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We modify a kinetic theory of massless fermions to incorporate the effects of the conformal anomaly.
Working in a collisionless regime, we emulate the conformal anomaly via a momentum-dependent electric
coupling. In this prescription, the conformal anomaly leads to a hedgehoglike structure in the momentum
space similar to the Berry phase associated with the axial anomaly. The interplay between the axial and
conformal anomalies generates the axial current, proportional to the helicity flow of the electromagnetic
background. The corresponding conductivity is determined by the running of the electric coupling between
the tip of the Dirac cone and the Fermi surface.
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I. INTRODUCTION

Chiral fermions appear in different physical environ-
ments ranging from quark-gluon plasma created in heavy-
ion collisions [1,2] to the electronic excitations in Weyl
semimetals in the solid-state physics [3–5]. Major proper-
ties of these systems carry an imprint of the chiral
invariance respected by the classical theory of the massless
spin-half particles. The invariance implies that the left- and
right-handed fermionic currents are separately conserved.
Even though the massless Dirac equation is invariant

under chiral transformations, the chiral symmetry of the
classical theory is broken due to quantum mechanical
effects in the presence of the external electromagnetic
fields. This phenomenon, known as the quantum axial
anomaly, affects the transport properties of the chiral
medium leading to the experimentally accessible signatures
such as the chiral magnetic effect (CME) [1,2,6] and the
chiral separation effect [7,8] that generate vector (electric)
and axial currents along the direction of the background
magnetic field. The mixed axial-gravitational anomaly [9]
leads to an anomalous magnetothermoelectric transport in
the magnetic-field background parallel to a temperature
gradient [10,11].
The basic physics of the chiral fermionic systems is

described by a massless QED which incorporates the

breaking of the Lorentz invariance in real materials. Due
to the absence of massive parameters for the ungapped
quasiparticle modes, the corresponding infrared effective
models possess a scale (conformal) invariance at the
classical level. As a result, the classical processes look
identically the same under a suitable rescaling of coor-
dinates, energies, and momenta according to their canonical
dimensions.
Similar to the axial symmetry, the conformal symmetry

is broken at the quantum level by the conformal anomaly.
At the level of the transport properties, the conformal
anomaly generates the scale magnetic effect (SME) [12]
which was suggested to generate an anomalous thermo-
electric transport [13,14]. The transport effects induced by
the conformal anomaly may also play a role in the heavy-
ion collisions [15].
Dynamic evolution of a large system of particles may be

described with the help of an appropriate kinetic theory. In
Ref. [16], the kinetic theory for chiral fermions exhibiting
the CME was constructed using the path integral formal-
ism. The chiral kinetic equation incorporating the axial
anomaly into the classical kinetic theory of Weyl fermions
was proposed in Refs. [17,18] and elaborated further in
Refs. [19–26] in different approaches. The relativistic chiral
kinetic theory has also been developed in the framework of
the Wigner functions [27–36] as well as within the scope of
the worldline formalism [37]. The chiral kinetic theory in
curved spacetime has been considered in Ref. [38] while
the effects of a finite viscosity on anomalous transport of
the chiral fluids has been addressed in Ref. [39].
The anomalous transport phenomena considered so far in

the scope of the kinetic theory were related to the axial
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anomaly or the mixed axial-gravitational anomaly. In our
paper, we make an attempt to incorporate the conformal
anomaly at the level of the classical kinetic theory of
massless fermions. For simplicity, we consider the colli-
sionless limit and focus on the scale symmetry breaking
associated with the running of the electric coupling.
The plan of this paper is as follows. In Sec. II we first

review the single quasiparticle theory in a collisionless
limit. Then we discuss how the conformal anomaly may
appear in the theory where the collisions are absent. We
also highlight the subtleties of delegating of the anomalous
scaling properties to the momentum-dependent coupling.
We end this section with the derivation of the kinetic
equation that includes both axial and conformal anomalies.
In the second part of the paper, in Sec. III, we explore the
new transport phenomena that appear due to the scale
violation. Our last section is devoted to the conclusions
where we also discuss the limitations of our approach and
realization of the proposed transport effects in physical
systems.

II. KINETIC THEORY OF CHIRAL FERMIONS

A. Single quasiparticle theory

We consider a system of relativistic chiral fermions
described, in the absence of background fields, by the
following equation:

ðσ · pÞup ¼ �pup; ð1Þ

where the upper and lower signs correspond, respectively,
to the right- and left-handed two-component Weyl spinors
up carrying the momentum p (with p≡ jpj). The fermions
propagate with the Fermi velocity which is set to unity
vF ¼ 1 for simplicity.
It is useful to associate to the wave function of the Weyl

fermion (1) a fictitious vector potential, called the Berry
connection Ap, and the corresponding fictitious magnetic
field (the Berry curvature) Ωp, both defined in the momen-
tum space [40]

