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Galilean-invariant effective field theory for the X(3872)
at next-to-leading order
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XEFT is a low-energy effective field theory for charm mesons and pions that provides a systematically
improvable description of the X(3872) resonance. To simplify calculations beyond leading order, we
introduce a new formulation of XEFT with a dynamical field for a pair of charm mesons in the resonant
channel. We simplify the renormalization of XEFT by introducing a new renormalization scheme that
involves the subtraction of amplitudes at the complex D**DP threshold. The new formulation and the new
renormalization scheme are illustrated by calculating the complex pole energy of X and the D*°DO
scattering amplitude to next-to-leading order using Galilean-invariant XEFT.
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I. INTRODUCTION

The X(3872) was the first of the dozens of exotic
hadrons whose fundamental constituents include a heavy
quark and its antiquark that have been discovered since the
beginning of the century [1-4]. Determining the nature
of X remains central to the problem of understanding the
exotic heavy hadrons. The discovery of X by the Belle
Collaboration in 2003 was through the decay mode
J/wrntx~, which reveals that its constituents include a
charm quark and its antiquark (cc) [5]. The J©¢ quantum
numbers of X were determined to be 17+ by the LHCb
Collaboration in 2013 [6]. The possibilities for the particle
structure of X that are compatible with this information
include

(i) the y.;(2P) charmonium state, whose quark con-

stituents are cc,

(i) a compact isospin-1 tetraquark meson, whose di-
quark constituents are (cu)(¢it) — (cd)(cd),

(iii) an isospin-0 charm-meson molecule, whose hadron
constituents are (D*°D° + D°D*0) + (D**D~+
D*D*"), which correspond to quark constitu-
ents (cit)(cu) + (cd)(ed).
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The Belle Collaboration discovered X at a mass that
was surprisingly close to the scattering threshold for
D*D°. The measured energy relative to the threshold
was (4+0.9 £ 1.3) MeV [5]. They put an upper bound on its
width of about 2.3 MeV. Over the subsequent years, the
measurements of the masses of X, D*0, and D have all
been improved significantly. The LHCb Collaboration has
recently made the most precise measurements of the mass
of X to date, and they made the first measurements of its
width [7,8]. With the line shape of the X in the J/ywnt 7~
decay channel modeled by that of a Breit-Wigner reso-
nance, their results for the energy relative to the D*°D°
threshold and for the width are

Egw = (=0.07 £0.12) MeV, (1a)

Igw = (1.19 £0.19) MeV. (1b)
An alternative prescription for the energy and the width
of a resonance are the real and imaginary parts of the
pole energy Ey — il'y/2. With the line shape modeled by
that of a Flatté amplitude that takes into account the
width of the D*0, the LHCb Collaboration obtained
(40.025 — 0.140i) MeV for the pole energy relative to
the D**DY threshold [7]. The energy Ey is consistent with
the measurement in Eq. (1a), while the width T'y is about
4 times smaller than the measurement in Eq. (1b).

The extremely small energy of X relative to the D*°D°
threshold in Eq. (la) has dramatic implications for the
structure of X. The quantum numbers 11" of X imply that it
has an S-wave coupling to D**D® and D°D*”. Since these
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mesons are electrically neutral, they interact with each
other through short-range interactions with a range of order
1/m,, where m,, is the pion mass. However the tiny energy
of X relative to the D**D? threshold implies that the
interaction between the charm mesons is resonant. Thus
X is an S-wave resonance near the threshold for a pair of
particles with short-range interactions. General principles
of quantum mechanics guarantee that X must have uni-
versal properties determined by its binding energy [9].
They guarantee that the dominant component of X must be
a charm-meson molecule with the particle structure

1 _ _
X =—(D*DO + pOpD*0Y, 2
fz( ) (2)

If Ex <0, X is a bound state whose spatial structure is
described by a universal wave function exp(—r/a)/r,
where a = 1/4/2u|Ex| is the S-wave scattering length
of DD in the C = + channel and y is the reduced mass
of D°D®. The mean separation of the constituents is
(r) = a/2. If the energy Ey is identified with the Breit-
Wigner energy in Eq. (1a), the lower bound on the energy at
the 90% confidence level is Exy > —0.22 MeV. Thus the
mean separation is larger than 4.8 fm.

The universality of S-wave near-threshold resonances is
a truly remarkable aspect of quantum mechanics [10]. If a
model for the X with any particle structure, such as one of
those itemized above, is extended to allow couplings to
D*°DY and D°D* scattering states, it will be dramatically
transformed by the resonant couplings to the scattering
states. If the model has an adjustable parameter that can be
used to tune the resonance energy to the D*°D° threshold,
the resonance will in the limit develop the particle structure
in Eq. (2) with the universal wave function exp(—r/a)/r.
This remarkable phenomenon is widely recognized in the
case of a charm-meson molecule. That it occurs also in the
case of a charmonium state or a compact tetraquark is not as
widely recognized.

The universality of S-wave near-threshold resonances
provides a basis for a systematically improvable treatment
of the X resonance using effective field theory. An
appropriate effective field theory was invented by
Fleming et al. and named XEFT [11]. XEFT is a non-
relativistic effective field theory for charm mesons and
pions. In the simplest version of XEFT, the only fields are
those for the neutral charm mesons D*°, D*0, DO, and D°
and the neutral pion z°. The only components of X that are
treated explicitly are those in Eq. (2) and D°D°z°. The
effects of all other particles must be taken into account in
the parameters of XEFT. In particular, different models for
X with resonance energy far enough away from the D*°D°
threshold, such as those itemized above, correspond to
different choices for the parameters of XEFT. The simplest
version of XEFT is sufficient if the total energy of D**DO,

D°D*0, or D°D°7° is close enough to the D**DP threshold.
The region of validity of XEFT can be extended by adding
fields for the charged charm mesons D**, D*~, D", and D~
and the charged pions z and 7z~ In this case, the additional
components of X that are treated explicitly are D*"D~,
D*D*=, D"™D=2% D*D°z~, and D°D~rn".

An effective field theory can be simplified by taking
advantage of exact and approximate symmetries. A remark-
able aspect of the sector of QCD consisting of D*D, DD*,
and DDr that is described by XEFT is that the sum of the
masses is very nearly conserved. Galilean invariance is a
possible symmetry of a nonrelativistic field theory that
requires exact conservation of the kinetic mass. In
Ref. [12], a Galilean formulation of XEFT was developed.
Galilean invariance provides strong constraints on the
ultraviolet (UV) divergences from loop amplitudes. It
therefore greatly simplifies the renormalization of XEFT.
In this paper, we introduce a new formulation of Galilean-
invariant XEFT with a dynamical field for a pair of charm
mesons in the resonant channel. This new formulation
further simplifies calculations beyond leading order.

The accuracy of an effective field theory can be greatly
improved by using an appropriate renormalization scheme.
Analytic results can also be greatly simplified by the choice
of an appropriate renormalization scheme. In the pioneer-
ing paper on XEFT, the momentum distribution for the
decay of X into D°D°z° was calculated at next-to-leading
order (NLO) using dimensional regularization with power
divergence subtraction [11]. The only UV divergences are
linear divergences, and they were removed by absorbing
them into interaction parameters. In Ref. [12], the elastic
scattering amplitude for D*°D° was calculated at NLO
using dimensional regularization in Galilean-invariant
XEFT. There are both linear and logarithmic UV diver-
gences, and they were removed by subtractions at the
complex pole energy of X. In this paper, we introduce a
simpler renormalization scheme for XEFT in which diver-
gences are removed instead by subtractions at the complex
threshold energy of D*°D°. This new renormalization
scheme greatly simplifies analytic results at NLO.

In Sec. II, we introduce Galilean invariance and we
describe various formulations of XEFT. In Sec. III, we
present the Lagrangian for the new formulation of Galilean-
invariant XEFT with a dynamical pair field. In Sec. IV, we
present the Feynman rules for this new formulation of
XEFT. In Sec. V, we calculate the pair propagator at NLO
and we obtain the complex pole energy of X at NLO. In
Sec. VI, we calculate the D**DP elastic scattering ampli-
tude at NLO and we analyze the breakdown of the effective
range expansion from pion exchange. We summarize our
results and suggest other useful applications in Sec. VIL. In
Appendix A, we present results for loop integrals that arise
in calculations at NLO. In Appendix B, we present the
results for individual Feynman diagrams for the D*°D°
transition amplitude at NLO.
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II. GALILEAN-INVARIANT XEFT

In this section, we introduce Galilean invariance,
describe various formulations of XEFT, and give the
numerical values of some of its parameters.

A. Galilean invariance

Galilean invariance is a possible space-time symmetry of
a nonrelativistic field theory [13,14]. In a nonrelativistic
theory, the energy-momentum relation for an on-shell
particle with rest energy € and kinetic mass m is

E(p) =&+ p*/(2m). (3)

Galilean symmetry requires invariance under a Galilean
boost with an arbitrary velocity vector v. The effects of the
Galilean boost on the energy and momentum are

1
E—>E—|—v-p+§mv2, (4a)

p —p+my. (4b)

The invariant energy E — p?/2m is invariant under Galilean
boosts.

A unique feature of the sector of QCD consisting of
spin-0 charm mesons D and D, spin-1 charm mesons D*
and D*, and pions 7 is that mass is very nearly conserved
by the transitions D* <> Dz. In the decay D** — D79, the
sum of the masses of the D® and #° is lower than the mass
of the D*® by 7.0 MeV, which is only 0.35%. Since the
isospin splittings between the charm mesons are at most
4.8 MeV and the isospin splitting between z* and z° is
4.6 MeV, all the transitions D* <> Dz come very close to
satisfying mass conservation. There are no other hadrons
with such narrow widths that have transitions that come so
close to satisfying mass conservation.

