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It is customary to apply the so-called narrow width approximation ΓðB → RP3 → P1P2P3Þ ¼
ΓðB → RP3ÞBðR → P1P2Þ to extract the branching fraction of the quasi-two-body decay B → RP3, with
R and P3 being an intermediate resonant state and a pseudoscalar meson, respectively. However, the above
factorization is valid only in the zero width limit. We consider a correction parameter ηR from finite-width
effects. Ourmain results are as follows: (i)We present a general framework for computing ηR and show that it
can be expressed in terms of the normalized differential rate and determined by its value at the resonance.
(ii) We introduce a form factor Fðs12; mRÞ for the strong coupling involved in the Rðm12Þ → P1P2 decay
when m12 is away from mR. We find that off-shell effects are small in vector meson productions, but
prominent in the K�

2ð1430Þ, σ=f0ð500Þ, and K�
0ð1430Þ resonances. (iii) We evaluate ηR in the theoretical

framework of QCD factorization (QCDF) and in the experimental parametrization (EXPP) for three-body

decay amplitudes. In general, ηQCDFR and ηEXPPR are similar for vector mesons, but different for tensor and
scalar resonances. A study of the differential rates enables us to understand the origin of their differences.
(iv) Finite-width corrections to BðB− → RPÞNWA obtained in the narrow width approximation are generally
small, less than 10%, but they are prominent in B− → σ=f0ð500Þπ− and B− → K̄�0

0 ð1430Þπ− decays. The
EXPP of the normalized differential rates should be contrasted with the theoretical predictions from QCDF
calculation as the latter properly takes into account the energy dependence in weak decay amplitudes. (v) It is
common to use the Gounaris-Sakurai model to describe the line shape of the broad ρð770Þ resonance. After
including finite-width effects, the PDG value ofBðB− → ρπ−Þ ¼ ð8.3� 1.2Þ × 10−6 should be corrected to
ð7.9� 1.1Þ × 10−6 in EXPP and ð7.7� 1.1Þ × 10−6 in QCDF. (vi) For the very broad σ=f0ð500Þ scalar
resonance, we use a simple pole model to describe its line shape and find a very large width effect: ηQCDFσ ∼
2.15 and ηEXPPσ ∼ 1.64. Consequently, B− → σπ− has a large branching fraction of order 10−5. (vii) We
employ the Breit-Wigner line shape to describe the production ofK�

0ð1430Þ in three-body B decays and find

large off-shell effects. The smallness of ηQCDFK�
0

relative to ηEXPPK�
0

is ascribed to the differences in the normalized

differential rates off the resonance. (viii) In the approach of QCDF, the calculated CP asymmetries of
B− → f2ð1270Þπ−; σ=f0ð500Þπ−; K−ρ0 decays agree with the experimental observations. The nonobser-
vation of CP asymmetry in B− → ρð770Þπ− can also be accommodated in QCDF.

DOI: 10.1103/PhysRevD.103.036017

I. INTRODUCTION

In a three-body decay with resonance contributions, it
is a common practice to apply the factorization relation,
also known as the narrow width approximation (NWA),
to factorize the process as a quasi-two-body weak decay

followed by another two-body strong decay. Take a B
meson decay B → RP3 → P1P2P3 as an example, where R
and P3 are an intermediate resonant state and a pseudo-
scalar meson, respectively. One then uses

ΓðB → RP3 → P1P2P3Þ ¼ ΓðB → RP3ÞBðR → P1P2Þ
ð1:1Þ

to extract the branching fraction of the quasi-two-body
decay, BðB → RP3Þ, which is then compared with theo-
retical predictions. However, such an approach is valid only
in the narrow width limit, ΓR → 0. In other words, one
should have instead
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ΓðB→RP3 →P1P2P3ÞΓR→0 ¼ ΓðB→RP3ÞBðR→P1P2Þ;
ð1:2Þ

where we have assumed that both ΓðB → RP3Þ and
BðR → P1P2Þ are not affected by the NWA. In other
words, while taking the ΓðR → P1P2Þ → 0 limit, the
branching fraction of R → P1P2 is assumed to remain
intact. For the case when R has a finite width, Eq. (1.1) does
not hold. Moreover, theoretical predictions of BðB → RP3Þ
are normally calculated under the assumption that the both
final-state particles are stable (i.e., ΓR;ΓP3

→ 0). Therefore,
the question is how one should extract BðB → RP3Þ from
the experimental measurement of the partial rate of B →
RP3 → P1P2P3 and make a meaningful comparison with
its theoretical predictions.
Let us define a quantity1

ηR ≡ ΓðB → RP3 → P1P2P3ÞΓR→0

ΓðB → RP3 → P1P2P3Þ

¼ ΓðB → RP3ÞBðR → P1P2Þ
ΓðB → RP3 → P1P2P3Þ

¼ 1þ δ; ð1:3Þ

so that the deviation of ηR from unity measures the degree
of departure from the NWA when the width is finite. It is
naively expected that the correction δ will be of order
ΓR=mR. The quantity ηR extrapolates the three-body decay
from the physical width to the zero width. It is calculable
theoretically but depends on the line shape of the resonance
and the approach of describing weak hadronic decays such
as QCD factorization (QCDF), perturbative QCD, and soft
collinear effective theory. After taking into account the
finite-width effect ηR from the resonance, the branching
fraction of the quasi-two-body decay reads

BðB → RP3Þ ¼ ηR
BðB → RP3 → P1P2P3Þexpt

BðR → P1P2Þexpt
: ð1:4Þ

Note that BðB → RP3Þ on the left-hand side of the above
formula is the branching fraction under the assumption that
both R and P3 are stable and thus have zero decay width.
Therefore, it is suitable for a comparison with theoretical
calculations.
In the literature, such as the Particle Data Group (PDG)

[3], the branching fraction of the quasi-two-body decay is
often inferred from Eq. (1.4) by setting ηR equal to unity.
While this is justified for narrow-width resonances, it is not
so for the broad ones. For example, Γρ=mρ ¼ 0.192 for the
ρ vector meson, Γf2=mf2 ¼ 0.146 for the f2ð1270Þ tensor

meson, Γσ=mσ ∼Oð1Þ for the σ=f0ð500Þ scalar meson, and
ΓK�

2
=mK�

2
≈ 0.189 for theK�

2ð1430Þ tensor meson. For these
resonances, finite-width effects seem to be important and
cannot be neglected. We shall see in this work that the
deviation of ηR from unity does not always follow the
guideline from the magnitude of ΓR=mR.
It is worth mentioning that the finite-width effects

play an essential role in charmed meson decays [1,4].
There exist some modes, e.g., D0 → ρð1700ÞþK−, D0 →
K�ð1410Þ−Kþ which are not allowed kinematically can
proceed through the finite-width effects.
In this work, we will calculate the parameter ηR within

the framework of QCDF for various resonances and use
these examples to highlight the importance of finite-width
effects. First, we need to check the NWA relation Eq. (1.2)
both analytically and numerically. Once this is done, it is
straightforward to compute ηR.
In the experimental analysis of B → RP3 → P1P2P3

decays, it is customary to parametrize the amplitude as
Aðm12; m23Þ ¼ cFðm12; m23Þ, where the strong dynamics
is described by the function F that parametrizes the
intermediate resonant processes, while the information of
weak interactions is encoded in the complex coefficient c
which is obtained by fitting to the measured Dalitz plot.
The function F can be further parametrized in terms of a
resonance line shape, an angular dependence, and Blatt-
Weisskopf barrier factors. Using the experimental para-
metrization of Fðm12; m23Þ, we can also compute the ratio
of the three-body decay rate without and with the finite-
width effects of the resonance, which we shall refer to as
ηEXPPR . Obviously, ηEXPPR is independent of c. On the con-
trary, the weak decay amplitude of B → Rðm12ÞP3 gen-
erally has some dependence on m12 in QCDF calculations.
Hence, ηQCDFR is different from ηEXPPR in general. It will be
instructive to compare them to gain more insight to the
underlying mechanism.
Although it is straightforward to estimate the parameter

ηR in a theoretical framework by computing the decay rates
of the quasi-two-body decay and the corresponding three-
body decay, we shall develop a general framework for the
study of ηR. We will show that ηR can be expressed in terms
of a normalized differential decay rate. It turns out that ηR is
nothing but the value of the normalized differential decay
rate evaluated at the contributing resonance. Not only is the
calculation significantly simplified, the underlying physics
also becomes more transparent. Finally, we note in passing
that while we focus on three-body B meson decays in this
paper to elucidate our point and explain the cause, our
finding generally applies to all quasi-two-body decays.
The layout of the present paper is as follows. In Sec. II,

we present a general framework for the study of the para-
meter ηR and show that it can be obtained from the nor-
malized differential decay rate. The experimental analysis
of B → RP3 → P1P2P3 decays relies on a parametrization
of the involved strong dynamics. This is discussed in detail

1For later convenience, our definition of ηR here is inverse to
the one defined in [1]. A similar (but inversely) quantity WðlÞ

R ¼
ΓðlÞ
R =ΓðlÞ

R;NWL was also considered in [2], where ΓðlÞ
R is the partial-

wave decay rate integrated in a region around a resonance and
ΓðlÞ
R;NWL denotes ΓðlÞ

R in the narrow width limit.
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in Sec. III. We then proceed to evaluate ηQCDFR within the
framework of QCDF in Sec. IV for some selected processes
mediated by tensor, vector and scalar resonances, and
compare them with ηEXPPR determined from the experimen-
tal parametrization. We discuss our findings in Sec. V.
Section VI comes to our conclusions. A more concise
version of this work has been presented in [5].

II. GENERAL FRAMEWORK

In this section, we discuss how ηR can be determined
from a normalized differential decay rate. We start by
considering the simpler case where the mediating reso-
nance is a scalar meson and show that the result reduces
to the usual one in the NWA. We then generalize our
discussions to resonances of arbitrary spin and derive an
important relation between ηR and the normalized differ-
ential decay rate evaluated at the resonance mass. Two
examples of the ρð770Þ and σ=f0ð500Þ resonances are
presented at the end of the section.

A. Scalar intermediate states

We first consider the case that R is a scalar resonance for
simplicity. The three-body B → RP3 → P1P2P3 decay
amplitude has the following form:

Aðm12; m23Þ ¼
M½B → Rðm12ÞP3�M½Rðm12Þ → P1P2�

ðm2
12 −m2

RÞ þ imRΓR
;

ð2:1Þ

where M½B → Rðm12ÞP3� and M½Rðm12Þ → P1P2� are
weak and strong decay amplitudes of B → Rðm12ÞP3 and
Rðm12Þ → P1P2 decays, respectively, and m2

ij ≡ p2
ij ≡

ðpi þ pjÞ2. Note that at the resonance, we have

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πmRΓR

p
AðmR;m23Þ

¼ M½B → RðmRÞP3�
M½RðmRÞ → P1P2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRΓR=π
p ; ð2:2Þ

which contains the critical information of the physical B →
RP3 and R → P1P2 decay amplitudes.
Using the standard formulas [3], the three-body differ-

ential decay rate at the resonance is given by

dΓðm2
RÞ

dm2
12

¼ 1

ð2πÞ3
1

32m3
B

Z
jAðmR;m23Þj2dm2

23; ð2:3Þ

or equivalently,

dΓðm2
RÞ

dm2
12

¼ 1

ð2πÞ5
1

32mRm2
B

×
Z

jAðmR;m23Þj2jp⃗1jjp⃗3jdΩ1dΩ3; ð2:4Þ

where jp⃗1j and Ω1 are evaluated in the R rest frame. With
the help of Eq. (2.2), the above equation can be rewritten as

πmRΓR
dΓðm2

RÞ
dm2

12

¼ 1

32π2

Z
jM½B → RðmRÞP3�j2

jp⃗3j
m2

B
dΩ3

×

�
1

32π2

Z
jM½RðmRÞ → P1P2�j2

jp⃗1j
m2

R
dΩ1

�.
ΓR;

¼ ΓðB → RP3ÞBðR → P1P2Þ: ð2:5Þ

Hence, we obtain

ΓðB → RP3ÞBðR → P1P2Þ

¼ πmRΓR
dΓðm2

RÞ
dm2

12

¼ πmRΓR

ð2πÞ3
1

32m3
B

Z ðm2
23
ÞmaxðmRÞ

ðm2
23
ÞminðmRÞ

jAðmR;m23Þj2dm2
23: ð2:6Þ

Consequently, Eqs. (2.6) and (1.3) imply that ηR is related
to the normalized differential rate,

ηR ¼
πmRΓR

dΓðm2
RÞ

dm2
12R dΓðm2

12
Þ

dm2
12

dm2
12

¼ πmRΓR

R jAðmR;m23Þj2dm2
23R jAðm12; m23Þj2dm2

12dm
2
23

:

ð2:7Þ

With the help of the following identity2:

lim
ΓR→0

mRΓR=π
ðm2

12 −m2
RÞ2 þm2

RΓ2
R
¼ δðm2

12 −m2
RÞ; ð2:8Þ

one can readily verify that ηR given in the above equation
approaches unity in the narrow width limit, reproducing the
well-known result of Eq. (1.2).

B. General case

Although Eqs. (2.6) and (2.7) are derived for the case of
a scalar resonance, they can be generalized to a more
generic case, where the resonance particle has spin J.
Instead of Eq. (2.1), the general amplitude has the follow-
ing expression:

Aðm12;m23Þ¼Mðm12;m12ÞRJðm12ÞT Jðm12;m23Þ; ð2:9Þ

where Mðm12; m12Þ is a regular function containing the
information of B → Rðm12ÞP3 weak decay and Rðm12Þ →
P1P2 strong decay, RJ describes the line shape of the
resonance, and T J encodes the angular dependence.