Ap ¼ iup†∇pup; Ωp ≡ ∇p ×Ap ¼ s
p
p3

: ð2Þ

Here s is the spin of the particle. Since the right- and left-
handed fermions with half-spin particle possess the Berry
curvatures of opposite signs, it is convenient to allow for
the spin s to carry the sign of the appropriate helicity,
s ¼ þ1=2 and s ¼ −1=2, respectively. In our work, we will
concentrate mostly on the right-handed fermions and
include both helicities at the very end.
The second formula in Eq. (2) is also valid for a scalar

field with a zero spin s ¼ 0. As the scalar field possesses a
trivial Berry curvature Ωp ¼ 0, we will use the scalar

particle to discriminate the effects of axial and conformal
anomalies.
The fictitious magnetic field (2) has a form of a hedge-

hog that resembles a magnetic monopole in the momentum
space with the center at the origin, p ¼ 0. In a finite-density
fermionic system with μ ≠ 0, the Berry curvature carries a
quantized “magnetic” flux through the Fermi surface which
corresponds to the quantization of the anomalous vertex
that appears due to the axial anomaly.
The action of a single electrically charged relativistic

particle in the presence of the background electromagnetic
field Aμ ¼ AμðxÞ has the following form [41,42]:

S ¼
Z

dt½pi _xi − eAiðxÞ_xi −AiðpÞ _pi − ϵpðxÞ − eA0ðxÞ�;

ð3Þ

where e is the electric coupling of the quasiparticle and the
dot over a symbol indicates a partial derivative over time
(_x ¼ ∂x=∂t, etc).
The form of the action (3) implies that the motion of

chiral fermions is affected both by the electromagnetic field
Aμ ¼ AμðxÞ in the coordinate space and by the Berry
curvature Ai ¼ AiðpÞ in the momentum space. The inclu-
sion of the Berry curvature incorporates the effect of the
axial triangle anomaly and, consequently, leads to the
anomalous transport phenomenon such as the CME
[16–18].
The action (3) can be cast into the suggestive form

S ¼
Z

dt½−ωaðξÞ_ξa −HðξÞ�; ð4Þ

where the quantity HðξÞ ¼ ϵpðxÞ þ eA0ðxÞ can readily be
associated with a Hamiltonian. In Eq. (4), the space
coordinates (xi, i ¼ 1, 2, 3) and the momentum coordinates
(pi, i ¼ 1, 2, 3) are combined into the single vector with the
six components: ξa ¼ ðx1;…; p3Þ with a ¼ 1;…; 6. The
action (4) gives rise to the following equations of motion:

ωab
_ξb ¼ −∂aH; ð5Þ

where ωab ¼ ∂aωb − ∂bωa and ∂a ≡ ∂=∂ξa. Associating
the inverse ωab ≡ ðω−1Þab with the Poisson brackets

fξa; ξbg ¼ ωab; ð6Þ

we rewrite the equations of motion for the quasiparticle in
the canonical form

_ξa ¼ −ωab∂bH ¼ fH; ξag ¼ −fξa; ξbg ∂H∂ξb : ð7Þ

These equations describe the motion of the fermionic
electrically charged particle in a background of the
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electromagnetic field. The aim of our paper is to figure out
how the running of the electric coupling affects the
dynamics of the fermionic ensembles. In the next section,
we discuss how the conformal anomaly associated with the
renormalization of the electric coupling can be incorporated
in the above derivation.

B. Mimicking the conformal anomaly

In a conformally invariant field theory, processes at
different energy and length scales are described by identical
classical equations of motion. The conformal anomaly
appears naturally at the quantum level because, in a general
theory, quantum corrections affect differently the physical
phenomena that develop at different scales. The presence of
the conformal anomaly reveals itself in the fact of the
“running” of a coupling which implies the dependence of
the coupling with respect to the energy scale ε. In simple
terms, in an interacting quantum field theory, the coupling
constants are not, strictly speaking, constants.
Contrary to the classical theory, particles that scatter at

each other at different energies interact with different
couplings. In particular, quantum fluctuations lead to the
running of the electric coupling in quantum electrodynam-
ics: at large distances, the electric field of a test electron
gets screened by quantum fluctuations that create virtual
pairs of electrons and positrons. Therefore, a pair of
electrically charged particles that interact at higher energy
would approach each other closer and interact with a higher
effective electric coupling as compared to a less energetic
pair of particles.
The running of couplings appear, for example, in a QED-

like theory of (relativistic) electrically charged fermions
that describes topological insulators and semimetals. In this
environment, the Lorentz invariance is broken by the
presence of the material. In particular, the velocity of
quasiparticles v does not coincide with the velocity of
photons c in the medium. As a result, in addition to the
running electric coupling1 e, the velocities of photons and
quasiparticles become dependent on the energy scale,
contrary to the renormalization properties of the Lorentz-
invariant QED. In the isotropic crystals, these velocities
approach each other in the infrared fixed point and the
Lorentz symmetry gets partially restored [43] (see also
[44]). In anisotropic Weyl and Dirac semimetals, in which
the relativistic energy-dispersion cones are tilted, the
anisotropy surprisingly persists even at the infrared fixed
point [45].
A slightly different picture emerges in two spatial

dimensions. In graphene, the electric coupling is not
renormalized at all while the Fermi velocity runs with
the interaction scale [46,47]. The running of the velocity
was observed experimentally [48] with the running scale

fixed by the Fermi level of electrons in suspended gra-
phene: a change of the Fermi level μ results in a change of
the Fermi velocity, v ¼ vðμÞ, according to the renormal-
ization group [46]. The velocity renormalization has also
been verified in numerical simulations [49].
In the fundamental QED, the products of the electric

