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Exploiting the gauge freedom associated with the Volkov description of a charge propagating in a plane
wave background, we identify a new type of gauge choice which significantly simplifies the theory. This
allows us to develop a compact description of the propagator for both scalar and fermionic matter, in a
circularly polarized background. It is shown that many of the usually observed structures are gauge
artifacts. We then analyze the full ultraviolet behavior of the one-loop corrections for such charges. This
enables us to identify and contrast the different renormalization prescriptions needed for both types of
matter.
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I. INTRODUCTION

Very early in the development of quantum electrody-
namics, QED, it was understood that the interaction of light
with matter was best described in a way that introduced
extra, unphysical, degrees of freedom [1,2]. The expected
two components of the photon, at each spacetime point,
were embedded in the four components of the vector
potential, as these were needed to formulate the interaction
with matter. The recovery of physical results then followed
from the gauge invariance of QED. Gauge fixing allows for
a direct recovery of the physical dynamics of the theory.
This is the case both for interactions in the vacuum and in a
background. In the Volkov description of the propagation
of matter through a plane wave background [3], there is also
an implicit gauge fixing for the background field. Such
propagation has been studied at both tree-level and with
loop corrections, see for example [4,5].
Counting degrees of freedom in such gauge theories is

complicated by the Lorentzian signature of spacetime. The
naive expectation would be that two gauge fixing con-
ditions are needed to remove the two extra degrees of
freedom, but in practice a single covariant gauge suffices to
define photon propagators and hence S-matrix elements.
Unitarity arguments can then show that suitably defined
cross sections between appropriate states correspond to
physical results with the correct degrees of freedom.
For propagation in a background, the gauge freedom in

describing the background potential is, as noted above,
often implicit in the formalism. That is, the explicit form of

the potential implies that a gauge fixing condition has been
used. So for the plane wave situation described by the
Volkov solution, the scalar product of the null momentum,
pointing along the beam, with the background potential
vanishes. This is essentially a light cone gauge choice for
the potential. There is still some residual gauge freedom in
the choice of the background potential, but there is no
fundamental requirement for adding an additional gauge
fixing condition on the background.
However, the Volkov solution is very complicated and

disentangling physics from flotsam is a challenge. In this
paper we will argue that a specific choice of additional
gauge fixing on the background can significantly simplify
the description of both the classical and quantum propa-
gation of a charge through the background. We shall see
that this holds for both weak and strong backgrounds, and
leads to clear renormalization conditions on the fields and
physical parameters. This will be shown for both scalar and
fermionic matter, and in this way we will be able to
highlight and contrast some of the simple results found here
for the renormalization of both theories through the use of
our additional gauge fixing condition on the background.
The approach taken here is perturbative in the strength of

the background, and in that way we can build upon the
familiar and precise language of perturbative quantum field
theory. We will thus be able to explicitly introduce counter-
terms and renormalize using standard field theory con-
structions. That this can be done for both types of matter
and for both weak and strong backgrounds, points to the
great utility of imposing our additional gauge fixing
condition on the background. This paper will take the
background to be circularly polarized, as that choice will
lead to the simplest possible expressions for the propagator,
especially in the context of scalar matter.
The plan of this paper is to first discuss, in Sec. II, the

background gauge freedom and introduce the additional,
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momentum gauge choice on it. Then, in Sec. III, we couple
the background to scalar matter. The great utility of the
momentum gauge is demonstrated here as we will be able
to present a full and self-contained account of the propa-
gation, and its one-loop ultraviolet corrections, of such
matter in both a weak and strong background. As well as
being of great interest in its own right, this will allow us to
introduce some of the key arguments and notation that will
then be refined when we treat the case of fermionic matter
in the rest of the paper. In this section, and throughout the
paper, we regularize ultraviolet divergences by using
dimensional regularization with D ¼ 4 − 2ε.
In Sec. IV we consider fermionic matter and introduce

the key ingredients needed to describe its interaction with
the background. Then, in Sec. V, we derive the full tree-
level fermionic propagator in the background, and see
again how the additional momentum gauge choice greatly
simplifies this derivation. The one-loop corrections to the
propagator in a weak background are presented in Sec. VI,
and these are extended to the full, strong background, one-
loop calculations in Sec. VII. Armed with these results, we
then go on to discuss the renormalization of both the scalar
and fermionic theories in Sec. VIII. We then conclude this
paper in Sec. IX, where we also discuss how the approach
taken here can be extended to other polarization choices for
the background. Some key technical results are given in the
appendixes.

II. BACKGROUND FIELD GAUGE FREEDOM

The real classical potential, Aμ
c , describing a circularly

polarized background is most conveniently written as the
sum of two conjugate fields:

Aμ
c ¼ Aμ þA�μ; ð1Þ

where the complex potential is given by

Aμ ¼ 1

2
eðaμ1 þ iaμ2Þe−ix·k: ð2Þ

Here kμ is the null momentum characterizing the plane
wave background, aμ1 and a

μ
2 are orthogonal, real, spacelike

vectors which satisfy the common normalization condition
that a2 ≔ a1 · a1 ¼ a2 · a2 < 0. This complex potential
also satisfies the null gauge condition

k ·A ¼ 0; ð3Þ

which is equivalent to the two real conditions that
k · a1 ¼ k · a2 ¼ 0.
It should be noted that choosing a particular direction

along which the background points introduces both a
directional, x, and momentum, k, dependence to the
potential Aμ, as is clear from the final term in (2). We
shall soon see, though, that this potential is essentially the

background interaction term in a perturbative approach to
the system, and it is for that reason that we suppress its
explicit dependence on these variables. However, as dis-
cussed in [6], and shown later here at all orders in
perturbation theory, this will still lead to a multiplicative,
momentum space renormalization procedure.
It is important to also note that there is still a residual

gauge freedom in the potential, since Aμ þ Λkμ also
satisfies the null gauge condition (3) for arbitrary Λ with
the same spatial dependence as Aμ. In terms of the real
potentials, this gauge freedom is aμ1 → aμ1 þ Λ1kμ and
aμ2 → aμ2 þ Λ2kμ, where then Λ ¼ 1

2
eðΛ1 þ iΛ2Þe−ix·k.

It is helpful to be a bit more explicit about this residual
gauge freedom. If we write kμ ¼ ðk0; 0; 0; k0Þ, then all the
conditions on the real potentials are satisfied by writing

a1¼

0
BBB@
0

α

β

0

1
CCCAþΛ1

0
BBB@
k0

0

0

k0

1
CCCA and a2¼�

0
BBB@

0

β

−α
0

1
CCCAþΛ2

0
BBB@
k0

0

0

k0

1
CCCA;

ð4Þ

where the common amplitude normalization is a2 ¼
−α2 − β2, and the sign ambiguity reflects left or right
polarization choices, as discussed in [7].
It is tempting to think of the two parameters α and β in

