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It is customary to apply the so-called narrow width approximation I'(B — RP3; — P,P,P3) =
I'(B — RP3)B(R — P P,) to extract the branching fraction of the quasi-two-body decay B — RP;, with
R and P; being an intermediate resonant state and a pseudoscalar meson, respectively. However, the above
factorization is valid only in the zero width limit. We consider a correction parameter 7z from finite-width
effects. Our main results are as follows: (i) We present a general framework for computing 77z and show that it
can be expressed in terms of the normalized differential rate and determined by its value at the resonance.
(i) We introduce a form factor F(s,, mg) for the strong coupling involved in the R(m,) — PP, decay
when m, is away from mp. We find that off-shell effects are small in vector meson productions, but
prominent in the K3(1430), 6/f(500), and K;(1430) resonances. (iii) We evaluate 7 in the theoretical

framework of QCD factorization (QCDF) and in the experimental parametrization (EXPP) for three-body

decay amplitudes. In general, ngCDF and 75XPF are similar for vector mesons, but different for tensor and

scalar resonances. A study of the differential rates enables us to understand the origin of their differences.
(iv) Finite-width corrections to B(B~ — RP)xwa obtained in the narrow width approximation are generally
small, less than 10%, but they are prominent in B~ — ¢/f((500)z~ and B~ — K;°(1430)z~ decays. The
EXPP of the normalized differential rates should be contrasted with the theoretical predictions from QCDF
calculation as the latter properly takes into account the energy dependence in weak decay amplitudes. (v) Itis
common to use the Gounaris-Sakurai model to describe the line shape of the broad p(770) resonance. After
including finite-width effects, the PDG value of B(B~ — pa~) = (8.3 & 1.2) x 107 should be corrected to

(7.9 £1.1) x 107® in EXPP and (7.7 £ 1.1) x 107® in QCDF. (vi) For the very broad o/f,(500) scalar

resonance, we use a simple pole model to describe its line shape and find a very large width effect: nSCDF ~

2.15 and nEXPP ~ 1.64. Consequently, B~ — oz~ has a large branching fraction of order 107>, (vii) We

employ the Breit-Wigner line shape to describe the production of Kj(1430) in three-body B decays and find

large off-shell effects. The smallness of n%CDF relative to r/?zfpp is ascribed to the differences in the normalized

differential rates off the resonance. (viii) In the approach of QCDF, the calculated CP asymmetries of
B~ — £,(1270)n~,6/f(500)7~, K~p° decays agree with the experimental observations. The nonobser-
vation of CP asymmetry in B~ — p(770)z~ can also be accommodated in QCDF.

DOI: 10.1103/PhysRevD.103.036017

I. INTRODUCTION

In a three-body decay with resonance contributions, it
is a common practice to apply the factorization relation,
also known as the narrow width approximation (NWA),
to factorize the process as a quasi-two-body weak decay
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followed by another two-body strong decay. Take a B
meson decay B — RP; — P{P,P5 as an example, where R
and P; are an intermediate resonant state and a pseudo-
scalar meson, respectively. One then uses

F(B—)RP3—)P1P2P3):F<B—>RP3>B(R—)P1P2)
(1.1)

to extract the branching fraction of the quasi-two-body
decay, B(B — RP3), which is then compared with theo-
retical predictions. However, such an approach is valid only
in the narrow width limit, I'; — 0. In other words, one
should have instead
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F(B—)RP:; —)P1P2P3)1—\R_>0 :F(B—>RP3)B(R—>P1P2),
(1.2)

where we have assumed that both I'(B — RP3) and
B(R — P, P,) are not affected by the NWA. In other
words, while taking the T'(R — P P,) — 0 limit, the
branching fraction of R — P;P, is assumed to remain
intact. For the case when R has a finite width, Eq. (1.1) does
not hold. Moreover, theoretical predictions of B(B — RP3)
are normally calculated under the assumption that the both
final-state particles are stable (i.e., I'g,['p; — 0). Therefore,
the question is how one should extract B(B — RP3) from
the experimental measurement of the partial rate of B —
RP; — P{P,P; and make a meaningful comparison with
its theoretical predictions.
Let us define a quantity1

F(B—)RP3—)P1P2P3)FR_,O
F(B—)RPg—)P]Pzp:;)

= :1 5,

g =

(1.3)

so that the deviation of 7, from unity measures the degree
of departure from the NWA when the width is finite. It is
naively expected that the correction & will be of order
['z/mpg. The quantity iy extrapolates the three-body decay
from the physical width to the zero width. It is calculable
theoretically but depends on the line shape of the resonance
and the approach of describing weak hadronic decays such
as QCD factorization (QCDF), perturbative QCD, and soft
collinear effective theory. After taking into account the
finite-width effect 7 from the resonance, the branching
fraction of the quasi-two-body decay reads

B(B—)RP3—)P1P2P3)

B(B e RP3) = Nr B(R N PIPZ)

oL (1.4)

expt

Note that B(B — RP3) on the left-hand side of the above
formula is the branching fraction under the assumption that
both R and P; are stable and thus have zero decay width.
Therefore, it is suitable for a comparison with theoretical
calculations.

In the literature, such as the Particle Data Group (PDG)
[3], the branching fraction of the quasi-two-body decay is
often inferred from Eq. (1.4) by setting 7z equal to unity.
While this is justified for narrow-width resonances, it is not
so for the broad ones. For example, I',/m, = 0.192 for the
p vector meson, I'y, /m;, = 0.146 for the f,(1270) tensor

1 . .. ..
For later convenience, our definition of 7y here is inverse to

the one defined in [1]. A similar (but inversely) quantity Wg? =

r 5? / FE{.I)VWL was also considered in [2], where I" g) is the partial-

wave decay rate integrated in a region around a resonance and

()

T \we. denotes Ty in the narrow width limit.

meson, I',/m, ~ O(1) for the 6/ f,(500) scalar meson, and
Lk, /mg: = 0.189 for the K73(1430) tensor meson. For these

resonances, finite-width effects seem to be important and
cannot be neglected. We shall see in this work that the
deviation of np from unity does not always follow the
guideline from the magnitude of I'y/mp.

It is worth mentioning that the finite-width effects
play an essential role in charmed meson decays [1,4].
There exist some modes, e.g., D° — p(1700)*K~, D° —
K*(1410)~K™" which are not allowed kinematically can
proceed through the finite-width effects.

In this work, we will calculate the parameter 77z within
the framework of QCDF for various resonances and use
these examples to highlight the importance of finite-width
effects. First, we need to check the NWA relation Eq. (1.2)
both analytically and numerically. Once this is done, it is
straightforward to compute 7.

In the experimental analysis of B — RP; — P{P,P3
decays, it is customary to parametrize the amplitude as
A(myy, my3) = cF(my,, my3), where the strong dynamics
is described by the function F that parametrizes the
intermediate resonant processes, while the information of
weak interactions is encoded in the complex coefficient ¢
which is obtained by fitting to the measured Dalitz plot.
The function F can be further parametrized in terms of a
resonance line shape, an angular dependence, and Blatt-
Weisskopf barrier factors. Using the experimental para-
metrization of F(m,,, m»3), we can also compute the ratio
of the three-body decay rate without and with the finite-
width effects of the resonance, which we shall refer to as
nEXPP. Obviously, #nEXPP is independent of c¢. On the con-
trary, the weak decay amplitude of B — R(m,)P3 gen-

erally has some dependence on m, in QCDF calculations.

Hence, ngCDF is different from #nEX** in general. It will be

instructive to compare them to gain more insight to the
underlying mechanism.

Although it is straightforward to estimate the parameter
ng in a theoretical framework by computing the decay rates
of the quasi-two-body decay and the corresponding three-
body decay, we shall develop a general framework for the
study of ;. We will show that 7 can be expressed in terms
of a normalized differential decay rate. It turns out that 7 is
nothing but the value of the normalized differential decay
rate evaluated at the contributing resonance. Not only is the
calculation significantly simplified, the underlying physics
also becomes more transparent. Finally, we note in passing
that while we focus on three-body B meson decays in this
paper to elucidate our point and explain the cause, our
finding generally applies to all quasi-two-body decays.

The layout of the present paper is as follows. In Sec. II,
we present a general framework for the study of the para-
meter 7 and show that it can be obtained from the nor-
malized differential decay rate. The experimental analysis
of B - RP; — P{P,P5 decays relies on a parametrization
of the involved strong dynamics. This is discussed in detail
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in Sec. III. We then proceed to evaluate r]QCDF within the

framework of QCDF in Sec. IV for some selected processes
mediated by tensor, vector and scalar resonances, and
compare them with #n5XPP determined from the experimen-
tal parametrization. We discuss our findings in Sec. V.
Section VI comes to our conclusions. A more concise
version of this work has been presented in [5].

II. GENERAL FRAMEWORK

In this section, we discuss how 5, can be determined
from a normalized differential decay rate. We start by
considering the simpler case where the mediating reso-
nance is a scalar meson and show that the result reduces
to the usual one in the NWA. We then generalize our
discussions to resonances of arbitrary spin and derive an
important relation between 7z and the normalized differ-
ential decay rate evaluated at the resonance mass. Two
examples of the p(770) and 6/f;(500) resonances are
presented at the end of the section.

A. Scalar intermediate states
We first consider the case that R is a scalar resonance for
simplicity. The three-body B — RP; — PP,P; decay
amplitude has the following form:
MI[B = R(my,) P3| M[R(m,;) — P P,]

(mi, — mg) + imglg

A(m12,m23) =

’

(2.1)

where M[B — R(m,)P3] and M[R(m,) — P,P,| are
weak and strong decay amplitudes of B — R(m,)P3 and
R(my,) = PP, decays, respectively, and mlzj = pu

(pi+p j>2. Note that at the resonance, we have

i/ amgl'gA(mg, my3)

mglg/7

which contains the critical information of the physical B —
RP; and R — PP, decay amplitudes.

Using the standard formulas [3], the three-body differ-
ential decay rate at the resonance is given by

. (2.2)

dgf(ﬂnf | (271r 332m3 / |A(mg. mo3)[Pdm3;.  (2.3)
or equivalently,
dr(mz) _ 1 1
dm?, — (2r)° 32mgm}
x/|A(mRam23)|2|ﬁ1||ﬁ3|d§21dg3, (2.4)

where |p,| and Q, are evaluated in the R rest frame. With
the help of Eq. (2.2), the above equation can be rewritten as

dr(mg)

erRFR dm2
12

32 2/ |M B - R(mR)P3]|2 |p3|d93

(32 2/|M (mg) = P P2]|2 1] dQl)/FR,

(2.5)
Hence, we obtain
I'(B — RP3)B(R — P,P,)
2
=amgplp dlc;’(%a:)
e [ g o P, (26
(27)* 32m; J 3, minm)

Consequently, Eqs. (2.6) and (1.3) imply that 5 is related
to the normalized differential rate,

r dF( 2) 5 s

b TMRLR =g, R S |A(mg, ma3) [P dm3,
R= "3y . rUR ]

d1;<m212) dm?, J|A(myy, mas) Pdmt,dm3,
(2.7)
With the help of the following identity2:
r

lim mel w/m = 8(mi, — mp), (2.8)

x>0 (m7y — mp)* + mpl'y

one can readily verify that #; given in the above equation
approaches unity in the narrow width limit, reproducing the
well-known result of Eq. (1.2).

B. General case

Although Egs. (2.6) and (2.7) are derived for the case of
a scalar resonance, they can be generalized to a more
generic case, where the resonance particle has spin J.
Instead of Eq. (2.1), the general amplitude has the follow-
ing expression:
A(mip,ma3) = M(myg,mi)R;(min) T j(min,my3),  (2.9)
where M (m,, my,) is a regular function containing the
information of B — R(m,)P; weak decay and R(m,) —
PP, strong decay, R; describes the line shape of the
resonance, and 7 ; encodes the angular dependence.