2This follows from the formula limϵ→0
ϵ

ϵ2þx2 ¼ πδðxÞ.
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Resonant contributions are commonly depicted by the
relativistic Breit-Wigner (BW) line shape,

RBW
J ðm12Þ ¼

1

ðm2
12 −m2

RÞ þ imRΓRðm12Þ
: ð2:10Þ

In general, the mass-dependent width is expressed as

ΓRðm12Þ ¼ Γ0
R

�
q
q0

�
2Jþ1 mR

m12

X2
JðqÞ

X2
Jðq0Þ

; ð2:11Þ

where q ¼ jp⃗1j ¼ jp⃗2j is the center-of-mass (c.m.) momen-
tum in the rest frame of the resonance R, q0 is the value of q
when m12 is equal to the pole mass mR, and XJ is a Blatt-
Weisskopf barrier factor given by

X0ðzÞ ¼ 1; X1ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðzrBWÞ2 þ 1

s
;

X2ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ðzrBWÞ4 þ 3ðzrBWÞ2 þ 9

s
; ð2:12Þ

with rBW ≈ 4.0 GeV−1. In Eq. (2.11), Γ0
R is the nominal

total width of R with Γ0
R ¼ ΓRðmRÞ. One advantage of

using the energy-dependent decay width is that ΓRðm12Þ
vanishes whenm12 is below them1 þm2 threshold [see the
expression of q in Eq. (3.9) below]. Hence, the factor q2Lþ1

with L being the orbital angular momentum between R and
P3 guarantees the correct threshold behavior. The rapid
growth of this factor for angular momenta > L is compen-
sated at higher energies by the Blatt-Weisskopf barrier
factors [3].
From Eqs. (3.8), (3.10), (4.46), (4.61), and (4.102)

below, we find that the angular distribution term T J in
Eq. (2.9) at the resonance is governed by the Legendre
polynomial PJðcos θÞ, where θ is the angle between p⃗1 and
p⃗3 measured in the rest frame of the resonance (see also
[6]). Explicitly, we have

P0ðcos θÞ ¼ 1; P1ðcos θÞ ¼ cos θ;

P2ðcos θÞ ¼
1

2
ð−1þ 3cos2θÞ; ð2:13Þ

and

T 0ðmR;m23Þ ¼ 1; T 1ðmR;m23Þ ∝ cos θ;

T 2ðmR;m23Þ ∝ 1 − 3cos2θ: ð2:14Þ

Note that T 0ðm12; m23Þ ¼ 1 throughout the entire phase
space. This means that the strong and weak amplitudes
can always be separated for the scalar case, as shown
in Eq. (2.1).
Instead of Eq. (2.2), the general amplitude at the

resonance takes the form

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πmRΓ0

R

q
AðmR;m23Þ ¼

X
λ

Mλ½B → RðmRÞP3�

×
Mλ½RðmRÞ → P1P2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRΓ0
R=π

p ; ð2:15Þ

where λ is the helicity of the resonance R. Such a relation is
expectable because there is a propagator of the resonance R
in the amplitude Aðm12; m23Þ and its denominator reduces
to imRΓ0

R on the mass shell of m12 while its numerator
reduces to a polarization sum of the polarization vectors,
producing the above structure after contracted with the rest
of the amplitude.
From Eqs. (2.4) and (2.15), we have

dΓðm2
RÞ

dm2
12

¼ 1

ð32π2Þ2πmRðΓ0
RÞ2

×
Z ����X

λ

Mλ½B → RðmRÞP3�Mλ½RðmRÞ

→ P1P2�
����2 jp⃗1j

m2
R

jp⃗3j
m2

B
dΩ3dΩ1; ð2:16Þ

where jp⃗1j and Ω1 are evaluated in the R rest frame. In this
frame, the sum over helicities in the amplitude can be
replaced by the sum over spins. Consequently, Mλ½B →
RðmRÞP3� and Mλ½RðmRÞ → P1P2� are proportional to
Y�
JλðΩ3Þ and YJλðΩ1Þ, respectively.3 As a cross-check, we

note that Eq. (2.14) can be reproduced by using the
well-known addition theorem of spherical harmonics,
ð2Jþ1ÞPJðcosθÞ¼4π

P
λY

�
JλðΩ3ÞYJλðΩ1Þ. Alternatively,

we can start from Eq. (2.14) and make use of the addition
theorem to obtain the

P
λ Y

�
JλðΩ3ÞYJλðΩ1Þ factor.

We now see that the interference terms in Eq. (2.16) from
different helicities (or spins) vanish after the angular
integrations. As a result, we obtain

πmRΓR
dΓðm2

RÞ
dm2

12

¼ 1

32π2
X
λ

Z
jMλ½B → RðmRÞP3�j2

jp⃗3j
m2

B
dΩ3

×

�
1

32π2

Z
jMλ½RðmRÞ → P1P2�j2

jp⃗1j
m2

R
dΩ1

�
=Γ0

R

¼ ΓðB → RP3ÞBðR → P1P2Þ; ð2:17Þ

where we have made use of the fact that the branching
fraction BðR → P1P2Þ is independent of the helicity

3For example, in the J ¼ 1 case and at the resonance,Mλ½B →
VðmRÞP3� is proportional to pB · ϵ�ðp12; λÞ, whileMλ½VðmRÞ →
P1P2� is proportional to ϵðp12; λÞ · ðp1 − p2Þ. See also Eq. (3.8)
below. It can be easily seen that in the V rest frame, these terms
provide the Y�

1λðΩ3Þ and Y1λðΩ1Þ factors, respectively.
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(or spin) in the last step. The above equation agrees with
Eq. (2.6), and consequently Eq. (2.7) follows.
Equation (2.7) can be easily generalized to the case with

identical particles in the final state. Let P2 and P3 be
identical particles so that the decay amplitude reads
M ¼ Aðm12; m23Þ þ Aðm13; m23Þ, giving

ηR ¼ πmRΓR
2
R jAðmR;m23Þj2dm2

23R jAðm12; m23Þ þ Aðm13; m23Þj2dm2
12dm

2
23

:

ð2:18Þ

Furthermore, from Eqs. (2.8) and (2.9), we see that in the
narrow width limit, the amplitude squared takes the form

jAðm12; m23Þj2Γ0
R→0

¼ πmRΓ0
Rδðm2

12 −m2
RÞjAðmR;m23Þj2:

ð2:19Þ

Substituting this into Eq. (2.7), we obtain ηR ¼ 1 in the
limit of zero width, hence reproducing the well-known
result in Eq. (1.2).
In this work, we will consider Aðm12; m23Þ using

the experimental parametrization (EXPP) and the QCDF
calculation and compute ηEXPPR and ηQCDFR , respectively.
In the latter case, we shall see that in the narrow width limit,
the weak interaction part of the amplitude does reduce
to the QCDF amplitude of the B → RP3 decay. Wewill also
show explicitly the validity of the factorization relation in
the zero width limit for several selected examples of three-
body decays involving tensor, vector, and scalar mediating
resonances.

C. ηR and the normalized differential rate

As suggested by Eq. (2.7), ηR can be expressed in terms
of the normalized differential rate,

ηR ¼ πmRΓR
dΓ̃ðm2

RÞ
dm2

12

¼ 1

2
πΓR

dΓ̃ðmRÞ
dm12

; ð2:20Þ

where we have defined

dΓ̃ðm2
12Þ

dm2
12

≡ dΓðm2
12Þ

dm2
12

.Z
dΓðm2

12Þ
dm2

12

dm2
12: ð2:21Þ

Hence, ηR is determined by the value of the normalized
differential rate at the resonance. It should be noted that
as the normalized differential rate is always positive and
normalized to 1 after integration, the value of dΓ̃ðmRÞ=
dm12 is anticorrelated with dΓ̃ðm12Þ=dm12 elsewhere.
Hence, it is the shape of the (normalized) differential rate
that matters in the determination of ηR.
The above point can be made more precise. When

ΓR=mR ≪ 1, we expect that the normalized differential
rate around the resonance is reasonably well described as

dΓ̃ðm2
12Þ

dm2
12

����
m2

12
≃m2

R

≃
m2

RΓ2
R

ðm2
12 −m2

RÞ2 þm2
RΓ2

R

dΓ̃ðm2
RÞ

dm2
12

: ð2:22Þ

It is straightforward to show that as a result, Eq. (2.20) can
be approximated by

ηR ≃
π

2 tan−1 2

Z ðmRþΓRÞ2

ðmR−ΓRÞ2
dΓ̃ðm2

12Þ
dm2

12

dm2
12; ð2:23Þ

or equivalently,

ηR ≃
π

2 tan−1 2

Z
mRþΓR

mR−ΓR

dΓ̃ðm12Þ
dm12

dm12

¼ π

2 tan−1 2

�
1 −

Z
elsewhere

dΓ̃ðm12Þ
dm12

dm12

�
: ð2:24Þ

It becomes clear that ηR represents the fraction of rates
around the resonance and is anticorrelated with the fraction
of rates off the resonance.
The EXPP and the QCDF approaches may have different

shapes in the differential rates, resulting in different ηR’s,
i.e., ηEXPPR ≠ ηQCDFR in general. The two-body rate reported
by experiments should be corrected using ηR ¼ ηEXPPR in
Eq. (1.4), as the data are extracted using the experimental
parametrization. On the other hand, the experimental
parametrization on normalized differential rates should be
compared with the theoretical predictions from QCDF
calculation as the latter takes into account the energy
dependence of weak interaction amplitudes. As we shall
show in Sec. V.A, the usual experimental parametrization
ignores the momentum dependence in weak dynamics and
would lead to incorrect extraction of quasi-two-body decay
rates in the case of broad resonances, as contrasted with the
estimates using the QCDF approach.

D. Formula of ηR in the case of the
Gounaris-Sakurai line shape

Apopular choice for describing thebroadρð770Þ resonance
is the Gounaris-Sakurai (GS) model [7]. It was employed by
both BABAR [8] and LHCb [9,10] Collaborations in their
analyses of the ρð770Þ resonance in theB− → πþπ−π− decay.
The GS line shape for ρð770Þ is given by

TGS
ρ ðsÞ ¼ 1þDΓ0

ρ=mρ

s −m2
ρ − fðsÞ þ imρΓρðsÞ

; ð2:25Þ

where

ΓρðsÞ ¼ Γ0
ρ

�
q
q0

�
3 mρffiffiffi

s
p X2

1ðqÞ
X2
1ðq0Þ

; ð2:26Þ

the Blatt-Weisskopf barrier factor is given in Eq. (2.12),
Γ0
ρ is the nominal total ρ width with Γ0

ρ ¼ Γρðm2
ρÞ.

The quantities q and q0 are already introduced before in
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Sec. II. A. In this model, the real part of the pion-pion
scattering amplitude with an intermediate ρ exchange calcu-
lated from the dispersion relation is taken into account by the
fðsÞ term in the propagator of TGS

ρ ðsÞ. Unitarity far from the
pole mass is thus ensured. Explicitly,

fðsÞ ¼ Γ0
ρ
m2

ρ

q30

�
q2½hð ffiffiffi

s
p Þ − hðmρÞ� þ ðm2

ρ − sÞq20
dh
ds

����
mρ

�

ð2:27Þ
and

hðsÞ ¼ 2

π

qffiffiffi
s

p ln

� ffiffiffi
s

p þ 2q
2mπ

�
;

dh
ds

����
mρ

¼ hðmρÞ
�
1

8q20
−

1

2m2
ρ

�
þ 1

2πm2
ρ
: ð2:28Þ

The constant parameter D is given by

D ¼ 3

π

m2
π

q20
ln

�
mρ þ 2q0

2mπ

�
þ mρ

2πq0
−
m2

πmρ

πq30
: ð2:29Þ

The ð1þDΓ0
ρ=mρÞ factor in Eq. (2.25) will modify the

relation in Eq. (2.15) into

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πmRΓ0

R

p
ð1þDΓ0

ρ=mρÞ
AGSðmρ; m23Þ

¼
X
λ

Mλ½B → ρðmRÞP3�
Mλ½ρðmRÞ → P1P2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRΓ0
R=π

p ð2:30Þ

instead. It can be easily seen that Eqs. (2.6), (2.7), and
(2.20) all need to be corrected by the factor of 1=ð1þ
DΓ0

ρ=mρÞ2 accordingly. More explicitly, Eqs. (2.7) and
(2.20) should be replaced by

ηGSρ ¼ πmρΓρ

ð1þDΓ0
ρ=mρÞ2

R jAðmρ; m23Þj2dm2
23R jAðm12; m23Þj2dm2

12dm
2
23

ð2:31Þ

and

ηGSρ ¼ πmρΓ0
ρ

ð1þDΓ0
ρ=mρÞ2

dΓ̃ðm2
ρÞ

dm2
12

¼ πΓ0
ρ

2ð1þDΓ0
ρ=mρÞ2

dΓ̃ðmρÞ
dm12

;

ð2:32Þ
respectively.

E. Formula of ηR in the case of the σ=f 0ð500Þ resonance
As stressed in [11], the scalar resonance σ=f0ð500Þ is

very broad and cannot be described by the usual Breit-
Wigner line shape. The partial wave amplitude does not
resemble a Breit-Wigner shape with a clear peak and a
simultaneous steep rise in the phase. The mass and width of
the σ resonance are identified from the associated pole

position
ffiffiffiffiffi
sσ

p
of the partial wave amplitude in the second

Riemann sheet as
ffiffiffiffiffi
sσ

p ¼ mσ − iΓσ=2 [11]. Hence, we shall
follow the LHCb Collaboration [10] to use a simple pole
description

TσðsÞ ¼
1

s − sσ
¼ 1

s −m2
σ þ Γ2

σðsÞ=4þ imσΓσðsÞ
; ð2:33Þ

with

ΓσðsÞ ¼ Γ0
σ

�
q
q0

�
mσffiffiffi
s

p ð2:34Þ

and Γσðm2
σÞ ¼ Γ0

σ .
The factor of 1=½ðΓ0

σÞ2=4þ imσΓ0
σ� ¼ ðimσΓ0

σÞ−1ð1 −
iΓ0

σ=4mσÞ−1 in Eq. (2.33) at the resonance will modify
the relation in Eq. (2.15) into

�
1 − i

Γ0
σ

4mσ

�
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πmRΓ0

R

q
Aðmσ; m23Þ

¼
X
λ

Mλ½B → σðmRÞP3�
Mλ½σðmRÞ → P1P2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mRΓ0
R=π

p ð2:35Þ

instead. It can be easily seen that Eqs. (2.6), (2.7), and
(2.20) all need to be corrected by the factor of rσ ≡ ½1þ
ðΓ0

σ=4mσÞ2� accordingly. More explicitly, Eqs. (2.7) and
(2.20) should be replaced by

ησ ¼ πrσmσΓσ

R jAðmσ; m23Þj2dm2
23R jAðm12; m23Þj2dm2

12dm
2
23

ð2:36Þ

and

ησ ¼ πrσmσΓ0
σ
dΓ̃ðm2

σÞ
dm2

12

¼ πrσΓ0
σ

2

dΓ̃ðmσÞ
dm12

; ð2:37Þ

respectively.