(4) as the natural representation of the true degrees of
freedom for the background. Indeed, for light by light
scattering, such an identification is sensible. But it is not
necessarily the best representation of the background when
matter is present. We now introduce a new characterization
of the true degrees of freedom that is much better suited to
calculations involving a charge propagating through the
background.
Consider a charge of massm that has associated with it a

timelike momentum pμ describing its propagation through
the background. This momentum may, or may not, be taken
to be on-shell. But, given that kμ is the fixed null
momentum associated with the background, we can ensure
that p · k ≠ 0. What is more, in this plane wave description,
the momentum p is interpreted as an external momentum
and thus is not integrated over in any loop calculation
associated with the propagation of the charge. So we are
able to ensure that p · k will never vanish in both the tree-
level propagator and its loop corrections.
We now impose an additional gauge condition on the

background potential by requiring that, as well as (3), we
have

p ·A ¼ 0: ð5Þ

In terms of the explicit representation (4), this momentum
gauge condition fixes the residual gauge freedom so that
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Λ1 ¼
p1αþ p2β

p · k
and Λ2 ¼ �p1β − p2α

p · k
: ð6Þ

For example, if the charge was static, or moving
solely along the z axis, so that p ¼ ðp0; 0; 0; λp0Þ with
jλj < 1, then Λ1 ¼ Λ2 ¼ 0, and we have the very natural
representation mentioned earlier with aμ1 and aμ2 only
having components in the transverse directions to the
background.
But now, suppose the particle was moving along

the x axis. The momentum can then be written as p ¼
ðp0; p1; 0; 0Þ, and we impose the timelike requirement
that p2 ¼ p2

0 − p2
1 > 0. Then we find, from (4), that

a1 ¼

0
BBBBB@

p1α
p0

α

β
p1α
p0

1
CCCCCA

and a2 ¼ �

0
BBBBB@

p1β
p0

β

−α
p1β
p0

1
CCCCCA
: ð7Þ

We shall see that these simple examples, and their full
timelike extensions, give a computationally efficient way to
characterize the background field for such a propagating
charge.
Note that the above mentioned static class of repre-

sentations of the background potential could also be
characterized by the additional light cone condition that
k̄ ·A ¼ 0, where k̄ points along the dual light cone direc-
tion: k̄μ ¼ ðk0; 0; 0;−k0Þ. This choice also ensures that
k · k̄ ≠ 0 as it is just the λ → −1 limit of our earlier static
class. In applications to light by light scattering, there is
also great utility in this additional gauge choice, see for
example [8–10]. However, in the context of particle
propagation, we shall see that focusing on the light cone
structure obstructs the rich interplay between the lightlike
background and the timelike particle dynamics inherent in
this system. Exploiting this will lead to significant compu-
tational advantages and clearer physical insight in to this
complex but important system.

Before concluding this general introduction to the
kinematics of our system, it is worth noting that the
above discussion of the momentum gauge choice assumes
that it is sensible to talk of the charge as having a given
momentum, p. Obviously, in the context of scattering, the
momentum will change. Any such measurable scattering is
not an ambiguity in the formalism, and the momentum
gauge can still be used for at least, say, the incoming
particle. However, even in the context of simple charge
propagation, with no additional external interactions, the
background itself obscures any idea of an unambiguous
particle momentum.
So, although we have characterized the charge as having

momentum p, the fact that it is propagating in a back-
ground means that the actual momentum is ambiguous.
More precisely, we should allow for its momentum to be of
the form pþ nk, where the integer n counts the number
of absorptions from the background minus the number of
emissions degenerate to the background.
It is important, though, to note that this change in the

momentum will not affect the overall gauge fixing con-
ditions being proposed here since, from (3) and (5), we also
have ðpþ nkÞ ·A ¼ 0, for all possible values of n.
We now begin our analysis of the propagation of matter

through this background. Although our primary interest is
in fermionic matter, we shall start with the much simpler
case of scalar matter. Our choice of polarization and
momentum gauge now becomes particularly effective,
and the transition to intense backgrounds will be almost
immediate. This will be a good test case and help motivate
the key definitions needed for the more complex fermionic
structures that will be the main focus of this paper.

III. SCALAR MATTER

The quadratic nature of the Lagrangian for scalar QED
means that the matter interacts with photons via either a
three or four point vertex. The Feynman rules for these
vertex contributions are given by the truncated1 diagrams,
i.e., Green’s functions with external lines removed as
signified by the small bars on them:

ð8Þ

Dotted lines are used here to represent the scalar pro-
pagators while wavy lines correspond to the photons.

These rules are equivalent to those derived in, for example,
Sec. 6-1-4 of [12].
When the photon is taken to be degenerate with the

plane wave background, these vertex terms can be
contracted with suitably normalized products of the
background potential, (1), to give the background

1See the discussion on page 90 of [11] concerning such
truncated lines and possible representations.
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interactions with the scalar matter in terms of either
absorptions

ð9Þ

or emissions

ð10Þ

along with the various mixed absorption or emission,
seagull interactions

ð11Þ

Our choice of momentum gauge, (5), then greatly
simplifies these interactions as both the absorption, (9),
and emission, (10), interactions vanish. In addition, our
choice of circular polarization, (2), means that both A ·
A ¼ 0 and A� ·A� ¼ 0, and we quickly see that the only
surviving seagull interaction is the momentum conserving,
p0 ¼ p, one with Feynman rule

1

2
Aμ
c2ie2gμνAν

c ¼ 2iA� ·A ¼ ie2a2: ð12Þ

From the discussion preceding (3), we see that the back-
ground amplitude satisfies a spacelike normalization con-
dition, a2 < 0. It is thus useful to introduce the positive
scalar quantity, m > 0, defined by

m2 ¼ −e2a2: ð13Þ

Hence we see that, by using the momentum gauge (5), the
sole surviving interaction of the scalar matter with the
circularly polarized background is given by the simple
seagull term:

ð14Þ

Note that we have introduced in this last expression a
useful, compact notation for the scalar propagator that
emphasizes its mass dependence, so that

Pðm2Þ ≔ i
p2 −m2 þ iϵ

: ð15Þ

Two such seagull interactions are then given by

ð16Þ

From this we see that multiple interactions with the
background are now simple products of these seagulls. So
r ≥ 0 such interactions can be represented as

ð17Þ

Note that r ¼ 0 here corresponds to the scalar propa-
gator Pðm2Þ. When r ¼ 1 we will often omit the label, as
in (14).
Summing this last result over all possible values for r

will then describe the physical propagation of the scalar
charge through the background. It is important to be able to
distinguish the resulting all orders propagation from the
usual, perturbative, vacuum propagation of the charge.
The convention adopted for a long time, as can be seen in

Sec. 105 of [13], was to use a thicker line to represent the
propagator in the background. However, there has been a
trend in recent years to make visually clearer the distinct
types of propagation being considered in these complex
systems. This can be seen in, for example, Fig. 6 in [14] and
Fig. 1 in [15], where a double line was used to distinguish
propagation in the background.
We hence define the scalar double line propagator of

momentum p, in the momentum gauge (5), by

ð18Þ

Thus we have the simple result, which follows immediately
from (17), that
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ð19Þ

So, from this strong field summation of the interactions
with the background, it is clear that the only impact of the
background on the scalar particle is that its mass has
increased to m2� ≔ m2 þm2. This is surprisingly simple.
Normally this propagator would involve an infinite sum
over different poles (sidebands) and, most strikingly, break
translational invariance. None of these complications are
present due to our momentum gauge choice.
Having constructed the tree-level propagator for the

scalar particle in our momentum gauge fixed background,
we now consider its one-loop corrections and the associated
ultraviolet structures. This will require an additional gauge
fixing choice to be made, but now its role is to allow for the
construction of the photon’s propagator within the loop,
rather than the description of the charge’s propagation
through the background.
In order to understand the impact of this gauge choice on

the one-loop structure, we will take the photon’s propagator,
DμνðsÞ, to be in the full Lorentz class of gauges, as given by

