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We present a technique for translating a black-box machine-learned classifier operating on a high-
dimensional input space into a small set of human-interpretable observables that can be combined to make
the same classification decisions. We iteratively select these observables from a large space of high-level
discriminants by finding those with the highest decision similarity relative to the black box, quantified via a
metric we introduce that evaluates the relative ordering of pairs of inputs. Successive iterations focus only
on the subset of input pairs that are misordered by the current set of observables. This method enables
simplification of the machine-learning strategy, interpretation of the results in terms of well-understood
physical concepts, validation of the physical model, and the potential for new insights into the nature of the
problem itself. As a demonstration, we apply our approach to the benchmark task of jet classification in
collider physics, where a convolutional neural network acting on calorimeter jet images outperforms a set
of six well-known jet substructure observables. Our method maps the convolutional neural network into a
set of observables called energy flow polynomials, and it closes the performance gap by identifying a class
of observables with an interesting physical interpretation that has been previously overlooked in the jet
substructure literature.
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I. INTRODUCTION

It is widely appreciated that neural networks (NNs) and
related machine-learning (ML) tools can provide powerful
solutions to important and difficult problems in high-energy
physics [1,2]. Examples of tasks that have benefitted from
NNs include triggering [3], event reconstruction [4,5],
object identification [6–8], and event selection [9–11]. In
all of these contexts, though, the physicist wonders: what
has the machine learned? Satisfaction with improved
performance is tempered by frustration with the “black-
box” nature of NN strategies.
The advent of deep learning has made this question more

urgent, as the data dimensionality of the tasks has increased
dramatically andML approaches have outperformed human-
engineered strategies for problems that, until recently, were
deemed too difficult for ML. Examples include event
classification [12–17], jet substructure studies [18–22], jet
flavor classification [23–27], detector unfolding [28–30],
and uncertainty estimation [31–35]. In each case, a deep
NN has successfully utilized more information from the

high-dimensional low-level input data thanwas captured by a
smaller number of physics-motivated high-level (HL)
observables. When there is a performance gap between
machine-learned and human-engineered strategies, physi-
cists want to understand how the NN is using the low-level
information to improve its performance. This desire also
applies to situations where performance of the ML solution
matches (but does not exceed) the human-engineered
approach. Has the machine learned the same strategy that
humans devised, or has it found an alternative solution with
equal efficacy?
In this paper, we present a technique for translating a

black-box ML strategy based on low-level inputs into a
human-readable space of HL observables. Instead of trying
to directly interpret an NN classifier, our approach is to use
the NN as a guide for the construction of a simpler classifier
whichmakes the samedecisions but relies on a small number
of physics-inspired human-interpretable inputs, selected
iteratively from a large space of observables. As a demon-
stration of our method, we present a case study in jet
classification [20] using a convolutional neural network
(CNN) to guide the selection of a small set of HL
observables called energy flow polynomials (EFPs) [36].
We find that the final set of HL observables provides the
same classification performance as the CNN acting on the
low-level inputs, but in a more compact, interpretable, and
physically meaningful format. Our study suggests that
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physicists should consider an overlooked set of HL observ-
ables that are relevant to jet substructure classification.
This desire to gain insight into the nature of ML

strategies is important on several levels. First, it is critical
that information used by the NNs be validated as real and
physical, rather than an artifact of the training samples or
procedure. Even in cases where the ML training does not
rely on simulated samples [37–39], it is important to
understand what information is being used. Translating a
black-box ML strategy into a simpler network that relies on
a smaller number of physically meaningful observables
allows for effective validation. Second, having an inter-
pretable strategy based on HL inputs allows for more
reliable estimates of systematic uncertainties. If the HL
space is small enough, the HL inputs themselves can be
individually studied and calibrated, which is a more
straightforward task than handling low-level inputs directly.
Third, if one can replace a sophisticated ML strategy with a
simpler network based on preprocessed inputs, this can
enable faster interference and lower memory requirements
at run-time [40,41]. Finally, if previously overlooked
information in the low-level data is physical, identifying
it can provide new insights into the nature of the problem.
Indeed, in our jet classification case study, we show how
the six HL observables studied in Ref. [20] can be
augmented by a seventh HL observable that had not been
previously considered in the literature. By scrutinizing the
structure of the EFPs, we can provide a physical inter-
pretation for this new observable.
There have been previous proposed strategies to draw

connections between a learned NN strategy and existing
HL observables. This can done by comparing the perfor-
mance with and without the HL observables [42] or
projecting the decision surfaces along those observables
[12]. An alternative strategy is to expand the NN function in
a basis of the input features [43–45]. These strategies are
valuable, but are primarily limited to studying the structure
of the NN in terms of already-identified HL observables.
The goal of the present work is to identify new HL
observables relevant for ML tasks, starting from a large
space of HL observables that is as broad and comprehen-
sive as possible (yet still interpretable) and systematically
mapping a black-box ML strategy into that space.
Our mapping strategy suggests a new approach to the

application of deep learning to high-energy physics data. In
this approach, training a powerful deep neural network
(DNN) on low-level inputs is just the first step, which helps
gauge the effective upper limit on possible ML perfor-
mance and determine asymptotically optimal decision
boundaries. The new second step is translating as much
of the ML strategy as possible to a well-understood set of
HL observables. This allows for physical interpretation of
the information being used, validation of the modeling,
definition of reasonable systematic uncertainties, as well as
computational benefits due to dimensionality reduction.

An extended outline of this paper is as follows. In Sec. II,
we present a general approach to map an ML model’s
learned solution into a human-readable space. This map-
ping requires that we construct a large space of candidate
HL observables and use a reliable similarity metric for
comparing these observables to the learned solution. As our
similarity metric, we introduce the average decision order-
ing (ADO), which is related to Kendall’s rank correlation
coefficient [46] and quantifies to what extent two classifiers
make the same (even if incorrect) decisions. We then
present a mapping strategy that leverages the ADO. Our
black-box guided strategy iteratively finds the maximum
ADO between the HL observables and a fixed black-box
ML algorithm.
In Sec. III, we review the collider task of discriminating

between jets originating from boosted W bosons and those
originating from light quarks and gluons. This is a well-
studied problem in the field of jet substructure [21,47–58],
where both HL [59–64] and NN strategies [18–20] have
proven effective. Our starting point will be the analysis of
Ref. [20], which found a small but persistent improvement
in classification performance with a deeply-connected
CNN when compared to a boosted decision tree (BDT)
of HL observables. To augment the set of HL observables
for jet tagging, we search the space of EFPs [36], which
form an (over)complete basis of collider observables that
are infrared and collinear (IRC)-safe. We also introduce
EFP variants inspired by IRC-unsafe observables that have
been successful in other jet tagging studies [65–68].
The results of our case study are presented in Secs. IV

and V. We start with the six HL observables from Ref. [20],
and use the black-box guided strategy to identify a seventh
HL observable that closes the performance gap with the
CNN. We then apply the black-box guided strategy starting
from just the mass and transverse momentum of the jet,
comparing the results to a brute force strategy of directly
searching the space of EFPs and a guided search based on
ground truth labels. The black-box guided strategy signifi-
cantly outperforms the label guided search, reaching
comparable performance to the brute force strategy with
considerably reduced computational costs. At the end of
each of these sections, we provide a physical interpretation
of the translated ML strategy, and we draw broader
conclusions in Sec. VI.