*This follows from the formula lim,_ o = mo(x).
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Resonant contributions are commonly depicted by the
relativistic Breit-Wigner (BW) line shape,

1
— mp) + imglg(my,)

RV (my) = (2.10)

(m%z

In general, the mass-dependent width is expressed as

2741 X2
Tp(mpy) =T (i> R ZJ(Q) . (211)
90 mi2 X5(q0)
where ¢ = |p,| = |p»| is the center-of-mass (c.m.) momen-

tum in the rest frame of the resonance R, ¢, is the value of ¢
when m, is equal to the pole mass mpg, and X is a Blatt-
Weisskopf barrier factor given by

1

B [E=veEa)

1
X,(z) = \/ ET T Ye— (2.12)

with rgw ~ 4.0 GeV~!. In Eq. (2.11), T'% is the nominal
total width of R with 'y = I'z(mp). One advantage of
using the energy-dependent decay width is that I'g(m,)
vanishes when m, is below the m; + m, threshold [see the
expression of ¢ in Eq. (3.9) below]. Hence, the factor ¢*-+!
with L being the orbital angular momentum between R and
P5 guarantees the correct threshold behavior. The rapid
growth of this factor for angular momenta > L is compen-
sated at higher energies by the Blatt-Weisskopf barrier
factors [3].

From Egs. (3.8), (3.10), (4.46), (4.61), and (4.102)
below, we find that the angular distribution term 7 ; in
Eq. (2.9) at the resonance is governed by the Legendre
polynomial P;(cos 8), where @ is the angle between p; and
p3 measured in the rest frame of the resonance (see also
[6]). Explicitly, we have

Py(cos@) =1, P (cos@) = cos @,

P,(cos ) = ! ( 1 + 3cos?6), (2.13)
and
To(mg,my3) = 1, T (mg, my3) o« cos 6,
T (mg, my3) x 1 — 3cos?0 (2.14)

Note that 7 o(m,, my3) = 1 throughout the entire phase
space. This means that the strong and weak amplitudes
can always be separated for the scalar case, as shown
in Eq. (2.1).

Instead of Eq. (2.2), the general amplitude at the
resonance takes the form

i\/ ”mRF(I)?A<mR7 m23)

=Y " M;y[B — R(mg)Ps]
7

M;[R(mg) — P P,]

Vmgl%/n ’

where 4 is the helicity of the resonance R. Such a relation is
expectable because there is a propagator of the resonance R
in the amplitude A(m,, m,3) and its denominator reduces
to imgl% on the mass shell of m;, while its numerator
reduces to a polarization sum of the polarization vectors,
producing the above structure after contracted with the rest
of the amplitude.
From Egs. (2.4) and (2.15), we have

X

(2.15)

dr(m3) 1
an?, (B2 amg(T)?
< [ MlB ~ Rng) AL Romg)
S
b d PIPZ} |p—;‘@d93d91, (216)
mg mp

where |p;| and Q; are evaluated in the R rest frame. In this
frame, the sum over helicities in the amplitude can be
replaced by the sum over spins. Consequently, M;[B —
R(mg)P3;] and M,[R(mg) — P,P,| are proportional to
Y5,(Q3) and Y ;;(€,), respectively.” As a cross-check, we
note that Eq. (2.14) can be reproduced by using the
well-known addition theorem of spherical harmonics,
(2J+1)P;s(cosO)=4n) ", Y75,(Q3)Y;(Q;). Alternatively,
we can start from Eq. (2.14) and make use of the addition
theorem to obtain the ), ¥7,(Q;)Y,;(Q,) factor.

We now see that the interference terms in Eq. (2.16) from
different helicities (or spins) vanish after the angular
integrations. As a result, we obtain

dr(mg)
dms,

= 532 2 [ M5 = ROne) P D3l

1
3272

- F(B g RP3)B(R - P1P2),

ﬂmRFR

oz [ lRng) P2 24 "’1' g )/r°
(2.17)

where we have made use of the fact that the branching
fraction B(R — P|P,;) is independent of the helicity

3For example, in the J = 1 case and at the resonance, M, [B —
V(mpg)P3] is proportional to pg - €*(p1,, 1), while M, [V (mg) —
P, P,] is proportional to €(p;,,4) - (p; — p»). See also Eq. (3.8)
below. It can be easily seen that in the V rest frame, these terms
provide the Y7,(Q;) and Y,(Q;) factors, respectively.
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(or spin) in the last step. The above equation agrees with
Eq. (2.6), and consequently Eq. (2.7) follows.

Equation (2.7) can be easily generalized to the case with
identical particles in the final state. Let P, and P; be
identical particles so that the decay amplitude reads
M = A(myy, my3) + A(my3, my3), giving

2 [ |A(mg, my3)|?dm3,
[ 1A(m 1y, myz) + A(my3. my3) [*dm?,dm3,
(2.18)

ng = zmgl'y

Furthermore, from Eqgs. (2.8) and (2.9), we see that in the
narrow width limit, the amplitude squared takes the form

”mRF%‘S(’”%z - mzze)|A(mR’ m23)|2.

(2.19)

|A(m12,m23)|%%_)0 =

Substituting this into Eq. (2.7), we obtain 7z = 1 in the
limit of zero width, hence reproducing the well-known
result in Eq. (1.2).

In this work, we will consider A(mi,,my3;) using
the experimental parametrization (EXPP) and the QCDF

calculation and compute 7EXPP and 7P, respectively.
In the latter case, we shall see that in the narrow width limit,
the weak interaction part of the amplitude does reduce
to the QCDF amplitude of the B — RP; decay. We will also
show explicitly the validity of the factorization relation in
the zero width limit for several selected examples of three-
body decays involving tensor, vector, and scalar mediating
resonances.

C. 57z and the normalized differential rate

As suggested by Eq. (2.7), nz can be expressed in terms
of the normalized differential rate,

dr (m? 1 dr
(’ZR) _ L ) 5 )
dml2 2 dm12

g = wmglg

where we have defined

dl (m12 dr(m,) / / mlz
dmt, — dmi, dmlz
Hence, 5y is determined by the value of the normalized
differential rate at the resonance. It should be noted that
as the normalized differential rate is always positive and
normalized to 1 after integration, the value of dl'(mg)/
dmy, is anticorrelated with dI(m,,)/dm,, elsewhere.
Hence, it is the shape of the (normalized) differential rate
that matters in the determination of #y.
The above point can be made more precise. When

I'r/mp < 1, we expect that the normalized differential
rate around the resonance is reasonably well described as

(2.21)

myl'g dl'(my)
m%)? +mxl% dm?,

(2.22)

It is straightforward to show that as a result, Eq. (2.20) can
be approximated by

V4 /(’”R+FR)2 df(m%ﬁ
2tan™!2 /| dm?,

R = dm,, (2.23)

mR_rR>2

or equivalently,

T mp+I'g df(ml2>
) e —" dm,
2tan™" 2 Jyy-r, dmyy

7 dr(my,) )
= 1- dmy, ). 2.24
2tan~!2 ( [zlsewhere dmy, . ( )

It becomes clear that ny represents the fraction of rates
around the resonance and is anticorrelated with the fraction
of rates off the resonance.

The EXPP and the QCDF approaches may have different

shapes in the differential rates, resulting in different 7z’s,
EXPP # nQCDF

ie., g in general. The two-body rate reported
by experiments should be corrected using 7z = 755F in
Eq. (1.4), as the data are extracted using the experimental
parametrization. On the other hand, the experimental
parametrization on normalized differential rates should be
compared with the theoretical predictions from QCDF
calculation as the latter takes into account the energy
dependence of weak interaction amplitudes. As we shall
show in Sec. V.A, the usual experimental parametrization
ignores the momentum dependence in weak dynamics and
would lead to incorrect extraction of quasi-two-body decay
rates in the case of broad resonances, as contrasted with the
estimates using the QCDF approach.

D. Formula of 7z in the case of the
Gounaris-Sakurai line shape

A popular choice for describing the broad p(770) resonance
is the Gounaris-Sakurai (GS) model [7]. It was employed by
both BABAR [8] and LHCb [9,10] Collaborations in their
analyses of the p(770) resonance inthe B~ — z" 7~z decay.
The GS line shape for p(770) is given by

0/m
765(5) — S_m;:} Z)Fri ir;/,l“/,(s)’ (2.25)
where
m 2
T,(s) =T < q ) ’ \[;;2 ((Q)) (2.26)

the Blatt-Weisskopf barrier factor is given in Eq. (2.12),

[0 is the nominal total p width with T =T,(m3).

The quantities g and g, are already introduced before in
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Sec. II. A. In this model, the real part of the pion-pion
scattering amplitude with an intermediate p exchange calcu-
lated from the dispersion relation is taken into account by the
f(s) term in the propagator of TGS (s). Unitarity far from the
pole mass is thus ensured. Explicitly,

o [ 2 2dh
f(s) =T |@?[h(Vs) = h(m)] + (m — 5)q5——
('IO dS m,
(2.27)
and
2 2
h(s) = qln<\/§+q> i
/s 2m,
dh 1 1 1
—_| =n — | . 2.28
ds|,, (m) {Sq% Zmﬁ] * 2zm3 (228)
The constant parameter D is given by
3 2 2 2 u 7217
p=2"x n<m’ i q0> + e T (209)
T q; 2m, 2rqy  7qy

The (1 + DI'Y/m,) factor in Eq. (2.25) will modify the
relation in Eq. (2.15) into

RV ”mRF% AGS(

i
(1+ DFg/mp)

=Y " Mu[B = p(mp)Ps]

m,, m23)

M;lp(mg) — PP
V mRFOR/”

instead. It can be easily seen that Egs. (2.6), (2.7), and
(2.20) all need to be corrected by the factor of 1/(1 +
DIY9/m,)? accordingly. More explicitly, Egs. (2.7) and
(2.20) should be replaced by

(2.30)

WGS — ”mhrp f |A(m/n m23)|2dm%3 (2 31)
g (1+ DFS/mp)2 f |A(m,, m23)|2dm%2dm§3
and
nGS — am,[) dl:(mg) _ al) df(mp)
P (1+DrY/my)?* dmi, 2(14DIS/m,)?* dm, '
(2.32)
respectively.

E. Formula of 7y, in the case of the 6/f((500) resonance

As stressed in [11], the scalar resonance o/f((500) is
very broad and cannot be described by the usual Breit-
Wigner line shape. The partial wave amplitude does not
resemble a Breit-Wigner shape with a clear peak and a
simultaneous steep rise in the phase. The mass and width of
the o resonance are identified from the associated pole

position /s, of the partial wave amplitude in the second
Riemann sheet as /s, = m, — il';/2 [11]. Hence, we shall
follow the LHCb Collaboration [10] to use a simple pole
description

1 1

T = S, S o AT e &)
with
T,(s) =T¢ (i) 2o (2.34)
q0/) V'

and T',(m2) =TV,

The factor of 1/[(T%)%/4+ im,I'Y = (im, L)' (1 -
iT%/4m,)~" in Eq. (2.33) at the resonance will modify
the relation in Eq. (2.15) into

FO
(1 - i4m6> l\/ ﬂmRF%A(mg, m23)

= ZM,{[B — o(mp)P;3) Milo(mg) = PiPs]

pi Vv mRF?e/ﬂ

instead. It can be easily seen that Egs. (2.6), (2.7), and
(2.20) all need to be corrected by the factor of r, = [1 +
(T%/4m,)?] accordingly. More explicitly, Eqs. (2.7) and
(2.20) should be replaced by

(2.35)

f |A(m,, m23)|2dm%3

Ny = wr myl, (2.36)
f|A(m12,m23)|2dm%2dm%3
and
¢ erene dm%z 2 dmlz ’ '
respectively.

I11. DIFFERENTIAL RATES AND 7EXP? USING
THE EXPERIMENTAL PARAMETRIZATION

The following parametrization of the decay amplitude is
widely used in the experimental studies of B — RP; —
P{P,P5 decays (see, e.g., [12]):

A(myy, my3) = cF(myy, my3)
= cR;(myy) x X,;(p3)

X X;(p1) x Ty(myz,my3),  (3.1)

where R; describes the line shape of the resonance
introduced before in Eq. (2.10), X; is the Blatt-
Weisskopf barrier form factor as defined in Eq. (2.12)
with both p, and ps evaluated in the R(m,,) rest frame,
T;(myy, my3) is an angular distribution term given by [6]
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To(m127m23) =1,

(m% — m3)(m? —m3)
Ty (myp. my3) = m3s — miy +—L—=5-1 =,
mi,
(m3 —m2)(m? —m2)\? 1 (m — m2)?
Ty (myp, mys) = (m%3 - m%3 +—£ : 2 1 : 3 m%z - Zm% - 2’"% +LE 2 3 2
my, mi,
2 2\2
X <m%2 —2m? —2m + ('"12'"2)> , (32)
mi,

and c is an unknown complex coefficient to be fitted to the data. Basically the information of weak decay amplitude is
included in c¢. However, it is assumed to be a constant that has no dependence on energy or momentum of the decay
products.