DμνðsÞ ¼
−i

s2 þ iϵ

�
gμν þ ðξ − 1Þ sμsν

s2

�
: ð20Þ

We recall that this class includes the Feynman gauge, where
ξ ¼ 1, and Landau (or Lorenz) gauge when ξ ¼ 0.
In addition to gauge fixing, loops require a method to

regularize the ultraviolet sector, and for that we adopt
dimensional regularization. So we take the spacetime
dimension to be D ¼ 4 − 2ε, with ε > 0, and introduce
a mass scale, μ, to maintain the canonical dimensions for
the loop integral and renormalized fields.
As expected, loop corrections to the scalar propagator in

the background will contain ultraviolet divergences, but
these are now worse than those encountered in the
fermionic theory. In addition to the logarithmic divergen-
ces, we now also get quadratic ones. The great attraction to
using dimensional regularization is that it deals with these
polynomial types of ultraviolet structures in a very efficient
way by putting them equal to zero. But some care is needed
in doing that as we can also encounter other classes of
divergences that can interfere with this prescription.
The simplicity of dimensional regularization can be seen

most dramatically in the seagull loop diagram given by

ð21Þ

By simple power counting, we see that the loop integral in
(21) diverges quadratic in the large s, ultraviolet sector. But,

within dimensional regularization, this integral can be
evaluated for some D < 4 and then analytically continued
back to four dimensions. The end result is that the integral
vanishes. Thus there is no contribution to the propagator
from the one-loop term (21).
The nonvanishing one-loop correction to the scalar

propagator is thus given by the self-energy term

ð22Þ

where the scalar’s self-energy is given at one-loop by

−iΣs se ¼ −e2μ2ε
Z

đDs
� ðpþ sÞ2
ðs2 −m2Þðs − pÞ2

þ ðξ − 1Þ ðp2 − s2Þðp2 − s2Þ
ðs2 −m2Þðs − pÞ2ðs − pÞ2

�
; ð23Þ

and we have suppressed for brevity the iϵ prescription for
the poles of the various propagators within the loop.
Again we see quadratic divergences here coming from

the s2 term in the first numerator and the s2s2 factor in the
second. But in addition, the second term also produces a
subleading, logarithmic divergence. Factorizing the numer-
ators so as to cancel terms in the denominators leads to
finite parts, which we are not considering in this paper, plus
the ultraviolet divergent terms:

−iΣs se¼
UV

− e2μ2ε
Z

đDs
�
p2 þm2 þ 2p · s
ðs2 −m2Þðs − pÞ2

þ ξ
1

s2
− ðξ − 1Þp

2 −m2

s2s2

�
: ð24Þ

The important point to note here is that, as with the seagull,
the quadratically divergent term is purely ultraviolet in
nature, and can thus be robustly set to zero within dimen-
sional regularization. But the final, logarithmic divergence,
tadpole is more subtle as it diverges in both the ultraviolet
(regularized by taking ε > 0) and infrared (regularized by
taking ε < 0) regimes. Extracting its ultraviolet divergence
now leads to a nonvanishing, gauge dependent contribu-
tion to the self-energy for the scalar particle. The end result
is that the self-energy term (22) has a gauge dependent
ultraviolet pole contribution, −iΣUV

s se, which can be written
in terms of the mass and inverse propagator as

−iΣUV
s se ¼ −i

e2

ð4πÞ2 ð3m
2 − iðξ − 3ÞPðm2Þ−1Þ 1

ε
: ð25Þ

The vertex correction to the lowest order scalar inter-
action with the background, (14), is then given by
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ð26Þ

where now the loop correction to the induced mass is

−iΣm2 ¼ −e2m2μ2ε
Z

đDs
� ðpþ sÞ2
ðs2 −m2Þ2ðs − pÞ2

þ ðξ − 1Þ ðp2 − s2Þðp2 − s2Þ
ðs2 −m2Þ2ðs − pÞ2ðs − pÞ2

�
: ð27Þ

The extra scalar propagator in the loop here ameliorates the
divergences seen in the related self-energy (23), so that we
now only have logarithmic terms to deal with. Thus, by
naive power counting, both terms in (27) will contribute the
same ultraviolet pole, but the second term will have an
additional multiplicative factor of ξ − 1. When combined
we see that the overall ultraviolet pole is proportional to the
gauge fixing parameter ξ. Thus, writing this ultraviolet,
double pole correction as −iΣUV

m2 , we have at one-loop the
gauge dependent result that

−iΣUV
m2 ¼ −i

e2

ð4πÞ2 ξm
2
1

ε
: ð28Þ

The one-loop ultraviolet results (25) and (28), and
the expansion of the double line propagator (18), are the
only ingredients needed for building the full, one-loop,
ultraviolet corrections to the scalar propagator in the
background. This claim might seem surprising as we
have only considered a single seagull interaction, but we
note that if a loop straddles more than one background
interaction, then it is ultraviolet finite by simple power
counting. This follows immediately from the extension of
(27) to that situation, where the power of ðs2 −m2Þ in the
denominator will then be greater than two. This means
that we only need to consider loops spanning single
background seagulls in order to extract the ultraviolet
terms.
An immediate consequence of this, single seagull

within a loop, result is a simple inductive characteri-
zation of the loop corrections to multiple seagulls. We
thus have the ultraviolet, loop factorization identity that,
for r ≥ 1,

ð29Þ

From this it follows by simple induction that if we define ΔðrÞ, for r ≥ 1, by

ð30Þ

then

ΔUVðrÞ ¼ ðrþ 1Þð−im2Pðm2ÞÞrð−iΣUV
s sePðm2ÞÞ þ rð−im2Pðm2ÞÞr−1ð−iΣUV

m2 Pðm2ÞÞ: ð31Þ
Writing ΔUVð0Þ ¼ −iΣUV

s sePðm2Þ, we then see that summing over all such degenerate processes yields the strong field, one-
loop corrections

Pðm2Þ
X∞
r¼0

ΔUVðrÞ ¼ Pðm2Þ
X∞
r¼1

rð−im2Pðm2ÞÞr−1ð−iðΣUV
s se þ ΣUV

m2 ÞÞPðm2Þ

¼
�
Pðm2Þ

X∞
j¼0

ð−im2Pðm2ÞÞj
�

2

ð−iðΣUV
s se þ ΣUV

m2 ÞÞ: ð32Þ

Recognizing in this expression the double line expansions (18) squared allows us to write (32) as the double line
self-energy:

ð33Þ
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This last result is a very succinct and attractive summary
of the ultraviolet, one-loop structure of the scalar QED
propagator in our background. Although it was built up
perturbatively in the background interactions, it is an all
orders result and thus valid for both weak and strong
background fields. Through the use of the momentum
gauge to remove irrelevant clutter, we have recovered a
very simple result that clearly identifies the ultraviolet
divergences that need renormalizing in this scalar theory.
Indeed, we see here a direct and simple link between the
double line representation of a loop contribution and the
precise algebraic structure of the corresponding Green’s
function.
Having obtained this compact result for the scalar theory

in the background which is structurally identical to that
found in a vacuum, we can now introduce counterterms and
renormalize using the familiar techniques of QED. But,
before doing so, we shall first analyze what happens with
fermionic matter. We will then return to discuss the
renormalization of both theories in Sec. VIII.

IV. FERMIONIC MATTER

The impact of the plane wave background on fermionic
matter includes a mass shift to m2�, first identified in [3,16],
which was later seen to have a more subtle, matrix structure
in [17]. The background also generates an infinite class of
sidebands that permeate the theory [6,7,18,19], resulting in
momentum shifts and additional spacetime phases. We will
see, though, that the use of the momentum gauge stream-
lines the route to the induced mass and also reduces the
sidebands to a finite number.
To lay the groundwork for these results, and their one-

loop extensions, we will first, in this section, introduce the
matrix structures associated with the fermions and identify
the key simplifications that follow from the use of the
momentum gauge and our choice of polarization. We will
then apply these results in the following sections to both the
tree and one-loop descriptions of the full propagator in our
background.

