
 

Interference effects in nonlinear Compton scattering due to pulse envelope
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Nonlinear Compton scattering is calculated for the collision of an electron with a plane-wave pulse.
A midinfrared (IR) peak arises in the photon spectrum due to long-range interference associated with the
pulse envelope. The case of a flattop pulse is studied as a toy model for pulse envelope effects and reduced
to two final-state momentum integrations; the case of a sine-squared pulse is studied numerically.
A perturbative expansion in charge-field coupling reveals that already at intermediate intensities, many
orders are required to correctly capture the structure of the mid-IR peak. By regularizing the classical result,
it is shown that the mid-IR peak is due to plane-wave ponderomotive effects from the pulse envelope.
Finally, it is shown that the mid-IR peak can be isolated using energy, angle and polarization filters.
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I. INTRODUCTION

The amplitude for a probe particle to undergo a given
process in a laser pulse is proportional to an integral over all
spacetime. When the probability is obtained from this by
mod squaring, one captures interference between the
process occurring in different parts of the pulse. Here
we will consider nonlinear Compton scattering [1,2], which
is the emission of a photon by a highly relativistic electron
in a classical background of arbitrary intensity. We will
assume the interaction with a laser pulse is well approxi-
mated by a plane-wave background of finite duration, as is
by now standard [3–7]. Then only the integral over the laser
pulse’s light front direction is nontrivial, and interference
can be parametrized using the laser pulse phase.
Various approximations have been devised to define a

“probability rate,” which, when integrated over the entire
pulse, gives the total probability for the process to occur.
Such a rate is useful, as it can be added to Monte Carlo
generators in particle-in-cell simulations of bunches of
particles colliding with more complicated (e.g., focused)
laser pulses, potentially describing each particle under-
going multiple processes [8–18]. The form of the proba-
bility rate approximation can be classified by the length
scale of interference that it includes.
In a constant plane-wave field the interference between

emission at different points in the background cancels
exactly, such that the total probability can be written as the

integration over the laser pulse phase, of a completely local,
instantaneous probability rate describing pointlike emission
[19]. Therefore the emission in “slowly varying” laser
pulses is often calculated using a locally constant field
approximation (LCFA), which takes the completely instan-
taneous constant field rate and integrates it over the form of
the nonconstant laser pulse field [1,19]. (A more precise
definition of slowly varyin’ has been recently investigated
in several works [20–24].)
A more accurate but less versatile approximation of the

spectrum can be acquired by perturbing around a mono-
chromatic field. The periodic nature of a monochromatic
field includes interference between emission in different
cycles of equal amplitude. By including this interference
exactly and approximating interference due to neighboring
cycles having different amplitudes because of the pulse
envelope, one can obtain a locally monochromatic approxi-
mation (LMA) [25–27], which evaluates a monochromatic
“rate” at the local amplitude of the pulse envelope and
integrates it over the entire pulse envelope. Such an
approach reproduces harmonic structure in the photon
spectrum, which is beyond the LCFA, since the harmonic
structure is due to the interference between emission in
different cycles. However, the LMA misses the full
structure due to the pulse envelope.
The LCFA and LMA include, respectively, interference

effects on subwavelength and wavelength scales. Here, we
shall study interference effects in the nonlinear Compton
process on the scale of the entire pulse length. The reason
that interference can occur on spacetime scales longer than
the pulse length is that the electron current does not vanish
when the field vanishes. To calculate the radiation generated
by the electron when it collides with a finite laser pulse, one
must regularize the probability and remove the zero-field
contribution. This regularization must be done in the
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classical case [28] as well as the quantum case. The
regularization, which includes interference over arbitrarily
large scales, leads to a broad mid-IR peak, which is non-
perturbative in the charge-field coupling just like the well-
known harmonic structure. While this mid-IR peak can be
seen in the numerical results of several authors [22,23,29], to
the best of our knowledge, it has yet to be analyzed or
discussed in detail. This is the focus of the current paper.
Interference effects in the nonlinear Compton process at

the level of the pulse length have been studied in delta-
function pulses [30], in the shape of ultrashort pulses [31]
and in double pulses [32]. The IR part of the photon
spectrum includes radiative loop corrections [33,34] and
can receive significant contributions from much higher
orders of expansion in dressed vertices [35–40], which has
contributed to discussion of the Ritus-Narozhny conjecture
[41–45]. The motivation for wanting to better understand-
ing this part of the photon spectrum in nonlinear Compton
scattering is in part due to upcoming high-energy particle-
laser experiments such as E320 [46] at SLAC and LUXE
[47] at DESY which, by virtue of using low-emittance
traditionally accelerated electron beams, will measure the
nonlinear Compton process at a higher precision than has
so far been possible. Furthermore, QEDwill be tested in the
intermediate intensity regime of ξ ∼Oð1Þ (ξ, also known as
“a0” is the classical nonlinearity parameter equal to the
work done by the field over a Compton wavelength in units
of the background photon energy [19]), which is neither
perturbative nor asymptotic in ξ. We stress that the mid-IR
peak studied in this paper is beyond the LCFA and LMA
methods being used to model these experiments.
Interference effects also occur in pair production, and the

effect of interference on the duration of the pulse envelope
has been studied in several works [48–53].
The paper is organized as follows. Section II introduces