coupling e and the strengths of magnetic B or electric E
background fields are the renormalization-invariant
quantities [50,51]: erenBren ¼ e0B0 and erenEren ¼ e0E0.
Therefore, in a consistent (fundamental) field theory such
as QED, the combinations eA and eA0 in the quasiparticle
action (3) should be considered as renormalization-group
invariants. This property means that the conformal anomaly
cannot enter the collisionless kinetic theory of a funda-
mental model described by the particle action similar
to Eq. (3).
In our paper, we examine the case when the renormal-

ization of the electric coupling e of a particular type of
quasiparticle does not match the renormalization of the
electromagnetic field. For example, the physical spectrum
may contain other electromagnetically active excitations,
which affect the background magnetic field and renorm-
alize the effective coupling of the quasiparticle differently.
In such theories, the conformal anomaly could also

interfere with the axial anomaly. In the magnetic-field
background, the axial anomaly leads to the chiral magnetic
effect [2]: the generation of vector (electric) current in a
presence of the axial (chiral) imbalance. In a chirally
imbalanced system, the (quasi)particles with right- and
left-handed chiralities possess different Fermi levels, μR
and μL, respectively, with μR ≠ μL. Due the running of the
electric coupling e ¼ eðμÞ, electric couplings e of the right-
and left-handed fermions take different values, eR ¼ eðμRÞ
and eL ¼ eðμLÞ, with eL ≠ eR if μR ≠ μL (see Fig. 1 for an
illustration). The origin of this effect is similar to the
renormalization of the Fermi velocity in graphene which
was mentioned earlier.
Since the magnetic field B takes the same value for

particles of both chiralities, the effect of the magnetic field
on different chiralities, expressed via the products eRBðμRÞ
and eLBðμLÞ, could be different, eRBðμRÞ ≠ eLBðμLÞ, thus
resembling the effect of the axial magnetic field BA ≡ B5

which plays a significant role in the anomalous transport
phenomena [52]. While the axial magnetic field appears

L

R

e(  )R

e(  )L

FIG. 1. The running of the electric coupling at the Fermi
surfaces of the left- and right-handed fermions.

1To keep our notations concise, in this article the symbol e
denotes also the electric coupling of the quasiparticles, e≡ e�.

CONFORMAL ANOMALY AND HELICITY EFFECTS IN KINETIC … PHYS. REV. D 103, 036019 (2021)

036019-3



usually in condensed matter systems with broken time-
reversal symmetry (for example, in Weyl semimetals with
spatially split cones of left- and right-handed quasiparticles
[10]), the conformal effect which we discuss here emerges
in usual T-unbroken Dirac systems that exhibit the con-
formal anomaly.
In other words, we probe the effective infrared theory of

the excitations for which the combinations eB and eE are
no more renormalization-group invariants for certain rela-
tivistic degrees of freedom, having in mind, as an example,
right- and left-handed fermionic quasiparticles in semimet-
als. One could speculate that this situation can be realized,
for example, in the cases when the system possesses, in
addition to the fermionic quasiparticle, other excitations,
that renormalize the background electromagnetic fields.
For the sake of simplicity, in our paper we consider an

isotropic material. We do not explicitly include the per-
mittivity and the permeability of the material, setting both
of them to unity. Moreover, to get our presentation as
clear as possible, we assume that the background fields and
the quasiparticle velocity are not renormalized and the
effect of the running is featured in the electromagnetic
coupling only.
The electric coupling e is a function of momentum p

transferred in the interaction event. The running of the
electric coupling is controlled by the corresponding beta
function

βe ¼
deðεÞ
d ln ε

≡ deðpÞ
d lnp

: ð8Þ

One can also define the running of electric coupling in
terms of the related beta function

βα ¼
dαðpÞ
d lnp

≡ e
2π

βe ð9Þ

for the QED-like fine structure constant2 α ¼ e2=ð4πÞ.
Below we will use both functions (8) and (9).
In our paper, we work in the collisionless limit of the

kinetic theory where the collision integral is zero and the
interactions between particles are ignored. Therefore,
strictly speaking, the collisionless theory contains no room
for interparticle interactions and has, naively, no chance for
the conformal anomaly to play any role. However, the
kinetic theory is an effective theory which gives us a
freedom to incorporate quantum anomaly effects via the
appropriate modification of the action. For example, the
axial anomaly is taken into account by the new term with
the Berry connection in the action (3) which is not present
in the original classical theory.

We will use the same opportunity to mimic the effects of
the scale anomaly: we associate the momentum in Eqs. (8)
and (9) with the momentum of the particle with respect to
the background (thermal) frame, where the equilibrium
thermal bath is defined. In this Lorentz frame, the chemical
potential has only a timelike component. We consider the
theory in the background of a uniform electromagnetic field
ðE;BÞ defined in the same frame. In order to capture the
effects of the conformal anomaly for the dynamics of a
single charged quasiparticle, we assume that the electric
coupling is a function of the absolute value of the
quasiparticle momentum p with respect to the background
frame e ¼ eðpÞ. As a consistency check, we will make sure
at the end of our calculations that our results are given by
Lorentz-covariant expressions.