The absorption by an electron of a photon from the
background is now characterized by the absorption matrix,
A, which is given in terms of the complex potential,Aμ, by

A ¼ −iA: ð34Þ

The dual matrix, E, describing the emission of a photon
degenerate to the background, is then given by

E ¼ −iA�: ð35Þ

These are the fermionic counterparts to the scalar terms (9)
and (10), but they do not now vanish in the momentum
gauge. Indeed, these are now the only interactions with the
background for the fermion, as there is no equivalent to the
seagull term that was central to the scalar theory.
In terms of these absorption and emission matrices, the

gauge conditions (3) and (5) imply the anticommutation
results that

=kA ¼ −A=k; =kE ¼ −E=k; ð36Þ

and

=pA ¼ −A=p; =pE ¼ −E=p: ð37Þ

Just as we did for the scalar field, it is useful to introduce
a compact notation for the fermionic propagator, but now it
needs to incorporate the degeneracy induced by the back-
ground that was alluded to earlier. We thus define, for
integer n, the shifted fermionic propagator, PðmÞn, by

PðmÞn ¼
i

=pþ n=k −mþ iϵ
: ð38Þ

Diagrammatically, these fermionic propagators will be
represented by the usual plain line. Thus the fundamental
absorption process from the background is now given by

ð39Þ

while the emission process to the background is

ð40Þ
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The linear mass dependence and the extra subscript in
(38) will help to distinguish this propagator from the scalar
one, Pðm2Þ, introduced in (15). Obviously, but very
importantly, the big technical difference between PðmÞn
and Pðm2Þ that must be kept in mind is that the fermionic
one is a matrix.
The algebraic complexities of the fermionic theory mean

that it will often be useful to abbreviate this fermionic
propagator by suppressing the explicit mass term, as in
PðmÞn → Pn. Indeed, we will use this condensed notation
for the fermionic propagator in what follows and only
reintroduce the more explicit form after Eq. (69).
From our discussion of the scalar theory, we know that

the propagator P0 describes both the usual free propagator
of momentum p and also the propagator where the number
of absorptions equals the number of emissions. Obviously,
a similar degeneracy will arise for each propagator, Pn. But,
in addition, a mismatch between the number of emissions
and absorptions will result in a shift in the value of n. This
process is described using the interactions (34) and (35) in
the standard way, by considering the vertex term Pnþ1APn
for an absorption and its dual PnEPnþ1 for an emission.
However, what is not standard from a field theory point of
view is the fact that these interactions can be rewritten as
the difference of two distinct propagators, and that this
holds at all orders in the background interactions. This
Ward type of identity leads to the sideband description of
the charge that was first described in [18] and further
refined in [6].
In a perturbative framework, the emergence of sidebands

is simply a partial fraction expansion of the absorption,
(39), and emission, (40), interactions. This quickly leads to
the key absorption and emission identities that

Pnþ1APn ¼ IPn − Pnþ1I and Pn−1EPn ¼ Pn−1O − OPn:

ð41Þ

The existence of this partial fraction decomposition only
relies on the light cone property of kμ and the null gauge
condition (3). But the form of the “In” factor, I, and the
“Out” factor, O, is sensitive to the momentum gauge
choice, (5). We now find that

I ≔
2p ·Aþ =kA

2p · k
¼ =kA

2p · k
; ð42Þ

while its dual “Out” matrix is

O ≔
2p ·A� þA�=k

2p · k
¼ A�=k

2p · k
: ð43Þ

We have now introduced all the basic variables needed
to build up a description of the electron propagating
through the background. The way to proceed, that makes
the transition to the loop corrections most transparent, is to

now shift from the language of absorptions, (34), and
emissions, (35), to that of the “In”, (42), and “Out”, (43),
factors. This perturbative refocusing of the formalism for
fermions will be the topic of the next section. Prior to
embarking on that, though, it is useful to conclude this
section with a summary of the key new simplifications that
follow from our choice of circular polarization, (2), and the
additional momentum gauge condition, (5).
The immediate impact of using a circular polarization

is that polynomials in the interactions become trivial. In
particular, we have already noted that from (2), A ·A ¼
A� ·A� ¼ 0. This means that the scalar term v and v� that
play an important role in the full elliptical class of
polarization, see [7], now vanish:

v ≔
A ·A
2p · k

¼ 0 and v� ≔
A� ·A�

2p · k
¼ 0: ð44Þ

In terms of the absorption and emission matrices, these
polarization dependent simplifications become

A2 ¼ 0 and E2 ¼ 0: ð45Þ

These last two results are easily extended using the
momentum gauge conditions (37), so that

A=pA ¼ 0 and E=pE ¼ 0: ð46Þ

Written in terms of the propagators (38), these last
identities become

APnA ¼ 0 and EPnE ¼ 0: ð47Þ

For the “In” and “Out” factors we have similar algebraic
properties to (45), but now these are polarization indepen-
dent and just follow from the momentum gauge choice,
so that

I2 ¼ 0 and O2 ¼ 0: ð48Þ

In addition, the momentum gauge choice also implies the
polarization independent, trivial mixed products of these
factors:

IO ¼ 0 and OI ¼ 0: ð49Þ

The choice of circular polarization combines with the
momentum gauge to now give momentum insertion iden-
tities similar to (46), namely I=pI ¼ 0 and O=pO ¼ 0. These
simple results have two very important refinements that
will be repeatedly used and extended in our analysis. If we
first view the momentum term here as coming from the
propagator (38), then we have

IPnI ¼ 0 and OPnO ¼ 0: ð50Þ

MARTIN LAVELLE and DAVID MCMULLAN PHYS. REV. D 103, 036015 (2021)

036015-8



While if we identify the momentum as part of the inverse
propagator P−1n ¼ −ið=pþ n=k −mÞ, then we have

IP−1n I ¼ 0 and OP−1n O ¼ 0: ð51Þ

It is important to note that the mixed identities in (49)
are not reflected in the product of an absorption and an
emission matrix. Indeed, from (2), we have A� ·A ¼
1
2
e2a2, which does not vanish. This result is actually

polarization independent, see [7]. In terms of the absorption
and emission matrices, we write this last key identity as

AEþ EA ¼ −2A� ·A ¼ 2p ·ℳ; ð52Þ

where the oxymoronic, “mass null vector” is defined by

ℳμ ¼ −
A� ·A
p · k

kμ: ð53Þ

Note that from the scalar mass definition (13), we have the
vector mass identity that

m2 ¼ 2p ·ℳ: ð54Þ

In terms of the “In” and “Out” factors, the null vector
mass term arises from the momentum insertions whereby
I=pOþ O=pI ¼ℳ. Written in terms of the inverse propaga-
tor, this becomes

IP−1n Oþ OP−1n I ¼ −iℳ: ð55Þ

Finally, we note that the propagator identities in (50) have
the immediate mass insertion generalizations that, for
r ≥ 0,

IPnð−iℳPnÞrI ¼ 0 and OPnð−iℳPnÞrO ¼ 0: ð56Þ

V. TREE-LEVEL PROPAGATION

Loop corrections to the propagation of the charge are most
readily introduced via a perturbative formulation of the tree-
level results.We shall now develop such a description, taking
full advantage of the simplifications that follow from using
the momentum gauge. Armed with these results, we shall
then be ready to add one-loop corrections to these all orders
interactions with the background.
Building upon our definition of the scalar double line

propagator, (18), we define the fermionic double line
propagator, of momentum p, to be the sum over all possible
tree-level, perturbative interactions with the background
that starts with momentum p,