II. TRANSLATING FROM MACHINE
TO HUMAN

In our mapping approach, we seek to identify a small set
of physically-motivated HL observables that, when com-
bined into a joint classifier, make the same classification
decisions as a deep network operating on the low-level
features. Crucially, our set of HL features is designed to,
when combined, maximize the classification performance
by following the learned strategy of the black-box NN,
which we argue below is more efficient than training
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directly on ground truth information. If this translation is
successful, then we will have expressed the ML strategy
more simply and transparently in terms of a few HL
observables.
The first step in our approach is to identify a compre-

hensive set of HL observables that are potentially relevant
for solving the ML task at hand. This in turn requires
(human) knowledge about the physical system being
studied and about the kinds of HL observables that have
interpretable meaning. We know of no way to automate this
step, though automation may not be desirable, as the choice
and structure of the HL observable space defines the
physical interpretation. For our jet substructure classifica-
tion case study, the EFPs have already been identified as a
suitable basis of HL observables [36], as discussed further
in Sec. III B.1 Other ML tasks in high-energy physics might
require the development of alternative bases of HL
observables.
In the rest of this section, we describe the aspects of our

approach that are generic to any ML task, focusing on the
case of binary classification. To evaluate the relative
performance of our simple HL network and a black-box
NN, we need a metric to evaluate whether two classifiers
make the same classification decisions. There are many
such metrics one could use, but we introduce the ADO, in
part because it shares the conceptual simplicity of the area
under the curve (AUC) metric often used to benchmark
classifiers against ground truth. Armed with an explorable
set of HL observables and a metric for assessing learning
similarity, we then present a guiding strategy to map black-
box NNs into a physically meaningful space.

A. Average decision ordering

Our guided strategy requires a similarity metric that
compares the output of two decision functions fðxÞ and
gðxÞ. Here, x represents the full high-dimensional low-level
data, which are inputs to both the black-box NN and the
physically-motivated HL observables. Of course, the def-
inition of similarity must reflect the task for which these
decision functions are applied, which in this case is binary
classification. Because classification performance is invari-
ant under any nonlinear monotonic transformation of f or
g, our similarity metric cannot be affected by such a
transformation. This rules out naive metrics like functional
overlap or linear correlation.
Furthermore, it is not sufficient to simply compare the

overall performance of two classifiers over a given dataset,
since that does not provide information about how the low-
level inputs are being used. As discussed in Ref. [67], two
decision functions might use information from different
regions of the low-level input space and make conflicting

classification decisions case by case, yet still achieve
similar overall performance. The key to our guided strat-
egies is that we aim to match not just the classification
performance of the black-box NN, but also the specific
classification decisions.
We assume that the decision functions fðxÞ and gðxÞ are

real valued and that the final binary classification is
determined by a threshold on the decision function
output. Objects on one side of the threshold are labeled
“signal,” while objects on the other side are labeled
“background.” Depending on the particular application,
this threshold can be tuned to different points on the
receiver operating characteristic curve to optimize the
signal acceptance versus background rejection. To quantify
overall classification performance, we use the AUC, which
is equivalent to the probability that a randomly selected
signal/background pair is correctly ordered by a decision
function fðxÞ:

AUC½f� ¼
Z

dxdx0psigðxÞpbkgðx0ÞΘðfðxÞ − fðx0ÞÞ: ð1Þ

Here, Θ is the Heaviside theta function [i.e., Θðx < 0Þ ¼ 0
and Θðx ≥ 0Þ ¼ 1] and psig and pbkg are the ground truth
signal and background probability distributions. A perfect
decision function has AUC ¼ 1 and random guessing
yields AUC ¼ 1

2
.

To compare the classification behavior of two decision
functions, we consider the decision surface defined by a
threshold on the function output. For each function, the set
of such thresholds defines a set of surfaces in x space. If
two decision functions have the same decision surfaces,
then they are effectively using the same low-level infor-
mation for classification. Note that the absolute output
values of the decision functions are not relevant for
determining whether the decision surfaces are similar.
The relative locations of the decision surfaces are deter-
mined by the relative ordering of the two decision functions
when evaluated at pairs of points in the input space. We can
encapsulate this information via the decision ordering (DO)
for a pair of points x and x0:

DO½f; g�ðx; x0Þ ¼ ΘððfðxÞ − fðx0ÞÞðgðxÞ − gðx0ÞÞÞ; ð2Þ

where 1 corresponds to f and g having the same ordering
and 0 corresponds to inverted ordering.
If two decision functions have DO ¼ 1 for all pairs of x

and x0, then they are monotonically related to each other,
have identical decision surfaces, and are therefore identical
for the purposes of classification. To build a summary
statistic, we average over all possible values of x and x0,
weighted by the signal and background distributions,
yielding the ADO:

1Beyond jet substructure, the EFPs are also formally a
complete basis for event-wide IRC-safe observables, but their
utility in that context has not yet been established.
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ADO½f; g� ¼
Z

dxdx0psigðxÞpbkgðx0ÞDO½f; g�ðx; x0Þ: ð3Þ

This evaluates to 1 if the decision functions make the same
relative classification decision for every pair, to 0 if the
functions make the opposite classification for every pair,
and to 1

2
if there is no consistency in their orderings. Since a

decision function can be trivially inverted, the cases of
ADO ¼ 0 and ADO ¼ 1 have the same meaning, so we
map ADO → 1 − ADO whenever it is less than 1

2
. The

ADO has a similar philosophy to Kendall’s rank correlation
coefficient [46], with the key difference that we are
comparing inputs drawn from separate signal and back-
ground distributions.
To gain intuition for the ADO, note that it has a very

similar structure to the AUC in Eq. (1). The AUC is the
probability that a single decision function orders objects
correctly relative to ground truth. The ADO is the prob-
ability that two decision functions order objects in the
same way, even if incorrectly. In the case that fðxÞ ¼
psigðxÞ=pbkgðxÞ is the likelihood ratio, then fðxÞ is an
optimal classifier by the Neyman–Pearson lemma, so an
ADO ¼ 1 implies that gðxÞ defines the same optimal
decision boundaries as fðxÞ. In most ML applications,
one is trying to maximize the AUC or other similar metric
of absolute classification performance. Our guided strate-
gies, by contrast, aim to maximize the ADO relative to an
already trained ML tool.
There are other similarity metrics that one could use, but

they are not as easy to interpret in terms of classification

decisions.Oneway to capture information similarity is to use
mutual information, or more appropriate to binary classi-
fication, mutual information with the truth [67]. For our
guided strategies, though, we are less interested in whether
two decision functions have the same quantity of information
available to a classification task, and more interested in
quantifying the degree towhich two decision functionsmake
classification decisions in the same way. Even if fðxÞ and
gðxÞ contain a high level of mutual information, they do not
necessarily define the same decision boundaries. This is
especially important to keep in mind given the flexibility of
deep networks, which allow the same discrimination power
to be encoded in many informationally equivalent ways.
Beyond the ADO, there are other summary statistics one
could use based on the raw DO information, and we leave a
study of those alternatives to future work.

B. Black-box guided search strategy

The idea behind the black-box guided strategy is shown
in Fig. 1, where the goal is to find HL observables that
maximize the ADO relative to an already trained ML tool.
We denote the reference black-box network as “BBN”
(with apologies to cosmologists), and it will typically be
some kind of deep network acting on the low-level inputs.
Starting from a large set S of human-defined HL observ-
ables motivated by physics considerations, our aim is to
build a high-level network (HLN) with the same decision
surfaces as the BBN. The initial step (n ¼ 0) in the black-
box guided approach is to identify the observable HL1 that
has the largest ADO with the BBN

FIG. 1. Schematic of the black-box guided search in Sec. II B. In each iteration of this strategy, the relative decision ordering of signal/
background pairs between the fixed black-box network (BBN, black triangle) and a trainable network of HL observables (white triangle)
is used to identify the subset (red box) in which pairs are differently ordered. From a large space of HL observables (circles), the one with
the largest ADO in the misordered space (blue circle) is selected for the next iteration. The schematic above corresponds to the n ¼ 4
iteration. Note that the BBN is not retrained in each iteration, but the network of HL observables is.
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HL1 ¼ argmaxHL∈SADO½BBN;HL�Xall
: ð4Þ

Here, the Xall subscript indicates that we are using the full
set of signal/background training pairs ðx; x0Þ when com-
puting the ADO. The observable HL1 is therefore the
physics-motivated observable in the set S that best approx-
imates the decision surfaces of the black box.
In the next step (n ¼ 1), we focus our search for HL

observables in regions of the feature space where the black-
box network disagrees with our current set of HL observ-
ables, by isolating the subset of signal/background pairs X1

that are ordered differently by the BBN and HL1:

X1 ¼ fðx; x0ÞjDO½BBN;HL1�ðx; x0Þ ¼ 0g: ð5Þ

We then identify the observable HL2 that has the largest
ADO with the BBN when restricted to the X1 subset:

HL2 ¼ argmaxHL∈SADO½BBN;HL�X1
: ð6Þ

For each subsequent step n > 1, we combine the HL
observables already identified in the previous steps into a
joint network,

HLNn ¼ NN½HL1;…;HLn�; ð7Þ

where NN indicates a neural network trained on the full
signal/background training set with just the n HL observ-
ables as inputs. From this joint HLN, the misordered subset
Xn is defined via

Xn ¼ fðx; x0ÞjDO½BBN;HLNn�ðx; x0Þ ¼ 0g: ð8Þ

Because a new HLN is trained in each iteration, Xn may not
be a strict subset of Xn−1. The next observable HLnþ1 is
determined via

HLnþ1 ¼ argmaxHL∈SADO½BBN;HL�Xn
: ð9Þ

Note that the same black-box network is used in each
iteration, but the changing subset Xn means that different
decision surface information is tested at each step. These
steps are repeated until the ADO½BBN;HLNnþ1� gets as
close to 1 as desired.
Isolating the differently-classified pairs in Eq. (8) is

similar in spirit to the boosting step of the BDTs [69,70].
This approach focuses attention only on the subspace of
pairs where the BBN disagrees with the current set of HL
observables, allowing us to identify new HL observables
that make signal-background ordering decisions most
similar to the BBN in that subspace. It is worth emphasiz-
ing that the ADO, or some other metric for network
decision similarity, is essential for this approach to work.
Later in Sec. V C, we will compare this black-box guided

approach to a label guided approach. Instead of using the

ADO, the label guided approach uses the AUC with respect
to ground truth information. It is straightforward to under-
stand why the ADO is superior to the AUC for guiding
purposes. To the extent that the BBN is well trained, it
represents a good approximation to the Neyman–Pearson
optimal classifier. Achieving the correct DO relative to the
optimal classifier for every signal/background training pair
is the best one could ever hope to do. Therefore, if the
black-box guiding strategy is working correctly, then the
subsets Xn will get smaller and smaller until almost all
signal/background pairs have been correctly ordered rela-
tive to the BBN.
By contrast, the AUC captures DO relative to truth

labels. Unless the BBN is able to achieve AUC ¼ 1, there
will inevitably be signal/background pairs that are incor-
rectly ordered even by the theoretically optimal classifier.
Instead of getting smaller and smaller, the subsets Xn will
stall at the set of signal/background pairs that can never be
ordered correctly. This in turn means that the classification
performance of HLNn will stall well below the theoretical
maximum in the label guided approach. That is why we
advocate for the selection of HL observables to be guided
by the ADO, since then the classification performance of
the HLNn will eventually match that of the BBN, as
desired.
As with any “greedy algorithm,” our black-box guided

strategy cannot identify situations where two HL observ-
ables could be combined simultaneously to match the BBN
decision surfaces. This means that we might miss sets of
observables that are individually poor classifiers but per-
form well jointly. If the goal was just to maximize
performance, this would be an undesirable feature. In
the context of mapping a black-box ML strategy to a
physically-interpretable space, though, we are indeed
looking for individual observables with high information
content relevant for classification, so this greedy strategy is
the one most likely to yield physical insight.

III. A CASE STUDY IN JET SUBSTRUCTURE

We now apply the technique introduced in Sec. II to a
specific case study involving jet classification at the LHC.
In this section, we review boosted W boson classification
using jet substructure and highlight the elements of
Ref. [20] that will be used in our case study. We then
introduce the EFPs [36] as our set of HL physics-motivated
observables. Details about our NN architectures and train-
ing parameters are provided in the Appendix A.

A. Boosted boson classification

Massive objects produced at the LHC often have enough
transverse momentum that their decay products become
collimated. For an object with a hadronic decay mode,
such as a W boson decaying to a quark-antiquark pair
(W → qq̄0), the resulting jet in the detector consists of two
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clusters of energy, one from each of the fragmenting
quarks. The substructure of these jets is distinct from those
that arise from the fragmentation of a single hard quark or
gluon. Identification of jets with nontrivial substructure has
become an essential tool for probing the nature of collisions
at the LHC [21,47–58].
There are many different ways to represent the informa-

tion in a jet. At the most fundamental level, a jet is a
variable-length collection of four-vectors with associated
particle properties, motivating set-based ML tools [71–76].
Another popular approach is to describe a jet as a grid of
calorimeter cells with energy depositions, giving rise to a
“jet image” [19,77]. In any of these low-level representa-
tions, the jet data is high-dimensional. This motivates the
development of HL observables that intelligently summa-
rize the low-level information to reduce the effective
dimensionality of the task. Physicists have engineered
numerous HL observables tasks that incorporate domain
knowledge about jet formation (see Refs. [51,59–64,78–
85] for an incomplete list). Typical usage is to apply cuts on
one or more of these HL observables, or to combine several
of them using a shallow ML classifier.
In the context of jet classification, ML tools based on

low-level inputs have outperformed traditional strategies
based on HL observables [86]. Of course, the HL observ-
ables themselves are just functions of the low-level inputs,
so it should be possible to find a large enough set of
physics-motivated HL observables that can match the
performance of these ML classifiers [87–89]. This is indeed
the intuition behind the guided strategy in Sec. II, where the
goal is to leverage a black-box ML method to identify the
most effective HL observables.
Our case study is based on the same datasets as Ref. [20].

These datasets correspond to
ffiffiffi
s

p ¼ 14 TeV proton-proton
collision, where hard scattering and resonance decay were
generated using MADGRAPH 5 v2.2.3 [90], showering and
hadronization were generated with PYTHIA v6.426 [91],
and the response of the detectors was simulated with
DELPHES v3.2.0 [92]. The boosted W boson signal process
is diboson production (pp → WþW−), which yields two fat
jets each with 2-prong substructure. The background
process is QCD dijet production (pp → qq; qg; gg), which
typically yields 1-prong jets. These samples do not include
contamination from pileup (multiple proton-proton colli-
sions per beam crossing). Jets are clustered using the anti-kt
algorithm [93] with a radius parameter of R ¼ 1.2, using
FASTJET 3.1.2 [94]. The dataset contains 5 × 106 events,
split equally between signal and background. Following the
approach in Ref. [20], each jet is pixelated into a 32 × 32
grid in the rapidity-azimuth plane, and a jet image is formed
from the transverse momentum (pT) deposits in each cell.
The jet image is then trimmed [95], where subjets of radius
Rsub ¼ 0.2 are discarded if their pT is less than 3% of the
original jet. The final jet selection takes jets with trimmed
momentum ptrim

T ∈ ½300; 400� GeV within the rapidity

range jηj < 5.0. While important jet information is lost
by pixelation and trimming, we include these steps in our
analysis in order to perform an apples-to-apples compari-
son to Ref. [20].
The trimmed jet’s constituents are used to compute six

HL jet substructure observables: the trimmed jet mass
(Mjet), four ratios of energy correlation functions (Cβ¼1

2 ,
Cβ¼2
2 , Dβ¼1

2 , Dβ¼2
2 ) [62,64], and the N-subjettiness ratio

(τβ¼1
21 ) [60,61]. These observables are well-established in

the context of boosted W boson classification, including
studies at ATLAS [96,97] and CMS [98]. The W boson
classification performance of these six HL observables is
summarized in Table I. The trimmed jet mass is the most
powerful single observable, since the 80.4 GeV mass peak
is a characteristic feature of boosted W bosons.
We can use the ADO from Eq. (3) to gain additional

insight into these six HL observables. In Fig. 2, we assess
the pairwise ADO between each of the HL observables
considered. The observable pairs that make the most similar
decisions (i.e., ADO → 1) are Cβ¼1

2 with Cβ¼2
2 and Dβ¼1

2

with Dβ¼2
2 . This is expected since these observables have

relatively similar structures except for the choice of β
coefficient, which controls the weighting of angular infor-
mation within the jets. These pairs also have similar AUC
values, as seen in Table I, since pairs that make common
classification decisions should exhibit similar classification
power. Comparing the AUC and ADO values provides a
more detailed picture about the degree of correlation in
classification.