The quantities ['(B — RP3)B(R — P, P,) and nEXP? can be obtained by using Eqs. (2.6) and (2.7) as

P 1 [l
I'(B — RP3)B(R = PP,) = ———— (IX (P)PIXs (PP ) gy
’ U2 8P mgly 32m3 (33 min (& e 7 o
X |T;(mg, my3)|*dm3, (33)

and

z fm” " m" (X5 (P3)PIX s (PO )iy X 1T (Mg, ma3) [Pdmis
mRFR f |RJ mlz) X X;(p3) x X;(p1) x T;(m,. m23)|2dm%2dm%3

EXPP _
MR

(3.4)

Note that being a constant, the factor ¢ in A(m,, m»3) is canceled out between the numerator and the denominator in 75X

One can readily verify that n§XP? approaches unity in the narrow width limit by virtue of Eq. (2.8).
We can express nEXFP in terms of the normalized differential rate,

di(my) 1 dl(mg)

EXPP __ I = gl —— 2R 3.5
R mpl g dm%z 2” R dmy, (3.5)
with
dU(miy) _ Ry (mi)]* [1X,(p3) x Xy (p1) X Ty (mg, mo3)|dmss (3.6)
dm, SR, (m2) x Xy (p3) x X;(p1) X T;(mya, ma3)[*dmi,dms;,
In the case that P, and P; are identical particles, we shall use Eq. (2.18) to obtain nEXP, giving
133)max (1) 2.2
EXPP _ 2 fmZ: )onin (1) (15 (p3)*1X,(p1) P )m12—>mR X |T;(mg, my3)|[>dmy 39
MR (3.7)

mRFR f IR;(m12) X X;(p3) x X;(p1) x Tj(mp. my3) + (2 < 3)|2dm%2dm%3 .

|
Note that when the Gounaris-Sakurai line shape is used in ~ differential rate that matters in determining 7. Hence, in
place of R;, we should use Egs. (2.31) and (2.32), instead of ~ the case of finite width, the momentum dependence in the
Eq. (3.5), while Egs. (3.4) and (3.6) are still valid. Forthe case =~ weak amplitude will play some role.
of the ¢ resonance, we should use Egs. (2.36) and (2.37). There are some subtleties in the angular terms.
In the case of narrow width, it is legitimate to use a Note that Eq. (3.2) was obtained with transversality
complex constant ¢ to represent the weak dynamics. As  conditions, pi,e, =0 and pf,p%,e,, =0, enforced for
noted previously, it is the shape of the entire normalized J=1,2]6],
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Ti(mip.my) = > (P + p3),€™ (i e (p12. A)(p1 = p2),

A

= —2py - p3 = —2q|p3| cos b,

Ty(mig, my3) = Z(PB + 13),(Ps + P3), €™ (P12, A€ (P12, ) (P1 = P2)a(P1 = P2)

A

4 . . I 4 .
=3 3(P1 - P3)* = (|P1llPs])*] = §q2|P3|2(300329 - 1), (3.8)
where ¢ and " are the polarization vector and tensor, respectively, and
Cm = A lmiy = (my A my)?md, = (my = my)?]
q=|pil =|p2| = s :
. (mz _mz_mz )2 1/2
il = (") (39)
12

with ¢ = |p»| and |p;| being the momenta of P, and P;
in the R(mj,) rest frame, respectively." Note that in
Eq. (3.8), the factor contracted with (pg+ p3) comes
from the B — R(m,)P weak decay amplitude, while the
one contracted with (p; — p,) comes from the R(m,) —
PP, strong decay amplitude. To obtain the cos 8 depend-
ence, it is useful to recall 3=, €5 (p12. )¢, (p12. A) = ghgld;;
in the rest fame of R(m;,).

Alternatively, using the standard expressions of vector
and tensor propagators, which are contracted with the B —
R(m,)P and the R(m,,) — PP, parts, we expect the
angular terms to take the following forms:

T (mya, myz) = may — m%3 + > ,
R
m2 — m2) (m? — m2)\ 2
T, (mya, my3) = (m% — m%3 + (mj 3’1)1<2 1 2 )
R

(3.10)

The transversality condition, however, is not imposed on
the above equations as the denominators become m%
instead of m?,. In general, these 7, cannot be expressed
as Eq. (3.8) except on the mass shell of p,, where
these two angular terms coincide, i.e., T'(mg, my3) =

T;(mg, my3). In the case of a vector resonance, except

*Note that |ps| is related to p. through the relation p, =
(m2/mg)|p3|, where p, is the c.m. momentum of P3 or R(m,)
in the B rest frame. This relation can be easily verified using the
conservation of momentum.

[

for modes with the intermediate resonance decaying to
daughters of different masses, these two angular terms are
identical throughout the entire phase space. We will also
consider the case where the transversality condition is not
imposed.

IV. ANALYSIS IN THE QCD
FACTORIZATION APPROACH

In this section, we will evaluate the decay amplitudes of
B — RP; and B - RP; — PP, P; within the framework
of QCD factorization [13,14]. For the latter, its general
amplitude has the expression

A(B — RP3 — P,P,P;)
= A(myy, my3)
= R P2 (515, mg)A(B = R(m,)P3)

X R;(mp)T ;(myp, my3), (4.1)

where gR="172 is the strong coupling constant associated
with the strong decay R(m;,) — PP, F(s, mg) is a form
factor to be introduced later [see Eq. (4.20) below], R; is
the resonance line shape, and 7 ; is the angular distribution
function. In this work, we find

To=1, T, =2gcosé, T, =—=(1-3co0s%0),

SIS
@) [}

(4.2)

where 0 is the angle between p, and p; measured in the rest
frame of the resonance and ¢ is given before in Eq. (3.9). In
Eq. (4.1), the weak decay amplitude A(B — R(m,)P3)
will be reduced to the QCDF amplitude A(B — R(mg)P3)
when m, — mg.
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Taking the relativistic Breit-Wigner line shape Eq. (2.10),
it follows from Egs. (2.2) and (2.4) that

dU(mgz) 1
dm%z _(

1 |P3|
A(B—>R 2 dQ
zszFZ <327z /| = R(mg)Ps)]

|1
x| —— |gR—>P1PzT |2—dQ1 ,
(32;#/ N md

1
:ﬂmRFRF(B—)RP:;)B(R—)Ple)

)532m " /'A (mg.mas) |*| 1 || P3|dQ1 Qs

(4.3)

Indeed, it is straightforward to show that the partial rate of
R(mg) — PP, given by

I'(R— PP, = /|gR‘)P 1P |2—d£21 (4.4)

has the following expressions (see also Eq. (2.39) of [15]):

%

Ly_pp, = p—)

90 2
m%, Gv-p,py»

— 2
F5—>P1P2 = Sam2 95-p,P,y»
N

% (4.5)

Lrepp, = 60 2 gT—>P P,

A(B~ > £,(1270)z~

1
+ {azépu +2(af +af) +aj +rjaf + =

+ ﬂgépu + ﬁg + ﬂng:|
nf>

where Af,,d> =V,,V,, and

X (Bf2.7)

X(B”vfz)}’

B mg, .
= 2fﬂA0f2 (mizz) mfZ € ﬂy(())pBﬂpBw
B

for different types of resonances. Therefore, the decay rate of
B — R(mg)P5 can be related to the differential rate of B —
RP; — P, P,P5 at the resonance. This means that 7, can be
obtained from the normalized differential rate as shown in
Eq. (2.7) or (2.20).

Most of the input parameters employed in this section
such as decay constants, form factors, Cabibbo-Kobayashi-
Maskawa matrix elements can be found in Appendix A
of [15].

A. Tensor resonances

We begin with the tensor resonances and consider the
three-body decay processes: B~ — f,(1270)z~ —» zt 'z~ n~
and B~ — K3°(1430)z~ — K=z*z~. Since the decay
widths of f,(1270) and K7%(1430) are around 187 and
109 MeV, respectively, itis naively expected that the deviation
of 17, from unity is larger than that of » K; in both QCDF and
EXPP schemes. We shall see below that this is not respected in
the QCDF scheme and barely holds in the EXPP scheme.

1. £,(1270)
B~ - f,(1270)z~ decay in QCDF.—
Consider the process B~ — f,(1270)z~ - 'tz z~. In
QCDF, the amplitude of the quasi-two-body decay B~ —
f2(1270)z~ is given by [16]

Z { 18y, + af + aly = (al + a§)rE + B33, + L + Pl X

1
(af +af) = 5 (afy + 1y af)

2

(4.6)

XBrS2) = 2 mpp F(m?,), (4.7)

with p, being the c.m. momentum of either f, or z~ in the B rest frame. The chiral factors rj and r)’;z in Eq. (4.6) are given by

2m?

ry(u) = -

my, () (my, 4 my)(u)

For the definition of the scale-dependent decay constants
[y, and f # , see, for example, Ref. [16]. The coefficients 57
describe weak annihilation contributions to the decay. The
order of the arguments in the af (M, M,) and g7 (M M)
coefficients is dictated by the subscript MM, given in
Eq. (4.6).

2my, fjJ:z ()
mb(ﬂ) ff2 .

7 (u) = (4.8)

In Eq. (4.7), X"B/27 s factorizable and given by
(n|7#|0){f2|7;,|B), while X7/ is a nonfactorizable
amplitude as the factorizable one (f,[J*|0)(z~|J,|B™)
vanishes owing to the fact that the tensor meson cannot
be produced through the V —A current. Nevertheless,
beyond the factorization approximation, contributions
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proportional to the decay constant f;, can be produced
from vertex, penguin, and spectator-scattering corrections
[16]. Therefore, when the strong coupling «, is turned off,
the nonfactorizable contributions vanish accordingly.

The factorizable amplitude X(5/27) can be further sim-
plified by working in the B rest frame and assuming
that f, () moves along the —z (z) axis [16]. In this case,
ply = (mp,0,0,0) and €#*(0) = /2/3¢*(0)e*(0) with
€(0) = (p..0,0,Ep,)*/m;, and, consequently,

X (Bfa.7) —2\/§f mp
3 mfz

Three-body decay B~ — f,(1270)x~ —» ntzx~n~—

As shown in [15], the decay amplitude Ay, (j270) =
A(B~ = 77 f,(1270) = z=(p )zt (p2)n~(p3)) evaluated
in the factorization approach’ arises from the matrix ele-
ment (" (p2)a~(p3)|(ab)|B~)>(z~(py)[(du)|0). where
|

PRAY (m2). (4.9)

(7" (p2)==(p
= (7" (pa)m

3)|(@b)|B=)7>(a~(p
(P3)\f2>TBW( 3)(f

2. L :
:7f29f2_’” i angfz(m%)T?jv(sm) (|P1||P2|) (P - P2)* |

mp

(@192) = @17,(1 = ys5)q, and the superscript f, denotes
the contribution from the f, resonance to the matrix
element (z*(p,)n~(p3)|(@b)|B~). We shall use the rela-
tivistic Breit-Wigner line shape to describe the distribution
of f,(1270),

1
TBW( )= : , (4.10)
5 — ]23 +img Ty (s)
with
q\’my, X3(q)
Iy (s)=TY <—> 2 , (4.11)
12 "\ao) Vs X3(qo)

where the quantities ¢, gy, X,, and T are already
introduced before in Eq. (2.11). One advantage of using
the energy-dependent decay width is that I'y, (s) will vanish
when s goes below the 27 threshold.

Consequently,

1)|(du)|0)
2|(@b)|B)(z~ (py

. 2m
= ZE*MD(A)I&ﬂphgfz_m " TfBZW( 23 ) Zfﬂ sz(
A

)|(du)|0)

2)eus (1) P!

(4.12)

where we have followed [20] for the definition of the B — T transition form factors® and employed the relation [6,22]

ZS*’” Eap(AD) P2 p3PiP] = (|P1||P2|) —(P1-P2)* (4.13)
with
. (mz _mz_s )2 1/2 . . 1
|p1| = ( £ 4” = _mzzr ) |P2|:|P3|:(]:§ 23_4m72r' (4.14)
8§23
Hence, factorization leads to
A, (1270 = = > 4 @18, + df + afy — (af + af)r]
pu z
’ \/_\/_p u,c
2my, fomatam g ABf2(, 2\ TBW | 2
X m—Bg : JAo (mn)sz (S23)§ D1 P2]*(1 = 3c0s°0) + (525 <> s12). (4.15)

where the identical particle effect due to the two identical z~ has been taken into account. Comparing with Eq. (4.6), we see
that the nonfactorizable contribution characterized by X(57-/2) and the weak annihilation described by 3” terms are absent in
the naive factorization approach. We shall use the QCDF expression for B~ — f,(1270)z~ and write

>The study of charmless three-body B decays in the factorization approach can be found in [15,17—19] and references therein.