C. Kinetic equation with axial and conformal anomalies

In the vacuum of massless QED, the conformal anomaly
associated with the electric coupling reveals itself in the
form of anomalous transport phenomena, the scale electro-
magnetic effects, that are realized in the background of
gravitational and electromagnetic fields [12]. While these
effects were predicted to exist in the vacuum, we will
explore whether similar effects are experienced by relativ-
istic matter. In the presence of the running electric coupling,
the action (3) takes the following form:

S ¼
Z

dt½pi _xi − eðpÞAiðxÞ_xi

−AiðpÞ _pi − ϵpðxÞ − eðpÞA0ðxÞ�: ð10Þ

The 6 × 6 matrix ωab in the equation of motion (5) has
the 3 × 3 block form

ωab ¼
�

ωF ωβ

−ωβ ωC

�
; ð11Þ

where

ðωFÞij ¼ −eFij;

ðωβÞij ¼ −δij − βepiAj=p2;

ðωCÞij ¼ ϵijkΩpk : ð12Þ

In our paper we follow the notations of Ref. [42]. Here, the
form ωab is an asymmetric structure, ωab ¼ −ωba. The
diagonal blocks of this form, ðωFÞij and ðωCÞij, are
asymmetric as well, while its off-diagonal blocks ðωβÞij
contain the symmetric (within the block) element δij.
The electromagnetic field background enters via the

classical field-strength tensor Fij ¼ ∂iAj − ∂jAi. The run-
ning of the electric coupling (8) appears in block-off-
diagonal terms ωβ of the matrix (11) given in Eq. (12).

2We remind the reader that we set the permittivity of the
material to unity.
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A straightforward calculation of the Poisson brackets (6)
gives

fxi; xjg ¼ 1ffiffiffiffi
w

p ϵijk½Ωk þ ðΩp · lpÞAk�;

fpi; xjg ¼ 1ffiffiffiffi
w

p ½δijð1þ A · lpÞ − Ailj þΩiðeðpÞBjÞ�;

fpi; pjg ¼ −
1ffiffiffiffi
w

p ϵijk½eðpÞBk þ lkA · B�; ð13Þ

where w ¼ detωab and B ¼ ∇ × A is the magnetic field.
Equations (11)–(13) indicate that the running electric

coupling enters the kinetic theory via the single combina-
tion of the beta function and the momentum

lp ¼ βeðpÞ
p
p2

: ð14Þ

Surprisingly, the “conformal vector” (14) has a similar
monopole hedgehog structure as the Berry curvature (2),
lp ∼Ωp which has been introduced to the kinetic theory to
mimic the axial, not conformal, anomaly [16–18].
Contrary to the “axial monopole,” the total flux of the

conformal hedgehog (more precisely, lp=p) is not quan-
tized since the integral of the conformal vector (14) over the
Fermi surface gives us a quantity proportional to the beta
function evaluated at the Fermi surface, βe ¼ βeðp ¼ μÞ.
Therefore the “conformal flux” depends on the radius μ of
the surface.
The conformal vector lp is sensitive to the beta function

of the theory and insensitive on (the sign of) the particle’s
spin. Therefore, the effects of the conformal anomaly may
appear for a spinless bosonic particle (s ¼ 0) contrary to the
effects of the axial anomaly. The Berry curvature Ωp,
instead, is insensitive to the running coupling while being
dependent on the handedness of the particle.
In a complete analogy with the effect of a Berry

curvature [41,42], the conformal anomaly modifies the
measure in the phase space

dΓ ¼ ffiffiffiffi
w

p
dξ≡ ½1þ lp · Aþ eðpÞΩp · B

þ eðpÞðlp ·ΩpÞA · B� dxdpð2πÞ3 : ð15Þ

Both the Poisson brackets (13) and the measure (15)
contain gauge-variant contributions coming from the gauge
field alone. These contributions are always associated with
the conformal vector lp. We will see below that the final
expressions for physical currents will have well-defined
physical meaning despite the gauge dependence of the
intermediate expressions. The appearance of some of these
quantities may be traced back to the equations above, (13)
and (15), where we find, also unexpectedly, the density of
the (magnetic) helicity given by the Chern-Simons term

K0 ¼ A · B≡ A ∧ F≡ 1

2
ϵijkAiFjk: ð16Þ

The topological terms of the kind (16) are usually encoun-
tered in systems with axial, but not conformal, anomalies.
The integral over the density of the helicity (16) gives us

the total magnetic helicity

H ¼
Z

d3xA · B: ð17Þ

This quantity is an important dynamical invariant of ideal
magnetohydrodynamics. It plays an essential role in physi-
cal applications ranging from laboratory plasmas to astro-
physical systems [53].
Physically, the total helicity number (17), understood as

an expectation value over a photon state, counts the
difference between the numbers of the left- and right-
handed photons in the electromagnetic field. It may also be
interpreted as a topological linking number of the mag-
netic-field lines [54]. This interpretation becomes explicitly
transparent in the Coulomb gauge ∇ · A ¼ 0, where the
helicity (17) was shown to be related to flux-weighted
Gauss linking integral calculated at (and averaged over) all
pairs of magnetic-field lines [55]. Therefore, the gauge
ambiguity of the local helicity current (16) may be fixed by
choosing the Coulomb gauge. Such ambiguity, however,
does not exist for the global magnetic helicity (17) which is
a gauge-invariant quantity [56] both in a closed system
(whose closeness is guaranteed, for example, by perfectly
conducting boundaries) or in an infinite volume with
vanishing fields at spatial infinity.
In the absence of the conformal anomaly (βe ¼ 0), the