Galilean invariance requires the exact conservation of the
kinetic mass [13]. In a Galilean-invariant description of
charm mesons and pions, the spin-0 charm mesons must all
have the same kinetic mass M and the pions must all have
the same kinetic mass m. Conservation of kinetic mass then
requires the kinetic mass of all the spin-1 charm mesons to
be M + m.

In a nonrelativistic effective field theory for charm
mesons, one can impose a phase symmetry that guarantees
the separate conservation of the number N, of charm
quarks and the number N; of charm antiquarks. These
quark numbers can be expressed in terms of meson
numbers. In a theory with only neutral charm mesons
and 7, the quark numbers are

NC:ND*O+ND0, (Sa)

NZZND*o—i—NDo. (Sb)

If the theory also includes charged charm mesons and
charged pions, the charm quark number N, also includes
the numbers of D*T and DT. In a Galilean-invariant
effective field theory for charm mesons and pions, the
exact conservation of kinetic mass in the transitions
D* <> Dz provides motivation for introducing an addi-
tional phase symmetry that guarantees the conservation of
pion number. In a theory with only neutral charm mesons
and z°, the pion number is

N”:Nﬂo +ND*O +ND*0- (6)

If the theory also includes charged charm mesons and
charged pions, the pion number N, also includes the
numbers of 7, #~, D**, and D*".

B. XEFT

XEFT is a nonrelativistic effective field theory for charm
mesons and pions invented by Fleming ez al. [11]. It
provides a systematically improvable description of the
sector of QCD consisting of D*D, DD*, and DDz with
total energy near the D*D threshold. It therefore can be
used to calculate some properties of the X resonance
systematically. In XEFT with only neutral charm mesons
and 7°, the only fields are complex scalar fields for D, DO,
and 7° and complex vector fields for D* and D*°. For the
sector of QCD consisting of D**D°, D°D*0, D°DO7°, and
X, the region of validity of XEFT with only neutral particles
extends at most to the D*" D~ threshold, which is 8.2 MeV
above the D**DP threshold. The region of validity can be
extended to higher energies by introducing additional fields
for the charged charm mesons and the charged pions.

At leading order (LO) in the power counting of XEFT,
the only adjustable parameter is the LO binding momentum
y of X, which was assumed to be a real parameter in
Ref. [11]. At next-to-leading order (NLO), there are addi-
tional adjustable interaction parameters. In Ref. [11], XEFT
was used to calculate the differential decay rate of X into
D°Dz° at NLO. It depends on two additional adjustable
real parameters: a length r, associated with the effective
range in the resonant S-wave even-charge-conjugation
(C = +) channel and a parameter for the coupling of
D*DY to D°D°z°. Fleming et al. calculated the partial
decay rate of X into D°D°z° numerically as a function of
the LO binding energy y?/(2u). Their estimate of the width
of the error band from the two NLO interaction parameters
decreased from about 25% to about 10% as y>/(2u)
decreased from 0.1 to 0.01 MeV. The relatively wide error
bands even for extremely tiny values of y raises the question
of whether the power-counting expansion for XEFT con-
verges fast enough for it to be quantitatively useful. The
original formulation of XEFT in Ref. [11] has also been
applied to the D**DO scattering length at NLO [15]. The
NLO calculation of the decay rate for X into D°D°z° was
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recently revisited by Dai et al. [16]. They pointed out that
the power-counting rules of chiral effective field theories
for heavy mesons implied that there are two additional
NLO interaction parameters: the S-wave scattering lengths
for D°D° and for D°z°. Their estimate of the width of the
error band from the four NLO interaction parameters
decreased from about 60% to about 30% as y*/(2u)
decreased from 0.1 to 0.01 MeV. The wide error bands
even for extremely tiny values of y further emphasizes the
convergence problem of XEFT.

An alternative formulation of XEFT was developed in
Ref. [12]. It differs from the original formulation in
Ref. [11] in three important ways:

(1) Galilean invariance.

(2) Systematic treatment of the width of D*°, which

requires the LO binding momentum y to be complex.

(3) Complex on-shell (COS) renormalization scheme,
in which the UV divergences in D**D® and
D°D*0 amplitudes are removed by subtractions at
the complex pole energy Ex — il'y/2.

Taking into account the D*? width is essential if XEFT is to
give an accurate description of the X resonance. In the COS
scheme, the adjustable real parameters at LO are Ey and
I'y. In Ref. [12], Galilean-invariant XEFT was used to
calculate the D*D° scattering length at NLO. The result
depends on a single additional adjustable parameter that
can be identified with the parameter r, in Ref. [11]. One
drawback of the COS scheme is that the analytic expression
for the D**D° scattering amplitude is rather complicated.
Galilean invariance simplifies the renormalization of
XEFT. It implies, for example, that the S-wave scattering
lengths for D°D and for D°z°, which were argued to be
NLO parameters of XEFT in Ref. [16], are not required by
renormalization.

In this paper, we present an alternative formulation of
Galilean-invariant XEFT. It differs from the formulation of
Galilean-invariant XEFT in Ref. [12] in three impor-
tant ways:

(1) An additional complex vector field, which we call
the pair field, that annihilates a pair of charm mesons
in the resonant channel.

(2) New Feynman rules in which D**D° and D°D*°
couple to the resonant channel only through the
intermediate pair propagator.

(3) Complex threshold (CT) renormalization scheme, in
which the UV divergences in D**D° and D°D*°
amplitudes are removed by subtractions at the
complex threshold for D**DP scattering states.

The new Feynman rules simplify calculations beyond LO
by making some cancellations of UV divergences between
diagrams automatic. The CT scheme dramatically simpli-
fies analytic expressions for amplitudes beyond LO. It
reveals the existence of an additional adjustable interaction
parameter at NLO that was not recognized in Ref. [12]. It
may also provide a solution to the problem of the large

NLO corrections in XEFT that were encountered in
Refs. [11,16].

C. Known parameters

We denote the masses of D*°, D°, and z° by M., M,,
and my, respectively. The difference between the D* mass
and the D%z threshold is

5=M.— (Mg +mg) = (7.04 £0.03) MeV.  (7)

The decay width of the D** can be predicted by assuming
the decays D* — Dz respect chiral symmetry, isospin
symmetry, and Lorentz invariance. The measured branch-
ing fraction for D** — D% is B,, = (64.7 +0.9)%.
Using the decay width of the D* and the branching
fractions for D*° — D°z° and D** — D°z* as inputs, the
prediction for the total D** width is

T, =T[D"] = (5544 1.5) keV. (8)

In Galilean-invariant XEFT, the spin-0 charm mesons all
have the same kinetic mass M and the pions all have the
same kinetic mass m. We choose the kinetic masses M and
m of D° and 7° to be equal to their physical masses M, and
my, tespectively. The rest energies of DY and z° are
therefore both zero. Galilean invariance requires the kinetic
mass of D** to be M + m. The D** has the complex rest
energy

E,=6—-1il/2, 9)
where § is the energy in Eq. (7) and ', is the D** width
in Eq. (8).

The reduced mass u, for D°z° and the reduced kinetic
mass u for D*°D are

mM

- — 125.87 MeV, 10
M= e (10a)
MM
u= MM Em) el 0 Mev. (10b)
2M + m

The ratio of these reduced masses is a small parameter in
Galilean-invariant XEFT:

r=u,/u=0.1304. (11)

The D*°-to-D°z° coupling constant in XEFT is conven-
tionally denoted by g/(2v/mf,). This coupling constant
can be determined from the partial width of D** into
DOn°:

2
Fax =D = 008 = () 2 092, (12
' mf2) 3z
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where ¢ is the energy in Eq. (7). It is convenient to define a
coupling constant g2 with dimensions 1/(momentum):

2 = (P/Amf2)u? = [(29.7 £0.7) MeV]~'.  (13)

III. LAGRANGIAN

In this section, we write down the Lagrangian for
Galilean-invariant XEFT for the neutral charm mesons
and 7°. We introduce a new form for the Lagrangian with a
dynamical pair field for a pair of charm mesons in the
resonant channel. We include all terms required to calculate
to NLO in the XEFT power counting.

A. LO Lagrangian
The fields for the D° and D° are complex scalar fields D
and D. The field for the z° is a complex scalar field . The
fields for the D** and D* are complex vector fields D and
D. The kinetic terms in the Lagrangian for D° and z° are

Lp = D'[id, + V?/(2M)|D, (14a)

L, = (i, + V2/(2m)]x. (14b)
The kinetic term for D° is obtained from Eq. (14a) by

replacing D by D. The kinetic term in the Lagrangian for
D is

Ly =D"-[id0, +V?/(2(M +m)) — E,]D, (15)

where E, is the complex rest energy of D** in Eq. (9). The
kinetic term for D*0 is obtained by replacing D by D.

There is a resonance in the S-wave channel for the
superposition of D**DY and D°D** with even charge
conjugation (C = +) in Eq. (2). The interaction term in
the Lagrangian for XEFT at LO is a contact interaction in
the resonant channel:

Cy - _ _ _
Liom = = (DD + DD)' - (DD + DD).  (16)

It is convenient to introduce a complex vector field ¢ that
we call the pair field that annihilates a pair of charm
mesons in the resonant channel:

_ o pp s i
& = (DD + DD). (17)

The normalization factor has been chosen for later con-
venience. Using the pair field ¢p, we can write down an
alternative interaction term in the Lagrangian for XEFT
at LO:

L10,int :CLO(I)T '(15—\/L§[(DD+DI_))T -¢+¢*-(DD+DD)).
(18)

The field equation for ¢ implies Eq. (17). The field
equation can be used to eliminate ¢ from Eq. (18), which
reduces it to Eq. (16). The two interaction Lagrangians are
therefore equivalent.