®The B — T transition form factors defined in [16,20] differ by a factor of i. We shall use the former as they are consistent with the

normalization of B — § transition given in [21].
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A o) = g7 TPV (523) 3——(1 —3c0s?0)A(B™ — f(may3)n7) + (523 < 512). (4.16)
with
G -
A(B™ = fr(my3)m = Z /1 fz { a8p, +ay + -+ ﬂg,Ew]fz,,X(sz‘”)
p=u,c
+ a8, + 2(a§ +ab) + -+ B pla, X B, (4.17)
where
- 2 mg . < I
X8 — 2\@fﬂﬁp%A€f2 (mz). XD =2 mppc P (s3). (4.18)
|
and for the off-shell effect. For this purpose, we shall follow

2 2 2 1/2
B, = <(’"B :Zz $23) —m,z,) . (419)
B

It is easily seen that A(B~ — f,(m,3)x~) is reduced to the
QCDF amplitude A(B~ — f,7~) given in Eq. (4.6) when
M3 = Niy,.

Before proceeding, we would like to address an
issue. The strong coupling constant |g/2(1270)=7"7"| —
18.56 GeV~! extracted from the measured f,(1270) width
[see Eq. (4.27) below] is for the physical f,(1270). When
[ 1s off the mass shell, especially when s, is approaching
the upper bound of (mgz — m,)?, it is necessary to account
J

['(B~ = for~ »nfnn)=

| =

11 /(mB me)
- 2(2)°32m3 Jon,em, 2
4

[23] to introduce a form factor F(s, mg) parametrized as’

A + m3\"
F(s, =(———F) | 4.20
o) = () (4.20)
with the cutoff A not far from the resonance,
A = mR +18AQCD’ (421)

where the parameter S is expected to be of order unity. We
shall use n =1, Agep = 250 MeV, and = 1.0+0.2 in
subsequent calculations.

Finally, the decay rate is given by

1 /(mB_mﬂ)z d /(SIZ)max d |A |2
T3 3 $23 S12
27’ my Jon,m, ($12)m >

12/min

2 (512)max 2T 2R (500 my )2
o [ T o)

$23 = m3,)* + my 7 (s23)

512 ) min

X % (1 —3c0s?0)2|A(B~ — fo77)|*> + (sp3 <> s15) + interference terms}, (4.22)

where the factor of 1/2 accounts for the identical-particle effect. Note that cos @ can be expressed as in terms of s, and s,3,

cosf = (l(S23)S12 + b(S23), (423)
with [24]
1
als) = > s
( ) (s_4m )1/2<(m3—25, 5)? _mizz)l/Z
2 3 2 _
b(s) = — M + Mz — 9 (4.24)

2( —4m )1/2 <(mB Z;ﬂ—s)z _ m,zr) /2"

"Note that the form factor F(z,m) used in [23] is for the z-channel off-shell effect.
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TABLE I. Numerical values of the flavor operators a? (M M,) for MM, = f,(1270)x and zf,(1270) at the
scale u = my (i) = 4.18 GeV.

af’ fam 7f> af fam 7f>

a; 1.011 +0.014i —0.035 + 0.014i ag —0.053-0.005{ (6.3 + 1.6i)1073
a, 0.123-0.080: 0.133-0.078i a; (0.2 + 3.4i)107 (9.5-3.4i)1073
as 0.0014 + 0.0027i —0.006 + 0.003i ag (3.6-1.0i)107* (=2.1 +0.1§)1073
al —0.027-0.014i 0.0064-0.0016i ag (3.4-0.5i)107* (3.3 +1.0i)1073
as —0.032-0.006i 0.0091 + 0.0064i ao (=9.1-0.1i)1073 (3.0-1.2)107*
as 0.0009-0.0031: —0.008 + 0.003i aty (—-8.2 +6.2i)107* (9.6 +7.0i)107*
ag —0.050-0.014i —(3.52 +0.02{)1073 afy (—8.5+6.7i)107* (=9.4 +7.5i)107*

It follows that (sy),, =—(1+b)/a and (512) =
(I —b)/a. 1t is straightforward to show that

16 mp

Under the NWA, [¢/>=%"% /T’ is finite as it is propor-
tional to the branching fraction B(f, — zz~). Due to the
Dirac 5-function in the above equation, we have s,3 — m?> A

( )max 8 . . . .
/Sl2 dsi»(1 — 3c0s%0)? = — i) . (4.25) in the zero width limit. As a result, p. = p., ¢ = qo»
($12)min 5a 5 /s XBfam) L x(Bm) | XBrf) o XBxL) | and  A(B- —
In the narrow width limit, we have for7) > A(B._ = fon7). Likewise, the second ter'm. in
Eq. (4.22) with the replacement s,3 <> 51, has a similar
r I -0 expression. However, the interference term vanishes in the
mpy, fz(s) /2 2 . . .
Ry % m5(s —my ). (4.26)  NWA due to different é-functions. Using
(s —=my )" +my s (s) 2
2 2 2
|
_ ‘10 —rtam |2 _
Ffz—vﬁ;z‘ — 6()ﬂ-mf | frorta | FB‘—»fzﬂ_ = Y m% |A(B = for~ )| s (4.27)
we are led to the desired factorization relation,
F/-2—>0
[(B™ = for~ =» nta a7 ) ——T(B~ = fon7)B(f, = ntn). (4.28)

Numerical results.—

To compute B~ — f,n~ and the three-body decay B~ — f,n~ — n"x 7, we need to know the values of the flavor
operators al (M, M,). In the QCDF approach, the flavor operators have the expression [13,14]

C.
al (M, M,) = (Ci + lﬂ)Ni(Mz) +

N N,

where i = 1, ..., 10, the upper (lower) sign is for odd (even)
i, ¢; are the Wilson coefficients, Cr = (N2 —1)/(2N,)
with N. = 3, M, is the emitted meson, and M shares the
same spectator quark with the B meson. The detailed
expressions for the vertex corrections V;(M,), hard spec-
tator interactions H;(M;M,), and penguin contractions
P?(M,) for M\M, = TP and PT can be found in [16].
Note that the parameters N;(M) in Eq. (4.29) vanish if M is
a tensor meson; otherwise, it is equal to one. Therefore, the
coefficient a,(zf,) appearing in Eq. (4.6) vanishes when
the strong coupling a; is turned off. We see from Table |
that a? (f,P) and a! (P f») can be quite different.

It is known that power corrections in QCDF always
involve troublesome endpoint divergences. For example,

cit1 Crag 472

Vi(My) +—— Hi(M\M>) | + PP (M), (4.29)

c

|

the annihilation amplitude has endpoint divergences even at
twist-2 level, and the hard spectator scattering diagram at
twist-3 order is power suppressed and possesses soft and
collinear divergences arising from the soft spectator quark.
Since the treatment of endpoint divergences is model
dependent, we shall follow [13] to model the endpoint
divergence X = fol dx/X in the annihilation and hard
spectator scattering diagrams as

X, = ln(Ah> (1 + pyei?s),

XH—ln< >(1+p eltn), (4.30)
Ah
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with A, being a typical hadronic scale of 0.5 GeV. In this work, we use

pif =ptT =07,

leading to

B (fom) = 0.023 — 0.010i,
BL(xf,) = —0.033 + 0.018i,

for both p = u and c.
Following [16], we obtain the branching fraction and CP
asymmetry for B~ — f,(1270)z" as

B(B_ g f2(1270)”_>QCDF = (2651—11223) X 10_6,

Acp(B™ = f2(1270)77 ) gepr = (46.77539)%, (4.33)
where the decay constants f; = 102 + 6 MeV and f flz =
117 £ 25 MeV both at 4 = 1 GeV [25], the form factors

Agf 2(1270) (0) =0.13 £ 0.02, derived from large energy
effective theory (see Table II of [16]), and

0.64 -
0.26 + 0.03
F?”<q2) = 1 P2 1+ 1 8 7 (434)
e ~ 0404

B(B~ — f,(1270)z~ —» ztz~n~) = (1.48
ACP(B_ g f2(1270)7[_ - 71'+7],'_ﬂ,'_) = (4456j8§91)%

PA" = piT = =30, (4.31)
(B + Py ew) (farr) = —0.047 + 0.053i,
(B2 + B ow) (7f2) = —0.050 + 0.047i (4.32)

|

have been used. The theoretical errors correspond to the
uncertainties due to the variation of Gegenbauer moments,
decay constants, quark masses, form factors, the 1z para-
meter for the B meson wave function, and the power-
correction parameters p, g, ¢4y (see [16] for details), all
added in quadrature. In the narrow width limit, we find the
central values

B(B~ = f,(1270)z~ — 7t+77_7r_)1~f2_,0 = 1.485x 107°,
Acp(B™ = f,(1270)n~ — 77,'+77,'_7T_)rf2_,0 = 46.23%.

(4.35)

Since  B(f,(1270) - ntz7) = (0.8421005) x 2, it is

easily seen that the factorization relation Eq. (4.28) is

indeed numerically valid in the narrow width limit.
For the finite-width I}, = 186.7773 MeV [3], we find

037) x 1070 [(1.527948) x 107°],

[(47.207043) %, (4.36)

where the values in square parentheses are obtained with the form factor F(s, m/,) being set as unity. They are in agreement

with the recent LHCb measurements [9,10],

B(B~ = £,(1270)7~ = 27 7 ) ey = (1.37 £ 0.26) x 107°,

Acp(B™ = f,(1270)7 =zt a7 ) yep = (46.8 =7.7)%,

and consistent with the earlier BABAR measurements [8],

(4.37)

B(B~ = f,(1270)2 = a2t 2~ ) pagag = (0.9 £0.2793) x 1076,

Acp(B™ = [(1270)2" — 2* a2 ) papap = (41 £2553)%.

(4.38)

Notice that a large CP asymmetry in the f,(1270) component was firmly established by the LHCb Collaboration.
We are now in the position to compute the parameter 7y, (1279) defined in Eq. (1.3),

['(B™ = f»,(1270)77)B(f,(1270) - ztz™~)

_ 43
L ['(B~ = f,(1270)z - ntn n") (4.39)
From Egs. (4.33) and (4.36), we find
N i) = 10031000 (0.9743 £ 0.0003). (4.40)

036017-13



CHENG, CHIANG, and CHUA

PHYS. REV. D 103, 036017 (2021)
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0.98} Sa
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0.96} RN /2
0.94} 'TEXPP Ttae
0.00 0.05 0.10 0.15 0.20
I, (GeV)
FIG. 1. The parameter 7, as a function of the f,(1270) width,

where the solid curve is derived from the QCDF calculation and
the dashed (dotted) curve from the EXPP with (without) the
transversality condition imposed.

Since the theoretical uncertainties in the numerator and
denominator essentially cancel out, the errors on 77, mainly
arise from the uncertainties in f and the f, width. As
discussed in Sec. II, i can be expressed in terms of the
normalized differential rate. In general, the calculation done

|

A(B~ - K0n™) = Z/l

{04—1—@ 116—
puc

with 4y =V, V5, and

pb

XU = 2f imppoFI" (i, ).

K
(a fo + ry’ag) +ﬂgépu +ﬂ§ +ﬂ§,Ew

in this way is simpler. From Egs. (2.18) and (4.16), we obtain
the same result for n()g?CDF. The dependence of the parameter
1y, on the width FJ; s plotted as the solid blue curve in
Fig. 1. It is somewhat surprising that the deviation of r]QCDF
from unity is very tiny, even though T'y, /m , is about 0.146.

The parameter ;X" is calculated using Eq. (2.18)

together with the experimental parametrization, Eq. (3.1)
for A(my,, my3). Its dependence on the f,(1270) width is
depicted by the dashed red curve in Fig. 1. At the
resonance, we obtain

o) = 0.937100%.

N7, (1270) = (4.41)

We see that with the physical width T9 = 186.7733 MeV,

the results in the QCDF and EXPP schemes differ by
about 7%.