III. DIFFERENTIAL RATES AND ηEXPP
R USING

THE EXPERIMENTAL PARAMETRIZATION

The following parametrization of the decay amplitude is
widely used in the experimental studies of B → RP3 →
P1P2P3 decays (see, e.g., [12]):

Aðm12; m23Þ ¼ cFðm12; m23Þ
¼ cRJðm12Þ × XJðp3Þ
× XJðp1Þ × TJðm12; m23Þ; ð3:1Þ

where RJ describes the line shape of the resonance
introduced before in Eq. (2.10), XJ is the Blatt-
Weisskopf barrier form factor as defined in Eq. (2.12)
with both p1 and p3 evaluated in the Rðm12Þ rest frame,
TJðm12; m23Þ is an angular distribution term given by [6]

CHENG, CHIANG, and CHUA PHYS. REV. D 103, 036017 (2021)

036017-6



T0ðm12; m23Þ ¼ 1;

T1ðm12; m23Þ ¼ m2
23 −m2

13 þ
ðm2

B −m2
3Þðm2

1 −m2
2Þ

m2
12

;

T2ðm12; m23Þ ¼
�
m2

23 −m2
13 þ

ðm2
B −m2

3Þðm2
1 −m2

2Þ
m2

12

�
2

−
1

3

�
m2

12 − 2m2
B − 2m2

3 þ
ðm2

B −m2
3Þ2

m2
12

�

×

�
m2

12 − 2m2
1 − 2m2

2 þ
ðm2

1 −m2
2Þ2

m2
12

�
; ð3:2Þ

and c is an unknown complex coefficient to be fitted to the data. Basically the information of weak decay amplitude is
included in c. However, it is assumed to be a constant that has no dependence on energy or momentum of the decay
products.
The quantities ΓðB → RP3ÞBðR → P1P2Þ and ηEXPPR can be obtained by using Eqs. (2.6) and (2.7) as

ΓðB → RP3ÞBðR → P1P2Þ ¼
jcj2

8π2mRΓR

1

32m3
B

Z ðm2
23
ÞmaxðmRÞ

ðm2
23
ÞminðmRÞ

ðjXJðp3Þj2jXJðp1Þj2Þm12→mR

× jTJðmR;m23Þj2dm2
23 ð3:3Þ

and

ηEXPPR ¼ π

mRΓR

R ðm2
23
ÞmaxðmRÞ

ðm2
23
ÞminðmRÞ ðjXJðp3Þj2jXJðp1Þj2Þm12→mR

× jTJðmR;m23Þj2dm2
23R jRJðm12Þ × XJðp3Þ × XJðp1Þ × TJðm12; m23Þj2dm2

12dm
2
23

: ð3:4Þ

Note that being a constant, the factor c in Aðm12; m23Þ is canceled out between the numerator and the denominator in ηEXPPR .
One can readily verify that ηEXPPR approaches unity in the narrow width limit by virtue of Eq. (2.8).
We can express ηEXPPR in terms of the normalized differential rate,

ηEXPPR ¼ πmRΓR
dΓ̃ðm2

RÞ
dm2

12

¼ 1

2
πΓR

dΓ̃ðmRÞ
dm12

; ð3:5Þ

with

dΓ̃ðm2
12Þ

dm2
12

¼ jRJðm12Þj2
R jXJðp3Þ × XJðp1Þ × TJðmR;m23Þj2dm2

23R jRJðm12Þ × XJðp3Þ × XJðp1Þ × TJðm12; m23Þj2dm2
12dm

2
23

: ð3:6Þ

In the case that P2 and P3 are identical particles, we shall use Eq. (2.18) to obtain ηEXPPR , giving

ηEXPPR ¼
2π

R ðm2
23
ÞmaxðmRÞ

ðm2
23
ÞminðmRÞ ðjXJðp3Þj2jXJðp1Þj2Þm12→mR

× jTJðmR;m23Þj2dm2
23

mRΓR

R jRJðm12Þ × XJðp3Þ × XJðp1Þ × TJðm12; m23Þ þ ð2 ↔ 3Þj2dm2
12dm

2
23

: ð3:7Þ

Note that when the Gounaris-Sakurai line shape is used in
place of RJ, we should use Eqs. (2.31) and (2.32), instead of
Eq. (3.5),whileEqs. (3.4) and (3.6) are still valid. For the case
of the σ resonance, we should use Eqs. (2.36) and (2.37).
In the case of narrow width, it is legitimate to use a

complex constant c to represent the weak dynamics. As
noted previously, it is the shape of the entire normalized

differential rate that matters in determining ηR. Hence, in
the case of finite width, the momentum dependence in the
weak amplitude will play some role.
There are some subtleties in the angular terms.

Note that Eq. (3.2) was obtained with transversality
conditions, pμ

12ϵμ ¼ 0 and pμ
12p

ν
12ϵμν ¼ 0, enforced for

J ¼ 1, 2 [6],
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T1ðm12; m23Þ ¼
X
λ

ðpB þ p3Þμϵ�μðp12; λÞϵνðp12; λÞðp1 − p2Þν

¼ −2p⃗1 · p⃗3 ¼ −2qjp⃗3j cos θ;
T2ðm12; m23Þ ¼

X
λ

ðpB þ p3ÞμðpB þ p3Þνϵ�μνðp12; λÞϵαβðp12; λÞðp1 − p2Þαðp1 − p2Þβ

¼ 4

3
½3ðp⃗1 · p⃗3Þ2 − ðjp⃗1jjp⃗3jÞ2� ¼

4

3
q2jp⃗3j2ð3cos2θ − 1Þ; ð3:8Þ

where ϵμ and ϵμν are the polarization vector and tensor, respectively, and

q ¼ jp⃗1j ¼ jp⃗2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

12 − ðm1 þm2Þ2�½m2
12 − ðm1 −m2Þ2�

p
2m12

;

jp⃗3j ¼
�ðm2

B −m2
3 −m2

12Þ2
4m2

12

−m2
3

�
1=2

; ð3:9Þ

with q ¼ jp⃗1;2j and jp⃗3j being the momenta of P1;2 and P3

in the Rðm12Þ rest frame, respectively.4 Note that in
Eq. (3.8), the factor contracted with ðpB þ p3Þ comes
from the B → Rðm12ÞP weak decay amplitude, while the
one contracted with ðp1 − p2Þ comes from the Rðm12Þ →
P1P2 strong decay amplitude. To obtain the cos θ depend-
ence, it is useful to recall

P
λ ϵ

�
μðp12; λÞϵνðp12; λÞ ¼ giμg

j
νδij

in the rest fame of Rðm12Þ.
Alternatively, using the standard expressions of vector

and tensor propagators, which are contracted with the B →
Rðm12ÞP and the Rðm12Þ → P1P2 parts, we expect the
angular terms to take the following forms:

T 0
1ðm12; m23Þ ¼ m2

23 −m2
13 þ

ðm2
B −m2

3Þðm2
1 −m2

2Þ
m2

R
;

T 0
2ðm12; m23Þ ¼

�
m2

23 −m2
13 þ

ðm2
B −m2

3Þðm2
1 −m2

2Þ
m2

R

�
2

−
1

3

�
m2

12 − 2m2
B − 2m2

3 þ
ðm2

B −m2
3Þ2

m2
R

�

×

�
m2

12 − 2m2
1 − 2m2

2 þ
ðm2

1 −m2
2Þ2

m2
R

�
:

ð3:10Þ

The transversality condition, however, is not imposed on
the above equations as the denominators become m2

R
instead of m2

12. In general, these T 0
J cannot be expressed

as Eq. (3.8) except on the mass shell of p12, where
these two angular terms coincide, i.e., T 0

JðmR;m23Þ ¼
TJðmR;m23Þ. In the case of a vector resonance, except

for modes with the intermediate resonance decaying to
daughters of different masses, these two angular terms are
identical throughout the entire phase space. We will also
consider the case where the transversality condition is not
imposed.

IV. ANALYSIS IN THE QCD
FACTORIZATION APPROACH

In this section, we will evaluate the decay amplitudes of
B → RP3 and B → RP3 → P1P2P3 within the framework
of QCD factorization [13,14]. For the latter, its general
amplitude has the expression

AðB → RP3 → P1P2P3Þ
≡ Aðm12; m23Þ
¼ gR→P1P2Fðs12; mRÞÃðB → Rðm12ÞP3Þ
× RJðm12ÞT Jðm12; m23Þ; ð4:1Þ

where gR→P1P2 is the strong coupling constant associated
with the strong decay Rðm12Þ → P1P2, Fðs;mRÞ is a form
factor to be introduced later [see Eq. (4.20) below], RJ is
the resonance line shape, and T J is the angular distribution
function. In this work, we find

T 0 ¼ 1; T 1 ¼ 2q cos θ; T 2 ¼
q2ffiffiffi
6

p ð1 − 3cos2θÞ;

ð4:2Þ

where θ is the angle between p⃗1 and p⃗3 measured in the rest
frame of the resonance and q is given before in Eq. (3.9). In
Eq. (4.1), the weak decay amplitude ÃðB → Rðm12ÞP3Þ
will be reduced to the QCDF amplitude AðB → RðmRÞP3Þ
when m12 → mR.

4Note that jp⃗3j is related to p̃c through the relation p̃c ¼ðm12=mBÞjp⃗3j, where p̃c is the c.m. momentum of P3 or Rðm12Þ
in the B rest frame. This relation can be easily verified using the
conservation of momentum.
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Taking the relativistic Breit-Wigner line shape Eq. (2.10),
it follows from Eqs. (2.2) and (2.4) that

dΓðm2
RÞ

dm2
12

¼ 1

ð2πÞ5
1

32mRm2
B

Z
jAðmR;m23Þj2jp⃗1jjp⃗3jdΩ1dΩ3;

¼ 1

πmRΓ2
R

�
1

32π2

Z
jAðB→RðmRÞP3Þj2

jp⃗3j
m2

B
dΩ3

�

×

�
1

32π2

Z
jgR→P1P2T Jj2

jp⃗1j
m2

R
dΩ1

�
;

¼ 1

πmRΓR
ΓðB→RP3ÞBðR→P1P2Þ: ð4:3Þ

Indeed, it is straightforward to show that the partial rate of
RðmRÞ → P1P2 given by

ΓðR → P1P2Þ ¼
1

32π2

Z
jgR→P1P2T Jj2

q0
m2

R
dΩ1 ð4:4Þ

has the following expressions (see also Eq. (2.39) of [15]):

ΓS→P1P2
¼ q0

8πm2
S
g2S→P1P2

; ΓV→P1P2
¼ q30

6πm2
V
g2V→P1P2

;

ΓT→P1P2
¼ q50

60πm2
T
g2T→P1P2

ð4:5Þ

for different types of resonances. Therefore, the decay rate of
B → RðmRÞP3 can be related to the differential rate of B →
RP3 → P1P2P3 at the resonance. This means that ηR can be
obtained from the normalized differential rate as shown in
Eq. (2.7) or (2.20).
Most of the input parameters employed in this section

such as decay constants, form factors, Cabibbo-Kobayashi-
Maskawa matrix elements can be found in Appendix A
of [15].

A. Tensor resonances

We begin with the tensor resonances and consider the
three-body decay processes: B− → f2ð1270Þπ− → πþπ−π−

and B− → K̄�0
2 ð1430Þπ− → K−πþπ−. Since the decay

widths of f2ð1270Þ and K�
2ð1430Þ are around 187 and

109MeV, respectively, it is naïvely expected that the deviation
of ηf2 from unity is larger than that of ηK�

2
in both QCDF and

EXPPschemes.We shall see below that this is not respected in
the QCDF scheme and barely holds in the EXPP scheme.

1. f 2ð1270Þ
B− → f2ð1270Þπ− decay in QCDF.—
Consider the process B− → f2ð1270Þπ− → πþπ−π−. In

QCDF, the amplitude of the quasi-two-body decay B− →
f2ð1270Þπ− is given by [16]

AðB− → f2ð1270Þπ−Þ ¼
GF

2

X
p¼u;c

λðdÞp

�
½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ þ βp2δpu þ βp3 þ βp3;EW�f2πXðBf2;πÞ

þ
�
a2δpu þ 2ðap3 þ ap5 Þ þ ap4 þ rf2χ ap6 þ

1

2
ðap7 þ ap9 Þ −

1

2
ðap10 þ rf2χ ap8 Þ

þ βp2δpu þ βp3 þ βp3;EW

�
πf2

XðBπ;f2Þ
	
; ð4:6Þ

where λðdÞp ≡ VpbV�
pd and

XðBf2;πÞ ¼ 2fπA
Bf2
0 ðm2

πÞ
mf2

mB
ϵ�μνð0ÞpBμpBν; XðBπ;f2Þ ¼ 2ff2mBpcFBπ

1 ðm2
f2
Þ; ð4:7Þ

with pc being the c.m. momentum of either f2 or π− in the B rest frame. The chiral factors rπχ and r
f2
χ in Eq. (4.6) are given by

rπχðμÞ ¼
2m2

π

mbðμÞðmu þmdÞðμÞ
; rf2χ ðμÞ ¼ 2mf2

mbðμÞ
f⊥f2ðμÞ
ff2

: ð4:8Þ

For the definition of the scale-dependent decay constants
ff2 and f

⊥
f2
, see, for example, Ref. [16]. The coefficients βpi

describe weak annihilation contributions to the decay. The
order of the arguments in the api ðM1M2Þ and βpi ðM1M2Þ
coefficients is dictated by the subscript M1M2 given in
Eq. (4.6).

In Eq. (4.7), XðBf2;πÞ is factorizable and given by
hπjJμj0ihf2jJ0μjBi, while XðBπ;f2Þ is a nonfactorizable
amplitude as the factorizable one hf2jJμj0ihπ−jJ0μjB−i
vanishes owing to the fact that the tensor meson cannot
be produced through the V − A current. Nevertheless,
beyond the factorization approximation, contributions
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proportional to the decay constant ff2 can be produced
from vertex, penguin, and spectator-scattering corrections
[16]. Therefore, when the strong coupling αs is turned off,
the nonfactorizable contributions vanish accordingly.
The factorizable amplitude XðBf2;πÞ can be further sim-

plified by working in the B rest frame and assuming
that f2 (π) moves along the −z (z) axis [16]. In this case,
pμ
B ¼ ðmB; 0; 0; 0Þ and ϵ�μνð0Þ ¼ ffiffiffiffiffiffiffiffi

2=3
p

ϵ�μð0Þϵ�νð0Þ with
ϵ�μð0Þ ¼ ðpc; 0; 0; Ef2Þμ=mf2 and, consequently,

XðBf2;πÞ ¼ 2

ffiffiffi
2

3

r
fπ

mB

mf2

p2
cA

Bf2
0 ðm2

πÞ: ð4:9Þ

Three-body decay B− → f2ð1270Þπ− → πþπ−π−.—
As shown in [15], the decay amplitude Af2ð1270Þ ≡

AðB− → π−f2ð1270Þ → π−ðp1Þπþðp2Þπ−ðp3ÞÞ evaluated
in the factorization approach5 arises from the matrix ele-
ment hπþðp2Þπ−ðp3ÞjðūbÞjB−if2hπ−ðp1Þjðd̄uÞj0i, where

ðq̄1q2Þ≡ q̄1γμð1 − γ5Þq2 and the superscript f2 denotes
the contribution from the f2 resonance to the matrix
element hπþðp2Þπ−ðp3ÞjðūbÞjB−i. We shall use the rela-
tivistic Breit-Wigner line shape to describe the distribution
of f2ð1270Þ,

TBW
f2

ðsÞ ¼ 1

s −m2
f2
þ imf2Γf2ðsÞ

; ð4:10Þ

with

Γf2ðsÞ ¼ Γ0
f2

�
q
q0

�
5 mf2ffiffiffi

s
p X2

2ðqÞ
X2
2ðq0Þ

; ð4:11Þ

where the quantities q, q0, X2, and Γ0
T are already

introduced before in Eq. (2.11). One advantage of using
the energy-dependent decay width is that Γf2ðsÞwill vanish
when s goes below the 2π threshold.
Consequently,

hπþðp2Þπ−ðp3ÞjðūbÞjB−if2hπ−ðp1Þjðd̄uÞj0i
¼ hπþðp2Þπ−ðp3Þjf2iTBW

f2
ðs23Þhf2jðūbÞjB−ihπ−ðp1Þjðd̄uÞj0i

¼
X
λ

ε�μνðλÞp2μp3νgf2→πþπ−TBW
f2

ðs23Þ
2mf2

mB
fπA

Bf2
0 ðm2

πÞεαβðλÞpα
Bp

β
1

¼ 2mf2

mB
gf2→πþπ−fπA

Bf2
0 ðm2

πÞTBW
f2

ðs23Þ
�
1

3
ðjp⃗1jjp⃗2jÞ2 − ðp⃗1 · p⃗2Þ2

�
; ð4:12Þ

where we have followed [20] for the definition of the B → T transition form factors6 and employed the relation [6,22]

X
λ

ε�μνðλÞεαβðλÞp2μp3νpα
Bp

β
1 ¼

1

3
ðjp⃗1jjp⃗2jÞ2 − ðp⃗1 · p⃗2Þ2; ð4:13Þ

with

jp⃗1j ¼
�ðm2

B −m2
π − s23Þ2

4s23
−m2

π

�
1=2

; jp⃗2j ¼ jp⃗3j ¼ q ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s23 − 4m2