TABLE I. Classification performance of the six HL observables
studied in Ref. [20], as well as a 6HL joint classifier. The six HL
observables face a small but significant performance gap com-
pared to the benchmark CNN. As discussed later in Sec. IVA, this
performance gap is bridged by a seventh feature discovered using
our black-box guided strategy. The 488HL case involving a large
set of EFPs is discussed at the end of Sec. V B. The uncertainty on
the AUC is computed from one standard deviation of 10-fold
cross-validation. The decision similarity (ADO) to the benchmark
CNN is also shown. Details of the NN architectures are provided
in Appendix A.

Observable AUC ADO½CNN;Obs:�
Mjet 0.898� 0.004 0.807

Cβ¼1
2

0.660� 0.006 0.584

Cβ¼2
2

0.604� 0.007 0.548

Dβ¼1
2

0.790� 0.005 0.743

Dβ¼2
2

0.807� 0.005 0.762

τβ¼1
2

0.662� 0.006 0.600

6HL 0.9504� 0.0002 0.971
CNN 0.9531� 0.0002 1.000
488HL 0.9535� 0.0002 0.978

7HLblack−box 0.9528� 0.0003 0.971
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The observable pairs that make the least similar deci-
sions (i.e., ADO → 1

2
) are Mjet with τβ¼1

21 and Cβ
2 with Dβ

2.
For Mjet versus τ

β¼1
21 , this is expected since the N-subjetti-

ness probes the degree of pronglike collimation, whereas
mass is sensitive to the energies of the prongs and their
relative angles. For Cβ

2 versus Dβ
2, this is expected since

they have different scalings under boosts along the jet
direction [64]. Pairs that make dissimilar decisions can
often be combined into more powerful joint classifiers.
This is shown in Fig. 3, where we consider the
pairwise classifiers NN½HLi;HLj�, where the details
of the NN parameters are presented in Appendix A 2.
More comprehensive studies of these six jet substructure
observables can be found in Ref. [56].

While these six engineered HL features are powerful jet
substructure discriminants, they do not capture the full
information relevant for W boson tagging. Viewing the
calorimeter cells as pixels of a two-dimensional image, we
can try to enhance the discrimination power using computer
vision techniques [18–20,22,27,32,77,99,100]. Indeed,
Ref. [20] demonstrated that a deeply-connected CNN using
the low-level jet image inputs yielded better classification
performance than the six HL observables combined with a
BDT. The performance gain was modest though persistent,
making it an excellent benchmark problem for studying the
interpretation of ML strategies. We repeat this exercise in
Table I, now using the NN parameters in Appendix A for
the CNN and for the 6HL combination,

6HL≡ NN½Mjet; C
β¼1
2 ; Cβ¼2

2 ; Dβ¼1
2 ; Dβ¼2

2 ; τβ¼1
2 �; ð10Þ

where we find a 0.0027� 0.0003 gap in the AUC, as seen
in Table I. Using our guided strategy, we seek to understand
the nature of this performance gap, and whether the CNN
has found a strategy similar to the existing HL observables
or something distinct. Does the gap indicate a mild
optimization of the same basic HL ideas, or does it hint
at the existence of a new HL observable not appearing
previously in the jet substructure literature?

B. Energy flow polynomials

In order to map the CNN from Ref. [20] to a human-
readable space, we first define a suitable set of physics-
motivated HL observables for use in the guided strategies.
This requires domain knowledge about the underlying
physics as well as intuition about the kinds of information
that might be missing from existing HL observables. This
also requires identifying HL observables that are likely to
work well as classifiers individually, since the black-box
guided strategy in Sec. II B is based on finding a single
observable that maximizes the ADO in each step.
Our set of HL observables is based on the EFPs [36]. The

EFPs are a large (formally infinite) set of parametrized
engineered functions, inspired by previous work on energy
correlation functions [62,64,101–104]. In the jet image
representation, they are defined in terms of the momentum
fraction za of calorimeter cell a, as well as the pairwise
angular distance θab between cells a and b. The EFPs are
built in increasing levels of complexity, from simple sums
over single cells to many higher-order combinations of
momentum and pair-wise angles. An EFP can be repre-
sented as a multigraph, where

each node ⇒
XN
a¼1

za; ð11Þ

eachk-fold edge ⇒ ðθabÞk: ð12Þ
As one example, we have

FIG. 2. Similarity of the classification decisions between the six
HL observables, as quantified by the ADO. A value of ADO ¼ 1
indicates identical decision ordering for all signal/background
pairs, while ADO ¼ 1

2
corresponds to no similarity. In this way,

the ADO has a similar interpretation to the AUC, but with respect
to classification decisions instead of ground truth.

FIG. 3. Classification performance of the six HL observables in
Table I on the diagonal entries, along with AUC values for pairwise
classificationbetween coupledHL inputs on the off-diagonal entries.
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ð13Þ

From these graph representations, we can express both
connected and disconnected graphs. For the purposes of
our study, we only consider connected graphs.
The observable corresponding to each graph can be

modified with parameters ðκ; βÞ. These parameters deter-
mine the specific meaning of za and θab, where

zðκÞa ¼
�

pTaP
bpTb

�
κ

; ð14Þ

θðβÞab ¼ ðΔη2ab þ Δϕ2
abÞβ=2: ð15Þ

Here, pTa is the transverse momentum of cell a, and
ηab (ϕab) is the pseudorapidity (azimuth) difference
between cells a and b. The original IRC-safe EFPs
require κ ¼ 1, however we include examples with κ ≠ 1
to explore a broader space of HL observables, motivated by
Refs. [65–68].2 Note that κ > 0 generically corresponds to
IR-safe but C-unsafe observables. We intentionally include
zero and negative values of κ to explore both IR-unsafe and
C-unsafe observables as well.3 For our study, we use the
ENERGYFLOW PYTHON package [105] to translate jet-
image pT, η, and ϕ information to the EFPs with varying
graphs and choices of κ and β.
For our guided search, we consider all combinations of

ðκ; βÞ where κ ¼ ½−1; 0; 1
2
; 1; 2� and β ¼ ½1

2
; 1; 2�. Each of

the 15 combinations of ðκ; βÞ are applied to the complete
set of connected graphs with degree (i.e., number of edges)
d ≤ 7 along with all connected graphs with degree d ≤ 8
and chromatic number c ¼ 4 (to be defined in Sec. IV B
below), which comes to 509 in total. This yields a space of
7635 HL observables to search from. Note that β in Eq. (15)
can sometimes be traded for k in Eq. (12); we remove
degenerate graphs from our space, reducing our pool of
unique observables to 7545.
It is important to emphasize that, although the EFP space

constitutes a formally complete basis for (IRC-safe) jet
classification, we are primarily concerned with the prag-
matics of isolating individual observables that can map out
the CNN behavior. The ideal case is that the CNN strategy
maps to a single EFP, indicating that it can be expressed
compactly in terms that can be easily interpreted by humans.
Failing that, though, it is still of considerable value if a
similar mapping can be made using a small collection of
observables [87–89]. This would still provide a significantly
more physically meaningful interpretation of the data and a
marked reduction in data complexity and dimensionality.