notation, gives the expressions that will be numerically
evaluated, recaps regularization of 1 → 2 quantum electro-
dynamical (QED) processes in plane-wave backgrounds and
defines the setup. In Sec. III, the toy model of a flattop pulse
is presented, which gives an intuitive explanation ofmuch of
what will follow for the more realistic sine-squared pulse
case. In Sec. IV, the light front momentum spectrum for
nonlinear Compton scattering in a sine-squared pulse is
analyzed, with particular emphasis on the emergence of the
mid-IR peak as ξ is increased above ξ ¼ 1 and on the failure
of a truncated perturbation expansion to reproduce the entire
spectrum. In Sec. V, the problem is analyzed using nonlinear
classical electrodynamics and the classical motion of the
electron identified that corresponds to the mid-IR peak. In
Sec. VI, the angular spectrum and polarization content of the
mid-IR peak is analyzed with a view to its separation from
the rest of the spectrum, and in Sec. VII the paper is
concluded. The Appendix contains some brief information
on the classical calculation. Throughout, we will use a
system of units in which ℏ ¼ c ¼ 1.

II. METHOD

Four-momentum conservation in nonlinear Compton
scattering can be written as

pþ n̄ϰ ¼ qþ k; ð1Þ

where p (q) is the incoming (outgoing) electron momen-
tum, k is the emitted photon momentum, ϰ is the laser pulse
wave vector and n̄ is a continuous number which indicates
the momentum contributed to the process by the laser pulse
background. Specifically, n̄ ¼ k:p=ϰ:pð1 − sÞ, where s ¼
ϰ:k=ϰ:p is the light front fraction of the emitted photon. s is
an important variable that will be used in the analysis of the
results to parametrize the emission spectrum. For a fixed
emission angle, varying s is equivalent to varying energy,
whereas for fixed energy, varying s is equivalent to varying
the emission angle.
The scattering matrix is Sfi ¼ ðe=2Þ R d2x⊥dxþSr0;r;l,

where e < 0 is the electron charge and Sr0;r;l ¼R
dφΨ̄r0;q=Al;kΨr;p, where φ ¼ ϰ:x is the plane-wave phase,

Ψr;p is the Volkov wave function for an electron with spin
index r, and Al;k is the emitted photon wave function in
polarization state l. Before giving an explicit expression,
we note that our calculation will use photon polarization
states that are perpendicular to the laser wave vector (i.e.,
Al;k:ϰ ¼ 0) and will mostly use the Boca-Florescu regu-
larization [3]. Then we can write

Sr0;r;l ¼ c̃
Z

φf

φi

dφ ūr0
�
Δ=ϵ�l þ

1

2ϰ · p

�
=a=ϰ=ϵ�l
1− s

þ =ϵ�l =a=ϰ
��

ureif

ð2Þ

f ¼ 1

ηð1 − sÞ
Z

φ

φi

k:ΠðzÞ
m2

dz; ð3Þ

where ur (ūr0 ) are the incoming (outgoing) electron
bispinors, where η ¼ ϰ:p=m2 is the (electron) energy
parameter, m is the electron mass, ϵ is the photon
polarization, Δ ¼ 1 − k:Π=k:p is the regularization factor,
Π is the classical electron kinetic momentum:

Π ¼ p − aþ ϰ

�
p:a
ϰ:p

−
a:a
2ϰ:p

�

(we use the shorthand a ¼ eA with A as the classical plane-
wave pulse four-potential), and c̃ ¼ ½23V3q0k0p0�−1=2 is
the field normalization factor. We use this form of regu-
larization, because we will be considering a so-called
“sandwich” plane-wave pulse which is defined between
two definite phases (light front coordinates) φi ≤ φ ≤ φf

and is zero otherwise [54,55]. Hence the integration in
Eq. (3) is over a finite phase interval.
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Since the regularization terms will play a crucial role, we
briefly recap how they are derived (see e.g., [3,56]) and
thereby show how they encode long-range interference on
the order of the pulse duration. The scattering amplitude is
an integral over all of spacetime, so the nontrivial integra-
tion direction along the laser pulse phase is infinite. Let us
write the exponent in Eq. (3) as f ¼ f0 þ fa, where
lima→0 f ¼ f0, and consider only the pure phase term in
the amplitude (the other parts do not require regularization).
It is useful to split this integral into three pieces around
where the pulse has support, which we define to be for
φi < φ < φf:Z

φi

−∞
eif

0
0
xdxþ

Z
φf

φi

eifðxÞdxþ
Z

∞

φf

eif
0
0
xþiFdx;

where

F ¼
Z

φf

φi

f0aðzÞdz ¼ faðφfÞ − faðφiÞ

is a phase accumulated by the electron from passing
through the laser pulse (see e.g., [32] for how this
accumulated phase can impact nonlinear Compton scatter-
ing). When evaluated, the two integrals where the pulse has
zero support (φ < φi and φ > φf) are assumed to converge
as the lower (upper) bound tends to negative (positive)
infinity (e.g., through use of the standard “iϵ” prescription
[57]). Then using integration by parts, the three integrals
can be written:

−
Z

φf

φi

eifðxÞ
d
dx

1

if0
dx:

Undoing the integration by parts step and rewriting factors
then gives the final result