2. K3(1430)

We next turn to the B~ — K3°(1430)z~ —» K- z'n~
decay. The QCDF amplitude of the quasi-two-body B~ —
K3°(1430)z~ decay is given by [16]

Bn.K:
X( z)’
JL'K;

(4.42)

(4.43)

Note that this decay proceeds only through nonfactorizable diagrams.
Analogous to the f,(1270) resonance, the decay amplitude Ag: (1430 = A(B~ — K3°(1430)z~ = K= (p1)a" (p2)7~(p3)

reads [see the second term of Eq. (4.16)]

Ak (1430) = ngoﬁKiﬁF(Slz,mK;)T[B(* (s12) \/—(1 —3cos’0)A(B~ = K3'z7), (4.44)
with
qg= \/[SIZ B (mK + mﬂ)z] [SIZ B (mK - mﬂ')z] (445)
2\/s12
and
N ) G m. o
AB~ > K0n ) = 2L ST 22 pal g 0] XBRES), 4.46
( >7) \/EPZZM L. lay SEWrk; (4.46)
where X(7K3) has the same expression as X(87K3) except for a replacement of p. by p, and F ’f”(mi;) by F57(s5).

Following the previous case, it is straightforward to show that the factorization relation

FK*—>0 _
“)——T(B~ = K’7z")B(K’ — K~x")

(B~ - K%z~ - Ktz

holds in the NWA.

(4.47)
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In QCDF, we obtain
B(B~ — K3°(1430)77 ) ocpr = (2.6017%]) x 1076,
Acp(B™ = K§0<1430)ﬂ_)QCDF = (1-72:2.'9152)%’ (4.48)

where the decay constants f Ky = 118 £5 MeV and f é =77+ 14 MeV atu = 1 GeV [25], and the penguin annihilation
effects

ﬁf(nKﬁ) = 0.017 + 0.0061, (ﬁé’ —I—ﬂé’_EW)(nK;) = —0.027 + 0.022i (4.49)
have been used. In the narrow width limit, we find that
B(B~ - 1?30(1430)7:‘ — K_ﬂ+ﬂ_)rk*_)0 = 0.864 x 107°. (4.50)

Since B(K3°(1430) — 7z~) = (0.499 & 0.012) x % [3], it is seen that the factorization relation Eq. (4.47) is numerically
satisfied.

With the finite-width F(1)<*0 =109 =5 MeV, we obtain®
2

B(B~ — K*(1432)2r~ — K~n2~) = (0.891072) x 107,

Acp(B~ = K3°(1432)n~ - K= ztz™) = (1.711 £ 0.002)%, (4.51)
and
ngsn =0972+£0.001  (0.715+0.009). (4.52)

As for the ng: parameter in the experimental parametrization, we need to consider two possibilities for the angular

distribution function: 7, in Eq. (3.2) imposed with the transversality condition and 7% in Eq. (3.10) without the
transversality condition. We thus find

EXPP

ngy o = 1.053 £ 0.002, 17’,'(35“)1) = 1.031 £ 0.001.

(4.53)

Therefore, the transversality condition has little impact on the determination of 7. The dependence of % K; in QCDF and in
experimental parametrization is shown in Fig. 2. Experimentally, the BABAR measurement [12] yields

B(B~ — K3*(1430)n~ — K™ 777 ) = (1.851047) x 1075 (4.54)

|
Our result of Eq. (4.51) for the branching fraction is
consistent with experiment within uncertainties.
Comparing 7 K;’s with 774, ’s, it is clear that the proximity

of n?ZCDF to unity in QCDF is unexpected, while the

deviation of 7 from unity in the EXPP scenario is barely
consistent with the expectation from the ratio of I'g /m, for

1. p(770)z~

B~ — p%(770)x~ = nta~n~ decay in QCDF.—
The decay amplitude of the quasi-two-body decay B~ —
p°7~ in QCDF reads [14]

1.06

R = f,(1270) and K3(1430). e
1.04f nEg(PP ///,—
B. Vector mesons [ 70
We take the processes B~ — p(770)z~ — n"z~n~ and 1.02} //”/ __________________
B~ - K*(892)7~ — K~ztnx~ as examples to illustrate & P nEXPP
. . . . PRaPrTLl 2
the width effects associated with the vector mesons.’ It is 1.00b<m""
known that p(770) is much broader than K*(892). Q00
Therefore, it is expected that the former is subject to a oosl &
larger width effect. '
- O.IOO 0..02 O..04 0..06 O..08 0..10
8Contrary to the phase space integration in Eq. (4.22) for Mk; (GeV)
B~ — fon~ - n+ n~x~, here one should integrate over s, first
and then s3 owing to a pole structure in 75V (s),) at 51, = m%(;. FIG. 2. Same as Fig. 1 for the K3}(1430) mediating the B~

°For an early discussion on the decay B — pr — 3, see [26].

K- ntz~ decay.
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G 3 1
A8~ = 57) = 5 SO A oyl = 1) = ol = 3 0 )+ ey + )
p=u.c

-p _ﬂg,EW] X(E ™) 4 [5pu(a1 +p,) +aj - rya 6 +aj—r; a8
p

L B ] X0 } (4.55)

with the chiral factor

2m, fy(u)
ry(u) = pIP (4.56)
i mb(:u) fp
and the factorizable matrix elements
XBmp) = 2fmepCFf”(ml2,), XBpa) — ZmechAgp(m,%), (4.57)

where we have followed [27] for the definitions of B — P and B — V transition form factors.

The so-called Gounaris-Sakurai model [7] is a popular approach for describing the broad p(770) resonance. The line
shape is introduced in Eq. (2.25). Note that the GS line shape for p(770) was employed by both BABAR [8] and LHCb
[9,10] in their analysis of the p(770) resonance in the B~ — z"z~z~ decay.

For the three-body decay amplitude A, 779y = A(B~ — p°(770)z~ — z~(p;)x" (p2)a~(ps)), factorization leads to the
expression [15]

G d) pontn
Ay170) = —TF Z /157 'y F(s53,m,)T5S(523) (512 — 513)

p=u,c

X f /l( ) : ; 223 /}( 2)
m,A m;)+—=|\mp—m, —-—— A m
b4 P 2 B P , 2 T
X [épu(al ﬁ2) af{ r)’([ag af() r)’;ag pé’ [Jg,EW]pﬂ ”lpfpl 1ﬂ(s23)

3 1
< Byulaz = ) = af = sl +3 a8 + ) 4 3l + ) == B | J o). (459

zp

Penguin annihilation terms characterized by f3,, 3, and 35 gy, which are absent in naive factorization, are included here.
Note that

Sip = S13 = —4py - p, = 4p; - p3 = 4|p,[|p3] cos O (4.59)
in the rest frame of 7 (p,) and 7~ (p3) with the expressions of |p;| (i = 1, 2, 3) given in Eq. (4.14). Then we can write
A0y = =9~ = F(sy3,m )TSS(SB)ZC]COSHA(B_ = pr7) + (523 < 512), (4.60)

with ¢ already introduced in Eq. (4.14), where

. G
A(B~ = pr) = FZA 6,u(ar + Ba) +al + -

p=u.c

T 07 4 8plar = o) —af + - 1, XF7% (4.61)

with
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(B wp) — prmecF?”(S%),

. 1 ms —s
XBrm) =2f mpp .[AB” m2) + (m -m, ——L "= 23>ABP m; ] 4.62
fzr BPc 0 ( ﬂ') Zm/} B p mB+m/) 2 ( 7[) ( )

The decay rate is given by

['(B- > pn —>=x

P B donds d 19T PF(s23,my)* (1 + DTy /my )2
ART) =y | dsxdsyy 7 2 212
2(27)°32my (23 = my — f(s23))" + m;T;(523)

x 4g*cos?0|A(B~ = pa)|> + (523 < s12) + interference}. (4.63)

One can integrate out the angular distribution part by noting that

(512) max 2 4 m
d 20— = "B 5 4.64
/(Slz)min 12808 3a  3./sx ape ( )

In the narrow width limit,

m,L,(s)(1 4 DI'Y/m,)* 1,50
(s = mj = f(s))* + myI(s)

w8(s —m3 — f(s)). (4.65)

We see from Eq. (2.27) that f(s) vanishes when s — mg. Hence, the §-function implies s — mz in the zero width limit. As a
result, p, = pe, ¢ = qo» and A(B~ — pr~) = A(B~ — pn~). We then obtain the desired factorization relation

r,—-0
(B~ = pn~ = atnn ) ——T(B~ - pr)B(p = ntn"), (4.66)
where use of the relations
% p
_ 2 __Pe - -\ 2
Fp—>ﬂ+7r— - 6ﬂm% gp_”ﬁ”—’ FB_—>pﬂ_ - Sﬂ'm% |A(B - pr )| (467)

has been made.

Numerical results.—

To compute the flavor operators a? (pz) and af (zp) in QCDF, we need to specify the parameters p, 5 and ¢4 y for
penguin annihilation and hard spectator scattering diagrams. For B — VP decays, we use the superscripts “I”” and “f,”

ng —In (@) (1 —l—pi"fei(/);f), (468)
Ay
to distinguish the gluon emission from the initial- and final-state quarks, respectively. We shall use
(P Ph)py = (287085, 091501). (Pl #h)py = (=145131, —37550)° (4.69)
and the first order approximation of py = p', and ¢y ~ @', (see [28] for details). This leads to

By (pm) = 0.025 +0.011i, (5 + 5 w) (pr) = 0.034 = 0.0304,
BL(np) = —0.018 = 0.008i, (B + fpw) (mp) = 0.026 — 0.021i (4.70)

and the flavor operators a? (pz) and a” (zp) shown in Table II.
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TABLE II.  Numerical values of the flavor operators a (M M,) for MM, = p(770)z and zp(770) at the scale
y = 7y () = 4.18 GeV.

a? pr 7p a? pr 7p

a 1.007 4 0.108: 1.000 + 0.095: ag —0.045 — 0.005: —0.013 — 0.006:
a, 0.135 -0.379{ 0.158 — 0.340i az (=0.13 +2.9i)107* (-0.3 +2.6i)107*
as 0.0008 + 0.0183: —0.0004 + 0.016i ay (5.2 -1.0i)10™* (8.9 —8.5i)107
at —0.026 — 0.022i —0.026 — 0.021i a (5.0 — 0.51)10~* (—10.7 = 3.7i)1075
as —0.030 — 0.013i —0.031 — 0.012i ay (=9.1 - 0.94)1073 (=9.0 — 0.8)1073
as 0.0018 — 0.0247i 0.004 — 0.022i a', (=0.9 4 3.3i)1073 (—1.1 +2.9)1073
at —0.042 — 0.014i —0.010 — 0.015i a, (=0.9 4 3.31)1073 (=1.2 4+ 3.0)1073

Following [29], we obtain in QCDF,

B(B~ - p(770)77 ) gcpe = (8.18%§)) x 1076,

Acp(B™ - /)<770)7T_)QCDF = (036:?.'532)%’ (4.71)

where use of the decay constants f, =216 MeV and
fr(u=1GeV) =165 MeV [29] has been made. For
the finite-width F2 = 149.1 £ 0.8 MeV, we find

B(B~ — p(770)2~ - zta ™) = (8.761]5) x 107°,
Acp(B~ = p(770)7~ = ntn 7)) = —(0.24104%) %,
(4.72)

and

nSSQDF _ 0931 (0.855)., (4.73)

with negligible uncertainties, where the value in paren-
theses is obtained with F(s,m,) = 1. The same results for
11,(,},[S “QEDF ¢an also be obtained using Egs. (2.31) and (4.60).
The deviation of #5% from unity at 7% level is contrasted
with the ratio I',/m, = 0.192. For comparison, using the
Breit-Wigner model to describe the p line shape, we get

1.00
0.99
0.98
0.97

Gs
Mo

0.96
0.95
0.94

0.93

0.00 0.02 004 006 0.08 010 0.12 0.14
o (GeV)

(a)

FIG. 3.
Breit-Wigner model to describe its line shape.

QY = L111£0.001,  (1.033).  (4.74)

In the experimental parametrization scheme, we obtain

o X =0.950, gpe PP = 1152 £0.001.  (4.75)

The parameter 77, as a function of the p(770) width is
shown in Fig. 3 for both Gounaris-Sakurai and Breit-
Wigner line shape models and for both QCDF and EXPP
schemes.