Poisson brackets (13) and the phase element (15) reduce to
the familiar expressions, respectively,

fxi; xjg ¼ ϵijk
Ωkffiffiffiffi
w

p ;

fpi; pjg ¼ −eðpÞϵijk Bkffiffiffiffi
w

p ;

fpi; xjg ¼ δij þ eðpÞBjΩiffiffiffiffi
w

p ;

dΓ≡ dξ ¼ ð1þ eðpÞB ·ΩpÞ
dxdp
ð2πÞ3 : ð18Þ

The requirement of the conservation of the occupation
number, dn=dt ¼ 0, leads us to the (collisionless) kinetic
equation

_np þ ωab∂aH∂bnp ¼ 0; ð19Þ

which can be written in the following explicit form:
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_np þ
1ffiffiffiffi
w

p
�
ðeẼþ lp × ½eẼ × A� þ ṽp × eB

þ eB · Aðṽp × lpÞ þ ðeB · eẼÞΩpÞ ·
∂np
∂p

þ ðṽp þ A × ½ṽp × lp� þ eẼ ×Ωp

þ eðΩp · lpÞẼ × Aþ ðΩp · ṽpÞeBÞ ·
∂np
∂x

�
¼ 0; ð20Þ

where

ffiffiffiffi
w

p ¼ 1þ lp · Aþ eB ·Ωp þ lp ·ΩpðA · eBÞ:

The kinetic theory (20) explicitly depends on the gauge
field Aμ and, therefore, the gauge invariance of the effects
that it describes is not guaranteed. We show, however, that
in the studied order, the transport effects of the conformal
anomaly can be expressed via the current of the magnetic
helicity of the photonic field. As we argued above, the total
helicity charge and total helicity current are gauge-invariant
quantities so that the global effects of the kinetic theory (20)
are gauge invariant.
In Eq. (20), we also define the effective electric field

eẼ ¼ −
∂H
∂x ≡ eE −

∂ϵp
∂x ; ð21Þ

and the effective group velocity

ṽp ¼
∂H
∂p ≡ vp þ A0lp; ð22Þ

where E ¼ −∂A0=∂x and vp ¼ ∂ϵp=∂p are the ordinary
electric field and the group velocity, respectively. We
assume that the system resides in the local thermodynamic
equilibrium.

III. TRANSPORT

A. Particle density and magnetic helicity

The particle number density

n ¼
Z

d3p
ð2πÞ3

ffiffiffiffi
w

p
np ¼

Z
d3p
ð2πÞ3

· ð1þ lp · Aþ eB ·Ωp þ lp ·ΩpðA · eBÞÞnp ð23Þ

can be rewritten, in a homogeneous system, as follows:

n ¼ 1

2π2

Z
∞

0

p2npdpþ s
A · B
2π2

Z
∞

0

eðpÞ deðpÞ
dp

npdp:

ð24Þ

To derive the above relation, we used the explicit expres-
sions of the Berry curvature (2) and the conformal vector

(14) and assumed the isotropy of the occupation num-
ber np ≡ np.
Let us consider a zero-temperature case with the sharp

boundary of the Fermi fluid at p ¼ pF ¼ μ (in this article,
we set the Fermi velocity vF ¼ 1 for simplicity). Then the
density (24) may be computed explicitly,

n ¼ μ3

6π2
þ s

A · B
4π2

½e2ðμÞ − e2ð0Þ�: ð25Þ

The first term is the conventional thermodynamic expres-
sion while the second term gives us a new contribution
proportional to the local density of magnetic helicity (16).
The second term appears due to the conformal anomaly
which determines how the electric coupling runs with the
energy scale.
Integrating the particle density (25) over the volume, we

get the total particle number at T ¼ 0,

N ¼ μ3

6π2
V þ s

4π2
½e2ðμÞ − e2ð0Þ�H

¼ μ3

6π2
V þ s

π
βαH þ � � � ; ð26Þ

where V is the volume of the system and H is the total
magnetic helicity (17). The second line is expressed in the
infrared regime at low μ, where βα is the beta function (9)
taken at μ ¼ 0. The ellipsis in Eq. (26) denotes the higher
order terms in the series over μ.
Equation (26) implies that a variation of the magnetic

helicity H modifies the number of particles N in the
ensemble. In the leading order, the number of particles
pumped into the ensemble depends linearly on the helicity
H with the slope controlled by the beta function.

B. Axial anomaly and particle current

Multiplying Eq. (20) by the factor
ffiffiffiffi
w

p
and performing

the integral over the momentum p, we arrive to the
following relation which expresses the nonconservation
of the particle number due to the presence of the axial
anomaly:

∂μjμ ≡ _nþ ∇j ¼ −
Z

d3p
ð2πÞ3 e

2ðpÞðE · BÞ
�
Ωp ·

∂np
∂p

�

¼ s
2π2

ðE · BÞ
Z

∞

0

dpe2ðpÞδðμ − pÞ

¼ s
E · B
2π2

e2ðμÞ: ð27Þ

This expression matches the one in Ref. [17] with the single
modification that we have now taken into account the
dependence of the electric coupling on the momentum
scale, e ¼ eðpÞ. To pass to the second line of Eq. (27), we
used the sharpness of the Fermi surface at zero temperature:
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np ¼ θðμ − pÞ. Therefore, ∂pnp ¼ −ðp=pÞδðμ − pÞ so
that ðΩp · ∂pnpÞ ¼ −sδðμ − pÞ=p2.
For the scalar particle with the spin s ¼ 0, the chiral