There have been previous efforts to describe the X (3872)
using an effective Lagrangian that includes a local vector
field either for the X itself or for the y.;(2P) charmonium
state. The vector field necessarily has an S-wave coupling
to the charm-meson pairs D*D and DD*. If rescattering of
the charm-meson pairs is treated as a perturbation, the tree-
level scattering amplitude for charm mesons is a Breit-
Wigner resonance. If rescattering of the charm-meson pairs
is treated nonperturbatively, the resulting scattering ampli-
tude for charm mesons near the threshold is the universal
amplitude for a loosely bound S-wave molecule. In our
new formulation of XEFT with a vector field, the charm-
meson scattering amplitude has this universal behavior at
leading order in the pion-exchange interaction, but XEFT
allows corrections from pion-exchange to be calculated
systematically.

B. NLO interaction terms

In the original paper on XEFT in Ref. [11], all the
interaction terms in the Lagrangian needed for calculations
to NLO in the power-counting of XEFT were written down
explicitly. They included pion interaction terms that allow
transitions between D** and D°z° and between D*° and
D°z°. In Galilean-invariant XEFT, the pion interaction
terms are [12]

Jp——
D*<Dn 2\/;”"][”

_|_DT.

D' (DVx)+ (DVz)' - D

<>

DVx) +(DVa)-D|,  (19)

—~

where V = (MV — mV)/(M + m) is a Galilean-invariant
derivative. The pion interaction term in the Lagrangian for
original XEFT in Ref. [11] can be obtained by replacing the

operator % in Eq. (19) by V.

The NLO interaction terms in the Lagrangian for original
XEFT in Ref. [11] include V? interaction terms that
produce transitions between incoming D*°D° or D°D*°
and outgoing D*°D° or D°D*°. There are equivalent
interaction terms involving the pair field ¢. In Galilean-
invariant XEFT, the V2 interaction t involving ¢ are
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Ly2 = *.(DVD + DV?D
v s |10 )

+ (DV’D + DV?D)’ - ¢} , (20)

where V = (MV — (M +m)V)/(2M + m) is a Galilean-
invariant derivative. The V2 interaction terms in Ref. [12]
can be obtained by eliminating ¢ using the field equation in
Eq. (17). The V? interaction terms in the Lagrangian for
original XEFT in Ref. [11] can be obtained by replacing the

operator V in Eq. (20) by (6 - 6) /2 and then eliminating ¢
using its field equation.

The NLO interaction terms in the Lagrangian for original

XEFT in Ref. [11] include counterterms that produce
transitions between incoming D**D? or D°D* and out-
going D**D° or D’D*°. There is an equivalent counterterm
involving the pair field only:
‘Ccounter = —(1/Cé)[5C0¢T ¢ +DO¢T : (iDt - E*)¢] (21)
where iD,=i0,+V?*/(2(2M +m)) is a Galilean-invariant
derivative. The constant subtracted from iD, is arbitrary.
The choice E, corresponds to the complex on-shell
renormalization scheme for the D*C propagator. The
NLO counterterms in the Lagrangian for original XEFT
in Ref. [11] can be obtained by eliminating ¢ from Eq. (21)
using the field equation in Eq. (17).

In the original paper on XEFT in Ref. [11], the
Lagrangian included another NLO interaction term that
allowed transitions between D*°D° or D°D*® and D°D°z°.
There is an equivalent NLO interaction term involving the
pair field. In Galilean-invariant XEFT, the DDr interaction
terms involving ¢ are

' - (DDVx) + (DDVx) -], (22)

Lppr =
P \/_Co

< - <
where V = (2MV — mV)/(2M + m) is a Galilean-invari-
ant derivative. The DD interaction term in the Lagrangian
for original XEFT in Ref. [11] can be obtained by first

replacing the operator V in Eq. (22) by V and then
eliminating ¢ from Eq. (22) using the field equation
in Eq. (17).

The NLO interaction terms in Egs. (20)—-(22) are all
required by renormalization. In the original paper on XEFT
in Ref. [11], the momentum distributions from the decays
of X into D°D°z° were calculated to NLO. The ultraviolet
divergences were removed by renormalizations of the
coupling constants C, in Eq. (20) and B; in Eq. (22). In
Ref. [12], Galilean-invariant XEFT was used to calculate
the D*D? elastic scattering amplitude to NLO. The ultra-
violet divergences were removed by renormalizations of the

coefficients 6C and D in the counterterm in Eq. (21) and
the coupling constant C, in Eq. (20).

In the original paper on XEFT in Ref. [11], the authors
developed power-counting rules. A convenient way to
implement the XEFT power counting is to assign orders
in the coupling constant g for pion emission and absorption
to the coupling constants of all other interaction terms.
A complete calculation then requires calculating all dia-
grams to a given order in g. The coupling constant Cj, is
order ¢°. The coupling constant C, in Eq. (20) is order ¢*.
The counterterm coefficients 6C, and D, in Eq. (21) are
order g%. The coupling constant B in Eq. (22) is order ¢°.
These are the only coupling constants required by renorm-
alization in XEFT at NLO.

In Ref. [16], the authors argued that the Lagrangian for
XEFT at NLO should also include interactions terms that
allow the S-wave scattering reactions D°D? — D°D° and
D°7z° — D%7°. These interaction terms are NLO according
to the power-counting rules for chiral effective field
theories of heavy mesons. In Galilean-invariant XEFT,
there are no diagrams for the reaction D°D° — DODO,
because the pion interaction terms in Eq. (19) do not allow
an incoming D° or D° to emit a z°. There are therefore no
ultraviolet divergences that would require introducing an
S-wave DYDY interaction term. In Galilean-invariant XEFT,
the reaction D°z° — Dz proceeds only in the P-wave
channel through an intermediate D*°. There are no loop
diagrams, so there are no ultraviolet divergences that would
require introducing an S-wave D%z interaction term. Thus
there are no S-wave D°D° and D°z° interaction terms in
Galilean-invariant XEFT. These interaction terms can of
course be introduced as first-order perturbations to the
Lagrangian of XEFT in order to estimate the effects of such
hadronic interactions on observables.

IV. FEYNMAN RULES

In this section, we write down the Feynman rules for
Galilean-invariant XEFT with a dynamical pair field, whose
Lagrangian is given in Sec. III. A set of Feynman rules that
are useful for calculations at NLO are given below as
expressions enclosed in boxes.

A. Particle propagators

In XEFT, the charm quark and antiquark numbers N,
and N; are conserved. In Galilean-invariant XEFT, the pion
number N, is also conserved. These conservation laws can
be built into the Feynman rules by appropriate notation for
the propagators. We use a dashed line for the pion
propagator, a solid line for the D and D propagators,
and a double line consisting of a solid and a dashed line for
the D* and D* propagators. In the propagators for D and
D, the solid line has a forward arrow. In the propagators
for D and D*, the solid line has a backward arrow.
The propagators for D° and 7° are illustrated in Fig. 1.
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FIG. 1. The propagators for D° and z° are represented by a
solid line with an arrow and a dashed line, respectively. The
Feynman rules for these propagators are given in Egs. (23). The
propagator for D° looks like that for D® with the arrow reversed.

FIG. 2. The propagator for D*? is represented by a double line
(solid with an arrow and dashed). The Feynman rule for this
propagator is given in Eq. (24). The propagator for D* looks like
that for D** with the arrow reversed.

The propagator for D*0 is illustrated in Fig. 2. In XEFT,
conservation of charm-quark number requires the numbers
of solid lines with forward arrows entering and leaving a
vertex to be equal. Conservation of charm-antiquark number
requires the numbers of solid lines with backward arrows
entering and leaving a vertex to be equal. In Galilean-
invariant XEFT, conservation of pion number requires the
numbers of dashed lines entering and leaving a vertex to also
be equal. If the arrows on internal lines of a diagram are
omitted, there is an implied sum over the two directions of the
omitted arrows. In Galilean-invariant XEFT with a pair field,
the pair propagator is a triple line consisting of two solid lines
and a dashed line, as illustrated in Fig. 3. For simplicity, we
omit the opposite arrows on the two solid lines.

The Feynman rules for the propagators of D° or D° and

7° are

i
E—p?/(2M) + i€’

(23a)

i
E - p*/(2m) +ie’

(23b)

where E is the kinetic energy of the particle and p is its
momentum. The Feynman rule for the propagator of D*° or
D9 with vector indices i and j is

i85
E-p?/2(M +m))-E,

(24)

where E is the energy of D** relative to the D°z° threshold,
p is its momentum, and E, is the complex rest energy of
D*%in Eq. (9). Galilean invariance requires the kinetic mass
of D*¥ to be the sum M + m of the kinetic masses of D°

FIG. 3. The pair propagator is represented by a triple line (solid,
dashed, and solid). The Feynman rule for this propagator is given
in Eq. (37).

and 7°. Since E, has a negative imaginary part, an explicit
ie prescription is unnecessary in the D*° propagator in
Eq. (24).

In XEFT beyond LO, there are corrections to the D*0
propagator from interactions involving pions. The D*? self-
energy X(E,p) is a function of its energy E and its
momentum p. In Galilean-invariant XEFT, the conserva-
tion of pion number implies that the exact D** propagator
can be calculated analytically by summing a geometric
series in the 1-loop D*0 self-energy diagram in Fig. 4. It is
useful to have a Feynman rule for this subdiagram. Galilean
invariance implies that the self-energy X depends on E and
p only through the invariant energy
»?

Eey=E——+——,
rest 2(M+m)

(25)

which is equal to the D** energy in its rest frame. With
dimensional regularization in d spatial dimensions, the
Feynman rule for the subdiagram in Fig. 4 with the D*? legs
amputated is

Artg?

_iZ(Erest>5ij =i——Eul, (Erest>5ijv (26)

where g2 is given in Eq. (13) and r is the reduced-mass
ratio in Eq. (11). The function 7, (E) is given by a 1-loop
momentum integral:

r(1—-ds/2 .
1, (E) _Wﬁ e~ 2, E1Y>~1,  (27)
where A is a renormalization scale with dimensions of
momentum and g, is the D°z° reduced mass in Eq. (10a).
This loop integral has a linear ultraviolet divergence that is
manifested as a pole in d — 2. The analytic function 7, (E)
has a branch cut along the positive real E axis. The complex
phase inside the square brackets in Eq. (27) is chosen so
that it gives the correct branch of the function when E is
near 6 + ie on the first sheet and near E, on the sec-
ond sheet.

