform this computation
by numerically diagonalizing Cn with its eigenvectors Φ
and eigenvalues ΛC and then computing C−1

n ¼ ΦΛ−1
C Φ†.

We use the NumPy library [17,18], which includes efficient
algorithms when the number of frequency bins is not large
(<1000). It may be more efficient for larger frequency
bands to use an analytical formula for 3 × 3 Hermitian
matrices as derived by Ref. [19].
This diagonalization is a generalization of the orthogon-

alization process that leads to TDI variables A, E, T [7,20].
Indeed, we can apply the formalism developed in this
section to any linear transformation that cancels laser
frequency noise. For example, TDI transformations can
be encoded by some matrix T instead of Vn in Sec. III B.
While channels A, E, and T are orthogonal under specific
conditions (including equal arm lengths, a nonrotating
constellation, identical acceleration noise levels, and uncor-
related noises), the rationale leading to Eq. (15) does not
rely on any of these assumptions.

D. PCI with no prior knowledge of noise PSDs

While the projection onto the null space of the laser noise
covariance matrix (i.e., the calculation of Ṽn) is indepen-
dent of the laser noise spectra, the orthogonalization that
we outlined in Sec. III C relies on our knowledge of the
other noises’ spectral matrix Sn. Although we may have a
physical model describing acceleration and optical metrol-
ogy system (OMS) noises, we must expect deviations from
the theory when dealing with future LISA data. Therefore,
it is necessary to have a formalism that also allows us to
estimate Cn robustly. Estimating the full covariance matrix
elements is not commonly done in gravitational-wave data
analysis, but it can be performed similarly to PSD estima-
tion methods, extending them to off-diagonal terms. This
type of problem relates to spectral analysis of co-stationary
multivariate time series, for which, several approaches are
available, such as estimating the components of the
generalized Cholesky decomposition of the spectral matrix
or its inverse [21]. Regardless of the model we adopt, one
has to ensure that the estimated spectrum is a positive
definite matrix and is continuous as a function of frequency.
To benefit from fast conditional steps when it comes to
posterior sampling, we choose to model the covariance
elements themselves with the regression scheme proposed
by Ref. [22], which takes advantage of conjugate priors. To
this end, let us consider a single frequency f and the 3 × 3
covariance of the corresponding elements,

ČnðfÞ≡ CovðěðfÞÞ; ð16Þ

where we labeled as ěðfkÞ≡ ðỹk; ỹNfþk; ỹ2NfþkÞT the
vector of eigenstream elements associated with frequency
bin fk. Thus, we assume that the covariance has the form

ČnðfÞ ¼ Ψþ BxðfÞx†ðfÞB†; ð17Þ

where Ψ is a constant 3 × 3 Hermitian matrix, xðfÞ is a
q × 1 design matrix depending on frequency, and B is a
3 × q matrix of regression parameters. For example, x can
have the form of a polynomial in frequency with ele-
ments x ¼ ð1; f;…; fq−1ÞT .
In this model, Ψ and B are unknown and must be

estimated. For a sufficiently short frequency range, we can
even approximate the covariance by a constant term across
the band, as in Ref. [23]. Under this assumption, Eq. (17)
reduces to ČnðfÞ ¼ Ψ, and Ref. [22]’s sampling scheme
amounts to using the conjugate prior for the Gaussian
distribution, i.e., the inverse Wishart prior IWðΨ0; ν0Þ. We
adopt this simplification in what follows, where the condi-
tional posterior ofΨ given the delays L and GW parameters
θGW is also inverse Wishart:

pðΨjy;L; θGWÞ ¼ IWðΨ0 þ Ψ̂; ν0 þ NfÞ; ð18Þ

where Nf is the number of frequency bins, and Ψ̂ is the
3 × 3 sample covariance of the eigenstream residuals,

Ψ̂ ¼ Ṽ†
nðỹ − h̃Þðỹ − h̃Þ†Ṽn: ð19Þ

We implement this step in Python using statistical packages
from the SciPy library [24]. Following Ref. [22]’s sugges-
tions, we set ν0 ¼ dþ 2, where d ¼ 3 is the dimension of
Ψ0. We choose Ψ0 to be the median of the frequency bins’
sample covariances after a first run obtaining a rough
estimate of the eigenstreams ẽn.