Beyond this specific benchmark example, if one is unable to
map the CNN strategy into a small number of EFPs, this could
mean one of two things. First, it could mean that the CNN
strategy simply does not operate in this HL space, requiring us
to revisit the assumption that the HL space was sufficiently
complete to capture the essential information for jet classi-
fication. Second, it could mean that the CNN strategy is still
encodable in terms of these HL observables, but in a more
complex combination. As an example of this second possibil-
ity, consider the C2 [62] andD2 [64] observables discussed in
Sec. III A. These can be written as EFPs with κ ¼ 1:

ð16Þ

ð17Þ

where the graphs corresponds to

ð18Þ

ð19Þ

The guided strategies, however, would not necessarily be able
to identify these ratio combinations unless they were defined
ahead of time.4 Therefore, whether or not the guided mapping
is effective, one learns something about the nature of the
physics problem either way.

IV. SUPPLEMENTING EXISTING
OBSERVABLES

In this section, we demonstrate the success of the
mapping strategy from Sec. II in searching for an additional
HL observable in the context of boosted W classification.
From Table I, we saw that the difference in classification

power between a CNN acting on jet images and an NN
combination of six HL observables is relatively small, but
genuine and statistically significant. As such, it is interest-
ing to ask whether this existing set of six HL observables
could be supplemented by a new single HL observable
which has not yet been considered by human physicists. We
employ our black-box guiding strategy to find such a
seventh HL observable, which closes the performance gap
previously identified in Ref. [20].

2We thank Patrick Komiske and Eric Metodiev for discussions
related to the normalization of the κ ≠ 1 EFPs.

3For κ < 0, empty cells are omitted from the sum in Eq. (11).
This is not as discontinuous as one might naively think due to the
pixelation and trimming steps.

4It might be interesting to combine the guided strategy with
some kind of symbolic regression to find interesting combina-
tions [106]. If this symbolic regression allowed for index
contraction, then one could use the energy flow moments
[107] to more efficiently search the space of β ¼ 2 EFPs.
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A. Black-box guiding

The first step of the black-box guided strategy from
Sec. II B is to identify the subset of signal/background pairs
that are differently ordered by the CNN and the 6HL
combination:

X6 ¼ fðx; x0ÞjDO½CNN; 6HL�ðx; x0Þ ¼ 0g: ð20Þ
Though we have 6.25 × 1012 signal/background pairs, we
construct X6 from a randomly selected subset of 5 × 107

pairs. We then search for the EFP that has the greatest
decision similarity to the CNN in the X6 subspace, which
ideally captures all of the remaining discrepancies between
the CNN and 6HL approaches:

HLblack−box
7 ¼ argmaxHL∈EFPsADO½CNN;HL�X6

: ð21Þ

The results are shown in the first row of Table II.
The EFP with the largest ADO with the CNN in the X6

subspace is

ð22Þ

By itself, Eq. (22) only has an AUC of 0.8031, but when
used as the seventh feature of an NN that also uses the
previously identified 6HL observables,

TABLE II. A selection of EFPs, sorted by their similarity with the CNN, evaluated using the ADO in the differently-ordered subspace
X6. This corresponds to step one in the black-box guiding technique depicted in Fig. 1. After the top ten, EFPs are shown if they
correspond to a dot graph, appear in the C2=D2 observables from Eqs. (16) and (17), or have the highest ADO among graphs with a
given value of κ, β, or chromatic number.

Rank EFP κ β Chrom # ADO½EFP;CNN�X6
AUC[EFP] ADO½6HLþ EFP;CNN�Xall

AUC½6HLþ EFP�
1 2 1

2
3 0.6207 0.8031 0.9714 0.9528� 0.0003

2 2 1
2

3 0.6205 0.8203 0.9714 0.9524

3 0 … 1 0.6205 0.6737 0.9715 0.9525

4 2 1
2

3 0.6199 0.8301 0.9715 0.9527

5 2 1
2

3 0.6197 0.8290 0.9714 0.9527

6 2 1
2

3 0.6196 0.8251 0.9715 0.9522

7 0 1
2

2 0.6187 0.7511 0.9715 0.9526

8 2 1
2

3 0.6184 0.8257 0.9712 0.9527

9 2 1
2

3 0.6182 0.8090 0.9714 0.9527

10 2 1
2

3 0.6180 0.8314 0.9714 0.9526

60 0 1 2 0.6163 0.7194 0.9715 0.9525

341 −1 1
2

4 0.6142 0.6286 0.9714 0.9509

589 0 2 2 0.6109 0.7579 0.9714 0.9523

3106 −1 … 1 0.5891 0.5882 0.9714 0.9510

3519 1
2

1
2

2 0.5664 0.7698 0.9715 0.9524

3521 1
2

… 1 0.5663 0.7093 0.9714 0.9522

5531 1 2 1 0.5290 0.7454 0.9714 0.9507

5554 1 1
2

2 0.5279 0.8210 0.9713 0.9505

5610 2 … 1 0.5245 0.7117 0.9714 0.9507

5657 1 1 3 0.5224 0.8257 0.9712 0.9506

5793 1 1 2 0.5191 0.8640 0.9714 0.9505

6052 1 2 3 0.5153 0.8500 0.9716 0.9504

7438 1 2 2 0.5011 0.8835 0.9716 0.9506
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ð23Þ

it closes the performance gap with the CNN by achieving
AUC ¼ 0.9528� 0.0003, as previewed in Table I.
Interestingly, this happens even though the ADO between
the CNN and 7HLblack−box is only 0.971, implying that they
still make inconsistent decisions around 3% of the time. So
while the black box has guided the selection of a new HL
observable that closes the AUC performance gap, the
remaining ADO gap implies that there is additional
information not being captured.
The remaining rows of Table II show portions of the

ranked list of 7545 EFPs, ordered by their ADO values.
Note that the statistical uncertainties on the ADO are large
enough that the precise ranking is not so meaningful,
though the overall trends are. One striking feature is that
many observables have a similar ADO to Eq. (22), and they
often feature κ ¼ 2 and β ¼ 1

2
. Recall that κ ¼ 2 corre-

sponds to IRC-unsafe EFPs, which suggests that IRC-
unsafe information is valuable (though perhaps not
uniquely so) for mapping the CNN strategy. Similarly,
the appearance of β ¼ 1

2
suggests the importance of probing

small-angle behavior. Other IRC-unsafe EFPs with κ ¼ 0
and κ ¼ −1 also perform well, especially the constituent
multiplicity appearing third on this list. The best perform-
ing IRC-safe κ ¼ 1 observable appears 5531th on this list
and is not able to close the performance gap with the CNN.
Specifically, the EFPs in Eqs. (18) and (19) with κ ¼ 1 have
a relatively small ADO in the X6 subspace, never getting
above 0.5279. This is as one might expect, since these
observables already effectively appear in the C2 and D2

combinations. Further discussions of the physics implica-
tions are provided below.
For completeness, we show distributions for the top three

EFPs from Table II in Fig. 4, both in the full space as well
as in X6. The first two observables show good separation
between signal and background in the full space, as
expected given that their AUC is around 0.8. The third
observable, constituent multiplicity, is a relatively poor
discriminant by itself. When restricted to the X6 subspace,
there is only modest residual separation power shown by
these three observables, but enough to close the perfor-
mance gap with the CNN.

B. Physics interpretation

Our first physics conclusion is that the κ-augmented
EFP space is sufficiently comprehensive to close the
performance gap between the 6HL and the CNN. Had
we restricted our attention to just the IRC-safe EFPs, this
would not have been the case, since the top ranked κ ¼ 1
EFP in both strategies can only achieve AUC ¼ 0.9507
when combined with the six previous HL observables.