π

q
: ð4:14Þ

Hence, factorization leads to

Af2ð1270Þ ¼
1ffiffiffi
2

p GFffiffiffi
2

p
X
p¼u;c

λðdÞp ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �

×
2mf2

mB
gf2→πþπ−fπA

Bf2
0 ðm2

πÞTBW
f2

ðs23Þ
1

3
jp⃗1j2jp⃗2j2ð1 − 3cos2θÞ þ ðs23 ↔ s12Þ; ð4:15Þ

where the identical particle effect due to the two identical π− has been taken into account. Comparing with Eq. (4.6), we see
that the nonfactorizable contribution characterized by XðBπ;f2Þ and the weak annihilation described by βp terms are absent in
the naïve factorization approach. We shall use the QCDF expression for B− → f2ð1270Þπ− and write

5The study of charmless three-body B decays in the factorization approach can be found in [15,17–19] and references therein.
6The B → T transition form factors defined in [16,20] differ by a factor of i. We shall use the former as they are consistent with the

normalization of B → S transition given in [21].
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Af2ð1270Þ ¼ gf2→πþπ−TBW
f2

ðs23Þ
q2ffiffiffi
6

p ð1 − 3cos2θÞÃðB− → f2ðm23Þπ−Þ þ ðs23 ↔ s12Þ; ð4:16Þ

with

ÃðB− → f2ðm23Þπ−Þ ¼
GF

2

X
p¼u;c

λðdÞp
m2

f2

s23
f½a1δpu þ ap4 þ � � � þ βp3;EW�f2πX̃

ðBf2;πÞ

þ ½a2δpu þ 2ðap3 þ ap5 Þ þ � � � þ βp3;EW�πf2X̃ðBπ;f2Þg; ð4:17Þ
where

X̃ðBf2;πÞ ¼ 2

ffiffiffi
2

3

r
fπ

mB

mf2

p̃2
cA

Bf2
0 ðm2

πÞ; X̃ðBπ;f2Þ ¼ 2ff2mBp̃cFBπ
1 ðs23Þ; ð4:18Þ

and

p̃c ¼
�ðm2

B −m2
π − s23Þ2

4m2
B

−m2
π

�
1=2

: ð4:19Þ

It is easily seen that ÃðB− → f2ðm23Þπ−Þ is reduced to the
QCDF amplitude AðB− → f2π−Þ given in Eq. (4.6) when
m23 → mf2 .
Before proceeding, we would like to address an

issue. The strong coupling constant jgf2ð1270Þ→πþπ− j ¼
18.56 GeV−1 extracted from the measured f2ð1270Þ width
[see Eq. (4.27) below] is for the physical f2ð1270Þ. When
f2 is off the mass shell, especially when s23 is approaching
the upper bound of ðmB −mπÞ2, it is necessary to account

for the off-shell effect. For this purpose, we shall follow
[23] to introduce a form factor Fðs;mRÞ parametrized as7

Fðs;mRÞ ¼
�
Λ2 þm2

R

Λ2 þ s

�
n

; ð4:20Þ

with the cutoff Λ not far from the resonance,

Λ ¼ mR þ βΛQCD; ð4:21Þ

where the parameter β is expected to be of order unity. We
shall use n ¼ 1, ΛQCD ¼ 250 MeV, and β ¼ 1.0� 0.2 in
subsequent calculations.
Finally, the decay rate is given by

ΓðB− → f2π− → πþπ−π−Þ ¼ 1

2

1

ð2πÞ3m3
B

Z ðmB−mπÞ2

ðmπþmπÞ2
ds23

Z ðs12Þmax

ðs12Þmin

ds12jAf2 j2

¼ 1

2

1

ð2πÞ332m3
B

Z ðmB−mπÞ2

ðmπþmπÞ2
ds23

Z ðs12Þmax

ðs12Þmin

ds12

� jgf2→πþπ− j2Fðs23; mf2Þ2
ðs23 −m2

f2
Þ2 þm2

f2
Γ2
f2
ðs23Þ

×
q4

6
ð1 − 3cos2θÞ2jÃðB− → f2π−Þj2 þ ðs23 ↔ s12Þ þ interference terms

	
; ð4:22Þ

where the factor of 1=2 accounts for the identical-particle effect. Note that cos θ can be expressed as in terms of s12 and s23,

cos θ ¼ aðs23Þs12 þ bðs23Þ; ð4:23Þ

with [24]

aðsÞ ¼ 1

ðs − 4m2
πÞ1=2


ðm2
B−m

2
π−sÞ2

4s −m2
π

�
1=2 ;

bðsÞ ¼ −
m2

B þ 3m2
π − s

2ðs − 4m2
πÞ1=2


ðm2
B−m

2
π−sÞ2

4s −m2
π

�
1=2 : ð4:24Þ

7Note that the form factor Fðt; mÞ used in [23] is for the t-channel off-shell effect.
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It follows that ðs12Þmin ¼ −ð1þ bÞ=a and ðs12Þmax ¼
ð1 − bÞ=a. It is straightforward to show thatZ ðs12Þmax

ðs12Þmin

ds12ð1 − 3cos2θÞ2 ¼ 8

5a
¼ 16

5

mBffiffiffiffiffiffi
s23

p qp̃c: ð4:25Þ

In the narrow width limit, we have

mf2Γf2ðsÞ
ðs −m2

f2
Þ2 þm2

f2
Γ2
f2
ðsÞ⟶

Γf2
→0

πδðs −m2
f2
Þ: ð4:26Þ

Under the NWA, jgf2→πþπ− j2=Γf2 is finite as it is propor-
tional to the branching fraction Bðf2 → πþπ−Þ. Due to the
Dirac δ-function in the above equation, we have s23 → m2

f2
in the zero width limit. As a result, p̃c → pc, q → q0,
X̃ðBf2;πÞ → XðBf2;πÞ, X̃ðBπ;f2Þ → XðBπ;f2Þ, and ÃðB− →
f2π−Þ → AðB− → f2π−Þ. Likewise, the second term in
Eq. (4.22) with the replacement s23 ↔ s12 has a similar
expression. However, the interference term vanishes in the
NWA due to different δ-functions. Using

Γf2→πþπ− ¼ q50
60πm2

f2

jgf2→πþπ− j2; ΓB−→f2π− ¼ pc

8πm2
B
jAðB− → f2π−Þj2; ð4:27Þ

we are led to the desired factorization relation,

ΓðB− → f2π− → πþπ−π−Þ⟶Γf2
→0

ΓðB− → f2π−ÞBðf2 → πþπ−Þ: ð4:28Þ
Numerical results.—
To compute B− → f2π− and the three-body decay B− → f2π− → πþπ−π−, we need to know the values of the flavor

operators api ðM1;M2Þ. In the QCDF approach, the flavor operators have the expression [13,14]

api ðM1;M2Þ ¼
�
ci þ

ci�1

Nc

�
NiðM2Þ þ

ci�1

Nc

CFαs
4π

�
ViðM2Þ þ

4π2

Nc
HiðM1M2Þ

�
þ Pp

i ðM2Þ; ð4:29Þ

where i ¼ 1;…; 10, the upper (lower) sign is for odd (even)
i, ci are the Wilson coefficients, CF ¼ ðN2

c − 1Þ=ð2NcÞ
with Nc ¼ 3, M2 is the emitted meson, and M1 shares the
same spectator quark with the B meson. The detailed
expressions for the vertex corrections ViðM2Þ, hard spec-
tator interactions HiðM1M2Þ, and penguin contractions
Pp
i ðM2Þ for M1M2 ¼ TP and PT can be found in [16].

Note that the parameters NiðMÞ in Eq. (4.29) vanish ifM is
a tensor meson; otherwise, it is equal to one. Therefore, the
coefficient a2ðπf2Þ appearing in Eq. (4.6) vanishes when
the strong coupling αs is turned off. We see from Table I
that api ðf2PÞ and api ðPf2Þ can be quite different.
It is known that power corrections in QCDF always

involve troublesome endpoint divergences. For example,

the annihilation amplitude has endpoint divergences even at
twist-2 level, and the hard spectator scattering diagram at
twist-3 order is power suppressed and possesses soft and
collinear divergences arising from the soft spectator quark.
Since the treatment of endpoint divergences is model
dependent, we shall follow [13] to model the endpoint
divergence X ≡ R

1
0 dx=x̄ in the annihilation and hard

spectator scattering diagrams as

XA ¼ ln

�
mB

Λh

�
ð1þ ρAeiϕAÞ;

XH ¼ ln

�
mB

Λh

�
ð1þ ρHeiϕHÞ; ð4:30Þ

TABLE I. Numerical values of the flavor operators api ðM1M2Þ for M1M2 ¼ f2ð1270Þπ and πf2ð1270Þ at the
scale μ ¼ m̄bðm̄bÞ ¼ 4.18 GeV.

api f2π πf2 api f2π πf2

a1 1.011þ 0.014i −0.035þ 0.014i ac6 −0.053–0.005i ð6.3þ 1.6iÞ10−3
a2 0.123–0.080i 0.133–0.078i a7 ð−0.2þ 3.4iÞ10−5 ð9.5–3.4iÞ10−5
a3 0.0014þ 0.0027i −0.006þ 0.003i au8 ð3.6–1.0iÞ10−4 ð−2.1þ 0.1iÞ10−5
au4 −0.027–0.014i 0.0064–0.0016i ac8 ð3.4–0.5iÞ10−4 ð3.3þ 1.0iÞ10−5
ac4 −0.032–0.006i 0.0091þ 0.0064i a9 ð−9.1–0.1iÞ10−3 ð3.0–1.2iÞ10−4
a5 0.0009–0.0031i −0.008þ 0.003i au10 ð−8.2þ 6.2iÞ10−4 ð−9.6þ 7.0iÞ10−4
au6 −0.050–0.014i −ð3.52þ 0.02iÞ10−3 ac10 ð−8.5þ 6.7iÞ10−4 ð−9.4þ 7.5iÞ10−4

CHENG, CHIANG, and CHUA PHYS. REV. D 103, 036017 (2021)

036017-12



with Λh being a typical hadronic scale of 0.5 GeV. In this work, we use

ρTPA ¼ ρPTA ¼ 0.7; ϕTP
A ¼ ϕPT

A ¼ −30°; ð4:31Þ

leading to

βp2 ðf2πÞ ¼ 0.023 − 0.010i; ðβp3 þ βp3;EWÞðf2πÞ ¼ −0.047þ 0.053i;

βp2 ðπf2Þ ¼ −0.033þ 0.018i; ðβp3 þ βp3;EWÞðπf2Þ ¼ −0.050þ 0.047i ð4:32Þ

for both p ¼ u and c.
Following [16], we obtain the branching fraction and CP

asymmetry for B− → f2ð1270Þπ− as

BðB− → f2ð1270Þπ−ÞQCDF ¼ ð2.65þ1.29
−1.22Þ × 10−6;

ACPðB− → f2ð1270Þπ−ÞQCDF ¼ ð46.7þ32.6
−62.5Þ%; ð4:33Þ

where the decay constants ff2 ¼ 102� 6 MeV and f⊥f2 ¼
117� 25 MeV both at μ ¼ 1 GeV [25], the form factors

ABf2ð1270Þ
0 ð0Þ ¼ 0.13� 0.02, derived from large energy

effective theory (see Table II of [16]), and

FBπ
1 ðq2Þ ¼ 0.26� 0.03

1 − q2

m2
B�

0
B@1þ

0.64 q2

m2
B�

1 − 0.40 q2

m2
B

1
CA ð4:34Þ

have been used. The theoretical errors correspond to the
uncertainties due to the variation of Gegenbauer moments,
decay constants, quark masses, form factors, the λB para-
meter for the B meson wave function, and the power-
correction parameters ρA;H, ϕA;H (see [16] for details), all
added in quadrature. In the narrow width limit, we find the
central values

BðB− → f2ð1270Þπ− → πþπ−π−ÞΓf2
→0 ¼ 1.485 × 10−6;

ACPðB− → f2ð1270Þπ− → πþπ−π−ÞΓf2
→0 ¼ 46.23%:

ð4:35Þ
Since Bðf2ð1270Þ → πþπ−Þ ¼ ð0.842þ0.029

−0.009Þ × 2
3
, it is

easily seen that the factorization relation Eq. (4.28) is
indeed numerically valid in the narrow width limit.
For the finite-width Γ0

f2
¼ 186.7þ2.2

−2.5 MeV [3], we find

BðB− → f2ð1270Þπ− → πþπ−π−Þ ¼ ð1.48þ0.42
−0.37Þ × 10−6 ½ð1.52þ0.43

−0.38Þ × 10−6�;
ACPðB− → f2ð1270Þπ− → πþπ−π−Þ ¼ ð44.56þ0.41

−0.39Þ% ½ð47.20þ0.45
−0.43Þ%�; ð4:36Þ

where the values in square parentheses are obtained with the form factor Fðs;mf2Þ being set as unity. They are in agreement
with the recent LHCb measurements [9,10],

BðB− → f2ð1270Þπ− → πþπ−π−ÞLHCb ¼ ð1.37� 0.26Þ × 10−6;

ACPðB− → f2ð1270Þπ− → πþπ−π−ÞLHCb ¼ ð46.8� 7.7Þ%; ð4:37Þ

and consistent with the earlier BABAR measurements [8],

BðB− → f2ð1270Þπ− → πþπ−π−ÞBABAR ¼ ð0.9� 0.2þ0.3
−0.1Þ × 10−6;

ACPðB− → f2ð1270Þπ− → πþπ−π−ÞBABAR ¼ ð41� 25þ18
−15Þ%: ð4:38Þ

Notice that a large CP asymmetry in the f2ð1270Þ component was firmly established by the LHCb Collaboration.
We are now in the position to compute the parameter ηf2ð1270Þ defined in Eq. (1.3),

ηf2 ¼
ΓðB− → f2ð1270Þπ−ÞBðf2ð1270Þ → πþπ−Þ

ΓðB− → f2ð1270Þπ− → πþπ−π−Þ : ð4:39Þ

From Eqs. (4.33) and (4.36), we find

ηQCDFf2ð1270Þ ¼ 1.003þ0.001
−0.002 ð0.9743� 0.0003Þ: ð4:40Þ
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Since the theoretical uncertainties in the numerator and
denominator essentially cancel out, the errors on ηf2 mainly
arise from the uncertainties in β and the f2 width. As
discussed in Sec. II, ηR can be expressed in terms of the
normalized differential rate. In general, the calculation done

in thisway is simpler. FromEqs. (2.18) and (4.16),we obtain
the same result for ηQCDFf2

. The dependence of the parameter
ηf2 on the width Γf2 is plotted as the solid blue curve in

Fig. 1. It is somewhat surprising that the deviation of ηQCDFf2
from unity is very tiny, even though Γf2=mf2 is about 0.146.
The parameter ηEXPPf2

is calculated using Eq. (2.18)
together with the experimental parametrization, Eq. (3.1)
for Aðm12; m23Þ. Its dependence on the f2ð1270Þ width is
depicted by the dashed red curve in Fig. 1. At the
resonance, we obtain

ηEXPPf2ð1270Þ ¼ 0.937þ0.006
−0.005 : ð4:41Þ

We see that with the physical width Γ0
f2

¼ 186.7þ2.2
−2.5 MeV,

the results in the QCDF and EXPP schemes differ by
about 7%.