E. Frequency-domain implementation of delays

Up to now, we assumed that time series have a quasi-
infinite length so that the asymptotic frequency-domain
formulation of the delay operator in Eq. (11) is valid. In
practice, we analyze relatively short measurements for
which this approximation breaks. Applying Eq. (11) on
Fourier-transformed data leads to large edge effects. To
mitigate this behavior, we use a time window that smoothly
drops to zero at the time series’ edges. However, such an
operation usually requires transforming the data back to the
time domain, which is computationally expensive com-
pared to the usual cost of one likelihood evaluation.
Therefore, we perform the equivalent computation in
Fourier space (i.e., a discrete convolution) using a sparse
approximation of the convolution kernel, similarly as in
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covariance approximation techniques [25]. The delay
operation amounts to the following matrix multiplication:

D̃tap ¼ Ω̃ D̃; ð20Þ

where D̃ is the asymptotic delay operator as given by
Eq. (8), and Ω̃ is the tapered convolution matrix whose
elements are given by

Ω̃k;p ¼
�P

N−1
n¼0 wðnÞe−2πjn

k−p
N if jk − pj ≤ p0;

0 otherwise:
ð21Þ

We denoted by wðnÞ the time-domain window function and
p0 an integer threshold for the row-column difference,
above which, the matrix elements are zero.

IV. CASE STUDY

To demonstrate the developed approach’s performance,
we consider the simple case where phasemeter data only
contain a single GW source buried into stationary Gaussian
noise. Unless otherwise stated, we assume arbitrary arm
lengths and noise PSDs. The parameters governing the
estimation model include:

(i) Laser light travel time delays L ¼ ðL1; L2; L3;
L10 ; L20 ; L30 Þ;

(ii) GW source parameters that we restrict to intrinsic
ones θGW ¼ ðθ;ϕ; f0; _f0Þ;

(iii) Nonlaser noise covariance parameters Ψ.
We use the likelihood function in Eq. (15) that we

maximize over extrinsic GW amplitudes. In this function,
the frequency-domain waveform h̃ depends both on θGW
and on L, while the laser noise covariance eigenvectors Vn
depend on L only.

A. Simulation parametrization

1. Noise

We simulate one month of LISA observations that yield
single-link time series by implementing Eq. (1) with a Python
code. We generate noises at a sampling cadence of 2 Hz.
We first applied the delays using time-domain Lagrange
interpolation filters, with the same parametrization as in
LISANode [9] and checked that the PCI algorithm was
successfully canceling laser noise. However, we noted that
the applied delays’ accuracy was not enough to be unnoticed
when recovering delays from data simulated over long
periods (one month). In other words, the delay values
optimally canceling laser noise were slightly biased com-
pared to injected delay values. This mismatch is under-
standable, as fractional delay filters have a frequency
response that only approximates the ideal delay filter [26].
Therefore, we chose to simulate the data used in this study
directly in the frequency domain, relying on noise statio-
narity, following Ref. [27].

We then filter the data using a Kaiser finite-response
filter and down sample it to 0.2 Hz to generate the outputs.
We assume a rigid, rotating LISA constellation so that the
effective arm lengths do not vary in time and that the light
travel time is sensitive to the direction of propagation due to
the Sagnac effect.
The noise PSD model includes three components: laser

frequency noise, test-mass (TM) acceleration noise, and
optical metrology system noise. We assume that the noises
affecting two different optical benches are uncorrelated so
that matrices Sp and Sn are block diagonal. Matrix Sn has
six diagonal blocks Sni of the form,

Snijk;l ¼ αiðSTMðfkÞ þ SOMSðfkÞÞδkl; ð22Þ

where αi is a positive coefficient depending on optical
bench i. Expressions for noise PSDs STMðfÞ and SOMSðfÞ
are given in the Appendix A. Thus, noise spectra have the
same shape for every optical benches, up to a coefficient
accounting for possible noise level discrepancies.