Thus, IRC-unsafe information seems essential for closing
the performance gap.5

Fascinatingly, κ ¼ 2 appears prominently in the top ten
EFPs, though in a different form than previously considered
in the literature. The key feature of the κ ¼ 2 EFPs is that
they weight higher energy particles more than lower energy
particles. Looking at the top κ ¼ 2 observables in Table II,
they all have the common feature of corresponding to
chromatic number c ¼ 3 graphs. Chromatic number is the
minimum number of colors needed to decorate the nodes of
a graph such that no edge connects same-color nodes. If an
EFP has chromatic number c, then it is only nonzero if the
jet has at least c distinct particle directions, making it an
effective probe for deviations from a (c − 1)-prong sub-
structure. The κ ¼ 2 and c ¼ 3 EFPs found by our guided

FIG. 4. The top three EFPs from the black-box guided search
for a seventh HL observable; see Table II. Shown are the EFP
distributions for signal and background events, both in the full set
of events Xall (left column) and in X6 (right column), i.e., the
differently ordered space between the 6HL and the CNN. The top
two observables, while not identical, have very similar functional
forms, up to an overall rescaling. The third observable is the jet
constituent multiplicity.

5As discussed inRef. [108], a CNN is formally IRC-safe. Tomap
this IRC-safe behavior to the EFPs, however, would require very
high-point correlators, with in principle as many nodes as pixels in
the original jet image.With IRC-unsafe EFPs, we can insteadmatch
the CNN decision boundaries with low-point correlators.
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strategy therefore probe IRC-unsafe deviations from
2-prong substructure (as one might expect for boosted
W boson tagging), with a particular emphasis on the higher
energy particles inside the jet.
By contrast, the only κ ¼ 2 observable that has received

any significant attention in the jet substructure literature is
pD
T [65,66]. In the EFP language, pD

T is a c ¼ 1 graph with
no edges:

ð24Þ

Here, we see that pD
T is only ranked 5610th by the ADO.

Apparently, generic IRC-unsafe information is not, by
itself, useful for boosted W boson classification, but must
be paired with the correct angular dependence to highlight
the physics of interest. It is interesting that β ¼ 1

2
is

preferred as the angular exponent, since this choice
appeared previously in the context of the Les Houches
angularity for quark/gluon discrimination [68].
There are also κ ¼ 0 observables in the top ten EFPs,

including the well-known constituent multiplicity:

ð25Þ

The fact that a κ ¼ 0, c ¼ 1 observable yields nearly the
same performance as a class of κ ¼ 2, c ¼ 3 observables is
a surprising result of our study. Our tentative interpretation
is that this represents two complementary approaches to
solving this jet classification task. On the one hand, boosted
W bosons are 2-prong objects, so one expects c ¼ 3
observables to be most relevant. Indeed, the numerators
of Eqs. (16) and (17) are c ¼ 3 graphs that probe 2-prong
substructure, which was part of the original motivation for
the C2 and D2 observables. On the other hand, the back-
ground quark and gluon jets are 1-prong objects, and
constituent multiplicity is well-known to be a powerful
quark/gluon discriminant [68] (though sensitive to detector
effects [109]). The next κ ¼ 0 observable on the list has
c ¼ 2 and β ¼ 1

2
, which is an IRC-unsafe probe of 1-prong

substructure with an emphasis on collinear physics, which
should also be an effective quark/gluon discriminant. This
suggests that one can improve the classification perfor-
mance either with a refined probe of the W boson signal or
a refined probe of the quark/gluon background, which
happens to have a similar effect on the decision boundaries.
In summary, by translating an ML strategy into a human-

readable space, we have identified an important class of jet
substructure observables that have been missing from
previous boosted W boson studies. This motivates further
studies of IRC-unsafe observables, especially high degree
EFPs with κ ¼ 2. In Sec. VI, we discuss the implications of
this result on future work with jet substructure observables.

V. ITERATIVELY MAPPING FROM
MINIMAL FEATURES

In the previous section, our aim was to supplement an
existing set of HL features with one new feature to bridge
the gap with the CNN performance. This jet substructure
case study is unusual, however, in that it benefits from a
highly mature literature of theoretically motivated features.
Other applications of our black-box guided strategy may
have to begin from a more minimal starting point and build
an HL classification strategy essentially from scratch.
In this section, we start from just the most basic jet

properties—transverse momentum pT and jet mass Mjet—
and iteratively identify a small set of EFPs relevant for
boosted W boson classification. Using the black-box
guided strategy, we are able to match the CNN performance
using around seven EFPs. This is a similar dimensionality
to the 7HL combination (which did not include pT), though
the physics features being probed will turn out to be
interestingly different. We then show that this black-box
strategy is more computationally efficient than a brute force
search and more effective than a label-guided search.

A. Black-box guiding

Here, we apply the same black-box approach as
Sec. IVA, starting just from the smaller set of observables,
pT and Mjet. The motivation for this starting point is as
follows. TheW boson mass at 80.4 GeV is one of the most
important (and obvious) features of boosted W bosons.
Because of the choice of za variable in Eq. (14), though, the
EFPs are dimensionless. Therefore, we need at least one
dimensionful HL observable to capture the W boson mass
peak, and either pT or Mjet would suffice for this purpose.
We begin from both pT and Mjet for two reasons. The

first is that they are ubiquitous jet observables appearing in
myriad collider studies. The second is to streamline the
selection of the EFPs. Naively, Mjet could be derived from
pT using the EFP in Eq. (15) with κ ¼ 1 and β ¼ 2:

ð26Þ

With the choice of the θa variable in Eq. (15), though,
Eq. (26) is only approximately true, so multiple EFPs are
needed to map out the mass information if pT is the only
dimensionful scale. We checked that the black-box strategy
is still effective starting from just pT or from just Mjet, but
the chosen EFPs tend to be more masslike in their structure.
By contrast, starting from both pT and Mjet yields more
variation in the types of EFPs selected.
We start by training an NN on just the pT and Mjet

information:

HLN0 ≡ NN½pT;Mjet�: ð27Þ
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This yields an AUC of 0.9119, which is substantially below
the CNN performance for boosted W boson tagging.
We then restrict our attention to the subset of events that
are differently ordered by these minimal features relative to
the CNN:

X0 ¼ fðx; x0ÞjDO½CNN;HLN0�ðx; x0Þ ¼ 0g: ð28Þ

The ADO between the CNN and HLN0 is 0.9150, so X0

contains 8.5% of the original Xall sample, though we only
consider a random subset of 5 × 107 pairs in X0 to reduce
the computational burden. Our aim is to find a set of EFPs
that can order these signal and background events the same
as the CNN decision boundaries.
To identify the n-th EFP, we use the black-box guided

strategy of Sec. II B, adapted to the current notation:

EFPn ¼ argmaxEFP∈SADO½CNN;EFP�Xn−1
: ð29Þ

We construct a new joint classifier that includes this EFP:

HLNn ≡ NN½pT;Mjet;EFP1;…;EFPn�: ð30Þ

This allows us to identify the remaining differently-ordered
subset of events as

Xn ¼ fðx; x0ÞjDO½CNN;HLNn�ðx; x0Þ ¼ 0g; ð31Þ

where in each iteration we only keep a random subset of
5 × 107 pairs. The main computational cost in this pro-
cedure is in training the joint classifier in Eq. (30).
The AUC and ADO values for this black-box guided

procedure are shown in Fig. 5 versus the EFP scan iteration,
and in Fig. 6 versus the cumulative computing time. More
details about the selected EFPs are given in Table III. By the
5th iteration, the AUC performance matches that of the
6HL combination. By the seventh iteration, the AUC
performance matches that of the CNN with an ADO of
0.974, indicating closer agreement with the CNN decisions
than we found with the 7HLblack−box strategy. Since we
started from a minimal set of jet features, it is not surprising
that the EFPs identified here are qualitatively different from
the ones in Sec. IV. The physics interpretation of these
various EFPs will be presented in Sec. V D.