2. K�
2ð1430Þ

We next turn to the B− → K̄�0
2 ð1430Þπ− → K−πþπ−

decay. The QCDF amplitude of the quasi-two-body B− →
K̄�0

2 ð1430Þπ− decay is given by [16]

AðB− → K̄�0
2 π−Þ ¼ GFffiffiffi

2
p

X
p¼u;c

λðsÞp

�
ap4 þ r

K�
2

χ ap6 −
1

2
ðap10 þ r

K�
2

χ a8Þ þ βp2δpu þ βp3 þ βp3;EW

�
πK�

2

XðBπ;K̄�
2
Þ; ð4:42Þ

with λðsÞp ≡ VpbV�
ps and

XðBπ;K�
2
Þ ¼ 2fK�

2
mBpcFBπ

1 ðm2
K�

2
Þ: ð4:43Þ

Note that this decay proceeds only through nonfactorizable diagrams.
Analogous to the f2ð1270Þ resonance, the decay amplitudeAK�

2
ð1430Þ ≡AðB− → K̄�0

2 ð1430Þπ− → K−ðp1Þπþðp2Þπ−ðp3Þ
reads [see the second term of Eq. (4.16)]

AK�
2
ð1430Þ ¼ gK̄

�0
2
→K−πþFðs12; mK�

2
ÞTBW

K�
2
ðs12Þ

q2ffiffiffi
6

p ð1 − 3cos2θÞÃðB− → K̄�0
2 π−Þ; ð4:44Þ

with

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s12 − ðmK þmπÞ2�½s12 − ðmK −mπÞ2�

p
2

ffiffiffiffiffiffi
s12

p ð4:45Þ

and

ÃðB− → K̄�0
2 π−Þ ¼ GFffiffiffi

2
p

X
p¼u;c

λðsÞp

m2
K�

2

s12
½ap4 þ � � � þ βp3;EW�πK�

2
X̃ðBπ;K̄�

2
Þ; ð4:46Þ

where X̃ðBπ;K̄�
2
Þ has the same expression as XðBπ;K̄�

2
Þ except for a replacement of pc by p̃c and FBπ

1 ðm2
K�

2
Þ by FBπ

1 ðs12Þ.
Following the previous case, it is straightforward to show that the factorization relation

ΓðB− → K̄�0
2 π− → K−πþπ−Þ⟶

ΓK�
2
→0

ΓðB− → K̄�0
2 π−ÞBðK̄�0

2 → K−πþÞ ð4:47Þ

holds in the NWA.

FIG. 1. The parameter ηf2 as a function of the f2ð1270Þ width,
where the solid curve is derived from the QCDF calculation and
the dashed (dotted) curve from the EXPP with (without) the
transversality condition imposed.
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In QCDF, we obtain

BðB− → K̄�0
2 ð1430Þπ−ÞQCDF ¼ ð2.60þ9.07

−2.53Þ × 10−6;

ACPðB− → K̄�0
2 ð1430Þπ−ÞQCDF ¼ ð1.72þ2.12

−1.95Þ%; ð4:48Þ
where the decay constants fK�

2
¼ 118� 5 MeV and f⊥K�

2
¼ 77� 14 MeV at μ ¼ 1 GeV [25], and the penguin annihilation

effects

βp2 ðπK�
2Þ ¼ 0.017þ 0.006i; ðβp3 þ βp3;EWÞðπK�

2Þ ¼ −0.027þ 0.022i ð4:49Þ
have been used. In the narrow width limit, we find that

BðB− → K̄�0
2 ð1430Þπ− → K−πþπ−ÞΓK�

2
→0 ¼ 0.864 × 10−6: ð4:50Þ

Since BðK�0
2 ð1430Þ → πþπ−Þ ¼ ð0.499� 0.012Þ × 2

3
[3], it is seen that the factorization relation Eq. (4.47) is numerically

satisfied.
With the finite-width Γ0

K�0
2

¼ 109� 5 MeV, we obtain8

BðB− → K̄�0
2 ð1432Þπ− → K−πþπ−Þ ¼ ð0.89þ0.22

−0.19Þ × 10−6;

ACPðB− → K̄�0
2 ð1432Þπ− → K−πþπ−Þ ¼ ð1.711� 0.002Þ%; ð4:51Þ

and

ηQCDFK�
2

¼ 0.972� 0.001 ð0.715� 0.009Þ: ð4:52Þ
As for the ηK�

2
parameter in the experimental parametrization, we need to consider two possibilities for the angular

distribution function: T2 in Eq. (3.2) imposed with the transversality condition and T 0
2 in Eq. (3.10) without the

transversality condition. We thus find

ηEXPPK�
2

¼ 1.053� 0.002; η0EXPPK�
2

¼ 1.031� 0.001: ð4:53Þ
Therefore, the transversality condition has little impact on the determination of ηR. The dependence of ηK�

2
in QCDF and in

experimental parametrization is shown in Fig. 2. Experimentally, the BABAR measurement [12] yields

BðB− → K̄�0
2 ð1430Þπ− → K−πþπ−Þexpt ¼ ð1.85þ0.73

−0.50Þ × 10−6: ð4:54Þ

Our result of Eq. (4.51) for the branching fraction is
consistent with experiment within uncertainties.
Comparing ηK�

2
’s with ηf2’s, it is clear that the proximity

of ηQCDFf2
to unity in QCDF is unexpected, while the

deviation of ηR from unity in the EXPP scenario is barely
consistent with the expectation from the ratio of ΓR=mR for
R ¼ f2ð1270Þ and K�

2ð1430Þ.

B. Vector mesons

We take the processes B− → ρð770Þπ− → πþπ−π− and
B− → K̄�0ð892Þπ− → K−πþπ− as examples to illustrate
the width effects associated with the vector mesons.9 It is
known that ρð770Þ is much broader than K�ð892Þ.
Therefore, it is expected that the former is subject to a
larger width effect.

1. ρð770Þπ −

B− → ρ0ð770Þπ− → πþπ−π− decay in QCDF.—
The decay amplitude of the quasi-two-body decay B− →

ρ0π− in QCDF reads [14]

FIG. 2. Same as Fig. 1 for the K̄�
2ð1430Þ mediating the B− →

K−πþπ− decay.

8Contrary to the phase space integration in Eq. (4.22) for
B− → f2π− → π þ π−π−, here one should integrate over s12 first
and then s23 owing to a pole structure in TBWðs12Þ at s12 ¼ m2

K�
2
.

9For an early discussion on the decay B → ρπ → 3π, see [26].
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AðB− → ρ0π−Þ ¼ GF

2

X
p¼u;c

λðdÞp

��
δpuða2 − β2Þ − ap4 − rρχa

p
6 þ

3

2
ðap7 þ ap9 Þ þ

1

2
ðap10 þ rρχa

p
8 Þ

− βp3 − βp3;EW

�
πρ

XðB−π;ρÞ þ ½δpuða1 þ β2Þ þ ap4 − rπχa
p
6 þ ap10 − rπχa

p
8

þ βp3 þ βp3;EW�ρπXðB−ρ;πÞ
	
; ð4:55Þ

with the chiral factor

rρχðμÞ ¼ 2mρ

mbðμÞ
f⊥ρ ðμÞ
fρ

ð4:56Þ

and the factorizable matrix elements

XðB−π;ρÞ ¼ 2fρmBpcFBπ
1 ðm2

ρÞ; XðB−ρ;πÞ ¼ 2fπmBpcA
Bρ
0 ðm2

πÞ; ð4:57Þ

where we have followed [27] for the definitions of B → P and B → V transition form factors.
The so-called Gounaris-Sakurai model [7] is a popular approach for describing the broad ρð770Þ resonance. The line

shape is introduced in Eq. (2.25). Note that the GS line shape for ρð770Þ was employed by both BABAR [8] and LHCb
[9,10] in their analysis of the ρð770Þ resonance in the B− → πþπ−π− decay.
For the three-body decay amplitude Aρð770Þ ≡ AðB− → ρ0ð770Þπ− → π−ðp1Þπþðp2Þπ−ðp3ÞÞ, factorization leads to the

expression [15]

Aρð770Þ ¼ −
GF

2

X
p¼u;c

λðdÞp gρ→πþπ−Fðs23; mρÞTGS
ρ ðs23Þðs12 − s13Þ

×

�
fπ

�
mρA

Bρ
0 ðm2

πÞ þ
1

2

�
mB −mρ −

m2
B − s23

mB þmρ

�
ABρ
2 ðm2

πÞ
�

× ½δpuða1 þ β2Þ þ ap4 − rπχa
p
6 þ ap10 − rπχa

p
8 þ βp3 þ βp3;EW�ρπ þmρfρFBπ

1 ðs23Þ

×

�
δpuða2 − β2Þ − ap4 − rρχa

p
6 þ

3

2
ðap7 þ ap9 Þ þ

1

2
ðap10 þ rρχa

p
8 Þ − βp3 − βp3;EW

�
πρ

	
þ ðs23 ↔ s12Þ: ð4:58Þ

Penguin annihilation terms characterized by β2, β3, and β3;EW, which are absent in naïve factorization, are included here.
Note that

s12 − s13 ¼ −4p⃗1 · p⃗2 ¼ 4p⃗1 · p⃗3 ¼ 4jp⃗1jjp⃗3j cos θ ð4:59Þ

in the rest frame of πþðp2Þ and π−ðp3Þ with the expressions of jp⃗ij (i ¼ 1, 2, 3) given in Eq. (4.14). Then we can write

Aρð770Þ ¼ −gρ→πþπ−Fðs23; mρÞTGS
ρ ðs23Þ2q cos θÃðB− → ρπ−Þ þ ðs23 ↔ s12Þ; ð4:60Þ

with q already introduced in Eq. (4.14), where

ÃðB− → ρπ−Þ ¼ GF

2

X
p¼u;c

λðdÞp f½δpuða1 þ β2Þ þ ap4 þ � � ��ρπX̃ðB−ρ;πÞ þ ½δpuða2 − β2Þ − ap4 þ � � ��πρX̃ðB−π;ρÞg; ð4:61Þ

with
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X̃ðB−π;ρÞ ¼ 2fρmBp̃cFBπ
1 ðs23Þ;

X̃ðB−ρ;πÞ ¼ 2fπmBp̃c

�
ABρ
0 ðm2

πÞ þ
1

2mρ

�
mB −mρ −

m2
B − s23

mB þmρ

�
ABρ
2 ðm2

πÞ
�
: ð4:62Þ

The decay rate is given by

ΓðB− → ρπ− → πþπ−π−Þ ¼ 1

2

1

ð2πÞ332m3
B

Z
ds23ds12

�jgρ→πþπ− j2Fðs23; mρÞ2ð1þDΓ0
ρ=mρÞ2

ðs23 −m2
ρ − fðs23ÞÞ2 þm2

ρΓ2
ρðs23Þ

× 4q2cos2θjÃðB− → ρπ−Þj2 þ ðs23 ↔ s12Þ þ interference

	
: ð4:63Þ

One can integrate out the angular distribution part by noting thatZ ðs12Þmax

ðs12Þmin

ds12cos2θ ¼ 2

3a
¼ 4

3

mBffiffiffiffiffiffi
s23

p qp̃c: ð4:64Þ

In the narrow width limit,

mρΓρðsÞð1þDΓ0
ρ=mρÞ2

ðs −m2
ρ − fðsÞÞ2 þm2

ρΓ2
ρðsÞ
⟶
Γρ→0

πδðs −m2
ρ − fðsÞÞ: ð4:65Þ

We see from Eq. (2.27) that fðsÞ vanishes when s → m2
ρ. Hence, the δ-function implies s → m2

ρ in the zero width limit. As a
result, p̃c → pc, q → q0, and ÃðB− → ρπ−Þ → AðB− → ρπ−Þ. We then obtain the desired factorization relation

ΓðB− → ρπ− → πþπ−π−Þ⟶Γρ→0
ΓðB− → ρπ−ÞBðρ → πþπ−Þ; ð4:66Þ

where use of the relations

Γρ→πþπ− ¼ q30
6πm2

ρ
g2ρ→πþπ− ; ΓB−→ρπ− ¼ pc

8πm2
B
jAðB− → ρπ−Þj2 ð4:67Þ

has been made.
Numerical results.—
To compute the flavor operators api ðρπÞ and api ðπρÞ in QCDF, we need to specify the parameters ρA;H and ϕA;H for

penguin annihilation and hard spectator scattering diagrams. For B → VP decays, we use the superscripts “I” and “f,”

Xi;f
A ¼ ln

�
mB

Λh

�
ð1þ ρi;fA eiϕ

i;f
A Þ; ð4:68Þ

to distinguish the gluon emission from the initial- and final-state quarks, respectively. We shall use

ðρiA; ρfAÞPV ¼ ð2.87þ0.66
−1.95 ; 0.91

þ0.12
−0.13Þ; ðϕi

A;ϕ
f
AÞPV ¼ ð−145þ14

−21 ;−37
þ10
−9 Þ° ð4:69Þ

and the first order approximation of ρH ≈ ρiA and ϕH ≈ ϕi
A (see [28] for details). This leads to

βp2 ðρπÞ ¼ 0.025þ 0.011i; ðβp3 þ βp3;EWÞðρπÞ ¼ 0.034 − 0.030i;

βp2 ðπρÞ ¼ −0.018 − 0.008i; ðβp3 þ βp3;EWÞðπρÞ ¼ 0.026 − 0.021i ð4:70Þ

and the flavor operators api ðρπÞ and api ðπρÞ shown in Table II.
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Following [29], we obtain in QCDF,

BðB− → ρð770Þπ−ÞQCDF ¼ ð8.18þ1.67
−0.81Þ × 10−6;

ACPðB− → ρð770Þπ−ÞQCDF ¼ ð0.36þ5.36
−4.54Þ%; ð4:71Þ

where use of the decay constants fρ ¼ 216 MeV and
f⊥ρ ðμ ¼ 1 GeVÞ ¼ 165 MeV [29] has been made. For
the finite-width Γ0

ρ ¼ 149.1� 0.8 MeV, we find

BðB− → ρð770Þπ− → πþπ−π−Þ ¼ ð8.76þ1.86
−1.68Þ × 10−6;

ACPðB− → ρð770Þπ− → πþπ−π−Þ ¼ −ð0.24þ0.46
−0.54Þ%;

ð4:72Þ

and

ηGS;QCDFρπ ¼ 0.931 ð0.855Þ; ð4:73Þ

with negligible uncertainties, where the value in paren-
theses is obtained with Fðs;mf2Þ ¼ 1. The same results for

ηGS;QCDFρπ can also be obtained using Eqs. (2.31) and (4.60).
The deviation of ηGSρ from unity at 7% level is contrasted
with the ratio Γρ=mρ ¼ 0.192. For comparison, using the
Breit-Wigner model to describe the ρ line shape, we get

ηBW;QCDF
ρπ ¼ 1.111� 0.001; ð1.033Þ: ð4:74Þ

In the experimental parametrization scheme, we obtain

ηGS;EXPPρπ ¼ 0.950; ηBW;EXPP
ρπ ¼ 1.152� 0.001: ð4:75Þ

The parameter ηρ as a function of the ρð770Þ width is
shown in Fig. 3 for both Gounaris-Sakurai and Breit-
Wigner line shape models and for both QCDF and EXPP
schemes.
As shown in Eq. (2.32), the expression of ηGSρ is the same

as that of ηBWρ except for an additional r2 ≡ ð1þ
DΓ0

ρ=mρÞ2 factor in the denominator. This r2 term accounts
for the fact that ηGSρ < 1 < ηBWρ in both QCDF and EXPP
schemes. Since the Gounaris-Sakurai line shape was
employed by both BABAR and LHCb Collaborations in
their analyses of the ρ resonance in B− → πþπ−π− decay,
the branching fraction of B− → ρπ− should be corrected
using ηGSρ rather than ηBWρ .
From the measured branching fraction BðB− →

ρð770Þπ− → πþπ−π−Þ ¼ ð8.44� 0.87Þ × 10−6 by LHCb
[9,10] and ð8.1� 0.7� 1.2þ0.4

−1.1Þ × 10−6 by BABAR [8],
we obtain the world average

(a) (b)

FIG. 3. Same as Fig. 1 for the ρð770Þ resonance mediating the B− → πþπ−π− decay using (a) the Gounaris-Sakurai model and (b) the
Breit-Wigner model to describe its line shape.