2. Gravitational-wave signal

We assume that the gravitational signal comes from
the loudest verification compact galactic binary known to
date, called HM Cnc [28,29]. We simulate single-link
gravitational-wave signals sampled at 0.2 Hz in the time
domain using the same code as in Ref. [30] that we adapted
by removing the TDI transfer function. We also relaxed
the low-frequency approximation, using a Fourier series
decomposition similar to Cornish and Littenberg’s imple-
mentation in Ref. [31]. For all parameters, we use uniform
priors around the true parameter values. The source’s
characteristics, along with prior boundaries, are summa-
rized in Table I.

B. Projection onto the null space

The first simulation we consider includes single-link
measurements where all noises are generated from the
same PSD, as given in Appendix A. It also contains one
single GW source, as described in Sec. IVA. For the sake of
description, here, we assume that the light travel time

TABLE I. Values of the source parameters used in the simu-
lations, with their uniform prior boundaries.

Parameter Value Prior range

Frequency [mHz] 6.22 [6.12, 6.32]
Frequency derivative [mHz=s] 7.49 × 10−13 ½10−14; 10−10�
Ecliptic latitude [rad] −0.0821 ½−π=2; π=2�
Ecliptic longitude [rad] 2.102 ½−π; π�
Amplitude [strain] 6.4 × 10−23 Marginalized
Inclination [rad] 0.6632 Marginalized
Initial phase [rad] 5.78 Marginalized
Polarization [rad] 3.97 Marginalized
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delays Li=c are known. We compute the null-space eigen-
vector matrix Ṽn analytically using Eq. (12) and the other
eigenvectormatrix Ṽp numerically. Thanks to thesematrices,
we apply the PCI transformation to obtain eigenstreams that
we orthogonalize as described in Sec. III C. We label as ẽ⊥i
these orthogonal streams.
We plot the periodogram of the PCI transformations in

Fig. 2, which shows the laser-noise dominated eigenstreams
(gray) along with the null space eigenstreams (blue), lying 8
orders of magnitude below. We also plot the GW signal
transformed in the null space eigenstreams, which emerges
from the noise. We show that this noise is indeed limited by
the acceleration and OMS errors by plotting the theoretical
PSD (light blue) computed from the diagonal elements of the
covariance matrix Covðẽ⊥Þ ¼ Φ†Ṽ†

nSnṼnΦ. These plots
demonstrate the ability of the frequency-domain algorithm
to separate the two orthogonal spaces correctly.

C. Sensitivity analysis

In this section, we investigate the theoretical perfor-
mance of the PCI approach in two cases: (i) all nonlaser

noise levels are the same, i.e., αi ¼ 1∀ i and (ii) nonlaser
noise levels are different depending on optical benches,
with α ¼ ð4; 0.25; 16; 0.1; 0.4; 1Þ. In case (ii), some optical
bench noises have larger amplitudes than the baseline,
while others have smaller amplitudes. Overall, the mean
noise level is larger than in case (i) by a factor 3.6. In Fig. 3,
we plot in blue the generalized sensitivity to an ultra-
compact galactic binary source observed over one year. The
source we consider has the same location as HM Cnc, with
zero inclination and equal polarization modes, and we
allow its frequency to vary. Here, for any frequency f,
“sensitivity” refers to the signal-to-noise ratio (SNR) of
a source of frequency f measured in its full bandwidth.
This calculation takes into account the fact that the
covariance matrix is nondiagonal in general, as described
in Appendix B. For comparison, we plot in red and orange
generalized sensitivities of unoptimized TDI combinations
A, E, and T. They are obtained from combining TDI
Michelson X, Y, and Z strictly as derived in [16], relying on
the assumption of equal noises and equal arm lengths.
Thus, we compute associated sensitivities assuming that A,
E, T’s covariance matrix is perfectly diagonal; hence, we
call them “unoptimized.”
PCI and unoptimized TDI yield almost the same sensi-

tivity when noises are equal, as shown by the super-
imposition of the blue and red, solid curves. This
similarity confirms that the A, E, T formulation is nearly
optimal in this configuration because the assumptions made
in their derivation are almost met, except for the equal arm
lengths hypothesis, which plays a minor part in the
orthogonalization process.