The D* self-energy diagram in Fig. 4 has linear ultra-
violet divergences. These divergences are canceled by the

FIG. 4. The l-loop D*° self-energy diagram. This is the
only D*0 self-energy diagram in Galilean-invariant XEFT. The
Feynman rule for the subdiagram with the external legs ampu-
tated is given in Eq. (26).
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FIG. 5. The D*° propagator counterterm vertex. Its Feynman
rule is given in Eq. (28).

D*0 propagator counterterm vertex, which is illustrated in
Fig. 5. A renormalization prescription for the D*? propa-
gator can be expressed in terms of subtractions to the D*°
self-energy. In the complex on-shell (COS) renormalization
scheme for the D*° propagator, its pole in E,, is at the
complex value E, in Eq. (9) and the residue of that pole is
the same as at LO. This requires the first two terms in the
expansion of X(E.y) in powers of E. —FE, to be
subtracted. The Feynman rule for the D** propagator
counterterm vertex in the COS scheme is

i[Z(E,) + Z(E,)(Ews — E,)]67

) 28
— iG] (E)|E, +4(Epy — E.)| 6. (28)

The Feynman rules for T-matrix elements include
external-line factors for incoming and outgoing particles.
For D°, D° and 7°, the external-line factors are simply 1.
The corrections to the D* propagator from interactions
involving pions change the residue of the pole in the D*°
propagator by a multiplicative factor Z,. The external-line
factor for D** includes a residue factor v/Z,. In the COS
scheme for the D* propagator, Z, = 1. The external-line
factor for an incoming D*° or D*° with polarization vector &
and vector index 7 is

e (29)

The external-line factor for an outgoing D* or D*? is the
same except that &' is replaced by its complex conjugate.

B. Pair propagator

If we use dimensional regularization with d spatial
dimensions, it is useful to introduce a renormalization
scale A to keep the dimensions of coupling constants the
same as in the physical dimension d = 3. This would have
the effect of multiplying an interaction vertex with n
external lines by n —2 powers of AG~9/2 In a Green’s
function with n external legs, the net effect of these powers
of A is a factor of A3~? for every loop integral and an
overall multiplicative factor of AG~9("=2)/2_The factor of
A3~ associated with a loop integral can be absorbed into its
integration measure. If the Green’s function is made finite
by renormalization, the overall multiplicative factor of
AB-d(=2)/2 can simply be discarded, because it is equal
to 1 in the physical dimension d = 3. The resulting
Feynman rules have no powers of A in the vertices and

the coupling constants have the same dimensions as
ind=3.

In XEFT at LO, the only interaction term in the
Lagrangian is the contact interaction term in Eq. (16) for
D*D° and D°D* in the C = + channel. The Feynman
rule is the same for the four vertices for D*0DO,
D°D*0 — DOD° D°D*0: —i(1/4/2)2Cy6". The factors
of 1/4/2 come from projecting a pair of charm mesons
onto the C =+ channel. Two C, interactions can be
connected by a D**D° loop or a D°D* loop. In
Galilean-invariant XEFT, the loop integral is a function
of the invariant energy of the pair of charm mesons:

P2

o . —
o 2(2M + m)

(30)

where E is their total energy relative to the D*°D° threshold
and P is their total momentum. This invariant energy is
equal to the total energy of the pair of charm mesons in their
center-of-momentum (CM) frame. The sum of the two loop
diagrams with two Cj, interactions can be expressed as the
vertex multiplied by —2uCyJ(E.,), where the function
Ji(E) is defined by a 1-loop integral. Using dimensional
regularization in d spatial dimensions, the loop integral is

r(1-d/2)

Jy (E) = (471_)01/2

ASu(E. — B, (31)

where A is the renormalization scale. This loop integral has
a linear ultraviolet divergence that is manifested as a pole
ind-2.

The C, interaction must be treated nonperturbatively in
XEFT. The set of diagrams consisting of an arbitrary
number of successive C interactions connected by
DD or DD loops is a geometric series that can be
summed to all orders analytically. The factor in the
resulting amplitude that depends on the invariant energy
is a function A(E.,,) with dimensions 1/(momentum). In
Ref. [12], (2z/u)A(E) was called the LO transition
amplitude. Tn this paper, we refer to A(E) as the pair
propagator, because it is equal to the propagator for the
pair field ¢ defined in Eq. (17) up to a constant multipli-
cative factor. If we use dimensional regularization in d
spatial dimensions, the pair propagator is

1
~ 220/ (uCy) — 47\ (E)

A(E) (32)

Since J; (E) has a pole in d — 2, this amplitude has a finite
limit as d — 2 only if 1/C, also has a pole in d — 2. The
coupling constant Cy can be tuned as a function of d so that
the LO transition amplitude has a finite limit as d — 3:
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A(E) = (d=3), (33)

1
—r +/—2u(E-E.)

where y is an interaction parameter that we refer to as the
LO binding momentum. A minimal choice for the depend-
ence of 1/C, on d is that it is the sum of a pole in d — 2 and

a constant:
2 2
—=—=-2|A . 34

jren (d -2 ) o o

In the limit d — 3, C, approaches the finite value 27/ (uy).
The pair propagator in Eq. (33) has a pole in the energy £
at the complex energy

Epole,LO = E* - yz/(2ﬂ)' (35)

This LO pole energy has an imaginary part —il",,/2 from
the D* rest energy E, in Eq. (9). This imaginary part gives
a contribution to the width of X that can be interpreted as
arising from its decays into D°D°z° and D°D°, which can
proceed through the decay of a constituent D*° or D*°. But
X also has short-distance decay modes that do not involve
decay of a constituent, such as J/wz"z~. The contribution
to the imaginary part of the pole energy from these decays
can only be taken into account through the imaginary part
of y in Eq. (35). It is therefore convenient to take the LO
binding momentum y to be a complex interaction param-
eter. Unitarity requires the positivity of Im[A(E)] for real
energy E, which requires Im[y] to be positive. The real and
imaginary parts of y are the only interaction parameters in
XEFT at LO.

The vertex corresponding to the LO transition amplitude
is the same for the four transitions D*°D° D°D*0 —
DD D°D*0 In Ref. [12], the vertex was represented
by a blob, as in the diagram on the left side of Fig. 6. The
Feynman rule for each of the four vertices is

i <\%>2 %A(Ecm)aif. (36)

It is convenient to express the 2 — 2 vertex whose
Feynman rule is given in Eq. (36) as the product of a

2 — 1 vertex, the pair propagator, and a 1 — 2 vertex, as
illustrated in Fig. 6. The Feynman rule for the propagator of

FIG. 6. The D*°D%-to-D*°D° vertex in Ref. [12] can be
expressed as the product of a pair propagator and two vertices
that connect the pair propagator to D**D° legs.

a pair with energy E, momentum P, and vector indices i and
jis

—iz—ﬂA(Ecm)ﬁij, (37)
u

where E, is the Galilean-invariant combination of £ and P
in Eq. (30). The vertices connecting D**D° lines or D°D*°
lines to a pair propagator are

L
—lﬁ5 . (38)

The factor of 1/+/2 is the amplitude for the pair of charm
mesons to be in the C = + channel. The vertices connect-
ing D*DY lines to a pair propagator are illustrated in Fig. 7.
It is easy to verify that the product of the pair propagator in
Eq. (37) and two of the vertices in Eq. (38) reproduces the
2 — 2 interaction vertex in Eq. (36).

The pair field defined in Eq. (17) can serve as an
interpolating field for the X. The complete pair propagator
that takes into account interactions beyond LO has the same
form as in Eq. (37) but with A(E,,) replaced by a more
complicated function of the energy. An incoming or
outgoing X in a Feynman diagram can be represented by
a triple line as in Fig. 3. The external-line factor for an
incoming X with polarization vector € and vector index i is

VZxe, (39)

where Zy is the residue of the pole in E,, of the coefficient of
i8" in the complete pair propagator analogous to Eq. (37).
The external-line factor for an outgoing X is the same except
that &' is replaced by its complex conjugate. The LO pole
energy is the pole in the pair propagator A(E) in Eq. (32):

—2z/p
EP

21A2 2/(d-2)
ole — E, - z . (40)
u \I(1-d/2)AC,

If C, is replaced by the expression given by Eq. (34), the LO
pole energy reduces to Eq. (35) in the limitd — 3. AtLO, Zy
is the residue of the pole in E of —(27z/u).A(E):

FIG. 7. Vertices connecting D**D° lines to a pair propagator.
Their Feynman rules are given in Eq. (38).
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472\ —2r/p (4=d)/(d-2)
Zx10= 5 (41)
[(2-d/2)u* \I'(1-d/2)AC,
In the limit d — 3, the LO residue factor reduces to
Zxio0 = 27zy/,u2 (d=3). (42)

C. Pion interaction vertices

The charm mesons interact with pions in XEFT through
the transitions D* <> Dz and D* <> Dn. The vertices
connecting D* to D°z° are illustrated in Fig. 8. The
Feynman rules for the D** <> D%z2° and D*° <> D°z°
vertices in Galilean-invariant XEFT are

g (Mg —mpy)
2y/mf,  M+m

+ , (43)

where ¢ and p, are the momenta of z° and D° or D°,
respectively. The overall sign is + if the D°z° or D79 lines
are outgoing and — if they are incoming. In the D°2° CM
frame defined by p, + g = 0, the momentum-dependent
factor in Eq. (43) reduces to ¢'. This is the momentum-
dependent factor in all frames in original XEFT.