As shown in Eq. (2.32), the expression of 75 is the same
as that of n5W except for an additional r*= (1+
DT)/m,,)? factor in the denominator. This r* term accounts
for the fact that 55 < 1 < 75" in both QCDF and EXPP
schemes. Since the Gounaris-Sakurai line shape was
employed by both BABAR and LHCb Collaborations in
their analyses of the p resonance in B~ — z"z~ 7~ decay,
the branching fraction of B~ — pz~ should be corrected
using 7SS rather than 75"

From the measured branching fraction B(B~ —
p(770)n~ = ntn~n~) = (8.44 £0.87) x 107 by LHCb
[9,10] and (8.1 +£0.7 & 1.27%%) x 107° by BABAR [8],
we obtain the world average

0.00 0.02 004 006 0.08 010 0.12 0.14
o (GeV)

(b)

Same as Fig. 1 for the p(770) resonance mediating the B~ — z"z~z~ decay using (a) the Gounaris-Sakurai model and (b) the
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B(B~ = p(770)n~ = 2" 7777 ) oy = (836 0.77) x 107°.
(4.76)

It is worth emphasizing that the CP asymmetry for the
quasi-two-body decay B~ — p’z~ has been found by
LHCb to be consistent with zero in all three S-wave
approaches. For example, Acp(p°z~) = (0.7 £1.9)% in
the isobar model [9,10]. However, previous theoretical
predictions all lead to a negative CP asymmetry for
|

B~ — p’z~, ranging from —7% to —45% (see [28] for a
detailed discussion). The QCDF results for the branching
fraction and CP asymmetry presented in Eq. (4.72) agree
with experiment.

2. p(770)K -
The three-body decay amplitude A, 770)x- =AB >
K= p(770) - K~ (p)x*(p2)7n~(p3)) has the expression

G S) p—nta
A0k~ = —TF Z /va)gp F(s23,m,)T5%(523) (512 = $13)

p=u.,c

) 1
| e ol i) 45

2
my — S
B 23 Bp 2
(”’B m, >A2 (’”K)]

mg +m,

x [8pu(ar + p) + af +afy — rf(ag +ag) + 5 + Biewl ok

+ m/)f/)F?K(S23) |:5pua2 +

= —g”‘”ﬁ”fF(sB, mp)T/?S(s23)2q cos QA(B_ - pK™),

s )
(4.77)

where use of Eq. (4.59) has been made, and A(B~ — pK~) has the same expression as the QCDF amplitude for the quasi-

two-body decay B~ — pK~ [14],

G Y 3
A(B~ — pK~) = 71” 3 A§;>{2fmepCF?K(m,2,) [5pua2 +2(ad + ag’)}

p=u,c

2 Kp

+ 2mechAgp(m%()[5pu(al + ﬂ2) + ai + afo - ’”;I(((ag + ag) + ﬁg + ﬂg,Ew]pK}, (478)

except for a replacement of p,F¥X(m3) by p.F#¥(s,3) and
ABP(m2) b
o (mg) by

1 m2 — 823
In QCDF, we obtain
B(B~ = p(770)K~)gepr = (4.031729) x 107,
Acp(B™ = p(T10)K ™ )qcpr = (21.67105)%. (4.80)

For the finite p width, we find
B(B~ = K p(770) —» K~ntn~) = (4.23709;) x 107,
Acp(B~ = K p(770) » K n"7n~) = (20.5 £ 0.8) %,
(4.81)

and

g ¥ =0.951£0.003,  (0.899). (4.82)

As a comparison, if the Breit-Wigner model is used to
describe the p line shape, we are led to have

oy YT = 1.132£0.001,  (1.086).  (4.83)

In the experimental parametrization scheme, we obtain

GS,EXPP — 093 1 ,

N o PXPP = 1.128 4 0.001.

(4.84)

The dependence of 7, as a function of the p(770) width is
shown in Fig. 4 for both the Gounaris-Sakurai and Breit-
Wigner line shape models. It is evident that ,, and 77, ¢ are
close to each other, as it should be. Our predictions in
Eq. (4.81) are consistent with the data,

B(B~ = K p(770) - K 72" )ppg = (3.7 £0.5)
x 1070,
Acp(B~ = K p(770) » K 27~ )ppg = 0.37 £ 0.10.
(4.85)
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r, (GeV) r, (GeV)

(a) (b)
FIG. 4. Same as Fig. 3 except that the p(770) state is the resonance produced in the decay B~ — K~ ztzn™.

3. K*(892)

For the three-body decay amplitude Ag-(g9p) = A(B~ - K*(892)z~ — K~ (p1 )z (p2)a~(ps3)). factorization leads to
the expression

Gr () K K-t (mg — mz)(mg — my)
A* = - ﬂgKﬁK”FS 7m*TBY\IS S - - z z
K*(892) \/ip;c P (S12, M) TR (512) [$13 — 523 I
1 . 1
X [af{ —5“[170 +ry (“g _§a§> + 8,y + B +ﬁ§,Ew] my-f k- F77(s12). (4.86)
zK*
Since
m23 —m2)(m% — m2 o o
1o iy = BTN 4y = 4l cos (4.87)
12

in the rest frame of K=(p;) and z"(p,), the three-body amplitude can be recast to
Ak-(892) = —gK KT B (515, mg ) TBY (515)2q cos OA(B~ — K*0(892)77), (4.88)

where A(B~ — K*°(892)z~) has the same expression as the QCDF amplitude for the quasi-two-body decay B~ —
K*0(892)z~ [14],

_ G s 1 \ 1
A(B~ - K*n7) = 7;— Z’lg’) [af{ _Ealfo +ry <ag ——aé’) + B56pu + B5 + P pw

) *2fK*mecF119”(m%<*)’ (4.89)
p=u.c

7K

except for a replacement of p.F57(m%.) by p.F¥(s,). It is then straightforward to show the factorization relation

(B~ - K°(892)r - K™n ﬂ_)MF(B_ - K*(892)77)B(K*°(892) — ntn") (4.90)

being valid in the narrow width limit.
In QCDF, we obtain

B(B~ — K*°(892)2~) = (10.41]3) x 107,
Acp(B~ = K°(892)77) = (0.167017) %, (4.91)

and

D(nK*) = 0.017 +0.006i, (B + fypw)(7K*) = —0.027 + 0.022i. (4.92)
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For the finite-width F(I)(*O =473+ 0.5 MeV, we find

B(B~ = K*(892)n~ = K~atz™) = (6.5277) x 1075, 1061
Acp(B~ = K*9(892)r~ —» K~nt7n™) = (0.166 £ 0.002) %,

¢ 1.04}
(4.93) <

and 1.02}
nee QP = 1,067 £0.002,  (0.9914 + 0.0001). (4.94) o0
As for the ng+ parameter in the experimental parametriza- 0.00 0.01 0.02 0.03 0.04
tion, we obtain Tk (GeV)
EXPP = 1,07540.001, 7/EXPP =1.059+0.001. (4.95) FIG. 5. Same as Fig. 1 for the resonance K*(892) produced in

the three-body decay B~ — K~z z~
The dependence of ng+ in QCDF and in experimental
parametrization is shown in Fig. 5.

The deviation of 5g- from unity is roughly consistent
with the expectation from the ratio I'g/mg- = 0.053.
Experimentally, the average of BABAR [12] and Belle
[30] measurements yields

C. Scalar resonances

For examples of scalar intermediate states, we shall take
the processes B~ — ¢/ f((500)z~ - ntz~ 7z~ and B~ —
K;(1430)z~ - K~z"z~ to illustrate their finite-width
effects. Since K{(1430) and especially o are very broad,
B(B~ — K(892)7~ — K~x*n~ they are expected to exhibit large width effects.'”

= (6.71 £ 0.57) x 107°.

)expt

(4.96) 1. 6/f4(500)

The result of the QCDF calculation of the branching
fraction given in Eq. (4.93) agrees with experimental data.
|

In QCDF, the decay amplitude of B~ — oz~ is given by
(see Eq. (A6) of [32])

A(B™ ~on”) = Z’l { a8y, + af + ajy — (ag + ag)ry] , XE

puc

1 1
+ [azépu + 2(af + af) +§(a§’ +ag) +aj —Eafo - <ag —a§> ?)‘;] X (Br.0)

— [ 8IS 2l 8[8,ub2(70) + b3(76) + bs pw(70) + (26 — wr)]}, (4.97)
where the factorizable matrix elements read
XBom) — —f FB (m2)(m} —m2), Xm0 = fUrbr(m2)(m} — m2)., (4.98)

and 75 (u) = 2m,,/m;,(u). The superscript u in the scalar decay constant f% and the form factor F Bo" refers to the u quark
component of the o meson. The scale-dependent scalar decay constant is defined by (o|au|0) = m, f% We follow [28] to take

fi4 =350 MeVatu =1 GeV and F57' (0) = 0.25, where the Clebsch-Gordon coefficient 1/+/2 is 1nc1uded in f* and F5"
As discussed in Sec. II.E, o is too broad to be described by the usual Breit-Wigner line shape ' We thus follow
the LHCb Collaboration [10] to use the simple pole description,12

10The finite-width effect for ¢/ f,(500) had been considered in [31].
" Another issue with the Breit- -Wigner line shape is that the Breit-Wigner mass and width agree with the pole parameters only if the
resonance is narrow.
"In the analysis of B® - D%zt z~ decays [33], LHCb has adopted the Bugg model [34] to describe the line shape of &/ f(500).
However, the parametrization used in this model is rather complicated and the mass parameter M ~ 1 GeV is not directly related to the &
pole mass. Hence, we shall follow [10] to assume a simple pole model.
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1 1
T = = , + -+ .
5) s =S5 s—mg+T5(s)/4+ imTy(s) 1[51 0]_) zTx~a" decay data, the LHCb Collaboration found
(4.99)
Ss = (563 +£10) — i(350 £ 13) MeV,  (4.101)
with /5 = mg = il,/2 and consistent with the PDG value of /5, = (400-550) —
i(200-350) MeV [3].
I,(s) =T <i> Mo (4.100) With A, =A(B~ - on~ — xtzn zn~), factorization
90) /s leads to [15]
|
G - -
Aa = 717 Z /léd)gn_)” g F(S23, mn)TG(SZ?a){X(BG.”) [alapu + af: + af() - (ag + ag)rjl(t]m[
p=u.c
Y (Br.0) P P Lo » p p_ 1 p PR P
+ XBr ays,, +2(ay + as) +E(‘H +ag) +ay T5%0 (46 T 5 )Ty
+ (523 < 512)
= ¢ F(s23,m,)To(523)A(B™ = 077) + (523 <> 512), (4.102)
with
R0%) = o~ ) PR (), RO059) = T — ) FA(52) (4.103)
Its decay rate reads
1 1 9”7 ™ [P F (523, m,)?
[(B- = or =t a) =2 dsyzd G
(B~ o™ > miaa) 2 (2”)332’"?3/ " su{(523 — mg +Ty(523)/4)* + mgl5(s3)
X [A(B~ = o77)|* + (523 <> s12) + interference}. (4.104)
|
Note that I'(B~—>on~ —>ﬂ+7r_ﬂ_)—>r6_)o I'(B-—>on )Blc—ntn).
(4.107)

(S )|T|BX 2
/ sy =S =4 gp.. (4.105)
(S12>min a \% S23
Applying the relations
Dosnta = 1 2 g?r—m*ﬂ”
Tms
_ P - D)
Tppr = F— |A(B~ = ox7)|*,  (4.106)

. . . . . 13
we arrive at the desired factorization relation

“In the LHCD paper, the square of the pole position is defined
by /s, = m, — il; rather than m, — il", /2. In this case, the left-
hand side of the factorization relation in Eq. (4.107) should be
multiplied by a factor of 2.