anomaly (27) is evidently absent. For the spin-half fer-
mions, the axial anomaly affects the right- and left-handed
particles in the opposite manner (with, respectively,
s ¼ þ1=2 and s ¼ −1=2 in our notations) so that the
vector charge, given by the sum of these numbers, is
conserved. The axial charge, represented via the difference
of these numbers, is subjected to the conformal anomaly.
Both these statements may be expressed as follows:

jμV ¼ jμR þ jμL; jμA ¼ jμR − jμL; ð28Þ
with ∂μj

μ
V ¼ 0 and

∂μj
μ
A ¼ −

eE · eB
2π2

; ð29Þ

where e≡ eðμÞ is the electric coupling evaluated at the
Fermi surface.
The total particle current in Eq. (27) has the following

explicit form:

j ¼ −
Z

d3p
ð2πÞ3

�
ϵp
∂np
∂p − ðeE ×ΩpÞnp

þ ϵp

�
Ωp ·

∂np
∂p

�
eBþ ϵp

�
Ωp ×

∂np
∂x

�

− ðeE × Aþ A0eBÞðΩp · lpÞnp
þ ϵpA ×

�∂np
∂p × lp

�
− A0lpnp

þ ϵpðΩp · lpÞ
�
A ×

∂np
∂x

��
: ð30Þ

The first term in the right-hand side of this expression
corresponds to the ordinary particle current. The second
term gives the anomalous Hall current while the third term
determines the standard CME [18]. These terms follow by
the fourth contribution which takes into account the spatial
inhomogeneities of the system.
The last three lines in Eq. (30) correspond to the effects

of the conformal anomaly. Among those, the very last line
has been obtained by integration by parts, taking into
account the fact that the following integrals around the
Fermi surface vanish:

Z
d3p
ð2πÞ3 ∂pðeEnpÞ ¼ 0; ð31Þ

Z
d3p
ð2πÞ3 ∂p

�
eB ·

∂np
∂x ϵpΩp

�
¼ 0: ð32Þ

The terms (31) and (32) come from the first and last terms
in the curly parenthesis in the left-hand side of Eq. (20),
respectively.

In line with the conclusions of Refs. [17,18], the defi-
nitions of the particle density (23) and the particle current
(30) get modified to include the effects of the Berry
curvature. In our case, we also arrive to new terms generated
due to the conformal anomaly in both expressions.
Alternatively, the particle current can also be defined in a

straightforward manner as

j ¼
Z

d3p
ð2πÞ3

ffiffiffiffi
w

p
_xnp: ð33Þ

In the absence of the conformal anomaly lp ¼ 0, the
difference between the definitions (30) and (33) is given
by the magnetization term j → jþ ∇ ×M, where

M ¼
Z

d3p
ð2πÞ3 ϵpΩpnp

is the total magnetization [17,19]. These relations are
supported by the identity ∇ × ðΩpϵpnpÞ ¼ 0 which fixes
the ambiguity in the definitions of the current [17].
In our conformally anomalous system, one can also

demonstrate that the definitions (33) and (30) are equivalent
up to the magnetization term, which now includes the new
contribution generated by the conformal anomaly j → jþ
∇ × ½M þ AðΩp · lpÞϵpnp�.

C. Particle current and helicity current

Using Eq. (7), we rewrite the particle current,

j ¼
Z

d3p
ð2πÞ3

ffiffiffiffi
w

p
_xnp

¼
Z

d3p
ð2πÞ3 ðṽp þ A × ½ṽp × lp� þ eẼ ×Ωp

þ eBðΩp · ṽpÞ þ eðΩp · lpÞẼ × AÞenp; ð34Þ

which may now be represented as a sum of two terms3

j ¼ jaxial þ jconf : ð35Þ

The first term in the right-hand side of Eq. (35) is the
single-chirality particle current coming from the axial
anomaly

jaxial ¼ sB
Z

d3p
ð2πÞ3

e
p2

np: ð36Þ

This term gives rise [16] to the CME [2] and the charge
separation effect (CSE) [7] that generate the vector and
axial currents, respectively,

3We use the subscripts “axial” and “conf” to highlight
the particular quantum anomaly responsible for each of these
contributions.
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jV ¼ μRēðμRÞ − μLēðμLÞ
4π2

B; ð37aÞ

jA ¼ μRēðμRÞ þ μLēðμLÞ
4π2

B; ð37bÞ

where

ēðμÞ ¼ 1

μ

Z
μ

0

eðpÞdp ð38Þ

is the mean value of the electric charge averaged over the
whole depth of the Fermi sea. The appearance of the Fermi-
sea averaged charge (38) in the generated anomalous
currents (37) is a natural consequence of the scale depend-
ence of renormalized effective coupling e ¼ eðpÞ on the
energy of the particle ε ¼ p (we remind the reader that we
set the Fermi energy to unity for simplicity, vF ¼ 1).
Equations (37) represent the genuine vector and axial

currents generated by the axial anomaly (29) and corrected
by the presence of the conformal anomaly (8). In the
absence of the conformal anomaly, the anomalous currents
(37) reduce to the well-known expressions

jV ¼ μA
2π2

eB; jA ¼ μV
2π2

eB ½with βe ¼ 0�; ð39Þ

where

μV ¼ μR þ μL
2

; μA ¼ μR − μL
2

ð40Þ

are, respectively, the vector and axial chemical potentials.
Besides the expected scale-dependent correction of the

electric coupling (38) in the anomalous currents (37), the
presence of the conformal anomaly leads to a nontrivial
effect as well. Indeed, the second term in Eq. (35) is new,

jconf ¼ sðE × Aþ A0BÞ
Z

d3p
ð2πÞ3

e
p2

de
dp

np: ð41Þ

The particle current (41) is generated along the (magnetic)
helicity current of the electromagnetic background