FIG. 2. PCI eigenstreams expressed in relative frequency
deviation for the laser-noise free subspace (blue) and the laser-
noise dominated subspace (gray) for a month-long simulation.
The theoretical PSD function of laser-noise free eigenstreams are
plotted in light blue. The red vertical lines denote the gravitational
signal from the verification galactic binary HMCnc that shows up
in all channels as a quasimonochromatic signal.

FIG. 3. Sensitivity of laser-noise free channels as a function of
frequency obtained with PCI eigenstreams (blue or gray) and
unoptimized TDI channels A, E, T (red or orange). The solid lines
represent the case of equal noise; dashed lines correspond to
unequal noise levels, computed for a source like HM Cnc. PCI
and TDI sensitivities are almost identical in the case of equal
noises, while unoptimized TDI undergoes a significant SNR loss
due to misorthogonalization in the case of unequal noises.
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The figure shows that the unequal-noise case (dashed
lines) yields a different SNR compared to the case where all
noises are equal (solid lines). However, the change in SNR
is smaller with the PCI method as it includes the frequency-
dependent orthogonalization by design, providing a general
extension to classic TDI. For this particular source, the
value yielded by the PCI decomposition with unequal
noises is even slightly larger than with equal noises. This is
because some channels have a larger noise level while
others have a smaller one. This comparison illustrates the
importance of off-diagonal terms in the covariance Cn,
which are not equal in the case of heterogeneous noise
levels. Thus, not taking this discrepancy into account may
result in suboptimal performance.

D. Parameter inference scheme

We further assess the performance of the developed
method by using it to recover injected parameters from
the numerical simulations described in Sec. IVA. Estimated
parameters include light travel time delays, source param-
eters, and noise covariance. We restrict the inference to a
portion of the frequency band between 6.20 and 6.24 mHz
around the binary’s frequency. We sample the posterior
distribution of delays and GW parameters through parallel-
tempered Markov Chain Monte Carlo (PTMCMC) sam-
pling, using the PTEMCEE algorithm [32], a parallel-tempered
version of the affine-invariant ensemble sampler EMCEE [33].
We modify the sampling algorithm to include noise

covariance parameters in the inference, using a two-step
Blocked Gibbs sampling scheme where noise parameters
are sampled conditionally to delays and GW parameters:

Step 1∶ L; θGW ∼ pðL; θGWjy;Ψ;BÞ;
Step 2∶ Ψ ∼ pðΨjy;L; θGWÞ: ð23Þ

While Step 1 is still based on PTMCMC, Step 2 uses direct
sampling as described in Sec. III D. We describe sampling
results in the next section.

E. Inference results

We present the results of the inference of delays, GW
parameters, and covariance parameters applied to the
synthetic data described in Sec. IVA with the sampling
scheme presented in Sec. IV D. To obtain sufficient
precision, we extend the simulation duration to one year,
sampled at 20 mHz.
First, we use two data sets: one corresponding to the

equal noise case (i) described in Sec. IV C, the other for the
unequal noise case (ii). We run 40 chains in parallel with 10
different temperatures, and we retain 4 × 105 samples after
chains have reached convergence.

1. Delays

We plot in Fig. 4 the delays posteriors marginalized
over other parameters in the case of equal (dashed lines)

and unequal (solid lines) acceleration noises, using the
ChainConsumer package [34]. We express delays in equiv-
alent interspacecraft distances. In the case of equal noise
levels, posteriors obtained from PCI and unoptimized TDI
are almost equal to each other, confirming the result found
in Fig. 3.
Delays distributions are broader in the case of unequal

noises because, in this example, the overall noise power is
larger than in the case of equal noises. However, for most
delays, posteriors have a larger variance with classic TDI
than with the PCI analysis, because PCI accounts for the
change of off-diagonal covariance terms, maintaining
orthogonalization. This result is consistent with the sig-
nificant SNR loss shown in Fig. (3) when using unopti-
mized TDI combinations.
We remark that the uncertainty in estimating equivalent

arm lengths is of order 40 m, which is enough to cancel
laser noise in this particular case. Should we wish to, we
could obtain a better precision in using the entire frequency
data instead of restricting it to a narrow band.