B. Comparison to brute force search

An alternative approach to maximizing the ADO is to
perform a brute force search through the space of EFPs to
find the set that maximally matches the decisions of the
CNN. This is much more computationally expensive than
the black-box guided strategy, but it has the potential to
converge to a smaller number of EFPs if there are important
correlations between the observables. In an absolute brute
force search, one would construct all possible sets of EFPs,
and evaluate the ADO of each relative to the CNN; given

the number of graphs and combinations, this would be
completely intractable. Instead, we attempt an iterative
greedy algorithm, which incrementally builds the EFP set.
This is still computationally expensive, but (borderline)
tractable.
We again start from the jet pT and Mjet information, but

immediately train a joint classifier using each of the EFPs
as an input:

NN½pT;Mjet;EFP�: ð32Þ

We then select the EFP that yields the largest ADO with the
CNN, evaluated on the full training set. In the first iteration,
we select the EFP via

EFP1 ¼ argmaxEFP∈SADO½CNN;NN½pT;Mjet;EFP��Xall
:

ð33Þ

We repeat this procedure in each subsequent iteration,
choosing the EFP that yields the largest improvement in the
ADO when combined with the previous observables:

FIG. 5. Performance of the black-box guided search strategy to
map the CNN solution into human-interpretable observables.
Here, we start from just the basic jet features pT and Mjet and
iteratively add one EFP at a time. The performance is shown in
terms of the AUC (top) and the ADO (bottom) as a function of the
scan number. The performance of a brute force scan of the EFP
space (Sec. V B) and a truth-label guided search (Sec. V C) are
also shown. For reference, the performance of the CNN and of the
existing 6HL features are indicated by horizontal lines.
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EFPn ¼ argmaxEFP∈SADO½CNN;NN½…;EFPn−1;EFP��Xall
:

ð34Þ

The key difference from the black-box guided strategy is
that the joint classifier is trained before evaluating the
ADO, and the ADO is evaluated on the full training set,
instead of just the differently-ordered subset.
The primary computational cost of the brute force

approach comes from training the joint classifier appearing
in Eq. (34), which combines each EFP with the current set
of observables. This has to be done for each EFP under
consideration, and it is too computationally expensive to

examine all 7545 EFP graphs over multiple iterations.
Therefore, we only consider a subset of graphs at each
iteration, which means there is no guarantee that the brute
force method will perform better than the black-box guided
strategy. For our purposes, our subset consists of the 54
connected graphs of degree d ≤ 5 and ðκ; βÞ choices of
κ ¼ ½1

2
; 1; 2� and β ¼ ½1

2
; 1; 2�. This reduces our original

search space down to a more manageable 486 choices.
The results from this brute force procedure are shown in

Fig. 5 in terms of the ADO and AUC values after each
iteration. In the first few iterations, the AUC and ADO values
are higher than for black-box guiding, achieving a compa-
rable performance to the original 6HL result after the
inclusion of a third EFP. The brute force process continues
until it matches the CNN performance with six EFPs (eight
HL inputs total). As one would expect, the brute force
approach performs well as it is effectively trying every
possible combination of inputs and selecting the best. This
computational cost, however, must be weighed against the
marginal decrease in the number of EFPs required to match
the CNN as well as the need to restrict the input space prior to
exploring the performance.As shown inFig. 6, the brute force
approach does not complete even a single iteration before the
guided approaches have converged to a complete solution.
Finally, for completeness, we consider the alternative

brute force approach of a network trained with all available
EFPs. Using the baseline DNN architecture in Appendix
A1, a network was trained with Mjet, pT, and the reduced
set of 486 EFPs as input features. The performance of
“488HL” is shown in Table I, with a marginally better
performance than the CNN, indicating that the EFPs are
effectively a complete basis for this task.

C. Comparison to truth-label guiding

In the black-box guided strategy, the CNN and the ADO
similarity metrics are auxiliary tools to help identify a set of
EFPs that maximizes the classification performance.
Assuming the EFP space is sufficiently complete and

FIG. 6. The same as Fig. 5, but now plotted in terms of the
cumulative computing time.

TABLE III. The EFPs selected during each iteration of the black-box guiding strategy beginning from HLN0, which uses just pT and
Mjet. For each iteration, the selected EFP is the one with the largest ADO with the CNN in the differently-ordered subspace Xn−1.

Iteration (n) EFP κ β Chrom # ADO½EFP;CNN�Xn−1
AUC[EFP] ADO½HLNn;CNN�Xall

AUC½HLNn�
0 Mjet þ pT – – – – – 0.9259 0.9119
1 2 1

2
2 0.8144 0.8190 0.9570 0.9382

2 0 2 2 0.6377 0.8106 0.9673 0.9458

3 0 – 1 0.5460 0.6737 0.9692 0.9476

4 1 1
2

2 0.5274 0.8464 0.9712 0.9487

5 −1 – 1 0.5450 0.5882 0.9714 0.9504

6 1 1
2

4 0.5382 0.7678 0.9734 0.9523

7 −1 1
2

2 0.5561 0.5957 0.9741 0.9528
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labeled samples exist, one could dispense with the CNN
entirely and simply search the space of EFPs for the most
powerful set that maximizes the AUC, in an approach
similar to that of Ref. [110]. As a computationally tractable
alternative to the brute force search, we test what happens
when the selection of the EFP is guided by the truth labels,
instead of by the ADO.
Analogously to decision ordering in Eq. (2), we define

truth ordering (TO) for a pair of signal/background points x
and x0 and a decision function f as

TO½f�ðx; x0Þ ¼ ΘðfðxÞ − fðx0ÞÞ; ð35Þ
where 1 corresponds to f, correctly ordering the points, and
0 corresponds to inverted ordering. Starting again from the
jet pT andMjet information, we identify the subset of event
pairs that are incorrectly ordered:

Y0 ¼ fðx; x0ÞjTO½HLN0�ðx; x0Þ ¼ 0g: ð36Þ
In each iteration, we find the EFP that has the highest AUC
in the incorrectly-ordered subspace,

EFPn ¼ argmaxEFP∈SAUC½EFP�Yn−1
; ð37Þ

construct a new joint classifier HLNn ≡ HLN0 þ nEFP,
and identify the next incorrectly-ordered subset of events,

Yn ¼ fðx; x0ÞjTO½HLNn�ðx; x0Þ ¼ 0g: ð38Þ

Note that this procedure is completely independent of
the CNN.
The results from this truth-label guided procedure are

shown in Fig. 5 in terms of the AUC and ADO. In the first
iteration, the classification performance is better than in the
black-box guided search, which makes sense since the label
guided method is trying to optimize AUC directly. After
seven iterations, though, the classification performance
never rises above AUC ¼ 0.951. As mentioned in
Sec. II B, isolating the incorrectly-ordered pairs turns out
to be counter productive, since some of these pairs could
never be ordered correctly even by the optimal classifier.
This emphasizes the value of using the ADO relative to an
already-trained network, to make sure attention is focused
on event pairs that have a chance to be correctly ordered.

D. Physics interpretation

By translating the CNN into a space of physically-
motivated observables, we can gain physical insight into
the observables used in the classification decision.
In particular, the first few observables in Table III give
us a glimpse at a possible alternative history for the field of
jet substructure, if combinations like C2 and D2 had not
been previously identified. Distributions of the EFPs found
in the first four iterations are shown in Fig. 7.
After pT andMjet, the first EFP selected by the black-box

guided strategy is

ð39Þ

The fact that a κ ¼ 2 observable shows up early in the
iterative procedure bolsters the evidence from Sec. IVA
that these kinds of observables are important for mapping
the CNN strategy. This is a chromatic number c ¼ 2 graph,
so just like jet mass, it probes deviations from 1-prong
substructure. However, it uses a 5-point correlator (unlike
mass which is a 2-point correlator) and it uses the β ¼ 1

2

angular exponent (unlike mass which uses β ¼ 2). Putting
these together, Eq. (39) is an IRC-unsafe probe of hard,
small-angle radiation.
The second EFP is also IRC-unsafe and also corresponds

to a c ¼ 2 graph:

FIG. 7. The first four EFP graphs selected by the black-box
guided strategy beginning from the minimal set of HL observ-
ables, pT andMjet; see Table III. Shown are the EFP distributions
for signal and background events, both in the full set of eventsXall
(left column) and in Xn (right column), i.e., the differently
ordered space between the HLNn and the CNN after n iterations.
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ð40Þ