Z
φf

φi

ΔeifðxÞdx; Δ ¼ 1 −
f0

f00
: ð4Þ

[If the pulse contains no dc components, the integration by
parts can be skipped and Eq. (4) can be acquired directly by
choosing the lower bound of the integral in fðxÞ to be equal
to ϕi.] Therefore, the Δ regularization terms encode the
contribution over length scales that are of the order of the
pulse duration and beyond.
Using Eq. (2), the total unpolarized probability can then

be written as P ¼ αI=η, where α ≈ 1=137 is the fine-
structure constant and

I ¼ 1

2

X2
r0¼1

X2
r¼1

X2
l¼1

Ir0;r;l;

Ir0;r;l ¼
1

24π2

Z
1

0

ds
sð1 − sÞ

Z
d2k⊥
m2

jSr0;r;lj2: ð5Þ

Later, we will have reason to evaluate specific polarization
channels, so we will not always perform all the polarization
sums in Eq. (5).
The example plane-wave pulse background that we will

consider is that of a circularly polarized sine-squared pulse,
which is only defined on a section of the phase line:

a ¼
�
mξ sin2ð φ

2NÞ½ε1 cosφþ ε2 sinφ� if φ ∈ ½0; 2πN�;
0 otherwise:

ð6Þ

N denotes the number of cycles and we choose lab
coordinates to coincide with ε1 ¼ ð0; 1; 0; 0Þ, ε2 ¼
ð0; 0; 1; 0Þ and ϰ ¼ ϰ0ð1; 0; 0; 1Þ. Although the amplitude
of the pulse and hence its intensity is actually coordinate
dependent, we will refer to ξ as the intensity parameter in
analogy with the monochromatic result. (The monochro-
matic limit can be reached by letting N → ∞ and extending
the pulse to be defined over the entire real line, leading to
−a:a → m2ξ2.) Our results for the total probability will be
characterized by the parameters: η, ξ, and N.
Before studying the effect of the smooth pulse envelope

Eq. (6), we consider a simpler example, for which more
analytical progress can be made.

III. TOY MODEL: FLATTOP PULSE

Let us define the “flattop” pulse by the vector potential:

a ¼
�
mξ½ε1 cosφþ ε2 sinφ� if φ ∈ ½0;Φ�;
0 otherwise:

Performing the sum in Eq. (5) to obtain the probability for
unpolarized particles, the integral can be written [25]:

I ¼ 1

ð4πÞ2η
Z

dφ dφ0 dsd2r⊥
m2sð1 − sÞ e

is
2ηð1−sÞ

R
φ

φ0 1þ
ðr⊥þsa⊥Þ2

m2s2

× ½−2m2ΔΔ0 þ gðsÞða2Δ0 þ a02Δ − 2a · a0Þ�; ð7Þ

where r⊥ ¼ ðk⊥ − sp⊥Þ=m2 and gðsÞ ¼ ð1 − sþ
ð1 − sÞ−1Þ=2 and, in Eq. (7) only, we use the shorthand
a ¼ aðφÞ and a0 ¼ aðφ0Þ and similarly Δ ¼ ΔðφÞ and
Δ0 ¼ Δðφ0Þ. By applying the Jacobi-Anger expansion
[58] and following a derivation similar to the infinite
monochromatic plane-wave case [1,2,59], both phase
integrals and the azimuthal photon momentum integral
can be performed analytically, and one arrives at
I ¼ P∞

n¼n� In, where
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In ¼ −
Φ
2η

Z
dsdðr2Þ
sð1 − sÞ δΦ

�
r2 − r2∞

2ηsð1 − sÞ
�

×

�
w2J2nðzÞ þ

ξ2g
2

½2wJ2nðzÞ − J2nþ1ðzÞ − J2n−1ðzÞ�
�
;

ð8Þ

with r ¼ jr⊥j, where z ¼ ξr=ηð1 − sÞ and we have defined
the nascent delta function

δΦðxÞ ¼
Φ
2π

sinc2
�
Φx
2

�
ð9Þ

[sinc x ¼ ðsin xÞ=x] and the finite-duration factor w is

w ¼ s2 þ r2∞
s2 þ r2

; r2∞ ¼ 2nsηð1 − sÞ − s2ð1þ ξ2Þ:

For a finite pulse, the threshold harmonic n� is not con-
strained, i.e., n� ¼ −∞. Compare this to the monochro-
matic, infinitely extended result familiar from the literature
[1], which can be acquired by taking the limit Φ → ∞ of
Eq. (8). In this limit, the background can only contribute
momenta in positive integer multiples of the wave vector.
For the infinite monochromatic case, the threshold har-
monic is

n� ¼ ⌈ñ�⌉; ñ� ¼
sð1þ ξ2Þ
2ηð1 − sÞ ;

where ⌈ · ⌉ is the ceiling function. In particular, we
note n� ≥ 1 for the infinite monochromatic case. For the
flattop pulse, the sinc function represents the spectrum of
the finite-duration pulse, which, unlike the infinite mono-
chromatic case, has a finite bandwidth. Instead of the
magnitude of the photon’s perpendicular momentum, r2,
being constrained to be a single value, r2∞, it can take a
range of values around this, approximately in r2∞ �W with
W ¼ π½Φ=2ηsð1 − sÞ�−1. (As the sinc function has a zero at
π, the bandwidth is taken to be the half-width, at approx-
imately π=2.) This has a consequence for which harmonics
contribute to a given part of the spectrum. This can be
seen by writing the finite-width transverse momentum
function as