TABLE II. Numerical values of the flavor operators api ðM1M2Þ for M1M2 ¼ ρð770Þπ and πρð770Þ at the scale
μ ¼ mbðmbÞ ¼ 4.18 GeV.

api ρπ πρ api ρπ πρ

a1 1.007þ 0.108i 1.000þ 0.095i ac6 −0.045 − 0.005i −0.013 − 0.006i
a2 0.135 − 0.379i 0.158 − 0.340i a7 ð−0.13þ 2.9iÞ10−4 ð−0.3þ 2.6iÞ10−4
a3 0.0008þ 0.0183i −0.0004þ 0.016i au8 ð5.2 − 1.0iÞ10−4 ð−8.9 − 8.5iÞ10−5
au4 −0.026 − 0.022i −0.026 − 0.021i ac8 ð5.0 − 0.5iÞ10−4 ð−10.7 − 3.7iÞ10−5
ac4 −0.030 − 0.013i −0.031 − 0.012i a9 ð−9.1 − 0.9iÞ10−3 ð−9.0 − 0.8iÞ10−3
a5 0.0018 − 0.0247i 0.004 − 0.022i au10 ð−0.9þ 3.3iÞ10−3 ð−1.1þ 2.9iÞ10−3
au6 −0.042 − 0.014i −0.010 − 0.015i ac10 ð−0.9þ 3.3iÞ10−3 ð−1.2þ 3.0iÞ10−3

CHENG, CHIANG, and CHUA PHYS. REV. D 103, 036017 (2021)

036017-18



BðB− → ρð770Þπ− → πþπ−π−Þexpt ¼ ð8.36� 0.77Þ× 10−6:

ð4:76Þ

It is worth emphasizing that the CP asymmetry for the
quasi-two-body decay B− → ρ0π− has been found by
LHCb to be consistent with zero in all three S-wave
approaches. For example, ACPðρ0π−Þ ¼ ð0.7� 1.9Þ% in
the isobar model [9,10]. However, previous theoretical
predictions all lead to a negative CP asymmetry for

B− → ρ0π−, ranging from −7% to −45% (see [28] for a
detailed discussion). The QCDF results for the branching
fraction and CP asymmetry presented in Eq. (4.72) agree
with experiment.

2. ρð770ÞK −

The three-body decay amplitude Aρð770ÞK− ≡ AðB− →
K−ρð770Þ → K−ðp1Þπþðp2Þπ−ðp3ÞÞ has the expression

Aρð770ÞK− ¼ −
GF

2

X
p¼u;c

λðsÞp gρ→πþπ−Fðs23; mρÞTGS
ρ ðs23Þðs12 − s13Þ

×

�
fK

�
mρA

Bρ
0 ðm2

KÞ þ
1

2

�
mB −mρ −

m2
B − s23

mB þmρ

�
ABρ
2 ðm2

KÞ
�

× ½δpuða1 þ β2Þ þ ap4 þ ap10 − rKχ ðap6 þ ap8 Þ þ βp3 þ βp3;EW�ρK
þmρfρFBK

1 ðs23Þ
�
δpua2 þ

3

2
ðap7 þ ap9 Þ

�
Kρ

	
;

¼ −gρ→πþπ−Fðs23; mρÞTGS
ρ ðs23Þ2q cos θÃðB− → ρK−Þ; ð4:77Þ

where use of Eq. (4.59) has been made, and ÃðB− → ρK−Þ has the same expression as the QCDF amplitude for the quasi-
two-body decay B− → ρK− [14],

AðB− → ρK−Þ ¼ GF

2

X
p¼u;c

λðsÞp

�
2fρmBpcFBK

1 ðm2
ρÞ
�
δpua2 þ

3

2
ðap7 þ ap9 Þ

�
Kρ

þ 2fKmBpcA
Bρ
0 ðm2

KÞ½δpuða1 þ β2Þ þ ap4 þ ap10 − rKχ ðap6 þ ap8 Þ þ βp3 þ βp3;EW�ρK
	
; ð4:78Þ

except for a replacement of pcFBK
1 ðm2

ρÞ by p̃cFBK
1 ðs23Þ and

ABρ
0 ðm2

KÞ by

ABρ
0 ðm2

KÞ þ
1

2mρ

�
mB −mρ −

m2
B − s23

mB þmρ

�
ABρ
2 ðm2

KÞ: ð4:79Þ

In QCDF, we obtain

BðB− → ρð770ÞK−ÞQCDF ¼ ð4.03þ3.56
−1.67Þ × 10−6;

ACPðB− → ρð770ÞK−ÞQCDF ¼ ð21.6þ17.1
−16.6Þ%: ð4:80Þ

For the finite ρ width, we find

BðB− → K−ρð770Þ → K−πþπ−Þ ¼ ð4.23þ0.95
−0.84Þ × 10−6;

ACPðB− → K−ρð770Þ → K−πþπ−Þ ¼ ð20.5� 0.8Þ%;

ð4:81Þ

and

ηGS;QCDFρK ¼ 0.951� 0.003; ð0.899Þ: ð4:82Þ

As a comparison, if the Breit-Wigner model is used to
describe the ρ line shape, we are led to have

ηBW;QCDF
ρK ¼ 1.132� 0.001; ð1.086Þ: ð4:83Þ

In the experimental parametrization scheme, we obtain

ηGS;EXPPρK ¼ 0.931; ηBW;EXPP
ρK ¼ 1.128� 0.001: ð4:84Þ

The dependence of ηρ as a function of the ρð770Þ width is
shown in Fig. 4 for both the Gounaris-Sakurai and Breit-
Wigner line shape models. It is evident that ηρπ and ηρK are
close to each other, as it should be. Our predictions in
Eq. (4.81) are consistent with the data,

BðB− → K−ρð770Þ → K−πþπ−ÞPDG ¼ ð3.7� 0.5Þ
× 10−6;

ACPðB− → K−ρð770Þ → K−πþπ−ÞPDG ¼ 0.37� 0.10:

ð4:85Þ
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3. K�ð892Þ
For the three-body decay amplitude AK�ð892Þ ≡ AðB− → K̄�0ð892Þπ− → K−ðp1Þπþðp2Þπ−ðp3ÞÞ, factorization leads to

the expression

AK�ð892Þ ¼ −
GFffiffiffi
2

p
X
p¼u;c

λðsÞp gK
�→K−πþFðs12; mK�ÞTBW

K� ðs12Þ
�
s13 − s23 −

ðm2
B −m2

πÞðm2
K −m2

πÞ
s12

�

×

�
ap4 −

1

2
ap10 þ rK

�
χ

�
ap6 −

1

2
ap8

�
þ δpuβ

p
2 þ βp3 þ βp3;EW

�
πK�

mK�fK�FBπ
1 ðs12Þ: ð4:86Þ

Since

s13 − s23 −
ðm2

B −m2
πÞðm2

K −m2
πÞ

s12
¼ 4p⃗2 · p⃗3 ¼ 4jp⃗2jjp⃗3j cos θ ð4:87Þ

in the rest frame of K−ðp1Þ and πþðp2Þ, the three-body amplitude can be recast to

AK�ð892Þ ¼ −gK̄�→K−πþFðs12; mK� ÞTBW
K� ðs12Þ2q cos θÃðB− → K̄�0ð892Þπ−Þ; ð4:88Þ

where ÃðB− → K̄�0ð892Þπ−Þ has the same expression as the QCDF amplitude for the quasi-two-body decay B− →
K̄�0ð892Þπ− [14],

AðB− → K̄�0π−Þ ¼ GFffiffiffi
2

p
X
p¼u;c

λðsÞp

�
ap4 −

1

2
ap10 þ rK

�
χ

�
ap6 −

1

2
ap8

�
þ βp2δpu þ βp3 þ βp3;EW

�
πK�

2fK�mBpcFBπ
1 ðm2

K� Þ; ð4:89Þ

except for a replacement of pcFBπ
1 ðm2

K�Þ by p̃cFBπ
1 ðs12Þ. It is then straightforward to show the factorization relation

ΓðB− → K̄�0ð892Þπ− → K−πþπ−Þ⟶ΓK�→0
ΓðB− → K̄�0ð892Þπ−ÞBðK̄�0ð892Þ → πþπ−Þ ð4:90Þ

being valid in the narrow width limit.
In QCDF, we obtain

BðB− → K̄�0ð892Þπ−Þ ¼ ð10.4þ1.8
−1.7Þ × 10−6;

ACPðB− → K̄�0ð892Þπ−Þ ¼ ð0.16þ0.17
−0.14Þ%; ð4:91Þ

and

βp2 ðπK�Þ ¼ 0.017þ 0.006i; ðβp3 þ βp3;EWÞðπK�Þ ¼ −0.027þ 0.022i: ð4:92Þ

(a) (b)

FIG. 4. Same as Fig. 3 except that the ρð770Þ state is the resonance produced in the decay B− → K−πþπ−.
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For the finite-width Γ0
K�0 ¼ 47.3� 0.5 MeV, we find

BðB− → K̄�0ð892Þπ− → K−πþπ−Þ ¼ ð6.52þ1.59
−1.42Þ× 10−6;

ACPðB− → K̄�0ð892Þπ− → K−πþπ−Þ ¼ ð0.166� 0.002Þ%;

ð4:93Þ
and

ηBW;QCDF
K� ¼ 1.067� 0.002; ð0.9914� 0.0001Þ: ð4:94Þ
As for the ηK� parameter in the experimental parametriza-
tion, we obtain

ηEXPPK� ¼ 1.075�0.001; η0EXPPK� ¼ 1.059�0.001: ð4:95Þ
The dependence of ηK� in QCDF and in experimental
parametrization is shown in Fig. 5.
The deviation of ηK� from unity is roughly consistent

with the expectation from the ratio ΓK�=mK� ¼ 0.053.
Experimentally, the average of BABAR [12] and Belle
[30] measurements yields

BðB− → K̄�0ð892Þπ− → K−πþπ−Þexpt
¼ ð6.71� 0.57Þ × 10−6: ð4:96Þ

The result of the QCDF calculation of the branching
fraction given in Eq. (4.93) agrees with experimental data.

C. Scalar resonances

For examples of scalar intermediate states, we shall take
the processes B− → σ=f0ð500Þπ− → πþπ−π− and B− →
K̄�

0ð1430Þπ− → K−πþπ− to illustrate their finite-width
effects. Since K�

0ð1430Þ and especially σ are very broad,
they are expected to exhibit large width effects.10

1. σ=f 0ð500Þ
In QCDF, the decay amplitude of B− → σπ− is given by

(see Eq. (A6) of [32])

AðB− → σπ−Þ ¼ GFffiffiffi
2

p
X
p¼u;c

λðdÞp

�
½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �σπXðBσ;πÞ

þ
�
a2δpu þ 2ðap3 þ ap5 Þ þ

1

2
ðap7 þ ap9 Þ þ ap4 −

1

2
ap10 −

�
ap6 −

1

2
ap8

�
r̄σχ

�
πσ

XðBπ;σÞ

− fBfπf̄uσ ½δpub2ðπσÞ þ b3ðπσÞ þ b3;EWðπσÞ þ ðπσ → σπÞ�
	
; ð4:97Þ

where the factorizable matrix elements read

XðBσ;πÞ ¼ −fπFBσu
0 ðm2

πÞðm2
B −m2

σÞ; XðBπ;σÞ ¼ f̄uσFBπ
0 ðm2

σÞðm2
B −m2

πÞ; ð4:98Þ

and r̄σχðμÞ ¼ 2mσ=mbðμÞ. The superscript u in the scalar decay constant f̄uσ and the form factor FBσu refers to the u quark
component of the σmeson. The scale-dependent scalar decay constant is defined by hσjūuj0i ¼ mσf̄uσ.We follow [28] to take
f̄uσ ¼ 350 MeV at μ ¼ 1 GeV and FBσu

0 ð0Þ ¼ 0.25, where the Clebsch-Gordon coefficient 1=
ffiffiffi
2

p
is included in f̄uσ and FBσu

0 .
As discussed in Sec. II. E, σ is too broad to be described by the usual Breit-Wigner line shape.11 We thus follow

the LHCb Collaboration [10] to use the simple pole description,12

FIG. 5. Same as Fig. 1 for the resonance K�ð892Þ produced in
the three-body decay B− → K−πþπ−.

12In the analysis of B0 → D̄0πþπ− decays [33], LHCb has adopted the Bugg model [34] to describe the line shape of σ=f0ð500Þ.
However, the parametrization used in this model is rather complicated and the mass parameterM ∼ 1 GeV is not directly related to the σ
pole mass. Hence, we shall follow [10] to assume a simple pole model.