D. NLO interaction vertices

In this subsection, we present Feynman rules for NLO
interaction vertices in Galilean-invariant XEFT whose legs
include a pair propagator. The Feynman rules are given
below as boxed expressions. They replace the Feynman
rules for NLO interaction vertices in Ref. [12].

The NLO V? interaction terms in the Lagrangian are
given in Eq. (20). The interaction vertices that connect
DD lines to a pair propagator are illustrated in Fig. 9.
The Feynman rules for the corresponding vertices con-
necting D**D? or D°D** lines to a pair propagator are

. G (M +m)py— Mp,)*
2V/2C, (2M + m)

S, (44)

where p, and p; are the momenta of the spin-0 and spin-1
charm mesons. These four vertices replace the four V?
vertices in Ref. [12] that connect D**D° or D°D* lines to

FIG.9. The V? interaction vertices connecting D*°D° lines to a
pair propagator. The Feynman rules for the vertices are given
in Eq. (44).

D*°DY or D°D* lines. In the CM frame defined by
Po +p1 = 0, the momentum-dependent factor in Eq. (44)
reduces to p3.

The NLO counterterm in the Lagrangian is given in
Eq. (21). The pair-propagator counterterm vertex is illus-
trated in Fig. 10. Its Feynman rule is

1 y
5 [SCO + DO(Ecm - E*)]&J.

—i C(Z) (45)

This vertex replaces the four counterterm vertices in
Ref. [12] that connect D*°D? or D°D*0 lines to D*°D°
or D°D*0 lines.

The vertices connecting D°D°z° lines to a pair propa-
gator are illustrated in Fig. 11. The DD interaction terms
in the Lagrangian are given in Eq. (22). In Galilean-
invariant XEFT, the Feynman rules for the vertices con-
necting a pair propagator to D°D°z° lines are

B, (2Mq—m(py+p}))’

+
vV 2mC0 2M +m

(46)

where ¢, po, and p}, are the momenta of z°, D, and D°,
respectively. The overall sign is + if the D°D°z° lines are
outgoing and — if they are incoming. In the CM frame
defined by po+p;+¢q =0, the momentum-dependent
factor in Eq. (46) reduces to ¢'.

=

FIG. 10. The pair-propagator counterterm vertex. The Feynman
rule for the vertex is given in Eq. (45).

FIG. 8. The vertices for the pionic transitions D*® — D°z° and
D%z° — D*°. The Feynman rules for the vertices are given
in Eq. (43).

FIG. 11.

The DDr interaction vertices connecting D°D°z°
lines to a pair propagator. The Feynman rules for the vertices are
given in Eq. (46).
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7z z

FIG. 12. A diagrammatic identity that can be used to show that
the Feynman rules in Ref. [12] give the same Green’s functions as
the Feynman rules in this section. The open circle on the left side
is an arbitrary vertex that connects to D**DY or D°D** lines. The
open circle on the right side is the corresponding vertex that
connects to a pair propagator.

Calculations beyond LO using the Feynman rules for
NLO interaction vertices presented above are simpler than
calculations using the Feynman rules in Ref. [12]. There are
sets of diagrams whose sums are the same with either set of
Feynman rules. The Feynman rules above give the terms in
such a sum more directly and with fewer UV divergences.
The same terms can be obtained using the Feynman rules in
Ref. [12] by using diagrammatic identities. An example of
such a diagrammatic identity is shown in Fig. 12. The
analytic expression for the identity is

n 1 1
A 2/,{C0

A(E). (47)

This identity follows from the expression for the LO
transition amplitude in d dimensions in Eq. (32). It allows
the loop integral J;(E) to be canceled against the loop
integral in the denominator of the pair propagator A(E).

V. NLO PAIR PROPAGATOR

In this section, we use Galilean-invariant XEFT to
calculate the complete pair propagator to NLO.

A. Complete pair propagator

The pair propagator in XEFT at LO is given by the
Feynman rule in Eq. (37), where the function A(E) in d
spatial dimensions is given in Eq. (32). In three dimensions,
A(E) reduces to Eq. (33). In XEFT beyond LO, there are
corrections to the pair propagator from interactions involv-
ing pions and from other interactions. The corrections to the
pair propagator can be organized into a geometric series of
pair self-energy diagrams. The complete pair propagator is
obtained by summing the geometric series. It can be
expressed in the form

2 1 .
iz 5, 48
o A(Eay) = Ty (Eay) (48)

where I1)(E) is a function with dimensions of momentum
that we call the pair self-energy.

The NLO diagrams for the pair self-energy are shown in
Fig. 13. The expressions for those diagrams can be obtained
from Appendix B, in which the NLO diagrams for the

FIG. 13.
of the amputated diagrams is i[u/(27)|[y(E)5Y.

The NLO diagrams for the pair self-energy. The sum

transition amplitude for D*°D® — D*°D° are calculated.
Some of the diagrams for D**D? — D*°D have pair self-
energy subdiagrams. The expression for each pair self-
energy subdiagram can be obtained by removing the initial
and final vertex factors and the two pair propagators from
the diagram for D*°D° — D**D°. The NLO pair self-
energy can be expressed as

I(E) = gzF(E) + (C,/Cy)H(E)
— 27/ (uC}))[6Co + Do (E — E,)].  (49)

The functions F(E) and H(E) can be expressed in terms of
the 1-loop integrals J,, and /,, and the 2-loop integrals K,,,,,
defined in Appendix A. The function F(E), which has
dimensions of (momentum)?, comes from the first two
rows of diagrams in Fig. 13. It can be obtained from the
2-loop pion-exchange diagram in Eq. (B5) and the D*
propagator correction diagrams in Eqs. (B8) and (B9):

F(E) = —% <\/%[2K110(E) —Z(ZﬂE* - r#E)Km (E)

—(2=r)J 1 (E)*]+2K,10(E)
—4ME*[K120<E>—rh(E*)Jz(En—dﬂl(E*wl(E)),

(50)

where r = u,/u is the ratio of reduced masses defined in
Eq. (11). The function H(E), which has dimensions of
(momentum)?, comes from the third row of diagrams in
Fig. 13. It can be obtained from the 1-loop V? vertex
diagrams in Eq. (B12):

H(E) = 8xu(E — E.)J, (E). (51)
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The 6Cy and D, terms in Eq. (49) come from the last
diagram in Fig. 13. They can be obtained from the pair-
propagator counterterm diagram in Eq. (B13).

B. Renormalization

The renormalizability of XEFT as an effective field
theory requires that ultraviolet divergences can be canceled
order by order in the power counting by renormalization of
the parameters of XEFT. With dimensional regularization,
the UV divergences in loop integrals produce poles in d — 2
and poles in d — 3. A pole in d — 3 represents a logarithmic
UV divergence, and a pole in d — 2 represents a linear UV
divergence. In the previous calculations in XEFT at NLO in
Refs. [11,15,16], power divergence subtraction was used to
remove the poles in d —2. The subsequent limit d — 3
produces terms with positive integer powers of the renorm-
alization scale A. It may also produce terms that depend
logarithmically on A. If power divergence subtraction is
used to make linear UV divergences explicit in the limit
d — 3, renormalization must remove both the poles in
d — 3 and the dependence on A.

Green’s functions in XEFT should be multiplicatively
renormalizable. A renormalized amputated connected
Green’s function can be defined by multiplying the
amputated connected Green’s function by an appropriate
renormalization factor \/Z for every external leg. For D°
and DO legs, the renormalization constant is Z = 1. For D*°
and D*0 legs, the renormalization constant in the COS
scheme for the D*C propagator is Z, = 1. When the
Lagrangian for XEFT is formulated using the pair field
¢ as in Sec. IIlI, there are also Green’s functions with
external pair legs. We denote the corresponding dimension-
less renormalization constant by Z,. It is equal to 1 at LO,
but Z, has corrections beyond LO.

The renormalized complete pair propagator differs from
the complete pair propagator in Eq. (48) by a multiplicative
factor 1/Z,. The renormalized pair self-energy I1(E) can be
defined by

ZyA(E)™ —IIy(E)] = A(E)™' = II(E).  (52)

The renormalization constant at NLO can be expressed
as Zy =1+ 6Z,. The renormalized pair self-energy at
NLO is

I(E) = gzF(E) + (C3/Co)H(E)
— 2/ (uC3))[6Co + Do(E — E.)]
67, A(E)". (53)

It must be possible to choose 6Z; so the linear and
logarithmic UV divergences in this expression all cancel.

We first consider the poles in d — 2 in the renormalized
NLO pair self-energy I1(E) in Eq. (53). The poles in d — 2
for the loop integrals are given in Appendix A 3.

The function F(E) in Eq. (50) has double poles in d —2
from the 2-loop integral K;;y, and from the products of
1-loop integrals J? and 1,J;. Along with the double poles,
which do not depend on E, there are single poles whose
coefficients include a logarithm of the form log(E, — E).
There are also canceling single poles in d —2 in the
combination K, —rl;{J,. The double poles and the
constant single poles in F(E) can be canceled by
the counterterm 6C, in Eq. (53). The function H(E) in
Eq. (51), which has a factor E — E,, has a single pole in
d —2 from the loop integral J;. The single pole can be
canceled by the counterterm D, in Eq. (53). The poles in
d -2 from the loop integrals in II(E) that cannot be
canceled by the counterterms 6C, and D, are the single
poles with energy dependence log(E, — E). The sum of
these terms and the 6Z; term in Eq. (53) are

2rV/1—rg2N* . 2u(E, - E) 4
e log 2 -0Z,AE)~".  (54)

The argument of the logarithm has been made dimension-
less by using the renormalization scale A. The expression
for the amplitude A(E) in Eq. (32) in the limit d — 2 is

. - 1/A
EIIE»%A(E)  log(2u(E, — E)/A})’

(55)
where the momentum scale A, in the logarithm is deter-
mined by the constant under the pole in d — 2 of Cj'. The
dependence on E cancels between the two terms in Eq. (54)
if 6Z, has a pole in d — 2 with the appropriate residue. The
renormalization constant at NLO must have the form

2rV1 = rg2A
Zy=1 ————"— 4 fini
(/, + ( (d=2)n + 1n1te>, (56)

where the finite NLO term has a finite limit as d — 2. The
cancellation of the log(E — E,) terms leaves a single pole
with a factor log(A3/A?) that can be canceled by the
counterterm 6Cy. We conclude that all the poles in d — 2 in
the NLO pair self-energy can be canceled by the counter-
terms 6C( and D,.