2. GW parameters

Then, in Fig. 5, we examine the posterior of the GW
source’s frequency and frequency derivative, marginalized
over all other parameters. Here, we focus on PCI results
only, comparing equal (solid blue lines) and unequal (gray
dashed lines) noises. The figure shows that the frequency is
accurately recovered by the PCI analysis (within about
1 μHz), even when performed simultaneously with the
estimation of laser light delays. We observe a minor

FIG. 4. Posterior distribution of the six light-travel time delays
expressed in equivalent arm lengths. Solid lines correspond to the
case of equal acceleration noises, whereas dashed lines corre-
spond to unequal noises. Posteriors obtained with PCI are in blue
or gray, and posteriors obtained with unoptimized TDI are in red
or orange. Thin vertical black dashed lines represent true values,
and shaded areas under the curves cover the 1σ region.
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difference between equal and unequal noise cases, showing
that the adaptive orthogonalization built in the PCI process
minimizes the impact of the noise heterogeneity.
The GW source sky location posteriors that we plot in

Fig. 6 exhibit the same behavior as for the frequency
parameters. The joint PCI analysis accurately spots the
source’s location in the sky (dashed black lines), as shown
by the maximum a posteriori estimate (MAP) represented
by the blue (equal noises) and gray (unequal noises)

crosses. Hence, the MAP estimate remains close to the
actual sky location even in the case of unequal noises.

3. Covariance

We collect the covariance parameter samples computed
in the Gibbs steps in Fig. 7. We use them to compute the
chains of covariance values. We plot the estimated posterior
of the diagonal terms in light green in Fig. 7 as a 3σ interval
around the mean, and we compare it to the true value repre-
sented by the solid line. The real value is located within the
3σ interval, demonstrating the covariance estimate’s accu-
racy. We obtain similar-looking plots for off-diagonal
covariance elements (real and imaginary parts), confirming
the accurate characterization of nonlaser noise and the
proper orthogonalization of the eigenstreams.
We also plot the periodograms of the three eisgenstreams

using the delays’ actual values (solid blue line), along with
the 3σ interval of the posterior samples. The posterior
closely encompasses the target value, showing that the
ranging estimates’ variability is acceptable.
Finally, we plot the 3σ interval (red shaded area) of the

GW waveform samples against the true value of the signal

FIG. 5. Joint posterior distribution of GW source’s frequency
f0 and frequency derivative _f0, obtained with PCI in the case of
equal (solid blue) and unequal (dashed gray) noises applied
to a one-month-long simulation of phasemeter measurements.
Contours correspond to 1σ and 2σ regions.

FIG. 6. Sky localization posterior distribution of the GW source
in celestial coordinates, obtained with PCI in the case of equal
(solid blue) and unequal (dashed gray) noises. The dashed lines
represent the true location.

FIG. 7. True value (solid lines) and estimated 3σ posterior
interval (light shaded areas) of the eigenstream periodograms
(blue), the GW signal (red), and the noise PSDs (diagonal
covariance entries) expressed in relative frequency deviation.
Posterior intervals are computed using 1000 MCMC samples.
The data shown here corresponds to the case of unequal nonlaser
noises.
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(solid red curve), showing the right consistency between
the two. As a result, Fig. 7 provides a summary of the
multiparameter inference enabled by the PCI framework.

V. DISCUSSION AND PROSPECTS

We revisited space-based GW data modeling by writing
the model likelihood directly as a function of phasemeter
measurements. Based on Romano and Woan’s idea in
Ref. [14], we restricted the likelihood to its lowest variance
terms using principal component analysis. This work’s
main contribution is to formalize the PCA approach in the
frequency domain, using an asymptotic formulation of the
delay operators with sparse matrices. This formalization
provides a framework that is readily applicable to param-
eter inference, yielding optimal precision. We show that it
allows us to handle the TDI transfer function of both signal
and noise in a single compact, matrix-based formalism.
With a simplified example of simulated LISA data, we

show that the method allows us to consistently and
simultaneously fit for interspacecraft phase delays, an
ultracompact galactic binary source’s parameters, and noise
covariance parameters. We show that a numerical and data-
driven diagonalization of the covariance yields an optimal
sensitivity to gravitational waves and minimal source
parameter uncertainty.
This work lays the foundation for a more robust analysis