K ¼ E × Aþ A0B: ð42Þ

The new current (41) is activated by the conformal anomaly
associated with the running of the electric coupling (8)
because if the conformal anomaly is absent, de=dp ¼ 0,
then the current (41) vanishes: jconf ¼ 0.
We combine the conformal contribution of the particle

density (24) and the particle current (41) into the 4-vector
current of right-handed (s ¼ þ1=2) and left-handed
(s ¼ −1=2) particles

jμconf ¼ Kμ s
2π2

Z
∞

0

e
de
dp

npdp; ð43Þ

where the Lorentz-covariant expression

Kμ ¼ 1

2
ϵμναβAνFαβ ð44Þ

is known as the Chern-Simons current. It includes the
density (16) and the 3-current (42) of the magnetic helicity.
The beta function (9), integrated along a radius of the

Fermi sphere, gives us the strength of the current induced
by the conformal anomaly (43) weighted by the occupation
number np. At zero temperature, the Fermi surface is sharp
and the integral in Eq. (43) may be done exactly

jμconf ¼
sKμ

ð2πÞ2 ½e
2ðμÞ − e2ð0Þ�: ð45Þ

The proportionality factor, which has a sense of the
conductivity, takes into account the difference in the values
of the electric coupling in the very center of the Fermi
volume and at its surface. The difference appears due to the
running of the electric coupling with the energy scale.
The representation of the conformal current (43) in terms

of difference in the currents (45) identified at different
energy scales is only possible at zero temperature. At a
finite temperature, the Fermi level is not a sharp function of
the energy, and the integral (43) cannot be represented in
terms of the difference in the electric charges fixed at the
particular energy scales.
The zeroth component of Eq. (43) coincides with the

anomalous part of the density (25). In the infrared limit,
μ → 0, the particle current (43) takes the explicitly Lorentz-
covariant form

jμconf ¼
sβα
π

Kμ; ð46Þ

where the beta function βα, Eq. (9), is evaluated at the tip of
the Dirac cone, βα ¼ βαðμ ¼ 0Þ.
The helicity current (44) has a gauge-invariant counter-

part of the zilch current [57] which is a conserved quantity
in the Maxwell electrodynamics. Both helicity [58–60] and
zilch [61–64] currents can be generated in a rotating hot
photon gas along the axis of rotation. The emergence of
these photonic currents is a consequence of the mixed
gravitational anomaly for photons which states that the
photon helicity is not conserved in a gravitational back-
ground [65].
The full particle current (34) is not conserved due to the

axial anomaly (27). The part of the current, corresponding
to the contribution of the conformal anomaly, is not
conserved as well,
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∂μj
μ
confðxÞ ¼

sQðxÞ
2π2

Z
e
de
dp

npdp

þ sK0

2π2

Z
e
de
dp

_npdp

þ sK
2π2

Z
e
de
dp

∂np
∂x dp: ð47Þ

The first term in this expression shares similarity with the
axial anomaly (27) linked to the nonconservation of the
photonic helicity number

Q ¼ ∂μKμ ≡ 1

2
FμνF̃μν ≡ −2E · B; ð48Þ

where F̃μν ¼ 1
2
ϵμναβFαβ with ϵ0123 ¼ þ1. The quantity (48)

is proportional to the topological charge density of the
background electromagnetic field. The evolution of the
occupation number _np in the second line of Eq. (47) can be
read off from the equation of motion (20). In a homo-
geneous system, the last two terms in Eq. (47) vanish, and
the nonconservation of the conformally generated particle
current takes the following form:

∂μj
μ
confðxÞ ¼

sQðxÞ
4π2

½e2ðμÞ − e2ð0Þ�

≡þs
E · B
2π2

½e2ð0Þ − e2ðμÞ�; ð49Þ

which can also be obtained from Eqs. (45) and (48). Notice
the similarity between Eq. (49) and the continuity equation
for the full particle current (27).

D. Vector and axial currents due to conformal anomaly

The contribution of the conformal anomaly to the vector
and axial currents is given by the linear combinations (28) of
the right-handed (s ¼ þ1=2) and left-handed (s ¼ −1=2)
particle currents (45). The corresponding chemical poten-
tials, μR andμL, affect the conformal currents via the running
of the electric coupling eðμR;LÞ. In the presence of the chiral
imbalance, μR ≠ μL, the Fermi surfaces do not coincidewith
each other, the electric couplings do not match (Fig. 1), and
the corresponding currents acquire an additional depend-
ence on the axial chemical potential μA, Eq. (40). This
mismatch in the Fermi surfaces gives rise to additional
contributions to the vector and axial currents as we dis-
cuss below.
To keep our expressions concise, we will only show the

leading term in the series over the powers of the chemical
potentials. If the coupling constant changes substantially—
as we move from the tip of the Dirac cone (p ¼ 0) to the
Fermi surface (pF ¼ μ)—then the beta function should be
replaced by