δΦðn − ñ�Þ;

from which we see the harmonic number n has support in
the range approximately n� π=Φ. The most significant
difference to the monochromatic case occurs in two parts of
the spectrum: (i) when close to the end of a harmonic range;
(ii) at very low values of the light front fraction parameter s.
Close to the end of a harmonic range, because the infinite
monochromatic case constrains the threshold harmonic n�
to integer values, the spectrum changes abruptly (e.g., the

structure of the first harmonic around the highest s value is
often referred to as the “Compton edge” [60]); in contrast,
for the finite-duration flattop pulse case, there is no such
constraint on n� and the spectrum changes smoothly
through harmonic ranges. In the infinite monochromatic
case, as s → 0, n� → 1 because the process is kinematically
forbidden for lower values of n, whereas in the finite-
duration case, when s is sufficiently small that ñ� ≲ 2=Φ,
the n ¼ 0 harmonic becomes accessible. In fact, the n ¼ 0
harmonic also corresponds to a peak, but it originates from
the finite bandwidth of the pulse envelope and not from the
carrier phase and is in the mid-IR range of the spectrum. In
the same way that the harmonic structure arises from the
nonperturbative charge-field coupling, so too does the
zeroth harmonic, and its nature will be investigated in
the more realistic case of a smooth pulse, in the following
sections of the paper.
We illustrate the photon spectrum in a flattop pulse by

evaluating Eq. (8) and normalizing the spectrum to unit IR
limit. The spectrum for an intensity ξ ¼ 2.5, light front
momentum η ¼ 0.1 and various pulse durations Φ ¼ 2πN
(where N is the number of cycles) is plotted in Figs. 1(a)
and 1(b). A comparison with the locally monochromatic
approximation (LMA) and the locally constant field appro-
ximation (LCFA) is made in Fig. 1(a) and in Fig. 1(b). Two
effects of shortening the pulse are demonstrated: the
smoothening of harmonic edges and the shifting of the
mid-IR peak to lower values of momenta.
We highlight a peculiar property of the flattop solution: if

the pulse is sufficiently short, the n ¼ −1 harmonic must
also be included; otherwise the IR limit is incorrect. In
Fig. 1(c) we show the error in the spectrum when the
harmonic sum is chosen to begin at n� ¼ 1 or n� ¼ 0. This
error increases for shorter pulses. Of course, it is kinemat-
ically forbidden for an electron to emit two photons
(one from the Compton process and one “into” the field
in the n� ¼ −1 harmonic). Instead, it is the case that, due
to the finite bandwidth of photons being absorbed from the
flattop pulse, also the n ¼ −1 harmonic includes an
absorption contribution.
To conclude this section, we state the classical result for

radiation from an electron in a flattop pulse. I cl ¼P∞
n¼n� I

cl
n where

Icl
n ¼ −

Φ
2η

Z
dsdðr2Þ

s
δΦ

�
r2 − ðrcl∞Þ2

2ηs

�
× fðwclÞ2J2nðzclÞ

þ ξ2

2
½2wclJ2nðzclÞ − J2nþ1ðzclÞ − J2n−1ðzclÞ�g; ð10Þ

where zcl ¼ ξr=η, where the classical width factor wcl is

wcl ¼ s2 þ ðrcl∞Þ2
s2 þ r2

; ðrcl∞Þ2 ¼ 2nsη − s2ð1þ ξ2Þ:
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As one might expect, Eq. (10) produces a mid-IR peak that
is indistinguishable from the quantum theory but with
harmonic edges at scln ¼ 2nη=ð1þ ξ2Þ, which correspond
to vanishing electron recoil. The agreement at small s with
the quantum theory motivates the classical analysis
in Sec. V.

IV. LIGHT FRONT SPECTRUM

We turn now to the more realistic sine-squared pulse
envelope from Eq. (6) and illustrate the photon spectrum of
nonlinear Compton scattering by evaluating Eq. (5)
numerically. We calculate the quantity K ¼ ð1=CÞdI=ds
for various intensities, where the normalization factor C is
chosen so that limKs→0 ¼ 1 (C ¼ 1

2

R
a2dφ, which for the

sine-squared pulse is equal to 3Nπξ2=8 [23,25]). This

allows for an easier comparison of spectral features. We
take η ¼ 0.1, which, for example, for electrons colliding
with a 1.55 eV (800 nm) laser pulse at an angle of 20° to
head on, corresponds to an electron energy of 8.7 GeV. The
spectrum is plotted in Fig. 2 for a range of ξ values:
0.1 ≤ ξ ≤ 4. For small values of ξ ∼Oð0.1Þ, the only
significant structure is the first harmonic and the global
maximum is the IR limit. As ξ increases, so too does the
relative amplitude of higher harmonics. As ξ is increased
above ξ ≈ 1, we see a new peak develop, which, being
higher than the IR limit, becomes the global maximum.
This structure is what we will refer to as the “mid-IR peak.”
Its appearance only when ξ≳ 1 implies that a calculation
that is accurate to all orders in ξ is necessary. The position
of the mid-IR peak can be approximated by taking the

(a)

(b)

(c)

FIG. 1. (a),(b) Compton light front momentum spectra (dI=ds)
for the flattop pulse with n� ¼ 0. The amplitude has been
normalized to unit IR limit (ξ2Φ=2). N is the number of laser
cycles [N ¼ 4 in (a)]. In (c), the error in the normalized spectrum
is plotted, for when a different lowest harmonic, n�, is chosen for
the harmonic sum: Iðn� ¼ −1Þ=Iðn�Þ − 1.