ð57Þ

The notation being introduced here is the generalization
of the scalar result (18) to the situation where we have
both absorptions and emissions from the background.
So the sum is now over all processes with r1 absorp-
tions and r2 emissions, degenerate to the background. In
contrast to the scalar theory, each such process will in
general correspond to multiple Feynman diagrams. Note
that momentum conservation implies that the out going
momentum is p0 ¼ pþ ðr1 − r2Þk.
The single absorption process, (39), but in which the

charge with initial momentum p absorbs a background
photon, is given in terms of the propagator, (38), by the
vertex contribution P1AP0. Thus we have, from (41), the
sideband representation of this interaction:

ð58Þ

In a similar way, the single emission process, (40),
becomes

ð59Þ

If we now consider two absorptions, then we get from (47)
the vanishing result that

ð60Þ

This last example can be easily generalized so that if the
difference between the number of absorptions and emis-
sions is greater than one, then the contribution to the double
line propagator, (57), vanishes:

ð61Þ

This key vanishing result follows from both our choice of
momentum gauge and polarization. The proof is straight-
forward since all perturbative contributions in (61) must
now include parts where we have either two consecutive
absorptions or two consecutive emissions, separated by
an appropriate propagator Pn. These then vanish by the
identities (47).
From the vanishing result (61), we see that the only

other nonvanishing contributions to the propagator (57)
arise when the absorptions alternate with the emissions.
The lowest order terms of this form are given by the
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processes whereby the electron first absorbs a photon and
then emits back into the background, or first emits then
absorbs from the background: P0ðAP−1Eþ EP1AÞP0. The
central factor here can be seen as a propagator insertion
into the mass term (52). One quickly finds that the
momentum gauge implies the polarization independent
result that

AP−1Eþ EP1A ¼ −iℳþ P−10 ðIP−1Oþ OP1IÞP−10 : ð62Þ

Hence we see that

ð63Þ

This is the fermionic version of the scalar seagull term
(14). Again we note that the fermionic theory has even
sidebands associated with this central term.
The lowest order results (58), (59), and (63) can now

be extended to all orders in the background interaction.
Key to that extension is the following factorization
result, that is derived in Appendix A, valid for r1 ≥ 0
and r2 ≥ 0:

ð64Þ

Given the mass generating term in (63), the factorization in
(64) will spawn background induced mass terms into all the
sidebands seen in (58), (59), and (63). Exploiting this
factorization then quickly leads to the results, also dis-
cussed in Appendix A, that for all r ≥ 0:

ð65Þ

ð66Þ

and

ð67Þ

Using the vanishing result (61) in the double line definition (57), we see that the double sum over interactions becomes
the single sum:

ð68Þ

The terms being summed over here are explicitly given by the previous key results (65), (66), and (67).
To interpret this representation of the double line propagator for fermionic matter, it is helpful to reinstate the explicit

mass dependence of the propagator, so that Pn → PðmÞn. Mimicking the scalar argument in (19), if the fermionic massm is
now shifted by the matrix termℳ, then we get the expansion

PðmþℳÞn ¼
i

=pþ n=k − ðmþℳÞ þ iϵ

¼
X∞
r¼0

ðPðmÞnð−iℳÞÞrPðmÞn; ð69Þ

where in (69) the single propagator term can also be factored out to the left.
Using this mass shift identity allows us to rewrite in a very succinct way the all orders tree-level result (68) as the core

sideband expansion:
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ð70Þ

Note that in this all-orders, tree-level expression for the
fermionic double line propagator, the upper terms have
spacetime dependence inherited from the “In” factor of
e−ix·k, the central terms have no such spacetime factors,
while the lower terms inherited from the “Out” factor an
eix·k dependence.
It is also useful to note that the fermionic propagator

PðmþℳÞn in these last few expressions can also be
partially written in terms of the scalar mass m, introduced
in (13), as

PðmþℳÞn ¼
ið=pþ n=kþm −ℳÞ

ðpþ nkÞ2 − ðm2 þm2Þ þ iϵ
: ð71Þ

This representation makes clear the new pole structure in
the sidebands and highlights the fundamental difference in
this fermionic theory due to the vector nature of the induced
mass term in the numerator.
The expression (70) for the all-orders, tree-level, fer-

mionic propagator in the background is surprisingly com-
pact, with a very manageable number of core sidebands. In
Appendix B we show how this formulation of the fermionic
double line propagator relates to the more standard dis-
cussions found in the literature.

VI. ONE-LOOP CORRECTION
IN A WEAK BACKGROUND

Having constructed the tree-level, double line fermionic
propagator in (68) and (70), we now want to incorporate
into these sideband expressions their one-loop correc-
tions. Just as for the scalar theory, this will be built up
perturbatively over the interactions with the background.
So we will start our analysis in this section by considering
a weak background and hence looking at the loop
corrections to the lowest order background terms intro-
duced earlier: the single absorption (58), the single
emission (59), and both processes with a single absorption
and emission (63). These lowest order one-loop correc-
tions were first discussed in [6], and extended to the full
Lorentz class of gauges in [20]. Now we shall exploit the
simplifications that arise due to our momentum gauge
choice, (5), to give a more direct account of these results
for a circularly polarized background.
Using a simple notational extension of the scalar self-

energy term introduced in (22), but now allowing for a

sideband momenta of pþ nk, we take the fermionic self-
energy to be given by the expression

ð72Þ

Note, though, that by translational invariance, we can focus
on the structure of the central sideband here, with n ¼ 0,
and then replace p by pþ nk for the more general result in
what follows.
We thus have, within our Lorentz class of gauge fixings

for the loop,

−iΣf seð0Þ ¼ −e2μ2ε
Z

đDs
�

γμð=sþmÞγμ
ðs2 −m2Þðs − pÞ2

þ ðξ − 1Þ ð=s − =pÞð=sþmÞð=s − =pÞ
ðs − pÞ2ðs2 −m2Þðs − pÞ2

�
: ð73Þ

In contrast to the equivalent scalar version, (23), there are
now no quadratic ultraviolet divergences, but there are still
linear and logarithmic ones to be identified. Simple power
counting arguments now quickly show that

−iΣf seð0Þ¼
UV

− e2
Z

đDs
�
ð3m − ð=p −mÞÞ 1

s2s2

− ðξ − 1Þð=p −mÞ 1

s2s2

�
: ð74Þ

Thus the fermionic version of the ultraviolet scalar result
(25), adapted to the nth sideband, is the self-energy
expression that

−iΣUV
f seðnÞ ¼ −i

e2

ð4πÞ2 ð3m − iξP−1n Þ 1
ε
: ð75Þ

An analysis of the vertex corrections in the fermionic
theory is more involved than in the scalar theory, due to
the associated changes in sideband structures related to
whether we have an absorption or an emission or both. To
unpick this we start with the vertex correction to the
fundamental absorption process (58).
The vertex correction to the absorption of an incoming

background photon is given by
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ð76Þ

where

− iΣin

¼ −e2μ2ε
Z

đDs
�

γμð=sþ =kþmÞAð=sþmÞγμ
ððsþ kÞ2 −m2Þðs2 −m2Þðs − pÞ2

þ ðξ − 1Þ ð=s − =pÞð=sþ =kþmÞAð=sþmÞð=s − =pÞ
ðs − pÞ2ððsþ kÞ2 −m2Þðs2 −m2Þðs − pÞ2

�
:

ð77Þ

Again, simple power counting arguments quickly show that

−iΣin¼
UV

− e2
Z

đDs
�
A

1

s2s2
þ ðξ − 1ÞA 1

s2s2

�
: ð78Þ

Recalling our definition of the absorption matrix, (34),
this quickly leads to the ultraviolet, incoming, vertex
contribution

−iΣUV
in ≔

e2

ð4πÞ2 ξA
1

ε
: ð79Þ

Using the sideband representation of the absorp-
tion matrix, (41), allows us to rewrite this vertex contri-
bution in terms of consecutive sideband self-energies, (75),
so that

−iΣUV
in ¼ Ið−iΣUV

f seðnÞÞ − ð−iΣUV
f seðnþ 1ÞÞI: ð80Þ

To understand the significance of the one-loop results,
(75) and (80), we now consider the full, one-loop correc-
tions to the single absorption process as given by the two
self-energy and one vertex corrections:

ð81Þ

This we recognize as the naively expected, one-loop self-energy corrections to the sidebands in (58).
In a very similar way, the leading one-loop vertex correction to the dual emission process, (59), is given by

ð82Þ

where the outgoing version of the incoming vertex, (79), and its sideband representation (80), are now

−iΣUV
out ¼

e2

ð4πÞ2 ξE
1

ε
¼ ð−iΣUV

f seðn − 1ÞÞO − Oð−iΣUV
f seðnÞÞ: ð83Þ

Hence we quickly see that the one-loop corrections to the single emission process are

ð84Þ

This is also the expected, one-loop self-energy corrections to the absorption sidebands in (59).
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Loop corrections to processes with a mixture of emis-
sions and absorptions introduce an additional, but gauge
dependent, ultraviolet divergence associated with the
background induced mass term, (53). This was first iden-
tified at lowest order in the background, for Feynman
gauge, in [6] and then extended to the full Lorentz class in
[20]. We have already seen here, in expression (63), that the
identification of the background induced mass is simplified
by the use of the momentum gauge. Now we will see how
that gauge also streamlines the discussion of this new
ultraviolet correction.

The one-loop corrections to the lowest order mixed
absorption and emission process, (63), can clearly spawn
simple self-energy terms. But these corrections can also
straddle more complex, interaction structures associated
with the background. Indeed, the vertex term here is now a
mixture of emissions and absorptions, and the loop
corrections are thus more involved. Focusing, though, on
the ultraviolet structure leads to a simple factorization of
these vertex corrections, the details of which are discussed
in Appendix C. One finds

ð85Þ

Combining this vertex contribution with the simpler self-energy corrections gives the ultraviolet pole identification that

ð86Þ

As seen earlier for the simpler absorption and emission
processes, this contains the expected propagator renorm-
alization terms for each sideband. But, in addition, the
middle term in the central sideband here shows the gauge
dependent, ultraviolet divergence related to the background
induced mass, where

−iΣUV
ℳ

¼ −i
e2

ð4πÞ2 ξℳ
1

ε
: ð87Þ

The results presented in (81), (84), and (86) are the
lowest order, ultraviolet corrections to the fundamental
interactions of the electron with a circularly polarized but
weak background. They show a sideband structure, which
leads to a multiplicative renormalization at this order, as
discussed in [6,20]. The use of the momentum gauge has
greatly simplified this analysis. In the next section we
consider the extension of these results to the strong field

situation where results at all orders in the background field
are needed.

VII. ONE-LOOP CORRECTION
IN A STRONG BACKGROUND

Extending the weak field, one-loop results to strong field
QED will follow the basic steps seen earlier for scalar
matter, but now this needs to be done within each of the
sidebands. Thus the fermionic version of the scalar double
line propagator, (33), will now involve an additional sum
over all possible sidebands. In this section we will present
the key steps in arriving at such a description of the fermion
propagating through such an intense background. Some of
the important technical details of this account will be
collected together in Appendix D.
The ultraviolet factorization, seen in (29), was the key

technical tool in our analysis of the one-loop results for
scalar matter. We have already seen the tree-level version
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of this for fermionic matter in (64) and, in expression (D1) of Appendix D, we describe its one-loop version.
Using it, we quickly see that the strong background interaction version of the absorption loop corrections, (81), can
be written as

ð88Þ

for r ≥ 0. In this expression we have extended to fermions, and their sidebands, the notation, ΔUVðrÞ, introduced for scalar
matter in (31). Now the nth sideband at order r has a factor ΔUV

n ðrÞ in (88) where, if r ≥ 1,

ΔUV
n ðrÞ ≔

Xr

s¼0

ð−iℳPnÞsð−iΣUV
f seðnÞPnÞð−iℳPnÞr−s þ

Xr−1
s¼0

ð−iℳPnÞsð−iΣUV
ℳ

PnÞð−iℳPnÞr−1−s; ð89Þ

while if r ¼ 0,

ΔUV
n ð0Þ ¼ −iΣUV

f seðnÞPn: ð90Þ

In a similar way, the higher order versions of the background corrections to the fundamental emission one-loop
result, (84), is for all r ≥ 0,

ð91Þ

For the central terms, (86), we get the generalization, but now for r ≥ 1, that

ð92Þ

To this last result we also need to include the r ¼ 0, single self-energy correction, given by P0ΔUV
0 ð0Þ.

We now sum over all such sideband terms. In such a sum we need to remember that expression (89) is only valid when
r ≥ 1. The first sum here, though, does make sense when r ¼ 0, and gives the correct result. The second sum in (89) only
makes sense if r ≥ 1, but can be easily shifted to also start at r ¼ 0. Thus we get

X∞
r¼0

PnΔUV
n ðrÞ ¼

X∞
r¼0

Xr
s¼0

Pnð−iℳPnÞsð−iðΣUV
f seðnÞ þ ΣUV

ℳ
ÞÞPnð−iℳPnÞr−s

¼
X∞
i¼0

Pnð−iℳPnÞið−iðΣUV
f seðnÞ þ ΣUV

ℳ
ÞÞ
X∞
j¼0

Pnð−iℳPnÞj

¼ PðmþℳÞnð−iðΣUV
f seðnÞ þ ΣUV

ℳ
ÞÞPðmþℳÞn; ð93Þ

where in the last line we have used the matrix mass shifted, propagator result (69).
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Applying this last result to the sums over the sideband expressions (88), (91), and (92), gives us the fermionic, double
line, one-loop result that

ð94Þ

This last result, along with the tree-level definition of the
fermionic double line propagator, (70), gives a precise and
surprisingly succinct description of the propagation in our
background, to which standard renormalization techniques
can be applied.