βα →
1

4π
½e2ðμÞ − e2ð0Þ�: ð50Þ

In the case of zero axial imbalance, μA ¼ 0, and
μR ¼ μL ¼ μV , the conformal anomaly (45) leads to the
following currents:

ðjμVÞconf ¼ 0; ðjμAÞconf ¼
βα
π
Kμ: ð51Þ

The vector current vanishes, while the axial current is
expectedly proportional to the helicity flow of the electro-
magnetic background field. The same result (51) is true for
a different physical environment, where the vector chemical
potential is zero, μV ¼ 0while μR ¼ −μL ¼ μA. The reason
for this coincidence is that the running of the coupling is
insensitive to the sign of the chemical potential due to the
charge-conjugation symmetry that puts the equivalence
between particles and holes (antiparticles): eðμÞ ¼
eð−μÞ. Notice also that the electric coupling e enters the
anomalous particle current (43) as e2 which is invariant
under the sign flip, e → −e.
The independence of the axial current (51) on the

chemical potentials implies that this current may emerge
at smallest deviations from the neutrality point at the tip of
the Dirac cone where all chemical potentials are close
to zero.
The proportionality of the axial particle current jμA to the

helicity current Kμ is a natural outcome from the point of
view the discrete C-, P-, and T-symmetries that are shared
by the both currents. The dependence (51) has a suggestive
form if we compare it with the axial anomaly equation (27)
which may be written in terms of the conservation law,

∂μ

�
jμA −

e2

4π2
Kμ

�
¼ 0: ð52Þ

While this equation states that the helicity of light is
transferred to the chiral fermions and vice versa, it does
not imply the local equivalence or proportionality of these
both currents. Our result (51), together with Eq. (50),
indicates that the axial current does pick a part of the helical
current if the electric coupling runs with the energy scale.
Another physically interesting case corresponds to a

finite-density system (μV ≠ 0) characterized by a small
chiral imbalance, jμAj ≪ jμV j. The leading contributions to
the vector and axial current are, respectively, as follows:

ðjμVÞconf ¼
βα
π

μA
μV

Kμ; ðjμAÞconf ¼
βα
π
Kμ: ð53Þ

Interestingly, the vector current also gets a contribution
proportional to the electromagnetic helicity flow with the
strength controlled by the beta function βα and the axial
chemical potential μA. Due to the invariance of Eq. (53)
under time reversal, the axial and vector currents are
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dissipationless quantities. The conformally induced cur-
rents have the same symmetries under parity and time
inversions as the currents generated by the dissipationless
CME and CSE effects (37).
The discussed transport effects of the conformal anomaly

in the matter are different from the scale electromagnetic
phenomenon in the vacuum [12]. The vacuum effects are
realized in the gravitational background while the effects
discussed in this paper occur in a flat spacetime. In fact, the
SME cannot be seen in our approach due to two reasons.
First of all, we are working in the OðℏÞ order of the kinetic
theory, while the SME appears at the Oðℏ2Þ order. Second,
the SME is the vacuum effect, while the chiral kinetic
theory, employed in this article, deals with phenomena
generated in the presence of matter.
The physical realization of the electromagnetic back-

ground with a nonvanishing helical current is provided by
the circularly polarized light which has already been
discussed in the context of Dirac and Weyl semimetals
in Refs. [66,67].

IV. CONCLUSIONS

The axial anomaly is known to lead to the dissipationless
transport phenomena known as the chiral magnetic and
chiral separation effects that generate, respectively, vector
and axial currents of fermions along the axis of the
background of the magnetic field (37). These effects occur
in the presence of matter, either at a chiral imbalance or at
finite density, respectively.
In this article, we demonstrate that the conformal

anomaly, associated with the running of the electric
coupling (9) in the presence of fermionic matter, can also
lead to the appropriate dissipationless transport, which is
different from the currents generated by the axial anomaly.
The transport effects of the conformal anomaly are acti-
vated in the background electromagnetic fields, which
possess a nonvanishing flux of magnetic helicity (44).

Working in the collisionless regime of the chiral kinetic
theory, we show that the conformal anomaly generates the
axial (chiral) current along the helicity current of the
electromagnetic background field (51). The anomalous
current’s strength depends on the difference in the renor-
malized electric couplings in the very center of the Fermi
volume and at the Fermi surface (45). This difference is
determined by how the electric coupling runs with the
renormalization group and is related to its beta function
and, thus, to the conformal anomaly. In the vicinity of the
neutrality point, the conductivity depends on the beta
function only. In a finite-density environment, the con-
formal anomaly also induces the vector current of particles
along the direction of the flux of the magnetic helicity (53).
The discussed conformal transport effects emerge in

matter provided the combinations eB and eE of the
electromagnetic background ðE;BÞ and the electric cou-
pling e are not renormalization-group invariants. While
these combinations do not run with the interaction scale in
the fundamental QED, we argued that this is not a generic
case, especially for models that describe the infrared
properties of solid-state systems. For simplicity of presen-
tation, we assumed that the electromagnetic background is
not renormalized by quantum corrections.
Similar to the axial anomaly, the conformal anomaly

reveals itself as a monopole in the momentum space (14).
Contrary to the axial counterparts, the discussed conformal
transport effects do not have a topological origin and,
therefore, they are not one-loop exact.
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