FIG. 2. How the mid-IR peak emerges as ξ is increased. The
horizontal axis on both figures is identical. The curves in the
lower plot correspond to the lineouts indicated by solid lines on
the upper plot. The dashed line is the approximate position of the
mid-IR peak, which is shown on the lineouts by a dot on each
curve. The results are for an η ¼ 0.1 electron colliding head on
with a four-cycle (N ¼ 4) pulse.
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formula for the nth harmonic of the monochromatic case,
sn, where

sn ¼
2nη

2nηþ 1þ ξ2
; ð11Þ

setting n ¼ 1 and rescaling η → η̃ ¼ η=2N corresponding
to a wave vector with wavelength equal to the duration of
the envelope. (This value of the approximate bandwidth is
equivalent to that in the flattop pulse toy model studied in
Sec. III.) This corresponds to replacing the carrier fre-
quency wave vector with the wave vector of the envelope
(which has a wavelength 4πN, which is 2N times larger
than for the carrier wave). The position of this approxi-
mation is indicated by the dashed line (dots) in the upper
(lower) plot of Fig. 2. The mid-IR peak is rather broad, and
this method for locating the position does not exactly
coincide with the maximum. This is perhaps unsurprising:
the flattop pulse case showed how a broad bandwidth of
frequencies arises from the pulse envelope.
As ξ increases above ξ ≈ 1, the first harmonic grows as

dP=ds ∼ ξ2, but the mid-IR peak increases as dP=ds ∼ ξ3.
This is shown for various pulse durations in Fig. 3
(numerical results indicate the growth with ∼ξ3 is inde-
pendent of η). (For N ¼ 2, the height of the peak appears to
grow slightly differently with ξ than it does for longer
pulses.)
To investigate the peak’s nonlinear nature, we perturba-

tively expand K in the nonlinearity parameter ξ. Now, it is
clear that, although the magnitude of the exponential is
bounded, the magnitude of a series in ξ of this exponential
that is truncated at any finite order will be unbounded. If the
expansion in ξ is performed at the probability level and the
iϵ method of regularization is used [57], this leads to
difficulties in the evaluation of the zero-field limit pure
phase terms. Therefore, we perform the perturbative
expansion at the amplitude level given in Eq. (2), where
the jth perturbative order can be understood as including
from the background j interactions (“photons”) with the
electron. [At the probability level, this only corresponds to
consistently including up to order Oðξðjþ1ÞÞ terms].
Before analyzing the mid-IR peak, we first analyze the

harmonic structure for the case ξ ¼ 0.5 (with η ¼ 0.1 and

N ¼ 16), where we expect the perturbative expansion of K
to be accurate (since ξ2 < 1). The results are presented
in Fig. 4.
The first conclusion from Fig. 4 is that the harmonic

order is not equivalent to how many background “photons”
are interacting with the electron. In fact, even the 16th order
of charge-background coupling was not sufficient to
reproduce the second harmonic. Rather, the harmonic
order is the “net” number of photons absorbed from the
background. This is maybe unsurprising but worth empha-
sizing. A harmonic expansion is often acquired using the
Jacobi-Anger identity to rewrite exponentials of sinusoidal
functions. For example, in a circularly polarized mono-
chromatic background, the terms linear in a in Eq. (3)
contribute in the factor

e−iz sinðφ−ψÞ ¼
X∞
n¼−∞

JnðzÞe−inðφ−ψÞ;

where z ¼ ξjr⊥j=ηð1 − sÞ.
So we see that, expanding in ξ, even the first harmonic

j ¼ 1 term is a sum over an infinite number of orders in ξ.
Therefore, experiments that have measured second and
third harmonics from nonlinear Thomson scattering (e.g.,
[61] where ξ ¼ 0.5…0.7 and [62] which observed a ξ2

scaling of the spectral peak position for ξ ¼ 0.83) have
already measured very high nonlinear orders of interaction
between the electron and the laser background [as well as
[63], which measured a nonlinear scaling in ξ in the ξ > 1
regime (for ξ up to ξ ¼ 12), which included up to the 500th
harmonic].

FIG. 3. The relative height of the mid-IR peak compared to the
IR limit (∝ ξ2) grows linearly (∝ ξ) when ξ≳ 1.

FIG. 4. Perturbative expansion of the photon spectrum for a
four-cycle, ξ ¼ 0.5 pulse colliding with an η ¼ 0.1 electron. jmax

corresponds to the highest order included in ξ from a truncated
perturbation expansion of the amplitude. (Shading and plot points
have been used to guide the eye to where the perturbation
expansion breaks down.) jmax ¼ 1 corresponds to linear Comp-
ton scattering. The higher the maximum perturbative order
included, the higher the value of light front momentum s, until
which the expansion remains accurate. The vertical grid lines are
the position of the nonlinear (left) and linear (right) Compton
edge.
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Now we turn to the mid-IR peak and increase the value
of the field strength to ξ ¼ 2.5. On the basis of Fig. 4, one
may naïvely guess that, because s is very small at the mid-
IR peak [s ≈ η=Nð1þ ξ2Þ ∼Oð10−3Þ], it can compensate
for the fact that ξ2 > 1, allowing a low-order perturbative
expansion to suffice. However, in Fig. 5 we find the
opposite. Including 16 orders in the charge-field coupling
is barely sufficient to reproduce the full mid-IR peak. As
the mid-IR peak only appears when ξ≳ 1, we conclude that
it is formed by a highly nonlinear interaction between the
electron and laser pulse background, akin to the redshifting
of the Compton edge [60] and the generation of higher
harmonics. This is the same way the mid-IR peak is formed
in the flattop model in Sec. III, where the n ¼ 0 harmonic
becomes accessible due to the finite pulse duration, and
corresponds to a photon being absorbed with an energy of
the order of the bandwidth of the laser pulse.