of LISA data. First, it provides a way to derive sensitivities
from instrumental noises, tracking all correlations straight-
forwardly. Second, it generalizes the concept of orthogonal
TDI variables to arbitrary arm lengths and noise correla-
tions. However, to apply to in-orbit data, the approach must
be extended to time-varying interspacecraft distances. Future
work will focus on formalizing this time dependence in the
frequency domain to maintain computational efficiency.
Furthermore, we can extend the developed framework to a
complete set of LISA measurements by dropping the
assumption of identical spacecraft’s laser noise and include
reference interferometer measurements. Preliminary work
has already demonstrated the successful decomposition into
large and low variance components in this configuration, that
we will present in followup studies.
Finally, our work highlights the importance of L0 data

including raw phasemeter measurements in LISA’s science
analysis. The availability of such data will ensure that
alternative processing methods complementary to the
standard TDI pipeline are possible. This diversity of
approaches is an essential tool for cross-checking and
validating the data in an off-line interferometry step that
is crucial for the precise characterization of astrophysical
sources.
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APPENDIX A: EXPRESSIONS
OF NOISE PSD MODEL

The noise PSD models used in this study are given in
fractional frequency per Hertz (Hz−1) as

SlaserðfÞ ¼
�
a0
ν0

�
2

;

STMðfÞ ¼
�
aTM
2πfc

�
2
�
1þ

�
f1
f

�
2
��

1þ
�
f
f2

�
4
�
;

SOMSðfÞ ¼ a2OMS

�
2πf
c

�
2
�
1þ

�
f3
f

�
4
�
: ðA1Þ

We indicate the values of the noise model parameters in
Table II.

APPENDIX B: COMPUTATION OF SENSITIVITY
TO MONOCHROMATIC BINARIES

In this section, we derive the expression for the gener-
alized SNR plotted in Fig. 3, which extends the classic SNR
calculation to the case where the noise covariance used for
the estimation is different than the correct one.
Let us consider some linear transformation of the single-

link measurements, encoded by a 6Nf × 3Nf matrixW that
can represent any TDI or PCI transformation in the
frequency domain, over a bandwidth of Nf frequency bins.
Applying W to the phasemeter measurements vector ỹ of
size 6Nf yields the vector ẽ of size 3Nf.
We define the generalized SNR ρWðf0Þ of a monochro-

matic GW of frequency f0 obtained with the data trans-
formation W as the ratio between the absolute value of its
gravitational-wave strain amplitude h0 and the standard
deviation σ0 of its maximum likelihood estimate,

TABLE II. Values of the noise parameters used in the simu-
lations.

Noise type Parameter Value

Laser a0 28.2 Hz · Hz−1=2
ν0 281759 GHz

Test mass aTM 3 fm s−2 Hz−1=2
f1 0.4 mHz
f2 8 mHz

OMS aOMS 15 pmHz−1=2
f3 2 mHz
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ρWðf0Þ≡ jh0j
σðf0Þ

: ðB1Þ

We assume that the GW signal appears in the single-link
measurements ỹ as

ỹ ¼ Ãh0; ðB2Þ

where Ã is a 6Nf × 1 design matrix. From Eq. (3), this
transformation maps the GW amplitude as

ẽ ¼ W†Ãh0 þ ϵ̃; ðB3Þ

where ϵ̃ is the noise contribution to the data stream vector ẽ.
The effective 3Nf × 1 transfer function matrix is thus
H ≡W†Ã.
Let us assume that we analyze the data with the

following likelihood model:

pðẽjh0Þ ¼
exp f− 1

2
ðẽ −Hh0Þ†C−1ðẽ −Hh0Þgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ6N jCj
p ; ðB4Þ

where C is some model of the covariance of ẽ. Assuming
that C is fixed, the maximum likelihood estimator error on

h0 from data in the bandwidth of size Nf is then given by
the inverse Fisher matrix, which is defined as

σ20 ¼ E

��∂ logp
∂h0

�
2
�
−1
: ðB5Þ

Inserting Eq. (B4) into Eq. (B5) yields

σ20 ¼
H†C−1ΣeC−1H
ðH†C−1HÞ2 ; ðB6Þ

whereΣe is the truevariance of data streams ẽ, and is givenby

Σe ¼ W†Σ̃W; ðB7Þ

where Σ̃ is the covariance of y̌.We can remark two properties:
(i) If W cancels laser noise, then Σe ¼ W†SnW.
(ii) If W is an orthogonal transformation with respect to

the noise, then Σe is diagonal by construction.
(iii) If C ¼ Σ̃e (i.e., the model covariance is equal to the

true one), then ρWðf0Þ ¼ jh0j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H†Σ−1

e H
p

, which is
exactly equivalent to the standard SNR formula used
in the gravitational-wave literature.