Using the isobar description of the 7"z~ S-wave to fit the

Using the input parameters given in [15], we obtain

10.2041.33+0.89 -6
5315079 175133 ) X 107°,

+0.30+0.02+8.34
15.062059_0.03-1134) %

B(B~ — o™ )qcpr = (

Acp(B™ — Gﬂ_)QCDF =( (4.108)

in QCDF. For the finite-width T? = 700 £ 26 MeV, we
find

B(B~ - on~ — atan") = (1.657057) x 107,

Acp(B- = on” » atnn7) = (147+0.1)%, (4.109)
and

nEPE —21540.05  (1.629 +0.025),

nEXPP = 1.64 +0.03, (4.110)
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22} Fig. 6. Thus, the width correction is very large here. In
»of Sec. V. B, we shall discuss its implications.
' The LHCb measurement analyzed in the isobar model
1.8} [9,10] yields
< 1.6}
BB~ = o7~ = a2 77 ey = (3.83 £0.84) x 107,
1.4}
Acp(B™ = on™ = 2t a1 ) = (149500)%.  (4.111)
1.2F
10k ] We see that while the calculated CP asymmetry in
00 01 oz o3 TTor TTos TTos TTon Eq. (4.109) based on QCDF is in excellent agreement with

Iy (GeV) experiment, the predicted branching fraction is smaller than

the measurement by a factor of about 2.
FIG. 6. The parameter 7, as a function of the o width, where the

solid curve is derived from the QCDF calculation and the dashed
curve from the EXPP. 2. K;(1430)
For the three-body decay amplitude Ag:(1430)=

where use of Eq. (2.37) has been made for the calculationof ~ A(B~ — K;(1430)°z~ — K~ (p,)z " (p,)n~(p3)), factori-

nEXPP . The dependence of 7, on the ¢ width is shown in  zation leads to the expression
|

s L Kr 1 k(S 1
Ag:(1430) = \/—Zﬂ ghomk F<512’mK*)T2§V(312)[ 4‘5“?0‘%0(%) (“g—zaz[;)

p=u.c

8B+ ﬂgiﬁw] F P2 (s1) (3 — m2)

zK*
= g KT F (510, myg ) TR V(s12)A(B™ — K(1430)°77), (4.112)
where
. 2m?3.
ry(u) = T (4.113)

my, () (my () = my(u))’

and the vector decay constant of K;;(1430) is related to the scalar one defined by (Kj|3d|0) = mKSJ_[f(S via'

ms(/‘) - mq(ﬂ)]}_

o= e 4.114
fi: e T (4.114)
In QCDF, the decay amplitude of B~ — Kz~ reads [32]
o0 1 K
A(B~ = Ki’n™) = Z ’1 {% - "1 ae 3 5 (afy = ry°ag) + 8,uP5 + B +ﬂ§,EW) .
p u,c K,
X [ 85 () (3, = m2). (4.115)

It is obvious that A(B~ — K}(1430)°z7) has the same expression as A(B~ — K;'z~) except that the chiral factor rfg is

multiplied by a factor of s,/ m%{z; (see also [36]) and the form factor F g”(m%(a) is replaced by F57(sy,). As before, we have

the factorization relation

_ Tk: =0 _
(B~ - K’n~ —» K ntn)——T (B~ - K’z )B(K? - ntn™). (4.116)
"“The decay constants of a scalar meson and its antiparticle are related by ]’g =fsand f s = —fs [35]. Hence, the vector decay

constants of K;(1430) and K;(1430) are of opposite signs. Using the QCD sum rule result for ]_”,-(6 [32], we obtain
ff((*)(1430) = 36.4 MeV.
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1.15F e
tof =T
—————— EXPP
105f =TT ks
1.00f<<="""
©
< 0.95f
0.90f
QCDF
Nk
0.85F
0.80F
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
FK5 (GeV)
FIG.7. Same as Fig. 6 for the resonance Kj(1430) produced in

the three-body decay B~ — K 7'z,

Following [32,35], we obtain

B (xKy) = —0.0969, (B + L o) (K}) = —0.0323,

(4.117)
and
B(B~ — K;(1430)°z7) = (13.673%°) x 107°,
Acp(B™ — K;5(1430)°77) = (1.275)%. (4.118)

For the finite-width FK3(1430) =270 £ 80 MeV, we find

B(B~ — Kj(1430)°2~ - K-zt 7)) = (10.213%) x 107°,
Acp(B~ = K35(1430)°2~ - K=nta™) = (1.12£0.01)%,
(4.119)

and

ngs = 0.83£0.04,
NP = 111 £ 0.03,

(0.31%995),
(4.120)

The dependence of 77k on the K75(1430) width in the Breit-
Wigner model is shown in Fig. 7. When off-shell effects on

the strong coupling ¢5o7K " are turned off, n%)CD " is of
order 0.30, rendering an extremely large deviation from
unity, even much larger than 5,. Off-shell effects are
particularly significant in this mode because the seemingly
large QCDF enhancement in the large s, region is sup-
pressed by the form factor F (s, m%(U) As a consequence,

;1%3]3 " becomes about 0.83.

It has been argued that the Breit-Wigner parametrization
is not appropriate for describing the broad K(1430)
resonance. LASS line shape is an alternative and popular
description of the K{(1430) component proposed by the

TABLE III.  Branching fractions (in units of 107°) of resonant
and nonresonant (NR) contributions to B~ — K~z 7. Note that
the BABAR’s branching fraction (2.4 + 05f1153 ) x 107 given in
Table IT of [12] is for the phase-space nonresonant contribution to
B™ - K atn.

Decay mode BABAR [12] Belle [30]
Ki0(1430)7~ 1984+ 0.7+ L7755 £32 320+ 1.0 £ 244/
R 93+ 1.0+ 1.257 +1.2 169+ 13 + 1.37)3

LASS Collaboration [37]. In the analysis of three-body
decays of B mesons, BABAR and Belle often adopt different
definitions for the K{(1430) resonance and nonresonant.
While Belle (see, e.g., [30]) employed the relativistic Breit-
Wigner model to describe the line shape of the K{j(1430)
resonance and an exponential parametrization for the
nonresonant contribution, BABAR [12] used the LASS
parametrization to describe the elastic Kz S-wave and
the K(1430) resonance by a single amplitude [37]

my
TLASS (5) = Vs _ o2 2m0F0 90 -
_ . _ . _ﬂ’
0 gcotdy — iq s —mg + imply P
(4.121)
with
to + ! (4.122)
cotéy = —+-rq, .
B aq ' 2 q

where ¢ is the ¢.m. momentum of K~ and z" in the
K{(1430) rest frame and g, is the value of ¢ when s = m%q).

The second term of TI;(?SS is similar to the relativistic Breit-
Wigner function T}é}:" except for a phase factor 65 intro-

duced to retain unitarity. The first term is a slowly varying
nonresonant component.

The nonresonant branching fraction (2.4 4 0.573) x
10~ in B~ — K~ 7"z~ reported by BABAR [12] is much
smaller than (16.9 + 1.3717) x 107° measured by Belle
(see Table III). In the BABAR analysis, the nonresonant
component of the Dalitz plot is modeled as a constant
complex phase-space amplitude. Since the first part of the
LASS line shape is really nonresonant, it should be added
to the phase-space nonresonant piece to get the total
nonresonant contribution. Indeed, by combining coherently
the nonresonant part of the LASS parametrization and the
phase-space nonresonant, BABAR found the total nonreso-
nant branching fraction to be (9.3 & 1.0 & 1.276%) x 1075.
Evidently, the BABAR result is now consistent with Belle
within errors. For the resonant contributions from
K{(1430), the BABAR results were obtained from
(Kz)i’z~ by subtracting the elastic range term from the
Kz S-wave [12], namely, the Breit-Wigner component of
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TABLE IV. A summary of the 5, parameter for various resonances produced in the three-body B decays. Oft-shell effects on the

strong coupling g8~/ are taken into account in the determination of 7y

whenever negligible.

QCDF _QCDF

but not in 775 . Uncertainties in 7y are not specified

Resonance BT = Rhy — hyhyhs 'y (MeV) [3] Tr/mpg 7ICF nIPF nEXeP
£2(1270) B* - font > ntant 186.7:422 0.146 0.974 10030901 0.937-3:00¢
K3(1430) B > K3’nt - K*nn* 109 +5 0076 0.7154+0.009  0.972£0.001  1.053 +0.002
p(770) B* - pnt - ntaat 149.1 +0.8 0.192  0.86 (GS) 0.93 (GS) 0.95 (GS)
1.03 (BW) 111 (BW) 1.15 (BW)
p(770) B* - K*p* - K*ntn~ 149.1 +0.8 0.192 0.90 (GS) 0.95 (GS) 0.93 (GS)
1.09 (BW) 113 (BW) 1.13 (BW)
K*(892) BY > Kzt > Kt at 473405 0.053 1.01 1.067 £0.002  1.075
0/fo(500)  BY > ont - rtrat 700 +£26 [10]  ~1.24 1.63 +0.03 2.1540.05 1.64 +0.03
K;5(1430) Bt - Kn" - Ktnn* 270 + 80 ~0.19 0311008 0.83 £ 0.04 111 £0.03

the LASS parametn'zation.15 Although both BABAR and
Belle employed the Breit-Wigner model to describe the line
shape of K{j(1430), the discrepancy between BABAR and
Belle for the Kz mode remains an issue to be resolved.

Note that our calculation of B(B~ — K;(1430)°z~ —
K ztz~) in Eq. (4.119) based on QCDF is smaller by a
factor of 2 (3) when compared to the BABAR (Belle)
measurement. If we follow PDG [3] to apply the naive
factorization relation (1.1), we will obtain using Table III
the branching fraction of B~ — K}(1430)z~ to be (32.0 &
1.27198) x 10 from BABAR'® and (51.6+ 1.7779) x
107 from Belle. Obviously, they are much larger than
the QCDF prediction given in Eq. (4.118). Indeed, as
pointed out before [32,35], this has been a long-standing
puzzle that for scalar resonances produced in B decays, the
QCDF predictions of B~ — K;°(1430)z~ and B° —
K~ (1430)z" are in general too small compared to experi-
ment by a factor of 2 ~ 4. Nevertheless, when the finite-
width effect is taken into account, the PDG values of
B(B~ — K;°(1430)z~) should be reduced by multiplying
a factor of ngSCDF

EXPP
Mk

~ (.83 or further enhanced by a factor of

~ 1.10, depending on the scheme.

V. DISCUSSIONS
A. Finite-width and off-shell effects

In Table IV, we give a summary of the np parameters
calculated using QCDF and the experimental parametriza-
tion for various resonances produced in the three-body B
decays. Since the strong coupling of R(m,) — PP, will
be suppressed by the form factor F(s,, mg) when m, is
off shell from my [see Eq. (4.20)], this implies a

"It should be stressed that the Breit-Wigner component of the
LASS parametrization does not lead to the factorization relation
Eq. (4.116).

"®Another BABAR measurement of B* — K%z — K9z%z"
[38] yields B(BT — K;5(1430)7 " ) ywa = (34.6 £3.3£4.6) x 107°.

suppression of the three-body decay rate in the presence
of off-shell effects. Therefore, r/gCD Fis always larger than
73PF with the latter defined for F(s,mg) = 1. We see
from Table IV that off-shell effects are small in vector
meson productions, but prominent in the K3(1430),

6/ f0(500), and K;;(1430) resonances. Also, the parameters

CDF . ,
n¥PF and #EXPP are similar for vector mesons, but different

for tensor and scalar resonances. To understand the origin
of their differences, we need to study the differential
decay rates.

In Fig. 8, we show the normalized differential rates of the
B~ - Rn~ - K zntn and B- - K~R — K n"n~ decays
with R = K*°(980), K;°(1430), K9(1430), and p°, respec-
tively, in the left plots. The plots blown up in the resonance
regions are also shown in the right plots. Note that the
figures on the right are scaled by a factor of (z/2)['x or
(z/2r*)I0 with r = (1 + DI')/m,). For the B~ — K~p° —
K-ztn~ decay, we only show the result using the
Gounaris-Sakurai line shape, as this is employed by the
experimental parametrization for the p resonance. The
normalized differential rates obtained from the QCDF
calculation and the experimental parametrization are shown
in the plots. For R = K** and K9, we also show the results
using the experimental parametrization with or without
enforcing the transversality condition [see Egs. (3.2) and
(3.10)]. They are plotted in dashed and dotted curves,
respectively. Removing the transversality condition has
mild effects on the normalized differential rates and little
impacts on their values at the resonances.

As shown in Egs. (2.20) and (2.32), i in these decays
are given by

. :lﬂl“ dl’(mg) 05 — I dl’(m,)
B2 m R dmg, © " 201+ DUY/my)? dmy,
(5.1)

From the right plots in Fig. 8, one can read off the values
of nr from the height of the curves at the resonances.
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FIG. 8. Left column: the normalized differential rates in B~ - Rz~ — K~ z"n~ and B~ - K~p — K-z z~ decays. Right column:
plots scaled and blown-up in the resonance regions, where the heights at the resonances equal 7. In plot (h), we use r = 1 + DF2 /m,.
The solid curves come from the QCDF calculation and the dashed (dotted) curves from the experimental parametrization with (without)

the transversality condition imposed.