Here, though, we have κ ¼ 0 and β ¼ 2, which is a probe of
soft wide-angle radiation. It is interesting that the black-box
guided strategy selects these two complementary c ¼ 2
observables in the first two iterations, indicating the
importance of 1-prong substructure probes even if the goal
is to identify 2-prong boosted W bosons.
The third EFP is constituent multiplicity, as seen before

in Eq. (25), which reinforces the idea that controlling the
composition of the quark/gluon background is important
for W boson tagging. These three observables, together
with pT and Mjet, yield an AUC of 0.9476. This is not as
good as the 6HL combination, but still quite encouraging
given that we did not give the black-box guided strategy
any information about the ratio structures used to construct
C2 and D2.
The main surprise from this study is that IRC-safe

information was not selected by the black-box guided
search until the fourth iteration,

ð41Þ

Moreover, it is a c ¼ 2 graph, so still a probe of 1-prong
substructure. Only in interaction six do we finally see a
higher chromatic number graph, but the guided search skips
over the C2=D2-like graphs with c ¼ 3 and goes straight to
c ¼ 4. The black-box guided strategy has identified a very
different strategy for boosted W boson tagging that never-
theless matches the 6HL combination with a comparable
number of observables.
One interpretation of this result is that it simply reflects

the “entropy” of our HL space. There are four times as
many IRC-unsafe observables in our HL collection than
IRC-safe ones, so just by random chance one expects
to see more unsafe observables in the scan. Indeed, there
are IRC-safe observables that are highly ranked in the first
three iterations, just not at the top of the list. Another
interpretation is that the black-box guided strategy is
teaching us that IRC-unsafe information is more relevant
for boostedW boson tagging than one might naively think.
A related observation was made in Ref. [85], which
introduced a color ring observable to identify color-singlet
configurations. Intriguingly, when restricted to three par-
ticles, the angular structure of Eq. (39) defines similar
decision boundaries to the color ring.6 Either way, by
searching through a large space of HL observables in a
systematic way, the black-box guided strategy has given us
a new perspective on an old problem in a human-readable
format.

VI. DISCUSSION

The ever increasing complexity of newML strategies has
produced better classification performance for various
physics problems. At the same time, the increasing
opaqueness of these methods has widened the gap between
our understanding of a problem and our appreciation of the
ML solution. In this paper, we have proposed a new
technique for mapping an ML solution into a space of
human-interpretable observables. Our guided strategies
mitigate some of the well-founded concerns about black-
box approaches, while still allowing us to capitalize on the
black-box performance to efficiently guide the selections of
HL observables. The end result is a set of HL observables
that have a more direct physical interpretation and allow for
a more transparent treatment of systematic uncertainties.
In our jet substructure case study, we have shown that the

black-box guided strategy could be used to isolate infor-
mation that is not captured by previous HL representations.
Remarkably, only a single observable was needed to close
the performance gap identified in Ref. [20], nearly dupli-
cating the CNN strategy with a low-dimensional input
representation. Beginning from a minimal set of basic jet
observables (pT and Mjet), we successfully condensed the
CNN behavior to a small set of EFP observables which
reproduce its performance and very nearly match its
decisions. It would be interesting to study the utility of
the EFPs in more complicated contexts, such as event-wide
classification tasks.
Interestingly, the structure of the selected EFPs differ in

qualitative ways from the C2 and D2 jet substructure
observables custom designed for boosted W boson classi-
fication. While these previous observables are based on
fully connected graphs, the guided strategy picked out
multinode EFP graphs with a relatively low chromatic
number. While these previous observables use the IRC-safe
choice of κ ¼ 1, the guided strategy emphasized the
importance of unsafe κ ¼ 2 observables, particularly ones
with nontrivial angular dependence. This motivates further
physics studies of these exotic EFPs. It is worth emphasiz-
ing that we were only able to identify these new observ-
ables because we considered a sufficiently large space of
HL observables. There may be other hidden organizing
principles to exploit for jet substructure studies, which
motivates the construction of alternative sets of observables
based on different physical principles than the EFPs.
In particular, we did not capitalize on the power counting
and scaling properties of ratio/product observables
[64,104,110–112], which may reveal more efficient HL
observables for jet classification. It may also be beneficial
to leverage first-principles knowledge about signal/back-
ground likelihood ratios [85,113–118] to identify promis-
ing HL observables.
These results have important implications for what we

should regard as the “best practices” of the application of
ML methods to high-energy physics problems. Primarily,6We thank Andrew Larkoski for discussions of this point.
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we should be more wary of utilizing opaque ML strategies
which obscure how a problem is solved in exchange for
relatively small classification improvements. In general, one
should evaluate whether “additional” information captured
by DNNs represents genuine patterns or is the byproduct of
something unintentionally pressed into the data during
simulation and then rediscovered by the network.
The informational gap in our benchmark problem could

be closed using a single HL observable, suggesting that the
CNN strategy was not relying on subtle correlations among
the low-level features, but rather exploiting information
encodable into a κ ¼ 2 EFP. Thus, instead of a purely
performance-oriented approach, we suggest a strategy of
using deep networks to establish performance benchmarks,
but always seek to translate ML strategies into a more
tractable space of well-motivated physical observables. If
this proves to be impossible or impractical, it might be that
the ML approach really is identifying genuinely new
information, or more likely, that the space of physical
observables needs to be augmented or optimized.
More broadly, our view is that the ultimate goal of ML

research in high-energy physics should not be to develop
artificial-intelligence physicists which (or should we say
who?) can blindly process raw data and make statements
about the Universe without being able to communicate the
intermediate steps. The power of modern ML can certainly
be used to identify gaps in our knowledge where existing
human-engineered approaches are insufficient. At the end
of the day, though, we should insist that data analysis
strategies used to make statements about physics should be
understandable to human physicists.
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APPENDIX: NETWORK ARCHITECTURES
AND HYPERPARAMETERS

For consistency, all neural networks, regardless of input
data type, use a set of common settings and training
procedures:
(1) N ¼ 5 × 106 training samples, broken down as:

(a) 70% training,
(b) 15% validation,
(c) 15% testing.

(2) Training samples are pre-processed via SCI-KIT’s
StandardScaler.

(3) Adam optimizer used with default TENSORFLOW

settings:
(a) learning_rate = 0.001,
(b) beta1 = 0.9,
(c) beta2 = 0.999,
(d) epsilon = 1e-07,
(e) amsgrad = False.

(4) Output layer uses a sigmoid activation.
(5) Uncertainties are calculated via a 10-fold cross-

validation (see Appendix A 3).
(6) Early stopping on validation_loss with a

patience of 30 epochs.
(7) Model checkpoints saved (for best results only) on

minimum validation loss.

1. Baseline convolutional neural network

The following training details are specific to all convolu-
tional neural networks trained on jet-images:
(1) Input data undergoes a log transformation prior to

StandardScaler preprocessing.
(2) Hidden layers consist of five hidden convolutional

layers with the parameters:
(a) 500 nodes,
(b) kernel_size = (4,4),
(c) strides = (1,1),
(d) padding = ‘valid’,
(e) kernel_initializer=‘glorot_normal’,
(f) activation = ‘relu’,
(g) kernel_constraint = max_norm(3).

(3) Three dropout layers (i.e., one between each con-
volutional layer) with a rate of 0.2.

2. Baseline dense neural network

The following training details are specific to all dense
neural networks acting on jet substructure observables,
including EFPs:
(1) Hidden layers consist of three hidden dense layers

with the parameters:
(a) 300 nodes,
(b) activation = ‘relu’,
(c) kernel_constraint = max_norm(3).

(2) Two dropout layers (i.e., one between each dense
layer) with a rate of 0.5.

3. K-fold validation

To derive uncertainties on the trained model prediction
accuracy, we use the bootstrap cross-validation package in
SCI-KIT to equally divide the test set ten times and measure
the performance across ten bootstrapping iterations.
Averages and standard deviations are then taken from
these ten iterations to define the central value and uncer-
tainties of the AUC.
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