[1] J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott
et al., Enhanced sensitivity of the LIGO gravitational wave
detector by using squeezed states of light, Nat. Photonics 7,
613 (2013).

[2] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, K.
Ackley et al., Exploring the sensitivity of next generation
gravitational wave detectors, Classical Quantum Gravity 34,
044001 (2017).

[3] P. K. Dahal, Review of pulsar timing array for gravitational
wave research, J. Astrophys. Astron 41, 1 (2020).

[4] P. Amaro-Seoane, H. Audley, S. Babak, J. Baker, E.
Barausse et al., Laser Interferometer Space Antenna, Euro-
pean Space Agency Proposal (2017), pp. 1–41.

[5] M. Otto, G. Heinzel, and K. Danzmann, TDI and clock
noise removal for the split interferometry configuration of
LISA, Classical Quantum Gravity 29, 205003 (2012).

[6] J. W. Armstrong, F. B. Estabrook, and M. Tinto, Time-delay
interferometry for spacebased gravitational wave searches,
Astrophys. J. 527, 814 (1999).

[7] M. Tinto and S. V. Dhurandhar, Time-delay interferometry,
Living Rev. Relativity 17, 6 (2014).

[8] D. A. Shaddock, B. Ware, R. E. Spero, and M. Vallisneri,
Postprocessed time-delay interferometry for LISA, Phys.
Rev. D 70, 081101 (2004).

[9] J.-B. Bayle, M. Lilley, A. Petiteau, and H. Halloin, Effect of
filters on the time-delay interferometry residual laser noise
for LISA, Phys. Rev. D 99, 084023 (2019).

[10] O. Hartwig and J.-B. Bayle, Clock-jitter reduction in LISA
time-delay interferometry combinations, arXiv:2005.02430.

[11] M. Muratore, D. Vetrugno, and S. Vitale, Revisitation of
time delay interferometry combinations that suppress laser
noise in LISA, arXiv:2001.11221.

[12] K. R. Nayak and J. Y. Vinet, Algebraic approach to time-
delay data analysis for orbiting LISA, Phys. Rev. D 70, 16
(2004).

[13] M. Vallisneri, J.-B. Bayle, S. Babak, and A. Petiteau, TDI-
infinity: Time-delay interferometry without delays,
arXiv:2008.12343.

[14] J. D. Romano and G. Woan, Principal component analysis
for LISA: The time delay interferometry connection, Phys.
Rev. D 73, 102001 (2006).

[15] M. D. Leighton, A principal component approach to space-
based gravitational wave astronomy, Technical Report,
Glasgow U., 2016.

[16] T. A. Prince, J. W. Armstrong, M. Tinto, and S. L. Larson,
LISA optimal sensitivity, Phys. Rev. D 66, 122002
(2002).

[17] T. E. Oliphant, A Guide to NumPy (Trelgol Publishing,
USA, 2006).

[18] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, The
NumPy array: A structure for efficient numerical compu-
tation, Comput. Sci. Eng. 13, 22 (2011).

[19] J. Kopp, Efficient numerical diagonalization of hermitian
3 × 3 matrices Int. J. Mod. Phys. C 19, 523 (2008).