The values agree with those shown in Table IV. Recall  resonance as shown in Eq. (2.24). For example, for the
that for I'yx/mp < 1, we can approximate 7z by the B~ — Rz~ — K~z*z~ decays, gz can be approximately

integration of the normalized differential rate around the  given by
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T /mR+FR dr(mKﬂ)

v T d
2tan~12 dmy, K=

nMr

mp=I'g

T df(mK”)
= 1- —d . 5.2
2tan_12 < /clsewhere de/z mKﬂ) ( )

Note that for the case of #5° one needs to include the
1/(1 4+ DI'Y/m,)* factor. Numerically, we find that this
approximation works well for the decay modes consid-
ered in this section. The above equation clearly shows
that 7 represents the fraction of rates around the
resonance and it is anticorrelated with the fraction of
rates off the resonance.

From Figs. 8(a) and 8(g), we see that for R = K** and p°
the normalized differential rates predicted by QCDF are
very similar to those obtained by using the experimental
parametrization, while for R = K’ and K3’ the QCDF
results and experimental models are different. Consequently,
as shown in Figs. 8(b) and 8(h), QCDF and the experi-
mental model give similar values on dI(mg-)/dmyg, and
dl(m,,)/dm,,, resulting in NI ~ yEXPP for R — pand K*.
In contrast, as shown in Figs. 8(d) and 8(f), the QCDF
dl'(m ké) /dmyg, and dl"(m k,)/dmg, are smaller than those

. : : CDF EXPP
from the experimental model, resulting in #%PF < yEXPP
p ’ g ’71{0,1(2 ”Ko’Kz

Using Eq. (5.2), we can relate the smallness of n%CDF,

comparing to nﬁ%‘”’, to the fact that the normalized differ-

ential rate obtained in the QCDF calculation is much larger
than the one using the experimental parametrization in the
off-resonance region, particularly in the large mg, region.
To verify the source of the enhancement, we note that, as
shown in Eq. (4.112), the mg, dependence in the QCDF
amplitude is governed by the strong decay form factor,
F(mi,. mg;), the B — z form factor, F§” (m,), and a my,
factors sitting in front of the QCD penguin Wilson
coefficient (a? — af /2) and related to the so-called chiral
factor (rf ) in the two-body decay [see Eq. (4.113)]. The last
two factors are responsible for the enhancement of the
QCDF differential rate in the large m, region. As shown in

Eq. (3.1) and the equations below it, these two factors are
not included in the experimental parametrization for the
scalar resonance. As a result, QCDF and the experimental
parametrization give different normalized differential rates
and 5y for this mode.

The momentum dependence (such as mg,) of weak
dynamics is mode dependent. For example, in the above
B~ — K;(1430)z~ — K~ z"z~ decay, we have a mx%,
factor from the chiral factor rf, while the chiral factor
ry in the B~ — K*(980)z~ — K~ n"z~ decay does not
provide the m%(ﬂ factor [see Eq. (4.56)]. Such a difference in
the momentum dependence of weak dynamics has a visible
effect on the shape of the normalized differential rates, as
depicted in Figs. 8(a) and 8(c).

As shown in Eq. (3.1), the weak dynamics in the
experimental parametrization is basically represented by
a complex number, the coefficient ¢, which does not have
any momentum dependence. In the narrow width limit, the
value of the normalized differential rate is highly domi-
nated by its peak at the resonance, and the values of the
normalized differential rate elsewhere cannot compete with
it. Therefore, only m () =~ mg matters and, consequently,
it is legitimate to use a momentum-independent coefficient,
namely, c, to represent the weak dynamics. However, in the
case of a broad resonance, things are generally different.
The peak at the resonance is no longer highly dominating,
as its height is affected by the values of the normalized
differential rate elsewhere. In this case, the momentum
dependence of the weak dynamics cannot be ignored and,
hence, using a momentum-independent coefficient to
represent the weak dynamics is too naive.

B. Branching fractions of quasi-two-body decays

For given experimental measurements of B(Bt —
RP; — P P,P3), we show in Table V various branching
fractions of the quasi-two-body decays BT — RP;.
B(B* — RP3)nwa denotes the branching fraction obtained
from Eq. (1.2) in the NWA. Our results of B(Bt —
RP3)ywa for BT — K3°(1430)z*, K*'z", and K*p°

TABLE V. Branching fractions of quasi-two-body decays BT — RP; (in units of 107°) derived from the measured B* — RP; —
P P,P; rates. B(B™ — RP3)\wa denotes the branching fraction obtained from Eq. (1.2) in the narrow width approximation.

Mode B(B* — RP3 = P1PyP3)o B(B™ = RP3)xwa  nSP'B(BT — RP3)ywa M B(BT = RP3)nwa

Bt = fort > ntaat 1.17 £ 0.20 [8-10] 2.08 +£0.36 2.09 £ 0.36 1.95+£0.33

B* > K%zt > Ktnn* 1.857073 [12,30] 5.56 78 5401783 5.8573

Bt = pnt = ataat 8.36 £ 0.77 [8-10] 8.36 £ 0.77 7.78 £0.72 (GS) 7.95 £0.73 (GS)
9.28 £ 0.86 (BW)

BT - K*p® = Ktnta~ 3.7+£0.5 [12,30] 3.7+05 3.5+0.5 (GS) 3.4£0.5 (GS)

4.2£0.6 (BW)

BT > KOzt > Ktz zt 6.71 £0.57 [12,30] 10.1£0.8 10.7£0.9 10.9 £ 0.9

Bt - ont - atn ot 3.83 £ 0.84 [9,10] 5.75+£1.26 1236 £2.71 9.44 £2.08

Bt > Kzt - Ktnn* 27.913% [12,30] 4512 3748 5074°
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modes agree with the PDG data [3]. For BT —
£2(1270)z*, p°z*, and ont decays, we have included
the new measurement of BT — 72"z~ performed by the
LHCb Collaboration [9,10]. As for B(B™ — K{z" )ywas
our value is different from (39f56) x 1076 given by PDG [3]
as the contribution of BT — Ky’z" — K9x°zt [38] is
included in the latter case.

When the resonance is sufficiently broad, it is necessary
to take into account the finite-width effects characterized by
the parameter 7. In Table V, we have shown the corrections
to B(B™ — RP3)ywa in both QCDF and EXPP schemes.
Although the finite-width effects are generally small, they
are significant in the BT — pz™ decay and prominent in
B* = ¢/£¢(500)z* and BT — K;°(1430)z*. For exam-
ple, the PDG value of B(B* — pz*) = (8.3 4+ 1.2) x 1076
[3] should be corrected to (7.7 & 1.1) x 10~ in QCDF or
(7.9 £ 1.1) x 107® in EXPP. The large width effects in the
6/ fo(500) production imply that B~ — oz~ has a large
branching fraction of order 107>. More precisely, the LHCb
value of B(B* — ox') = (5.8 4+ 1.3) x 10~ should be
corrected to (12.4 +2.7) x 1078 in QCDF or (9.4 4 2.1) x
1076 in EXPP.

VI. CONCLUSIONS

For the branching fractions of the quasi-two-body decays
B(B — RP3) with R being an intermediate resonant state, it
is a common practice to apply the factorization relation, also
known as the NWA, to extract them from the measured
process B — RP; — P;P,P5. However, such a treatment is
valid only in the narrow width limit of the intermediate
resonance, namely, 'y — 0. In this work, we have studied the
corrections to B(B — RP;) arising from the finite-width
effects. We consider the parameter 77z which is the ratio of the
three-body decay rate without and with the finite-width
effects of the resonance. Our main results are as follows:

(i) We have presented a general framework for the
parameter 17z and shown that it can be expressed in
terms of the normalized differential rate and is
determined by its value evaluated at the resonance.
Since the value of the normalized differential rate at
the resonance is anticorrelated with the normalized
differential rate off the resonance, it is the shape of
the normalized differential rate that matters in the
determination of 7.

(i1) In the experimental analysis of B - RP3; — PP, P;
decays, itis customary to parametrize the amplitude as
A(mys, my3) = cF(my,, my3), where the strong dy-
namics is described by the function F parametrized in
terms of the resonance line shape, the angular
dependence, and Blatt-Weisskopf barrier factors,
while the information of weak interactions is encoded
in the complex coefficients c. We evaluate 7 in this
experimentally motivated parametrization and in the
theoretical framework of QCDF.

(iii)

@iv)

)

(vi)

(vii)

036017-28

In QCDF calculations, we have verified the NWA
relation both analytically and numerically for some
charged B decays involving tensor, vector, and scalar
resonances. We have introduced a form factor
F(s15,mg) for the strong coupling of R(mi,) —
PP, when m, is away from mg. We find that off-
shell effects are small in vector meson productions,
but prominent in the K3(1430), o/f((500), and
K{(1430) resonances.

In principle, the two-body rates reported by experi-
ments should be corrected using 7z = nEXP* in
Eq. (1.4), as the data are extracted using the
experimental parametrization. On the other hand,
the experimental parametrization of the normalized
differential rates should be compared with the
theoretical predictions using QCDF calculations as
the latter take into account the energy dependence of
weak interaction amplitudes. In some cases, where

nEXPP are very different from 5 ", we note that
using an energy-independent coefficient ¢, in the
experimental parametrization, to represent the weak
dynamics is too naive. Moreover, systematic un-
certainties in these experimental results after being
corrected by 7EXP¥ are still underestimated.

We have compared between 73 " and #EXPP for
their width dependence in Figs. 1-7. Numerical
results are summarized in Table I'V. In general, the
two quantities are similar for vector mesons but
different for tensor and scalar mesons. A study of the
differential rates in Fig. 8 enables us to understand
the origin of their differences. For example, the

similar normalized differential rates for p and K* at

CDF
and near the resonance account for ng K = In

contrast, the m%, dependence associated with the
penguin Wilson coefficients (a? —af/2) in B~ —
K;(1430)7~ — K-n'z" yields a large enhance-
ment in the QCDF differential rate in the large

.. . . CDF
mp, distribution, rendering n% < nﬁgpp.

Finite-width corrections to B(B* — RP)\wa, the
branching fractions of quasi-two-body decays ob-
tained in the NWA, are summarized in Table V for
both QCDF and EXPP schemes. In general, finite-
width effects are small, less than 10%, but they
are prominent in Bt — ¢/f((500)z" and Bt —
K°(1430)7" decays.

It is customary to use the Gounaris-Sakurai model to
describe the line shape of the broad p(770) reso-
nance to ensure the unitarity far from the pole mass.
If the relativistic Breit-Wigner model is employed
instead, we find 75% > 1 > 755 in both QCDF and
EXPP schemes owing to the (1 + DI'0/m,) term in
the GS model. For example, in the presence of finite-
width corrections, the PDG value of B(B' —
prnt) = (8.3 £1.2) x 107® should be corrected to



FINITE-WIDTH EFFECTS IN THREE-BODY B DECAYS

PHYS. REV. D 103, 036017 (2021)

(7.7 +£1.1) x 107 in QCDF and (7.9 + 1.1) x 107
in EXPP.

(viii) The o/fy(500) scalar resonance is very broad,
and its line shape cannot be described by the
familiar Breit-Wigner model. We have followed
the LHCb Collaboration to use a simple pole
model description. We have found very large width

effects: #SPF ~2.15 and #EXPP ~ 1.64. Conse-
quently, B~ — oz~ has a large branching fraction
of order 1075,

(ix) We have employed the Breit-Wigner line shape to
describe the production of K(1430) in three-body B

decays and found large off-shell effects. The small-

QCDF EXPP

ness of g relative to i K is ascribed to the fact

that the normalized differential rate obtained in the
QCDF calculation is much larger than that using the

EXPP scheme in the off-resonance region. The large
discrepancy between QCDF estimate and experi-
mental data of I'(B~ —» Kz~ — K=z"z7) still
remains an enigma.

(x) In the approach of QCDEF, the calculated CP asym-
metries of B~ — f,(1270)z~, B~ — ¢/f,(500)z,
and B~ — K p° agree with the experimental
observations. The nonobservation of CP asymmetry
in B~ — p(770)z~ can also be accommodated
in QCDFE.
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