V. CLASSICAL ANALYSIS

Although highly nonlinear in the field interaction, the
mid-IR peak must be a classical phenomenon. This is
because the photon quantum parameter χγ ¼ sηξ, which is
a measure of the electron recoil when it emits a photon of
momentum sη, obeys χγ ≪ 1. Therefore we can better
understand the mid-IR peak, by asking: what part of the
classical electron trajectory produces this spectral struc-
ture? The number of equivalent photons emitted classically
is [57]

Ncl ¼
Z

d3k
ð2πÞ3

1

2k0
j|̃ðkÞj2; ð12Þ

where the Fourier-transformed current in a plane-wave
background can be written [64]

|̃ðkÞ ¼ e
ηm2

Z
dφΠðφÞei

η

R
φ

−∞
k·ΠðzÞ
m2 dz: ð13Þ

Assuming Ncl ≪ 1, the number of equivalent photons
emitted classically can be interpreted as the classical limit
for the probability of emission of a photon, Pcl. Now, the
classical result will also diverge when calculated naïvely in
a plane-wave pulse and must be regularized, just as in QED.
Regularization of classical quantities is not a new concept
(see e.g., [28]) but is relatively uncommon in the literature.
We will see below how this regularization is crucial to
understanding the mid-IR peak.
Regularization of the classical probability results in the

phase integral being performed only over the region where
the plane-wave background has support and with the
momentum Π being replaced by Πreg where

Πreg ¼ Π − p
k · Π
k · p

:

We note that while k · Π ≠ 0, with the extra terms from
regularization: k · Πreg ¼ 0, which is required for current
conservation [k · |̃ðkÞ ¼ 0]. Then the quantity that is
relevant for the radiation spectrum is ΠregðφÞ · Πregðφ0Þ,
which we can write as

ΔðφÞΔðφ0Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
zero-field reg

þ aðφÞ · aðφ0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
⊥ term

−
�
a2ðφ0Þ

2
ΔðφÞ þ a2ðφÞ

2
Δðφ0Þ

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k term

; ð14Þ

where the symbols k (⊥) refer to momentum directions
parallel (perpendicular) to the plane-wave pulse propaga-
tion direction. In Fig. 6 we illustrate the different spectra
that are produced by artificially turning off different parts of
the kinetic momentum. (The method of computation for the
classical calculation is briefly detailed in the Appendix.)
First of all, we confirm that, as expected, the mid-IR peak is
well approximated by a classical approach. Second, we find
that the mid-IR peak disappears when we neglect the cross
term, which is the only place the longitudinal momentum
gained by the electron from the background, ðξ2ðφÞ=2ηÞϰ,
survives. The acceleration of the electron due to this term is

dΠk
reg

dτ
¼ m

2

d
dφ

ξ2envðφÞϰ; ð15Þ

where with ξenvðφÞ we emphasize that for the plane-wave
pulse discussed here the coordinate dependence of ξ2ðφÞ
originates entirely from the pulse envelope [ξenvðφÞ≡ ξðφÞ
for a circularly polarized pulse]. Let us contrast this with
the monochromatic or even locally monochromatic
approach used where the “instantaneous” value of the

FIG. 5. Perturbative expansion of the photon spectrum for a
ξ ¼ 2.5, 16-cycle pulse colliding with an η ¼ 0.1 electron;
cf. Fig. 4. (Shading and plot points have been used to guide
the eye to where the perturbation expansion breaks down.) The
vertical grid lines are the estimate of the position of the mid-IR
peak (left) and the first harmonic (right).
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pulse envelope is included, but higher-order derivatives are
neglected [25]. In both these cases, the acceleration in
Eq. (15) is zero, and there is no mid-IR peak. Therefore, we
associate the mid-IR peak with this acceleration in the
direction of propagation of the laser pulse, proportional to
the gradient of the slow timescale of the field (i.e., the
envelope), squared. The mid-IR peak can then be said to
originate from a ponderomotive [65–70] effect over the
scale of the pulse envelope, but in the longitudinal
direction.