10The finite-width effect for σ=f0ð500Þ had been considered in [31].
11Another issue with the Breit-Wigner line shape is that the Breit-Wigner mass and width agree with the pole parameters only if the

resonance is narrow.
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TσðsÞ ¼
1

s − sσ
¼ 1

s −m2
σ þ Γ2

σðsÞ=4þ imσΓσðsÞ
;

ð4:99Þ

with
ffiffiffiffiffi
sσ

p ¼ mσ − iΓσ=2 and

ΓσðsÞ ¼ Γ0
σ

�
q
q0

�
mσffiffiffi
s

p : ð4:100Þ

Using the isobar description of the πþπ− S-wave to fit the
Bþ → πþπ−πþ decay data, the LHCb Collaboration found
[10] ffiffiffiffiffi

sσ
p ¼ ð563� 10Þ − ið350� 13Þ MeV; ð4:101Þ

consistent with the PDG value of
ffiffiffiffiffi
sσ

p ¼ ð400–550Þ −
ið200–350Þ MeV [3].
With Aσ ≡ AðB− → σπ− → πþπ−π−Þ, factorization

leads to [15]

Aσ ¼
GF

2

X
p¼u;c

λðdÞp gσ→πþπ−Fðs23; mσÞTσðs23Þ
�
X̃ðBσ;πÞ½a1δpu þ ap4 þ ap10 − ðap6 þ ap8 Þrπχ �σπ

þ X̃ðBπ;σÞ
�
a2δpu þ 2ðap3 þ ap5 Þ þ

1

2
ðap7 þ ap9 Þ þ ap4 −

1

2
ap10 −

�
ap6 −

1

2
ap8

�
r̄σχ

�
πσ

	
þ ðs23 ↔ s12Þ

¼ gσ→πþπ−Fðs23; mσÞTσðs23ÞÃðB− → σπ−Þ þ ðs23 ↔ s12Þ; ð4:102Þ

with

X̃ðBσ;πÞ ¼ −fπðm2
B − s23ÞFBσu

0 ðm2
πÞ; X̃ðBπ;σÞ ¼ f̄uσðm2

B −m2
πÞFBπ

0 ðs23Þ: ð4:103Þ

Its decay rate reads

ΓðB− → σπ− → πþπ−π−Þ ¼ 1

2

1

ð2πÞ332m3
B

Z
ds23ds12

� jgσ→πþπ− j2Fðs23; mσÞ2
ðs23 −m2

σ þ Γσðs23Þ=4Þ2 þm2
σΓ2

σðs23Þ

× jÃðB− → σπ−Þj2 þ ðs23 ↔ s12Þ þ interference
	
: ð4:104Þ

Note that

Z ðs12Þmax

ðs12Þmin

ds12 ¼
2

a
¼ 4

mBffiffiffiffiffiffi
s23

p qp̃c: ð4:105Þ

Applying the relations

Γσ→πþπ− ¼ q0
8πm2

σ
g2σ→πþπ− ;

ΓB−→σπ− ¼ pc

8πm2
B
jAðB− → σπ−Þj2; ð4:106Þ

we arrive at the desired factorization relation13

ΓðB−→σπ−→πþπ−π−Þ⟶Γσ→0
ΓðB−→σπ−ÞBðσ→πþπ−Þ:

ð4:107Þ

Using the input parameters given in [15], we obtain

BðB− → σπ−ÞQCDF ¼ ð5.31þ0.20þ1.33þ0.89
−0.19−1.18−1.33 Þ × 10−6;

ACPðB− → σπ−ÞQCDF ¼ ð15.06þ0.30þ0.02þ8.34
−0.29−0.03−11.34Þ% ð4:108Þ

in QCDF. For the finite-width Γ0
σ ¼ 700� 26 MeV, we

find

BðB− → σπ− → πþπ−π−Þ ¼ ð1.65þ0.42
−0.37Þ × 10−6;

ACPðB− → σπ− → πþπ−π−Þ ¼ ð14.7� 0.1Þ%; ð4:109Þ

and

ηQCDFσ ¼ 2.15� 0.05 ð1.629� 0.025Þ;
ηEXPPσ ¼ 1.64� 0.03; ð4:110Þ

13In the LHCb paper, the square of the pole position is defined
by

ffiffiffiffiffi
sσ

p ¼ mσ − iΓσ rather than mσ − iΓσ=2. In this case, the left-
hand side of the factorization relation in Eq. (4.107) should be
multiplied by a factor of 2.
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where use of Eq. (2.37) has been made for the calculation of
ηEXPPσ . The dependence of ησ on the σ width is shown in

Fig. 6. Thus, the width correction is very large here. In
Sec. V. B, we shall discuss its implications.
The LHCb measurement analyzed in the isobar model

[9,10] yields

BðB− → σπ− → πþπ−π−Þexpt ¼ ð3.83� 0.84Þ × 10−6;

ACPðB− → σπ− → πþπ−π−Þexpt ¼ ð14.9þ0.5
−0.6Þ%: ð4:111Þ

We see that while the calculated CP asymmetry in
Eq. (4.109) based on QCDF is in excellent agreement with
experiment, the predicted branching fraction is smaller than
the measurement by a factor of about 2.

2. K�
0ð1430Þ

For the three-body decay amplitude AK�
0
ð1430Þ≡

AðB− → K̄�
0ð1430Þ0π− → K−ðp1Þπþðp2Þπ−ðp3ÞÞ, factori-

zation leads to the expression

AK�
0
ð1430Þ ¼

GFffiffiffi
2

p
X
p¼u;c

λðsÞp gK
�
0
→K−πþFðs12; mK�

0
ÞTBW

K�
0
ðs12Þ

�
ap4 −

1

2
ap10 − r

K�
0

χ

�
s12
m2

K�
0

��
ap6 −

1

2
ap8

�

þ δpuβ
p
2 þ βp3 þ βp3;EW

�
πK�

fK̄�
0
FBπ
0 ðs12Þðm2

B −m2
πÞ

¼ gK
�
0
→K−πþFðs12; mK�

0
ÞTBW

K�
0
ðs12ÞÃðB− → K̄�

0ð1430Þ0π−Þ; ð4:112Þ
where

r
K�

0
χ ðμÞ ¼

2m2
K�

0

mbðμÞðmsðμÞ −mqðμÞÞ
; ð4:113Þ

and the vector decay constant of K̄�
0ð1430Þ is related to the scalar one defined by hK̄�

0js̄dj0i ¼ mK�
0
f̄K̄�

0
via14

fK̄�
0
¼ msðμÞ −mqðμÞ

mK�
0

f̄K̄�
0
: ð4:114Þ

In QCDF, the decay amplitude of B− → K̄�0
0 π− reads [32]

AðB− → K̄�0
0 π−Þ ¼ GFffiffiffi

2
p

X
p¼u;c

λðsÞp

�
ap4 − r

K�
0

χ ap6 −
1

2
ðap10 − r

K�
0

χ ap8 Þ þ δpuβ
p
2 þ βp3 þ βp3;EWÞ

�
πK�

0

× fK̄�
0
FBπ
0 ðm2

K�
0
Þðm2

B −m2
πÞ: ð4:115Þ

It is obvious that ÃðB− → K̄�
0ð1430Þ0π−Þ has the same expression as AðB− → K̄�0

0 π−Þ except that the chiral factor rK�
0

χ is
multiplied by a factor of s12=m2

K�
0
(see also [36]) and the form factor FBπ

0 ðm2
K�

0
Þ is replaced by FBπ

0 ðs12Þ. As before, we have
the factorization relation

ΓðB− → K̄�0
0 π− → K−πþπ−Þ⟶

ΓK�
0
→0

ΓðB− → K̄�0
0 π−ÞBðK̄�0

0 → πþπ−Þ: ð4:116Þ

FIG. 6. The parameter ησ as a function of the σ width, where the
solid curve is derived from the QCDF calculation and the dashed
curve from the EXPP.

14The decay constants of a scalar meson and its antiparticle are related by f̄S̄ ¼ f̄S and fS̄ ¼ −fS [35]. Hence, the vector decay
constants of K�

0ð1430Þ and K̄�
0ð1430Þ are of opposite signs. Using the QCD sum rule result for f̄K̄�

0
[32], we obtain

fK̄�
0
ð1430Þ ¼ 36.4 MeV.
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Following [32,35], we obtain

βp2 ðπK�
0Þ ¼ −0.0969; ðβp3 þ βp3;EWÞðπK�

0Þ ¼ −0.0323;

ð4:117Þ

and

BðB− → K̄�
0ð1430Þ0π−Þ ¼ ð13.6þ39.9

−9.3 Þ × 10−6;

ACPðB− → K̄�
0ð1430Þ0π−Þ ¼ ð1.27þ5.84

−4.75Þ%: ð4:118Þ

For the finite-width ΓK�
0
ð1430Þ ¼ 270� 80 MeV, we find

BðB− → K̄�
0ð1430Þ0π− →K−πþπ−Þ ¼ ð10.2þ3.0

−2.3Þ× 10−6;

ACPðB− → K̄�
0ð1430Þ0π− →K−πþπ−Þ ¼ ð1.12� 0.01Þ%;

ð4:119Þ

and

ηQCDFK�
0

¼ 0.83� 0.04; ð0.31þ0.08
−0.05Þ;

ηEXPPK�
0

¼ 1.11� 0.03: ð4:120Þ

The dependence of ηK�
0
on the K�

0ð1430Þwidth in the Breit-
Wigner model is shown in Fig. 7. When off-shell effects on
the strong coupling gK̄

�
0
→K−πþ are turned off, ηQCDFK�

0
is of

order 0.30, rendering an extremely large deviation from
unity, even much larger than ησ. Off-shell effects are
particularly significant in this mode because the seemingly
large QCDF enhancement in the large s12 region is sup-
pressed by the form factor Fðs12; m2

K�
0
Þ. As a consequence,

ηQCDFK�
0

becomes about 0.83.

It has been argued that the Breit-Wigner parametrization
is not appropriate for describing the broad K�

0ð1430Þ
resonance. LASS line shape is an alternative and popular
description of the K�

0ð1430Þ component proposed by the

LASS Collaboration [37]. In the analysis of three-body
decays of Bmesons, BABAR and Belle often adopt different
definitions for the K�

0ð1430Þ resonance and nonresonant.
While Belle (see, e.g., [30]) employed the relativistic Breit-
Wigner model to describe the line shape of the K�

0ð1430Þ
resonance and an exponential parametrization for the
nonresonant contribution, BABAR [12] used the LASS
parametrization to describe the elastic Kπ S-wave and
the K�

0ð1430Þ resonance by a single amplitude [37]

TLASS
K�

0
ðsÞ ¼

ffiffiffi
s

p
q cot δB − iq

− e2iδB
m0Γ0

m0

q0

s −m2
0 þ im0Γ0

q
q0

m0ffiffi
s

p ;

ð4:121Þ

with

cot δB ¼ 1

aq
þ 1

2
rq; ð4:122Þ

where q is the c.m. momentum of K− and πþ in the
K�

0ð1430Þ rest frame and q0 is the value of qwhen s ¼ m2
K�

0
.

The second term of TLASS
K�

0
is similar to the relativistic Breit-

Wigner function TBW
K�

0
except for a phase factor δB intro-

duced to retain unitarity. The first term is a slowly varying
nonresonant component.
The nonresonant branching fraction ð2.4� 0.5þ1.3

−1.5Þ ×
10−6 in B− → K−πþπ− reported by BABAR [12] is much
smaller than ð16.9� 1.3þ1.7

−1.6Þ × 10−6 measured by Belle
(see Table III). In the BABAR analysis, the nonresonant
component of the Dalitz plot is modeled as a constant
complex phase-space amplitude. Since the first part of the
LASS line shape is really nonresonant, it should be added
to the phase-space nonresonant piece to get the total
nonresonant contribution. Indeed, by combining coherently
the nonresonant part of the LASS parametrization and the
phase-space nonresonant, BABAR found the total nonreso-
nant branching fraction to be ð9.3� 1.0� 1.2þ6.8

−1.3Þ × 10−6.
Evidently, the BABAR result is now consistent with Belle
within errors. For the resonant contributions from
K�

0ð1430Þ, the BABAR results were obtained from
ðKπÞ�00 π− by subtracting the elastic range term from the
Kπ S-wave [12], namely, the Breit-Wigner component of

TABLE III. Branching fractions (in units of 10−6) of resonant
and nonresonant (NR) contributions to B− → K−πþπ−. Note that
the BABAR’s branching fraction ð2.4� 0.5þ1.3

−1.5 Þ × 10−6 given in
Table II of [12] is for the phase-space nonresonant contribution to
B− → K−πþπ−.

Decay mode BABAR [12] Belle [30]

K̄�0
0 ð1430Þπ− 19.8� 0.7� 1.7þ5.6

−0.9 � 3.2 32.0� 1.0� 2.4þ1.1
−1.9

NR 9.3� 1.0� 1.2þ6.7
−0.4 � 1.2 16.9� 1.3� 1.3þ1.1

−0.9

FIG. 7. Same as Fig. 6 for the resonance K̄�
0ð1430Þ produced in

the three-body decay B− → K−πþπ−.
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the LASS parametrization.15 Although both BABAR and
Belle employed the Breit-Wigner model to describe the line
shape of K�

0ð1430Þ, the discrepancy between BABAR and
Belle for the K�

0π mode remains an issue to be resolved.
Note that our calculation of BðB− → K̄�

0ð1430Þ0π− →
K−πþπ−Þ in Eq. (4.119) based on QCDF is smaller by a
factor of 2 (3) when compared to the BABAR (Belle)
measurement. If we follow PDG [3] to apply the naïve
factorization relation (1.1), we will obtain using Table III
the branching fraction of B− → K̄�

0ð1430Þπ− to be ð32.0�
1.2þ10.8

−6.0 Þ × 10−6 from BABAR16 and ð51.6� 1.7þ7.0
−7.5Þ ×

10−6 from Belle. Obviously, they are much larger than
the QCDF prediction given in Eq. (4.118). Indeed, as
pointed out before [32,35], this has been a long-standing
puzzle that for scalar resonances produced in B decays, the
QCDF predictions of B− → K̄�0

0 ð1430Þπ− and B̄0 →
K�−

0 ð1430Þπþ are in general too small compared to experi-
ment by a factor of 2 ∼ 4. Nevertheless, when the finite-
width effect is taken into account, the PDG values of
BðB− → K̄�0

0 ð1430Þπ−Þ should be reduced by multiplying
a factor of ηQCDFK�

0
≃ 0.83 or further enhanced by a factor of

ηEXPPK�
0

≃ 1.10, depending on the scheme.

V. DISCUSSIONS

A. Finite-width and off-shell effects

In Table IV, we give a summary of the ηR parameters
calculated using QCDF and the experimental parametriza-
tion for various resonances produced in the three-body B
decays. Since the strong coupling of Rðm12Þ → P1P2 will
be suppressed by the form factor Fðs12; mRÞ when m12 is
off shell from mR [see Eq. (4.20)], this implies a

suppression of the three-body decay rate in the presence
of off-shell effects. Therefore, ηQCDFR is always larger than
η̄QCDFR , with the latter defined for Fðs;mRÞ ¼ 1. We see
from Table IV that off-shell effects are small in vector
meson productions, but prominent in the K�

2ð1430Þ,
σ=f0ð500Þ, andK�

0ð1430Þ resonances. Also, the parameters
ηQCDFR and ηEXPPR are similar for vector mesons, but different
for tensor and scalar resonances. To understand the origin
of their differences, we need to study the differential
decay rates.
In Fig. 8, we show the normalized differential rates of the

B− → Rπ− → K−πþπ− and B− → K−R→ K−πþπ− decays
with R ¼ K̄�0ð980Þ, K̄�0

0 ð1430Þ, K̄0
2ð1430Þ, and ρ0, respec-

tively, in the left plots. The plots blown up in the resonance
regions are also shown in the right plots. Note that the
figures on the right are scaled by a factor of ðπ=2ÞΓR or
ðπ=2r2ÞΓ0

ρ with r≡ ð1þDΓ0
ρ=mρÞ. For the B− → K−ρ0 →

K−πþπ− decay, we only show the result using the
Gounaris-Sakurai line shape, as this is employed by the
experimental parametrization for the ρ resonance. The
normalized differential rates obtained from the QCDF
calculation and the experimental parametrization are shown
in the plots. For R ¼ K̄�0 and K̄0

2, we also show the results
using the experimental parametrization with or without
enforcing the transversality condition [see Eqs. (3.2) and
(3.10)]. They are plotted in dashed and dotted curves,
respectively. Removing the transversality condition has
mild effects on the normalized differential rates and little
impacts on their values at the resonances.
As shown in Eqs. (2.20) and (2.32), ηR in these decays

are given by

ηR ¼ 1

2
πΓR

dΓ̃ðmRÞ
dmKπ

; ηGSρ ¼ πΓ0
ρ

2ð1þDΓ0
ρ=mρÞ2

dΓ̃ðmρÞ
dmππ

:

ð5:1Þ
From the right plots in Fig. 8, one can read off the values
of ηR from the height of the curves at the resonances.

TABLE IV. A summary of the ηR parameter for various resonances produced in the three-body B decays. Off-shell effects on the
strong coupling gR→h1h2 are taken into account in the determination of ηQCDFR but not in η̄QCDFR . Uncertainties in ηR are not specified
whenever negligible.