Having verified that all the linear UV divergences in the
renormalized pair self-energy can be canceled by the
counterterms 6C( and D, there is nothing to be gained
by making them explicit using power divergence subtrac-
tion. We therefore choose to simplify intermediate results
by using conventional dimensional regularization in which
the only explicit UV divergences are poles in d — 3.

We now consider the poles in d — 3 in the renormalized
NLO pair self-energy I1(E) in Eq. (53). The poles in d — 3
for the loop integrals are given in Appendix A 5. The only
poles in d — 3 come from the 2-loop integrals Ko, K12,
and K 1, in the function F(E) in Eq. (50). The poles in K5
and K, are constants. The pole in K is a linear function
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of E. Thus all the poles in d — 3 can be canceled by the
counterterms 6C and D,,. We conclude that the logarithmic
UV divergences in the NLO pair self-energy can be
canceled by these counterterms.

C. Minimal subtraction renormalization scheme

We have verified that the linear and logarithmic UV
divergences in the NLO pair self-energy can be canceled by
the counterterms 6Cyy and Dy, and the NLO term 6Z in the
pair renormalization constant. A renormalization scheme
for D*°D? and D°D** amplitudes in XEFT corresponds to a
specific choice for those counterterms. The simplest
renormalization scheme is the minimal subtraction (MS)
scheme, in which 6C,, D, and 5Z¢, are chosen to cancel
only the poles in d — 3. Since 67 has a pole in d — 2 but no
poles in d — 3, 6Z, = 0 in the MS scheme. At NLO, the
poles in d —3 in the pair propagator appear only in the
function F(E) in Eq. (50). The explicit form of the poles in
d—3of F(E) is

[F(E)]pote
B PE=

-r

:3#5—3){ [(ﬂlT
+1>ﬁ—f’rarccos(ﬁ)]u<E—E*)}.
(57)

=

A pole in d — 3 of F(E) is accompanied by the logarithm
log(2uE,/A?), where A is a renormalization scale. In the
MS scheme, the cancellation of the poles in d — 3 by the
counterterms leaves terms in F(E) that depend on A. They
can be obtained by replacing 1/(d —3) in Eq. (57) by
log(2uE, / A?). The logarithm multiplying the constant uE,
term can be absorbed into an NLO correction to the LO
parameter y. However there is also a logarithm multiplying
the u(E — E,) term. The renormalization scale A in this
logarithm can be interpreted as an additional real-valued
interaction parameter in the MS scheme associated with
renormalization of the coupling constant D,. The existence
of this additional interaction parameter was not recognized
in Ref. [12].

D. Complex threshold renormalization scheme

We introduce a new renormalization scheme for D*?D°
and D°D*® amplitudes in XEFT that we call the complex
threshold (CT) renormalization scheme. It is defined by
specifying the behavior of the renormalized pair propagator
near the complex threshold E = E,. The renormalized
inverse pair propagator has a threshold expansion in
half-integer powers of E — E, or, equivalently, in integer
powers of the function x(E) defined by

k(E) = \/2u(E, —E). (58)
The CT scheme is partly defined by specifying the first two
leading terms in the threshold expansion:

A(E)"' =TI(E) = —y + k(E) + O(x*(E)). (59)

At NLO, the definition of the CT scheme is completed by
specifying the real part of the coefficient of x*(E) in the
threshold expansion of TT( E). We choose to denote that real
part by F,g2, where F, is a dimensionless adjustable
interaction parameter. At higher orders, the definition of
the CT scheme may need to be extended by specifying the
real parts of coefficients of higher integer powers of k*(E).

We proceed to obtain a more explicit expression for the
renormalized NLO pair self-energy II(E) in the limit
d — 3. The expression for II(E) in Eq. (53) depends on
the functions F(E) and H(E), which are expressed in terms
of loop integrals in Egs. (50) and (51). The threshold
expansions in powers of £ — E_ of the loop integrals in
Ref. [12] are given in Appendix A 6. In the limit d — 3, the
function H(E) is very simple:

H(E) = & (E). (60)

In the limit d — 3, the function F(E) can be expanded in

integer powers of k(E):

F(E) = foxi + f1k.k(E) + fox*(E) + fax*(E) /13 + ...,
(61)

where k., = \/2uE,. The dimensionless coefficients f, are

functions of the reduced-mass ratio r = p,/u. The f; term
is the only one with an odd power of x(E). The coefficient

f) is pure imaginary, and it is suppressed by a factor of 7°/2:
#S5/2
=i —. 62
=i = ©2)

The coefficients f(, and f, have single poles in d — 3, and
they have finite imaginary parts:

r2[2—r

lm] 0]25[1

—-r 1—r

arccos(+/r) — <3 + ) \/7} , (63a)

i) = 1 - Y acos(vi)] o)

(/3 1—7 1-r

All the higher coefficients have finite limits as d — 3, and
they are real valued. The coefficients f, with n > 2 can be
expressed analytically in terms of hypergeometric func-
tions. The coefficient f, is
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_202-1) 113
o= o= (71 (-5-3 51 -7)
+ 28_4— er_;J arccos(v/r)
(2-2r-5P)F_VT=m?\
242-1) 40(2—r))' (64)

Its value in the limit r — 0 is f; = 2/(3x). Its numerical
value at r=0.1304 is f, = 0.1979. The renormalized
NLO pair self-energy in Eq. (53) can be expressed as

I(E) = [fogak: — 276C,/ (WCG) + 5Z 4y
+ [f197x. — 6Z,4]k(E)
+ [f292 + 2Dy / (U C3)]k* (E)
+(Co/Co)(E) + gz F4(E), (65)

where F,(E) is obtained by subtracting from F(E) the first
three terms in its expansion in powers of «(E):

F4(E) = F(E) — [fox? + fix.k(E) + fox*(E)].  (66)

It has a threshold expansion in even powers of x(E) that
begins with a x*(E) term.

We proceed to implement the CT scheme for the
complete pair propagator at NLO. The first four terms in
the threshold expansion for the NLO renormalized pair
self-energy I1(E) are already explicit in Eq. (65). There are
poles in d — 3 in the coefficients f(, and f,. The CT scheme
requires the total subtraction of the leading term and the
k(E) term in Eq. (65) and the partial subtraction of the
K*(E) term.

We first consider the x(E) term in the threshold expan-
sion for IT(E) in Eq. (65). The total subtraction of the x(E)
term requires 6Z, = f 1g2k,. The coefficient f, is finite at
d = 3 and pure imaginary. The resulting expression for the
renormalization constant Z in the CT scheme is

/52
————0k,
3zv1l—r

If we include in 6Z,, the pole in d — 2 in Eq. (56), we must
also include an additional finite term that cancels that pole
term at d = 3, so that Z in the limit d — 3 is again given
by Eq. (67). Since the finite renormalization in Eq. (67) is
not an essential aspect of the CT scheme, we will continue
to regard 6Z, as arbitrary.

We next consider the leading term in the threshold
expansion for TI(E) in Eq. (65). The NLO binding
momentum with 6Z, = f g2k, is

Zy=1+i (d=3). (67)

YN0 =7 + F102K.7 + fog2k? —2m8Cy/ (uC3),  (68)

where f is given in Eq. (62) and the imaginary part of f is
given in Eq. (63a). The terms £ g2k,y and i Im[f,)g2k? give
positive contributions to the imaginary part of yn . These
contributions, which take into account the decay of X into
D°D°7°, add to the imaginary part of y, which takes into
account short-distance decays of X, such as its decay into
J/wrtx~. The counterterm 5C, must cancel the pole in
d — 3 from the coefficient f, in Eq. (68). It could be chosen
to cancel also the real finite part of f,. The CT scheme
requires the total subtraction of the leading term in Eq. (65),
which implies yni.o = 7-

We finally consider the x*(E) term in the threshold
expansion for II(E) in Eq. (65). The counterterm D, must
cancel the pole in d — 3 from the coefficient f; in Eq. (65).
It can be chosen to also cancel an arbitrary real part of f5.
We denote the remaining finite real part of that coefficient
by F,. The resulting expression for the renormalized pair
self-energy at NLO is

I(E) = [f19zK. — 6Zylk(E) + (F, + iIm[f])gz*(E)
+ (Co/Co)i (E) + gz F4(E). (69)

In the CT scheme, the term proportional to x(E) is absent.
The adjustable real interactions parameters in XEFT at
NLO in the CT scheme are Rely], Im[y], F5, and C,/C,.
The existence of the additional interaction parameter F,
was not recognized in Ref. [12].

E. Other previous renormalization schemes

In Refs. [11,16], the differential decay rate of the X into
D°D°z° was calculated to NLO in original XEFT. The LO
binding momentum y was taken to be a real adjustable
parameter. The calculation of the NLO diagrams did not
produce any poles in d — 3. Power divergence subtraction
was used to make the poles in d — 2 explicit as dependence
on the renormalization scale A, which was denoted by
Apps/2. The pair propagator A(E) in d dimensions is given
in Eq. (32). If the pole in d — 2 is subtracted from the loop
integral J;(E) in Eq. (31), then the pole in d — 2 must also
be subtracted from 27z/(uCy) in Eq. (34). The resulting
expression for C satisfies

Co2A—y) = —27/u. (70)

In Refs. [11,16], the remaining dependence on the renorm-
alization scale appeared in the following combinations:

Cr(2A — }’)2 = (m/u)Ry,

[Bi + (gu/ f2)Co](2A —y) = /(100 MeV)?*.