VI. ANGULAR SPECTRUM

Since there is a separation in the s spectrum between the
mid-IR peak and the usual harmonic structure, a natural
question is whether there is also a separation in the angular
spectrum. Using Eq. (1), we can estimate the emission
angle by taking the ratio of transverse to light front
momentum of the scattered photon. We find

jr⊥j2
s2η2

¼ 2n̄
η

1 − s
s

−
1

η2
≥ 0; n̄ ≥

s
2ηð1 − sÞ ; ð16Þ

where the second inequality follows from the first.
Equation (16) tells us that (i) as s → 0, n̄ is bounded
below by 0; (ii) as s → 0, jr⊥j → 0. Therefore the mid-IR
peak will feature at the center of the angular distribution.
Since s ∝ ηγ ≔ sη ¼ ϰ0ðk0 − kkÞ=m2, it is not immedi-

ately clear whether kk is positive or negative (i.e., photons
scattered parallel or antiparallel to the laser propagation
direction). With some rearrangement, we arrive at

kk ¼ jk⊥j2 − κ2

κ
; κ ≔

m2ηs
ϰ0

:

We see the intuitive result that, in the limit ϰ0=m → 0, kk is
negative; i.e., the photon is emitted antiparallel to the laser
wave vector, and if ϰ0=m → ∞, the photon would turn out
to be emitted parallel to the laser wave vector. To acquire
jk⊥j2, we can calculate the angular spectrum of emitted
photons. In Fig. 7, we plot an example for s ¼ 5 × 10−4,
ξ ¼ 2.5, N ¼ 16 and η ¼ 0.1.
We first note that themid-IR peak can be clearly identified

in the center of the distribution. Suppose the collision
between electron and laser is “head on”; then r⊥ ¼ k⊥.
Here then jk⊥j=m ∼Oð10−3Þ, and ηs ¼ 5 × 10−5. If we take
an optical laser pulse, e.g., at a wavelength of 800 nm
(energy 1.55 eV), then ϰ0=m ≈ 3 × 10−6, making
κ=m ∼Oð10Þ, i.e., κ ≫ jk⊥j, so that the photons in the
mid-IR bump are scattered parallel to the electron and
antiparallel to the laser direction, very close to the propa-
gation axis. (One could consider how high a laser frequency
is required for the photons to be scattered parallel to the laser
direction in this case, and it would be around 25 keV.)
To filter out the mid-IR signal from the photon spectrum,

ideally, one would be able to apply both an angular and an
energy cut to the photons detected. The angular cut would
be used to select only those photons very close to the
electron propagation axis, as in Fig. 7, and the energy cut
would be required; otherwise at small values of s, the
emission from the harmonics would overlap with emission
due to the mid-IR peak.

FIG. 6. Comparison of different contributions to classical
radiation spectrum (ξ ¼ 2.5, η ¼ 0.1, N ¼ 4) by removing
different parts of the squared momentum in (14). Kcl⊥þ0 corre-
sponds to removing the longitudinal “k term” in (14), whereas
Kcl⊥ is for where the longitudinal and zero-field terms having been
removed. The LMA, which misses the mid-IR peak, is plotted for
comparison. The vertical grid lines are the harmonics and the
approximation to the position of the mid-IR bump.

FIG. 7. A plot of the square root of the emission spectrum in the
transverse, r⊥, plane, for a 16-cycle ξ ¼ 2.5 pulse colliding with
an η ¼ 0.1 electron producing s ¼ 5 × 10−4 photons (for a head-
on collision with 1.55 eV laser photons, this corresponds to
4 MeV Compton-scattered photons). The outer ring is part of the
first harmonic, whereas the inner lobes are the linearly polarized
signal from the mid-IR peak. Dashed lines are plotted at angles
�π=4 to the vertical.
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However, another difference between the mid-IR peak
photons and the rest of the spectrum is apparent from Fig. 7.
In the center of the distribution, a typical dipole distribution
can be seen, showing that the mid-IR peak is clearly
linearly polarized, whereas the harmonics are circularly
polarized. This occurs because the pulse envelope, which is
responsible for the mid-IR peak, multiplies both transverse
components of the background in the same way—there is
no difference in the carrier-envelope phase between the two
background polarization directions. Therefore the envelope
imposes a linearly polarized structure on the background in
contrast to the carrier frequency, which is circularly
polarized. If one applies a filter to the scattered photons
to separate right-handed from left-handed polarization, then
the harmonics can be partially filtered out. This is dem-
onstrated in Fig. 8, where the angular dependency is
illustrated by calculating the quantity L ¼ dK=dðr⊥=sÞ.
We use the circular polarization basis ϵ� ¼ ðϵ1 � iϵ2Þ=

ffiffiffi
2

p
,

where

ϵj ¼ εj − ϰ
k · εj
k · ϰ

; εμj ¼ δμj ; j ∈ f1; 2g: ð17Þ

To calculate the spectrum of polarized photons, we do not
sum over photon polarization states, l, in Eq. (5), but

instead just select the polarization required (recalling that ϵ�
enters the amplitude, and ϵ�� ¼ ϵ∓). From the results, we
note that the mid-IR peak occurs with an equal amplitude in
both ϵ� circular polarization states, which is logical
because linearly polarized photons are an equal mixture
of circularly polarized states. But we see that, for r⊥ ≤ sξ,
the signal from the harmonics is strongly suppressed in the
ϵ− polarized photons. This can be understood writing the
background pulse, Eq. (6), in terms of circular polarization
vectors:

a ¼ mξffiffiffi
2

p sin2
�

φ

2N

�
½εþe−iφ þ ε−eiφ�: ð18Þ

It will be sufficient to consider the linear Compton process.
In this case, a photon must be absorbed from the back-
ground; otherwise the process is kinematically forbidden—
therefore only the εþ polarization is involved from the
background. In the low-s limit, the process should be well
approximated by the classical formula for Thomson scat-
tering, the probability of which is ∝ ðϵin:ϵ�outÞ2 [64]. For
photon polarization, we have chosen ϵout ¼ ϵ� from
Eq. (17). Suppose we consider photons being emitted
mainly down the electron propagation axis, as we expect,
because the electron is highly relativistic, and radiation is
mainly emitted in a ∼1=γ emission “cone”; then ϵ� ≈ ε�.
Then since ϵin ¼ εþ, and since εþ · ε�− ¼ 0, we see that
emission of ε− polarized photons in the first harmonic
should be strongly suppressed, which is indeed what we
find in Fig. 8. Therefore, in addition to an angular and
energy cutoff, also a polarization filter could be used to
isolate the mid-IR signal photon [71].