Resonance Bþ → Rh3 → h1h2h3 ΓR (MeV) [3] ΓR=mR η̄QCDFR ηQCDFR ηEXPPR

f2ð1270Þ Bþ → f2πþ → πþπ−πþ 186.7þ2.2
−2.5 0.146 0.974 1.003þ0.001

−0.002 0.937þ0.006
−0.005

K�
2ð1430Þ Bþ → K�0

2 πþ → Kþπ−πþ 109� 5 0.076 0.715� 0.009 0.972� 0.001 1.053� 0.002
ρð770Þ Bþ → ρ0πþ → πþπ−πþ 149.1� 0.8 0.192 0.86 (GS) 0.93 (GS) 0.95 (GS)

1.03 (BW) 1.11 (BW) 1.15 (BW)
ρð770Þ Bþ → Kþρ0 → Kþπþπ− 149.1� 0.8 0.192 0.90 (GS) 0.95 (GS) 0.93 (GS)

1.09 (BW) 1.13 (BW) 1.13 (BW)
K�ð892Þ Bþ → K�0πþ → Kþπ−πþ 47.3� 0.5 0.053 1.01 1.067� 0.002 1.075
σ=f0ð500Þ Bþ → σπþ → πþπ−πþ 700� 26 [10] ≈1.24 1.63� 0.03 2.15� 0.05 1.64� 0.03
K�

0ð1430Þ Bþ → K�0
0 πþ → Kþπ−πþ 270� 80 ≈0.19 0.31þ0.08

−0.05 0.83� 0.04 1.11� 0.03

15It should be stressed that the Breit-Wigner component of the
LASS parametrization does not lead to the factorization relation
Eq. (4.116).

16Another BABAR measurement of Bþ → K�0
0 πþ → K0

Sπ
0πþ

[38] yieldsBðBþ→K�
0ð1430ÞπþÞNWA¼ð34.6�3.3�4.6Þ×10−6.
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The values agree with those shown in Table IV. Recall
that for ΓR=mR ≪ 1, we can approximate ηR by the
integration of the normalized differential rate around the

resonance as shown in Eq. (2.24). For example, for the
B− → R0π− → K−πþπ− decays, ηR can be approximately
given by

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 8. Left column: the normalized differential rates in B− → Rπ− → K−πþπ− and B− → K−ρ → K−πþπ− decays. Right column:
plots scaled and blown-up in the resonance regions, where the heights at the resonances equal ηR. In plot (h), we use r≡ 1þDΓ0

ρ=mρ.
The solid curves come from the QCDF calculation and the dashed (dotted) curves from the experimental parametrization with (without)
the transversality condition imposed.
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ηR ≃
π

2tan−12

Z
mRþΓR

mR−ΓR

dΓ̃ðmKπÞ
dmKπ

dmKπ

¼ π

2tan−12

�
1 −

Z
elsewhere

dΓ̃ðmKπÞ
dmKπ

dmKπ

�
: ð5:2Þ

Note that for the case of ηGSρ one needs to include the
1=ð1þDΓ0

ρ=mρÞ2 factor. Numerically, we find that this
approximation works well for the decay modes consid-
ered in this section. The above equation clearly shows
that ηR represents the fraction of rates around the
resonance and it is anticorrelated with the fraction of
rates off the resonance.
From Figs. 8(a) and 8(g), we see that for R ¼ K̄�0 and ρ0

the normalized differential rates predicted by QCDF are
very similar to those obtained by using the experimental
parametrization, while for R ¼ K̄�0

0 and K̄�0
2 the QCDF

results and experimental models are different. Consequently,
as shown in Figs. 8(b) and 8(h), QCDF and the experi-
mental model give similar values on dΓ̃ðmK̄� Þ=dmKπ and
dΓ̃ðmρÞ=dmππ , resulting in η

QCDF
R ≃ ηEXPPR forR ¼ ρ andK�.

In contrast, as shown in Figs. 8(d) and 8(f), the QCDF
dΓ̃ðmK̄�

0
Þ=dmKπ and dΓ̃ðmK̄2

Þ=dmKπ are smaller than those

from the experimental model, resulting in ηQCDFK�
0
;K�

2
< ηEXPPK�

0
;K�

2
.

Using Eq. (5.2), we can relate the smallness of ηQCDFK�
0

,

comparing to ηEXPPK�
0

, to the fact that the normalized differ-

ential rate obtained in the QCDF calculation is much larger
than the one using the experimental parametrization in the
off-resonance region, particularly in the large mKπ region.
To verify the source of the enhancement, we note that, as
shown in Eq. (4.112), the mKπ dependence in the QCDF
amplitude is governed by the strong decay form factor,
Fðm2

Kπ; mK�
0
Þ, the B → π form factor, FBπ

0 ðm2
KπÞ, and am2

Kπ

factors sitting in front of the QCD penguin Wilson
coefficient ðap6 − ap8=2Þ and related to the so-called chiral
factor (rSχ ) in the two-body decay [see Eq. (4.113)]. The last
two factors are responsible for the enhancement of the
QCDF differential rate in the largemKπ region. As shown in

Eq. (3.1) and the equations below it, these two factors are
not included in the experimental parametrization for the
scalar resonance. As a result, QCDF and the experimental
parametrization give different normalized differential rates
and ηR for this mode.
The momentum dependence (such as mKπ) of weak

dynamics is mode dependent. For example, in the above
B− → K̄�

0ð1430Þπ− → K−πþπ− decay, we have a m2
Kπ

factor from the chiral factor rSχ , while the chiral factor
rVχ in the B− → K̄�ð980Þπ− → K−πþπ− decay does not
provide them2

Kπ factor [see Eq. (4.56)]. Such a difference in
the momentum dependence of weak dynamics has a visible
effect on the shape of the normalized differential rates, as
depicted in Figs. 8(a) and 8(c).
As shown in Eq. (3.1), the weak dynamics in the

experimental parametrization is basically represented by
a complex number, the coefficient c, which does not have
any momentum dependence. In the narrow width limit, the
value of the normalized differential rate is highly domi-
nated by its peak at the resonance, and the values of the
normalized differential rate elsewhere cannot compete with
it. Therefore, onlymKπðππÞ ≃mR matters and, consequently,
it is legitimate to use a momentum-independent coefficient,
namely, c, to represent the weak dynamics. However, in the
case of a broad resonance, things are generally different.
The peak at the resonance is no longer highly dominating,
as its height is affected by the values of the normalized
differential rate elsewhere. In this case, the momentum
dependence of the weak dynamics cannot be ignored and,
hence, using a momentum-independent coefficient to
represent the weak dynamics is too naïve.

B. Branching fractions of quasi-two-body decays

For given experimental measurements of BðBþ →
RP3 → P1P2P3Þ, we show in Table V various branching
fractions of the quasi-two-body decays Bþ → RP3.
BðBþ → RP3ÞNWA denotes the branching fraction obtained
from Eq. (1.2) in the NWA. Our results of BðBþ →
RP3ÞNWA for Bþ → K�0

2 ð1430Þπþ, K�0πþ, and Kþρ0

TABLE V. Branching fractions of quasi-two-body decays Bþ → RP3 (in units of 10−6) derived from the measured Bþ → RP3 →
P1P2P3 rates. BðBþ → RP3ÞNWA denotes the branching fraction obtained from Eq. (1.2) in the narrow width approximation.

Mode BðBþ → RP3 → P1P2P3Þexpt BðBþ → RP3ÞNWA ηQCDFR BðBþ → RP3ÞNWA ηEXPPR BðBþ → RP3ÞNWA

Bþ → f2πþ → πþπ−πþ 1.17� 0.20 [8–10] 2.08� 0.36 2.09� 0.36 1.95� 0.33
Bþ → K�0

2 πþ → Kþπ−πþ 1.85þ0.73
−0.50 [12,30] 5.56þ2.19

−1.50 5.40þ2.13
−1.46 5.85þ2.31

−1.58
Bþ → ρ0πþ → πþπ−πþ 8.36� 0.77 [8–10] 8.36� 0.77 7.78� 0.72 (GS) 7.95� 0.73 (GS)

9.28� 0.86 (BW)
Bþ → Kþρ0 → Kþπþπ− 3.7� 0.5 [12,30] 3.7� 0.5 3.5� 0.5 (GS) 3.4� 0.5 (GS)

4.2� 0.6 (BW)
Bþ → K�0πþ → Kþπ−πþ 6.71� 0.57 [12,30] 10.1� 0.8 10.7� 0.9 10.9� 0.9
Bþ → σπþ → πþπ−πþ 3.83� 0.84 [9,10] 5.75� 1.26 12.36� 2.71 9.44� 2.08
Bþ → K�0

0 πþ → Kþπ−πþ 27.9þ5.6
−4.3 [12,30] 45þ9

−7 37þ8
−6 50þ10

−8
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modes agree with the PDG data [3]. For Bþ →
f2ð1270Þπþ, ρ0πþ, and σπþ decays, we have included
the new measurement of Bþ → πþπþπ− performed by the
LHCb Collaboration [9,10]. As for BðBþ → K�0

0 πþÞNWA,
our value is different from ð39þ6

−5Þ × 10−6 given by PDG [3]
as the contribution of Bþ → K�0

0 πþ → K0
Sπ

0πþ [38] is
included in the latter case.
When the resonance is sufficiently broad, it is necessary

to take into account the finite-width effects characterized by
the parameter ηR. In Table V, we have shown the corrections
to BðBþ → RP3ÞNWA in both QCDF and EXPP schemes.
Although the finite-width effects are generally small, they
are significant in the Bþ → ρπþ decay and prominent in
Bþ → σ=f0ð500Þπþ and Bþ → K�0

0 ð1430Þπþ. For exam-
ple, the PDG value of BðBþ → ρπþÞ ¼ ð8.3� 1.2Þ × 10−6

[3] should be corrected to ð7.7� 1.1Þ × 10−6 in QCDF or
ð7.9� 1.1Þ × 10−6 in EXPP. The large width effects in the
σ=f0ð500Þ production imply that B− → σπ− has a large
branching fraction of order 10−5. More precisely, the LHCb
value of BðBþ → σπþÞ ¼ ð5.8� 1.3Þ × 10−6 should be
corrected to ð12.4� 2.7Þ × 10−6 in QCDF or ð9.4� 2.1Þ ×
10−6 in EXPP.

VI. CONCLUSIONS

For the branching fractions of the quasi-two-body decays
BðB → RP3Þ with R being an intermediate resonant state, it
is a common practice to apply the factorization relation, also
known as the NWA, to extract them from the measured
process B → RP3 → P1P2P3. However, such a treatment is
valid only in the narrow width limit of the intermediate
resonance, namely,ΓR → 0. In thiswork,wehave studied the
corrections to BðB → RP3Þ arising from the finite-width
effects.We consider the parameter ηR which is the ratio of the
three-body decay rate without and with the finite-width
effects of the resonance. Our main results are as follows:

(i) We have presented a general framework for the
parameter ηR and shown that it can be expressed in
terms of the normalized differential rate and is
determined by its value evaluated at the resonance.
Since the value of the normalized differential rate at
the resonance is anticorrelated with the normalized
differential rate off the resonance, it is the shape of
the normalized differential rate that matters in the
determination of ηR.

(ii) In the experimental analysis of B → RP3 → P1P2P3

decays, it is customary to parametrize the amplitude as
Aðm12; m23Þ ¼ cFðm12; m23Þ, where the strong dy-
namics is described by the functionF parametrized in
terms of the resonance line shape, the angular
dependence, and Blatt-Weisskopf barrier factors,
while the information of weak interactions is encoded
in the complex coefficients c. We evaluate ηR in this
experimentally motivated parametrization and in the
theoretical framework of QCDF.

(iii) In QCDF calculations, we have verified the NWA
relation both analytically and numerically for some
charged B decays involving tensor, vector, and scalar
resonances. We have introduced a form factor
Fðs12; mRÞ for the strong coupling of Rðm12Þ →
P1P2 when m12 is away from mR. We find that off-
shell effects are small in vector meson productions,
but prominent in the K�

2ð1430Þ, σ=f0ð500Þ, and
K�

0ð1430Þ resonances.
(iv) In principle, the two-body rates reported by experi-

ments should be corrected using ηR ¼ ηEXPPR in
Eq. (1.4), as the data are extracted using the
experimental parametrization. On the other hand,
the experimental parametrization of the normalized
differential rates should be compared with the
theoretical predictions using QCDF calculations as
the latter take into account the energy dependence of
weak interaction amplitudes. In some cases, where
ηEXPPR are very different from ηQCDFR , we note that
using an energy-independent coefficient c, in the
experimental parametrization, to represent the weak
dynamics is too naïve. Moreover, systematic un-
certainties in these experimental results after being
corrected by ηEXPPR are still underestimated.

(v) We have compared between ηQCDFR and ηEXPPR for
their width dependence in Figs. 1–7. Numerical
results are summarized in Table IV. In general, the
two quantities are similar for vector mesons but
different for tensor and scalar mesons. A study of the
differential rates in Fig. 8 enables us to understand
the origin of their differences. For example, the
similar normalized differential rates for ρ and K� at
and near the resonance account for ηQCDFρ;K� ≃ ηEXPPρ;K� . In
contrast, the m2

Kπ dependence associated with the
penguin Wilson coefficients ðap6 − ap8=2Þ in B− →
K̄�

0ð1430Þπ− → K−πþπþ yields a large enhance-
ment in the QCDF differential rate in the large
mKπ distribution, rendering ηQCDFK�

0
< ηEXPPK�

0
.

(vi) Finite-width corrections to BðBþ → RPÞNWA, the
branching fractions of quasi-two-body decays ob-
tained in the NWA, are summarized in Table V for
both QCDF and EXPP schemes. In general, finite-
width effects are small, less than 10%, but they
are prominent in Bþ → σ=f0ð500Þπþ and Bþ →
K�0

0 ð1430Þπþ decays.
(vii) It is customary to use the Gounaris-Sakurai model to

describe the line shape of the broad ρð770Þ reso-
nance to ensure the unitarity far from the pole mass.
If the relativistic Breit-Wigner model is employed
instead, we find ηBWρ > 1 > ηGSρ in both QCDF and
EXPP schemes owing to the ð1þDΓ0

ρ=mρÞ term in
the GS model. For example, in the presence of finite-
width corrections, the PDG value of BðBþ →
ρπþÞ ¼ ð8.3� 1.2Þ × 10−6 should be corrected to
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ð7.7� 1.1Þ × 10−6 in QCDF and ð7.9� 1.1Þ × 10−6

in EXPP.
(viii) The σ=f0ð500Þ scalar resonance is very broad,

and its line shape cannot be described by the
familiar Breit-Wigner model. We have followed
the LHCb Collaboration to use a simple pole
model description. We have found very large width
effects: ηQCDFσ ∼ 2.15 and ηEXPPσ ∼ 1.64. Conse-
quently, B− → σπ− has a large branching fraction
of order 10−5.

(ix) We have employed the Breit-Wigner line shape to
describe the production ofK�

0ð1430Þ in three-body B
decays and found large off-shell effects. The small-
ness of ηQCDFK�

0
relative to ηEXPPK�

0
is ascribed to the fact

that the normalized differential rate obtained in the
QCDF calculation is much larger than that using the

EXPP scheme in the off-resonance region. The large
discrepancy between QCDF estimate and experi-
mental data of ΓðB− → K̄�0

0 π− → K−πþπ−Þ still
remains an enigma.

(x) In the approach of QCDF, the calculated CP asym-
metries of B− → f2ð1270Þπ−, B− → σ=f0ð500Þπ−,
and B− → K−ρ0 agree with the experimental
observations. The nonobservation of CP asymmetry
in B− → ρð770Þπ− can also be accommodated
in QCDF.
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