(71a)
(71b)
These equations defined two renormalized interaction

parameters: R, (denoted by ry in Ref. [11]), which has
dimensions 1/(momentum), and #, which is dimensionless.
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In Refs. [11,16], R, was assumed to be positive and less
than 1/(100 MeV) and 7 was assumed to be in the
range |n| < 1.

In our calculations, we have chosen not to make linear
UV divergences manifest by using power divergence
subtraction. The same results could be obtained by using
power divergence subtraction and then setting A = 0. If we
divide Eq. (71a) by Eq. (70) and then set A = 0, we find

C,/Cy = Ro/(ZV)- (72)

Thus we can replace C,/C, in our NLO corrections by
Ry/(2y), where R is the renormalized interaction param-
eter introduced in Ref. [11].

In Ref. [15], the D*ODO scattering length was calculated
to NLO in original XEFT. In addition to terms proportional
to A, A2, log A, there was explicit dependence on A from
terms proportional to 1/(2A —y). These terms were intro-
duced by a resummation prescription for dealing with an
infrared divergence at the D*°D° threshold. The terms
proportional to 1/(2A —y) were not removed by the
renormalization of the parameters. This failure of the
renormalization procedure suggests that the resummation
prescription for the infrared divergences in Ref. [15] was
incompatible with the renormalization prescription.

In Ref. [12], which introduced Galilean invariant XEFT, a
renormalization prescription for D**D° and D°D*0 ampli-
tudes called the complex on-shell (COS) renormalization
scheme was introduced. The COS scheme requires the pole
in the energy and the residue of the pole in the D**D°
transition amplitude to be the same as at LO. This renorm-
alization scheme will be discussed in Sec. VIC after the
NLO calculation of the D**D° transition amplitude.

F. NLO pole energy

The complete pair propagator II1(E) has a pole in E at a
complex energy that is conveniently expressed as

Epole =E, - 7}(/ (2,“)’ (73)

where yy is the complex binding momentum. The pole
energy at NLO in the CT scheme is a zero of the
renormalized inverse pair propagator —y + k(E) — II(E),
where TI(E) is given in Eq. (69). The equation for yy at
NLO can be obtained by substituting E — Ep in the
expression for II(E) and then setting it equal to —y + yx.
The equation can be expressed as

vx =7+ [f192K. = 6Zylyx + (Fo + im[f3])gzr%

R
+ 2—;7% + R2FL(E, =7}/ (2p)). (74)

In the CT scheme, the term on the right side proportional to
¥x is zero. We have used Eq. (72) to set C,/Cy = Ry/(27).

The equation for yy can be solved as an expansion in
powers of y. The solution for the first few terms in the CT
scheme is

1 .
rx =7+ 3 Ro +2(F> + iIm[f2)) g2l
3
+ 7 [Ro + 2(F; + i1mlf3))g7]
4
x R0+§(F2+ilm[ Mgz |y +.... (75)

In the calculation of the rate for a reaction with X as an
incoming or outgoing particle, the T-matrix element has a
factor \/Zx for the X. The residue factor Zy is determined
by the derivative with respect to E of the renormalized
inverse pair propagator in Eq. (52) evaluated at E,,.. The
reciprocal of the residue factor can be expressed as

Zy' = Zy}o + (1) 2m))IT (Epgre) (76)

where Zy | o is the LO residue factor in Eq. (41). The NLO
pair self-energy T1(E) is given in Eq. (69). The reciprocal of
the residue factor at NLO in the limit d — 3 is

2
_ H 1 )
Zx\io =5 . (f193K. —5Z¢);—2(F2+zlm[ 2))gn
3Rorx | g7
5 RE SR Q)| (d=3). (7)

Note that the choice 6Z; = f, g2k, in the CT scheme

simplifies both the equation for the binding momentum in
Egs. (74) and the residue factor in (77).

VL. D**D® SCATTERING

In this section, we use Galilean-invariant XEFT to
calculate the D*D° elastic scattering amplitude to NLO
and we discuss the breakdown of the effective range
expansion.

A. NLO transition amplitude

The amputated connected Green’s function for D*°D° —
DD is a tensor 7/ whose vector indices are those of the
incoming and outgoing D*° lines. If the incoming and
outgoing D° are on their energy shells but the incoming and
outgoing D** are off their energy shells, this transition
tensor 7 (E, p,p') is a function of the total energy E of the
pair of charm mesons in their CM frame and the relative
momenta p and p’ of the incoming and outgoing charm
mesons. The transition tensor 7° f{ for the C = + channel is
the sum of the transition tensors for D*°DY — D*0DO,
D*ODO N DOD*O, DOD*O N D*ODO, and DOD*O N DOD*O
multiplied by 1/2. The S-wave contribution to the tran-
sition tensor can be obtained by averaging over the
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directions of p and p’. It is diagonal in the vector indices i
and j, and it is a function of E, p, and p’. The C = + S-
wave transition tensor can be expressed in the form

ii 277: ..
(T'UE.p.p))py = 7As+(Ev p.p)s7.  (78)

where the scalar transition amplitude .4, has dimensions
1/momentum. At LO, the C = 4 S-wave transition ampli-
tude reduces to the pair propagator A(E) in Eq. (33).

The NLO diagrams for the transition tensor for D*D° —
D*°DY are calculated in Appendix B. There are three pion-
exchange diagrams shown in Fig. 14: two 1-loop diagrams
and a 2-loop diagram. There are two D* propagator
correction diagrams shown in Fig. 16: a 2-loop diagram
with a D* self-energy subdiagram and a 1-loop diagram with
a D* self-energy counterterm. With the Feynman rules for
NLO interaction vertices in Sec. IV D, there are four V2
vertex diagrams in Fig. 17: two tree diagrams and two 1-loop
diagrams. There is also a tree diagram with a pair-propagator
counterterm vertex in Fig. 18. There are analogous diagrams
for the other three amplitudes D*°D° — D°D*°, p'D*0 —
D*D° and D°D*® — D°D*°. The amplitudes for D*°D° —
D°D*® and D°D*® — D**DP also have a tree-level pion
exchange diagram. The tree diagram for D*°D? — DD*0 s
shown in Fig. 15.

The complete NLO C = + S-wave transition amplitude
can be expressed as

AH(E? p’ p/) - A(E) + A}T(E’ p’ p/>
; <g,%[G<E, p) + G(E. p)]
(G Co) (P + p/2>/2)A<E>

+ Iy (E)A*(E), (79)

where I, (E) is the pair self-energy given in Eq. (49). The
tree-level pion-exchange term .4, can be obtained from
Eq. (B7):

g (2(2—r)rﬂE—r(p2+p’2)
6xV1—r 4\/Epp’

1 2ruE—p>—p?+2\/1—rpp’ 2 )>
0 —(2=7r) ),
g2rﬂE—p2—p’2—2\/Epp’

A (E,p,p)=

(80)

where r = p,/u. The function G(E, p), which has dimen-
sions of momentum, comes from the 1-loop pion-exchange
diagram in Eq. (B4):

G(E.p) = d\/zerr (—rLo(E, p)
+ r[2uE, +2(1 = r)uE — p?L,(E. p)
+(2- r)Jl(E)). (81)

The terms proportional to A(E) in Eq. (79) have a single
pole in the energy E. The terms proportional to A*(E) in
Eq. (79) have an unphysical double pole in E. The N’LO
contribution would have a triple pole and higher order
contributions would have even higher poles. These unphys-
ical multiple poles can be summed to all orders, in which
case they produce a shift in the position of the single pole in
the LO amplitude. An expression for the C = + S-wave
transition amplitude that has NLO accuracy but only a
single pole in E is

A (E.p.p') = A (E.p.p')

1
+ WJZO(E7 p)

mwno(ﬂ P,

(82)

where I1)(E) is the NLO pair self-energy in Eq. (49). The
numerator factors at NLO are given by

Wo(E, p) =1+ gz:G(E. p) + (C,/Co)p*/2.  (83)

By expressing the numerator as a product as in Eq. (82), the
residue of the pole at E = E is guaranteed to factor into
the product of a function of the incoming relative momen-
tum p and a function of the outgoing relative momentum
p'. The denominator factor in Eq. (82) is the complete pair
propagator at NLO, which can be obtained by summing the
geometric series of NLO pair self-energy diagrams.

In Ref. [12], the NLO C = + S-wave transition ampli-
tude in Eq. (79) was calculated only in the limit p — O,
p' — 0. The numerator factor W2,(E, 0) was expanded to
NLO and expressed as 1+ ¢g2G(E), where G(E) =
2G(E,0). It was stated in Ref. [12] that to NLO accuracy,
the g2G(E) terms in the numerator could equally well be
moved to the denominator in a factor multiplying A(E)~".
This is incorrect, because it changes the pole energy. The
numerator and the denominator in Eq. (82) could however
both be multiplied by the same constant Z.

B. Renormalization

The renormalized transition amplitude for D**D° in the
C = + S-wave channel can be obtained from the transition
amplitude in Eq. (82) by multiplying it by the appropriate
renormalization constants for the external D*° lines. If
the COS renormalization is used for the D** propagator,
the renormalization constant for D** is Z, = 1. Thus the
transition amplitude in Eq. (82) must be UV finite.
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There are however UV divergences in the pair propagator
IIH(E) and in the numerator factors. A manifestly finite
expression for the transition amplitude can be obtained by
multiplying the numerator and denominator of Eq. (82) by
Z,. The resulting denominator is the renormalized inverse
pair propagator in Eq. (52). The product of the numerator
factor W4 (E, p) and /Z, defines a renormalized numer-
ator factor W, (E, p). The resulting renormalized expres-
sion for the C = + S-wave transition amplitude is

AH(E’ p> p/) = Azz(E’ p, p/)

+ W.(E, p) W.(E, p').