VIII. RENORMALIZATION IN A
STRONG BACKGROUND

Having identified the one-loop ultraviolet poles for both
scalar and fermionic matter in our background, we can now
introduce counterterms and discuss the renormalization of
these theories. Surprisingly, we shall see that there are very
simple interpretations of the renormalization process in
both cases.
The one-loop corrections to the double line propagators,

introduced here in Secs. III and VII, now need to be
interpreted in terms of bare fields and then renormalised via
the introduction of appropriate counterterms. In [6,20], it
was seen that, even in a weak background, an additional
counterterm was needed to renormalize the fermionic
theory. Having extended here these one-loop calculations,
for both types of matter, to all orders in the background, we
can now look more precisely at the set of counterterms
needed to renormalize the two theories.
Starting with scalar matter, the expressions for the self-

energy, (25), and background induced mass correction,
(28), need to be added together and properly interpreted
before we introduce any counterterms. We can write these
one-loop corrections as

− iðΣUV
s se þ ΣUV

m2 Þ

¼ −i
e2

ð4πÞ2
1

ε
ð3m2 − iðξ − 3ÞPðm2Þ−1 þ ξm2Þ: ð95Þ

The first thing to note about this expression is that the
inverse propagator term here does not match the double line
propagators that surround these corrections in (33). Under
the simple mass shift, Pðm2Þ−1 ¼ Pðm2 þm2Þ−1 − im2,
we get the full inverse propagator plus additionalm2 terms
that now combine, in a very attractive way, with the mass
term to give

− iðΣUV
s se þ ΣUV

m2 Þ

¼ −i
e2

ð4πÞ2
1

ε
ð3ðm2 þm2Þ − iðξ − 3ÞPðm2 þm2Þ−1Þ:

ð96Þ
Note that this last expression can be interpreted as the usual
ultraviolet pole of the self-energy for a scalar particle of
mass m2� ¼ m2 þm2. Now introducing the tree-level, but
not free, bare massm2� and the, Volkov field, wave function
renormalization, allows for the expansion in terms of mass,
δm2� , and Volkov wave function, δ2, counterterms so that

−iðΣUV
s se þΣUV

m2 Þ→ −iðΣUV
s se þΣUV

m2 þm2�δm2� − iPðm2�Þ−1δ2Þ:
ð97Þ

From (96) we can now read off the strong field renorm-
alization conditions that

δm2� ¼ −
e2

ð4πÞ2
3

ε
and δ2 ¼ −ðξ − 3Þ e2

ð4πÞ2
1

ε
: ð98Þ

The most striking thing about this result is its simplicity. In
terms of the strong field variables, m2� and Pðm2�Þ−1, we
have the same multiplicative structure familiar from the
scalar matter in a vacuum. If we were not in the momentum
gauge, then many additional gauge artifacts would obstruct
this simple result.
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For the fermionic theory, this argument needs to be
repeated in each of the sidebands, with propagator Pn, for n
either 0 or �1. We quickly see that for the nth such
sideband,

−iðΣUV
f seðnÞ þ ΣUV

ℳ
Þ ¼ −i

e2

ð4πÞ2
1

ε
ð3m − iξPðmÞ−1n þ ξℳÞ:

ð99Þ

Again, the inverse propagator here needs to match the terms
multiplying it, so we make the replacement PðmÞ−1n ¼
PðmþℳÞ−1 − iℳ. The end result of this shift is that

−iðΣUV
f seðnÞ þ ΣUV

ℳ
Þ ¼ −i

e2

ð4πÞ2
1

ε
ð3m − iξPðmþℳÞ−1n Þ:

ð100Þ

In contrast to the scalar result above, now we see only a
renormalization of the vacuum mass, m, but the wave
function term is still with respect to the full, strong field
normalization.
Thus, in this fermionic theory, we need to introduce just

a vacuummass counterterm, δm, along with the strong field,
wave function term, δ2. Then, written in terms of renor-
malized fields, we have

− iðΣUV
f seðnÞ þ ΣUV

ℳ
Þ

→ −iðΣUV
f seðnÞ þ ΣUV

ℳ
þmδm − iPðmþℳÞ−1n δ2Þ:

ð101Þ

The renormalization conditions that follow from this and
(96) are now

δm ¼ −
e2

ð4πÞ2
3

ε
and δ2 ¼ −ξ

e2

ð4πÞ2
1

ε
: ð102Þ

The differences revealed in this section in the renorm-
alization conditions needed for scalar, (98), and fermionic,
(102), matter are surprising. That the gauge fixing con-
ditions enter differently is not itself unexpected, but the fact
that different classes of counterterms are needed seems
unexpected. In particular, the contrast between the full mass
counterterm for scalars and only the vacuum mass counter-
term for fermions seems unexpected. It is not clear, a priori,
why this should be the case. Especially given the fact that
both types of matter have the same, strong field, counter-
term structure for the wave function renormalization
associated with the full propagators (19) and (70).

IX. CONCLUSIONS

There is huge theoretical and experimental interest in
particle physics in an intense laser background. Much of
the theoretical work builds upon the Volkov solution, where

there is known to be a mass shift and a loss of translational
invariance, both induced by the background. The Volkov
solution has built into it a gauge freedom. In this paper we
have introduced an additional gauge fixing condition on the
background, which we call the momentum gauge, which
dramatically simplifies the description of charged matter
propagation.
For scalar matter, in a circularly polarized background,

we have seen in this paper that only one type of background
interaction survives in this gauge. This interaction respects
translation invariance, and can be easily summed to all
orders. As the background nontranslational invariance has
been gauged away, all the familiar tools from vacuum scalar
QED could be deployed. The strong field solution devel-
oped here exhibits the background induced mass shift, but
none of the normally expected sideband structures, which
are revealed here to be gauge artifacts, even at one-loop.
For fermionic matter, a small number of sidebands

persist in the momentum gauge. This corresponds to a
limited violation of translational invariance. Despite this,
we have been able to develop momentum space techniques
to construct the propagator and its one-loop, ultraviolet
corrections. The background induced mass term has a
matrix structure that is common to each sideband. We
emphasize that in this momentum gauge, the infinite tower
of sidebands has reduced to just seven terms for fermionic
matter, to be compared to just one for the scalar theory. This
reinforces our observation that the usual infinite number of
sidebands is a gauge artifact of this theory.
Our analysis of the renormalization has further revealed a

difference in the counterterm structures needed in both
theories. For the scalar matter, (96), we have renormaliza-
tion of the shifted mass for the full propagator, and of the
residue of the pole at this shifted mass. For fermionic
matter, (100), the vacuum mass is renormalized, rather than
the shifted mass, but we saw that it is the residue of the
shifted mass that acquires a wave function renormalization.
In this paper we have considered tree-level and the

ultraviolet one-loop contributions to charge propagation.
Futureworkwill include an analysis of the finite parts and the
on-shell infrared structures associated with charged matter
propagating in the plane wave background. The intriguing
issue to be resolved for the infrared is the significance of
going on-shell at either the shifted or vacuummass. Also, the
simple form of our propagator may shed further light on the
asymptotic behavior of QED, [21–23].
In describing charge propagation, there was a natural

momentum that could be used to simplify our description of
propagation, as presented above. In a scattering situation,
see for example [24], one can only expect to simplify one
leg of the process by matching the gauge choice to the
momentum in that leg. The implications of this simplifi-
cation for scattering, and how gauge transformations can
shift which leg has been trivialized, will be explored
elsewhere.
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Our focus on circular polarization for the background field
has led to particularly simple results for both the tree-level
and one-loop renormalization of these theories. The most
immediate impact of widening the class of polarizations is
that the terms v and v�, as defined in (44), no longer vanish,
and one will get Bessel functions of these terms as factors in
the sideband structure. This was alluded to in Eq. (B2) of this
paper. These added effects from the background will impact
on our results for both scalar and fermionic matter. However,
the evidence from [6,20] is that these termsdonot acquire any
one-loop corrections. We conjecture that this observation
will also hold in a strong background for both types ofmatter.
The circular polarization case considered in this paper seems
to represent the simplest configuration that captures the
essential physics of the loop corrections in a plane wave
background, for both types of matter.
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APPENDIX A: PERTURBATIVE
FACTORIZATION RESULTS