VII. CONCLUSION

In this work, the effect of the background’s pulse
envelope on the spectrum of single nonlinear Compton
scattering has been investigated. This corresponds to taking
into account exactly interference from emissions by the
electron at different points in the pulse, up to the length
scale of the entire pulse envelope. This was done, first in the
toy model of a flattop pulse, for which we presented the
total probability as a sum over harmonics of an integral over
two outgoing photon momentum components. The appear-
ance of a spectral feature, which is absent in the well-
known infinite or locally monochromatic cases, of a
harmonic peak in the midinfrared was identified. This
mid-IR peak was found to originate from the finite
bandwidth of the flattop pulse, which allowed the “zeroth”
harmonic to become kinematically accessible. One can
make an analogy, as was done for pair creation in [72], of
processes in a flattop pulse being akin to emission from a
diffraction grating. Here, the integer harmonics of the
photon spectrum correspond to interference between the
grating slits (provided by the carrier frequency of the pulse)
whereas the zeroth and lower harmonics are due to

(a)

(b)

FIG. 8. Angular spectrum for the collision of a 16-cycle, ξ ¼
2.5 pulse with an η ¼ 0.1 electron. Left: how the angular
spectrum depends on photon polarization (same scale). Right
upper: a lineout of the angular spectrum, L, at r⊥ ¼ ξ. Right
lower: proportion of s spectrum of photons originating from mid-
IR peak LIR=L (defined as s < 0.01) as a function of r⊥=ξ.
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interference from the finite width of the grating itself
(provided by the flattop pulse envelope). Opening of
kinematic channels due to a laser pulse’s finite bandwidth
is known in other strong-field QED calculations such as pair
creation [72] where, in [73], using the Dirac-Heisenberg-
Wigner formalism a ponderomotive effect on the pair
spectrum was identified, real photon-photon scattering
[74–77] and the linear trident process [78]. This effect,
which widens harmonic fringes in the emitted photon phase
space, is distinct from the opening of channels in a pulse
due to just having a spacetime-dependent intensity and
a variable effective mass. For this reason, the mid-IR peak
is missed by local approximations, such as the LCFA
and LMA.
The rest of the paper analyzed the mid-IR peak in the

context of a more realistic plane-wave pulse with a sine-
squared envelope. The mid-IR peak was found to be
associated with a background wave vector approximately
1=2N smaller than from the carrier frequency, where N is
the number of cycles of the carrier frequency. The mid-IR
peak only appears when the intensity parameter ξ (or “a0”)
fulfills ξ≳ 1, and its height in the light front spectrum
grows as ∝ ξ3 compared to the IR limit, which is given by
the leading-order term in ξ and grows as ∝ ξ2. The mid-IR
peak is a signature of an all-order interaction between the
field and the charge, which was confirmed by the failure of
a truncated perturbation expansion to approximate this part
of the spectrum. Using a classical analysis, we were able to
show that this peak arises from the ponderomotive force
from the leading and trailing edges of the pulse envelope
imparting a change in longitudinal momentum of the
electron. Since this force is proportional to the derivative
of the envelope squared, this is an alternative explanation
for why the mid-IR peak is missed from local approaches
such as the LCFA and LMA, which neglect derivatives
of the pulse envelope. Central to this analysis was the
regularization of the zero-field limit of the classical result.
Therefore, an extension to this work would be to include
radiation reaction [79–81]. Finally, it was shown that if the
carrier frequency is circularly polarized, then the mid-IR

peak, which comprises linearly polarized photons, can be
partially isolated from the rest of the spectrum using
polarimetry and angular cuts of low-energy photons.
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APPENDIX: CLASSICAL SPECTRUM
CALCULATION

Beginning with Eqs. (12) and (13), without loss of
generality, we set p · ϵ1;2 ¼ 0. To obtain the spectrum, we
then have

Kcl ¼ 8

3π

α

Nξ2η

1

ð2πÞ2
Z

d2r⊥ T
m2

; ðA1Þ

where the prefactor 8=3πNξ2 is chosen so that
lims→0 Kcl ¼ 1 and

T ¼ jScl
0;Δj2|fflfflffl{zfflfflffl}

zero-field reg

þ ReScl
2S

cl�
0;Δ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

k term

−jScl
1εj2 − jScl

1βj2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
⊥ term

; ðA2Þ

where

Scl
j ¼

Z
φf

φi

dφ IjðφÞeið1−sÞf;

where I0;Δ ¼ Δ, I1ϵ ¼ −a · ϵ1, I1β ¼ −a · ϵ2 and
I2 ¼ −a · a. The labeling of the terms in Eq. (A2) corre-
sponds to the labeling in the main text in Eq. (14). The
exponent function f is defined in the main text in Eq. (3)
and the regularization factor Δ ¼ 1 − k:Π=k:p.
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