STATISTICAL INFERENCE APPROACH TO TIME-DELAY … PHYS. REV. D 103, 042006 (2021)

042006-11

https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1007/s12036-020-9625-y
https://doi.org/10.1088/0264-9381/29/20/205003
https://doi.org/10.1086/308110
https://doi.org/10.12942/lrr-2014-6
https://doi.org/10.1103/PhysRevD.70.081101
https://doi.org/10.1103/PhysRevD.70.081101
https://doi.org/10.1103/PhysRevD.99.084023
https://arXiv.org/abs/2005.02430
https://arXiv.org/abs/2001.11221
https://doi.org/10.1103/PhysRevD.70.102003
https://doi.org/10.1103/PhysRevD.70.102003
https://arXiv.org/abs/2008.12343
https://doi.org/10.1103/PhysRevD.73.102001
https://doi.org/10.1103/PhysRevD.73.102001
https://doi.org/10.1103/PhysRevD.66.122002
https://doi.org/10.1103/PhysRevD.66.122002
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1142/S0129183108012303


[20] F. B. Estabrook, M. Tinto, and J. W. Armstrong, Time-delay
analysis of LISA gravitational wave data: Elimination of
spacecraft motion effects, Phys. Rev. D 62, 042002 (2000).

[21] M. Dai and W. Guo, Multivariate spectral analysis using
Cholesky decomposition, Technical Report 3, 2004.

[22] P. D. Hoff and X. Niu, A covariance regression model,
Statistica Sinica 22, 729 (2012).

[23] T. Littenberg, N. Cornish, K. Lackeos, and T. Robson,
Global Analysis of the Gravitational Wave Signal from
Galactic Binaries, Phys. Rev. D 101, 123021 (2020).

[24] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy et al., SciPy 1.0: Fundamental algorithms for
scientific computing in Python, Nat. Methods 17, 261
(2020).

[25] R. Furrer, M. G. Genton, and D. Nychka, Covariance
tapering for interpolation of large spatial datasets, J. Comput.
Graph. Stat. 15, 502 (2006).

[26] C. C. Tseng and S. L. Lee, Design of fractional delay filter
using discrete Fourier transform interpolation method,
Signal Process. 90, 1313 (2010).

[27] J. Timmer and M. Koenig, On generating power law noise,
Astron. Astrophys. 3, 707 1995.

[28] A. Stroeer and A. Vecchio, The LISA verification binaries,
Classical Quantum Gravity 23, S809 (2006).

[29] T. Kupfer, V. Korol, S. Shah, G. Nelemans, T. R. Marsh, G.
Ramsay, P. J. Groot, D. T. H. Steeghs, and E. M. Rossi,
LISAverification binaries with updated distances from Gaia
Data Release 2, Mon. Not. R. Astron. Soc. 480, 302 (2018).

[30] Q. Baghi, J. I. Thorpe, J. Slutsky, J. Baker, T. D. Canton, N.
Korsakova, and N. Karnesis, Gravitational-wave parameter
estimation with gaps in LISA: A Bayesian data augmenta-
tion method, Phys. Rev. D 100, 022003 (2019).

[31] N. J. Cornish and T. B. Littenberg, Tests of Bayesian model
selection techniques for gravitational wave astronomy,
Phys. Rev. D 76, 083006 (2007).

[32] W. Vousden, W.M. Farr, and I. Mandel, Dynamic temper-
ature selection for parallel-tempering in Markov chain
Monte Carlo simulations Mon. Not. R. Astron. Soc. 455,
1919 (2015)..

[33] D. Foreman-Mackey, D.W. Hogg, D. Lang, and J.
Goodman, emcee: The MCMC Hammer, Publ. Astron.
Soc. Pac. 125, 925 (2012).

[34] S. Hinton, Chain-Consumer, J. Open Source Software 1, 45
(2016).

BAGHI, THORPE, SLUTSKY, and BAKER PHYS. REV. D 103, 042006 (2021)

042006-12

https://doi.org/10.1103/PhysRevD.62.042002
https://doi.org/10.5705/ss.2010.051
https://doi.org/10.1103/PhysRevD.101.123021
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1198/106186006X132178
https://doi.org/10.1198/106186006X132178
https://doi.org/10.1016/j.sigpro.2009.10.016
https://doi.org/10.1088/0264-9381/23/19/S19
https://doi.org/10.1093/mnras/sty1545
https://doi.org/10.1103/PhysRevD.100.022003
https://doi.org/10.1103/PhysRevD.76.083006
https://doi.org/10.1093/mnras/stv2422
https://doi.org/10.1093/mnras/stv2422
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.21105/joss.00045
https://doi.org/10.21105/joss.00045