In this appendix we collect together the details of the
arguments that lead to the key perturbative factorization
result (64), and then the explicit expressions (65), (66), and
(67) that follow from it. The simplicity of these results all
depend critically on our choice of gauge and polarization.
Although the factorization result has been stated quite

generally in (64), the vanishing result (61) means that we
only need to consider three nontrivial cases corresponding
to a net absorption (r2 ¼ r1 − 1), a balanced interaction
(r2 ¼ r1), or a net emission (r2 ¼ r1 þ 1).
A net absorption means that there will be one extra

power of the absorption vertex (34) over the emission
vertex (35). The vanishing results (47) means that these
vertices must alternate and hence, for r ≥ 0,

ðA1Þ

If r ¼ 0 this reduces to the fundamental absorption
process (58), while if r > 0 we have, using the vanishing
identities (47),

P1AðP0EP1AÞrP0
¼ P1AðP0EP1AÞr−1ðP0EP1Aþ P0AP−1EÞP0
¼ P1AðP0EP1AÞr−1P0ðEP1Aþ AP−1EÞP0: ðA2Þ

Hence we recover the factorization identity that, for r > 0,

ðA3Þ

The dual emission version of this factorization identity
can be shown in a very similar way. For the balanced case
there are now two contributing terms when we have r > 0
absorptions and emissions: ðP0EP1AÞrP0 þ ðP0AP−1EÞrP0.
But, using the vanishing identities again, this can be written
as ðP0EP1Aþ P0AP−1EÞrP0, from which the factorization
result immediately follows.
These factorization results now allow for an inductive

derivation of the key identities (65), (66), and (67), where
the base cases have already been seen in (58), (59), and
(63). In fact, we only need to show (67), as the other two
then follow using repeated applications of the factorization
results.
Assuming the identity (67) holds for r ≥ 1 absorptions

and emissions, the factorization result then allows us
to write

ðA4Þ

Expanding the right-hand side of (A4) yields nine potential terms but this quickly reduces to three by using the trivial
identities thatℳI ¼ℳO ¼ 0, along with (51). Thus we get

ðA5Þ
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Now we can use the identities (55) and (56) to deduce the
claimed result (67), for all r ≥ 0.

APPENDIX B: DERIVATION OF RITUS
MATRICES

The compact tree-level result (70) is of interest in its own
right since there are other approaches to this double line
propagator that are not based on perturbation theory, and
look very different. As a check of the results developed

here, we now show how the more familiar Ritus matrices
[25] reduce to the terms in (70) for our choice of circular
polarization and use of the momentum gauge.
In order to trace the consequences of the assumptions

made in this paper, we first consider the more general elliptic
class of polarizations, which includes circular and linear
polarization as limiting cases. In Eq. (44) of [7], a suitable
time-ordered product of Volkov fields was calculated and,
written here in terms of a double line, shown to be equal to

ðB1Þ

The notation used here is more refined than that used in [7],
and is essentially found in the discussion leading to
Eq. (66) of [6]. The normalizing functions, Jn, are the
elliptic class of generalized Bessel functions with first and
last arguments Ω0

1 ¼ −ðI0 þ O0Þ and Ω0
2 ¼ −iðI0 − O0Þ. The

“In” and “Out” terms here are written with primes to signify
that they do not include the final exponential factors in the
complex potential (2), used in this paper. But we note that
the terms in (B1) are multiplied by the exponential eirx·k,
which we have factorized to match the order of the
normalizing Bessel functions. These factors can then be
reabsorbed into the arguments of the Bessel functions, with
the result that the parameters shift from functions of I0 and
O0 to those of I and O, as used in this paper. In the same
way, the scalar v0 becomes the v of Eq. (44), which only
vanishes for circular polarization. By shifting the back-
ground induced mass term out of the propagator in (B1),
one recovers the Ritus representation of the double line
propagator. See the discussion around Eq. (35) in [7] for
more details.
We now start to restrict this quite general representation

for the double line propagator to the situation considered in
this paper. The first thing to note is that in the momentum
gauge the generalized Bessel functions can be easily
expanded in terms of the “In” and “Out” matrices resulting
in the simplification that

Jnð−ðIþ OÞ; v;−iðI − OÞÞ

¼
� Jðnþ1Þ=2ðvÞI − Jðn−1Þ=2ðvÞO; if n is odd

Jn=2ðvÞ; if n is even;
ðB2Þ

where the right-hand side now involves just standard Bessel
functions.
If we now impose the circular polarization condition that

v ¼ 0, then these Bessel functions further simplify so that
only three terms survive:

J−1ð−ðIþ OÞ; 0;−iðI − OÞÞ ¼ I; ðB3Þ

J0ð−ðIþ OÞ; 0;−iðI − OÞÞ ¼ 1; ðB4Þ

and

J1ð−ðIþ OÞ; 0;−iðI − OÞÞ ¼ −O: ðB5Þ

Inserting these results into the expression (B1) then quickly
recovers the result (70) for the double line propagator that
was derived perturbatively in this paper.

APPENDIX C: INDUCED MASS
LOOP CORRECTION

In this appendix we wish to sketch the key steps in
deriving the one-loop result (85) and hence the background
induced mass loop correction (87).
We have seen that the background induced mass arises

from the mixture of absorptions and emissions to the
background. The expression underlying this sideband
result (63) is

ðC1Þ

Following the discussion related to Fig. 9 in [6], the
ultraviolet pole of the one-loop version of the bracketed
expression on the right in (C1) can easily be found by the
simple algebraic replacement: Pn→PnþPnð−iΣUV

f seðnÞÞPn;
A → A − iΣUV

in and E → E − iΣUV
out . Hence we have the

one-loop ultraviolet pole identification that
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ðC2Þ

These can now be evaluated in terms of sideband loop
corrections using the tree-level identities in (41) and the
vertex results (80) and (83).
One quickly finds that

ðC3Þ

Now using the results (55) and (75), we see that

Ið−iΣUV
f seð−1ÞÞOþ Oð−iΣUV

f seð1ÞÞI ¼
ie2

ð4πÞ2 ξℳ
1

ε
: ðC4Þ

Combining this last expression with the expansion (C3)
then gives the key result (85) in the main text.

APPENDIX D: SOME STRONG
FIELD RESULTS

The tree-level, fermionic factorization identity (64)
immediately gives the ultraviolet, one-loop, factorization
result that

ðD1Þ

This now allows us to inductively build up the one-loop corrections to all the higher order interactions with the background.
For the central terms, where r1 ¼ r2, we now use this ultraviolet factorization result to prove that, for all r ≥ 1,

ðD2Þ

which is equivalent to (92).
When r ¼ 1, this expression reduces to our earlier one-loop calculation, (85). To then show the result when we have

rþ 1 absorptions and emissions, we use the factorization identity to disentangle the interactions, thus reducing to three
processes where we have less interactions spanned by the loop, and hence the inductive assumption can be used.
So the key factorization result we need is that

ðD3Þ

The second two diagrams here can be combined and simplified, after repeated use of the identities (56), to give
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ðD4Þ

From the definition (89), we quickly see that

ΔUV
n ðrÞð−iℳPnÞ ¼ ΔUV

n ðrþ 1Þ − ð−iℳPnÞrþ1ð−iΣUV
f seðnÞPnÞ − ð−iℳPnÞrð−iΣUV

ℳ
PnÞ: ðD5Þ

Using this result in (D4), we find that

ðD6Þ

When the loop straddles the initial absorption and emission process, we get

ðD7Þ

where the final terms here are, up to a sign, the same as in (D6).
Combining the expressions (D6) and (D7), we see that

ðD8Þ

Thus the one-loop, central sideband result (D2) holds for all r ≥ 1.
Armed with this central result, we can rapidly derive the expressions for the upper and lower sidebands, (88) and (91), by

using, for example, the ultraviolet, one-loop factorization

ðD9Þ
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