A(E)™! = TI(E)
(84)

The renormalized numerator factor at NLO is
W (E.p)=14g:G(E.p)+ (Ro/y)p*/4+6Z4/2.  (85)

where G(E, p) is given in Eq. (81). We have used Eq. (72)
to set C,/Cy = Ry/(2y), where R, is a renormalized
interaction parameter. The renormalized self-energy
II(E) at NLO is given in Eq. (53), with C,/C, replaced
by Ro/(2y).

We proceed to verify that the terms in the renormalized
transition amplitude in Eq. (84) are all UV finite at NLO.
We have already verified the cancellation of all the poles in
d—2 and d — 3 of the renormalized self-energy II(E) at
NLO. The function G(E, p) has single poles in d — 2 from
the loop integrals L and J;. It can be easily verified that the
poles are canceled by the 6Z,/2 term in Eq. (85), where
0Zy is the NLO term in the renormalization constant in
Eq. (56). We conclude that the linear UV divergences in
W, (E, p) cancel at NLO.

Having verified that the linear UV divergences in the
numerator factors in Eq. (84) cancel, there is nothing to be
gained by making them explicit using power divergence
subtraction. We therefore choose to simplify the numerator
factors by using conventional dimensional regularization
in which loop integrals are analytically continued to the
neighborhood of d = 3. Since the function G(E, p) has no
poles in d — 3, we can simply set d = 3 in the renormalized
numerator factor W,.

C. Complex on-shell renormalization scheme

In Ref. [12], which introduced Galilean invariant
XEFT, a renormalization prescription for D**D° and
D°D*0 amplitudes called the complex on-shell (COS)
renormalization scheme was introduced. The D**D° tran-
sition amplitude has a pole in the CM energy at the same
complex energy E,. as the complete pair propagator. The
pole energy is expressed in terms of the binding momentum
yx in Eq. (73).

The renormalization prescription for the COS scheme in
Ref. [12] is that the pole in E in the transition amplitude in
Eq. (84) at p = p’ =0 has the same value and the same
residue as at LO. The pole energy E,. has the same
value if the LO binding momentum y is equal to yy. The
condition for the pole at p = p’ =0 to have the same
residue is

W%(E, 0)
—7x +x(E) = cos(E)

—7x/H
ﬁ
E - Epole

as E— Eyye.  (86)

where Tlogg(E) is the renormalized pair self-energy in the
COS scheme. The two renormalization conditions for
Ieos(E) are

HCOS(Epole) =0, (87a)

s (Epore) = — [W2(Epgie, 0) = )] (87b)

L
Yx
We proceed to implement the COS scheme for the complete

pair propagator at NLO. The expansion to NLO of the
numerator on the left side of Eq. (86) is

W2(E,0) =1+ 2¢2G(E,0) + 6Z,. (88)

The renormalized pair self-energy Icos(E) at NLO in the
COS scheme is given by Eq. (65) with C,/C, replaced by
Ry/(2y) and with appropriate complex values for the
counterterms 6C, and D,. These counterterms correspond
to subtractions proportional to k°(E) = 1 and x*(E). The
solution to the renormalization conditions in Eq. (87) is

Meos(E) = f162x. [«E)—y—x—i:@(m] 52y lk(E) 1]

_gzer(Epole’O)

[ (E)=r%]
VX
R rx 3
Fape [ B )

(89)

where F, g, (E) is obtained by subtracting from F4(E) in
Eq. (66) the first two terms in its expansion in powers of
E — Epole:

F4.sub (E) :F4(E) —F, (Epole) _FZt(Epole)(E_Epole)' (90)

It is easy to verify that the self-energy in Eq. (89) vanishes
at E = Epq by using k(Ep.) = yx. One can verify that
its derivative with respect to E at E,. agrees with the
NLO term on the right side of Eq. (87b) by also
using &'(Epee) = —#/yx. The additional renormalization
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freedom associated with the renormalization constant Z,
was not recognized in Ref. [12], so 6Z, was set to 0.

The expression for the renormalized self-energy
Icos(E) in the COS scheme in Eq. (89) is significantly
more complicated than that for II(E) in the CT scheme in
Eq. (69). The adjustable real interaction parameters in
Icos(E) in Eq. (89) are Re[yy], Im[yy], and R,. There is no
additional real interaction parameter analogous to F, in
I1(E) in Eq. (69). Such a parameter arises inevitably from
the freedom in the choice of the finite real part accom-
panying the pole in d —3 of the counterterm D,. The
absence of such a term in Eq. (89) indicates that the
renormalization conditions in Eq. (87) are insufficient. It is
not clear how to extend these renormalization conditions to
allow for the adjustable parameter F,. The parameters
Re[yyx] and Im[yy] in Icog(E) are determined by the real
and imaginary parts of the pole energy Ey,e = Ex — il'y/2.
The inputs Ey and I'y are not ideal parameters, because
they are difficult to determine experimentally. The only
experimental determinations of the pole energy thus far are
by the LHCb Collaboration using the Flatté model [7], and
their results do not have error bars. One might as well use
Re[y] and Im[y] as the real adjustable parameters, as in the
CT scheme.

D. NLO scattering amplitude

We consider the elastic scattering of D*°D° and D*°D°
in the CM frame with incoming relative momentum p and
outgoing relative momentum p’. Conservation of energy
requires p’ = p. The scattering angle 6 is defined by
p P = cos6. The polarization vectors of the incoming
and outgoing D*° are € and ¢'. The energy shell conditions
require the total energy E to have the complex value

E, =E.+ p*/(2p). (91)

The T-matrix element for D**D? — D*0DO is obtained by
multiplying the on-shell amputated connected Green’s
function 7Y(E,,p.p') by the external line factors in
Eq. (29) for the incoming and outgoing D*’:

T(p.e:p.€) =Y TH(E,pp)ee™  (92)

ij
The T-matrix element for scattering in the C = + channel is
the sum of the T-matrix elements for D*°D° — D*0DO,
D*ODO N DOD*O, DOD*O N D*ODO, and DOD*O N DOD*O
multiplied by 1/2. It can be projected onto the S-wave
channel by averaging over the directions of the momenta
p and p'.

The T-matrix element for S-wave scattering in the C = +
channel can be expressed in terms of the scalar transition
amplitude A, in Eq. (84) evaluated on shell by setting
p'=pand E=E,:

T, (p) = 2n/u) A (Ep. p.p). (93)

The T-matrix element for S-wave scattering in the C = +
channel at NLO is

WZ(E,, p) )
(_7_ ip) _H(Ep) .
(94)

T, (p) = (2n/p) (A,,<E,,,p,p> n

The tree-level pion-exchange term is obtained by evaluat-
ing Eq. (80) on shell:

2 N2 2
A, p.p) = rgs <r[(2 r)k: —rp?|

61 —r 4y/1 — rp?
rk? — (1 + \/1_——7)2]72
k2 — (1 =V/1=r)2p?

x log +2-1)

(95)
The numerator factor is obtained by evaluating G(E, p) in

Eq. (81) on shell and inserting it into Eq. (85). The function
G(E, p) reduces on shell to

r <r[(2 — )2 = rp?]

Gy p) =T A=\ i
xlog\/;K*+<1 +Vi-r)p
\/;K* + (1 - \/T:;)p
+2-r)p- r3/21<*). (96)

The renormalized pair propagator at E=E, can be
obtained by replacing x(E) by —ip in Eq. (69):

I(E,) = (6Z, — f195K.)ip — (F, + i Im[f,]) g2 p*

R
- zz—ﬁzﬁ + G2F4(E,). (97)
In the CT scheme, the coefficient of ip is 0.

E. Breakdown of the effective range expansion

In the case of only short-range interactions, a scattering
amplitude can be expanded in powers of the relative
momentum. This expansion is called the effective range
expansion. The scattering length a and the effective range
r, can be defined as coefficients in the expansion of the
reciprocal of the T-matrix element 7 (p) in powers of the
momentum p:

2”//1__1_- 1 2 4
T» a lp+2rep + O(p*). (98)
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Unitarity requires that the only odd power of p in the
expansion is the —ip term.

At LO, the C = 4 S-wave transition amplitude reduces
to the pair propagator A(E) in Eq. (33). The T-matrix
element for S-wave scattering in the C = + channel at LO
is therefore

2n/p
—y—ip’

Tyi10(p) = (99)

Comparing with Eq. (98), we see the inverse scattering
length 1/a,, in the C = 4 S-wave channel at LO is equal
to y and the effective range at LO is zero.

We proceed to consider the expansion of the reciprocal
of the C = + S-wave T-matrix at NLO in powers of p. The
tree-level pion-exchange term in Eq. (95) has an expansion
in powers of p2. It reduces at small p to

2V1 - rg;
2

3 p* +O(p*).
K

Aﬂ(Ep7p’p):_ (IOO)

The numerator factor in Eq. (94) has an expansion in
powers of p. It reduces at small p to

1 21 = rr/?
W,,(E,,,p)=1+<5z¢+i3” 2 >
VA

5 g7k,
N &+i(4+r)\/ﬁr1/2_,2, »?
4y 17 K.
2V1=rg?
—szHO(p“). (101)

Note that there is no term linear in p. The inverse scattering
length 1/a,, can be obtained by taking the p — 0 limit of
T, in Eq. (94). The expansion of 1/a,, to NLO in g2 is

W=
kY4

1/a,, = <1 —0Zy—i gﬂk*)y. (102)

In the CT scheme, 6Z is replaced by the correction to 1
in Eq. (67).

In the expansion of (2z/u)/7T ;. (p) in powers of p, the
term linear in p differs from the term —ip in Eq. (98) that is
required by unitarity if all interactions have short range.
This breakdown of the effective range expansion can be
attributed to the effects of the successive exchange of pions
that are almost on their energy shell. The coefficient of —ip
differs from 1 by a term that is almost purely imaginary.
The coefficient can therefore be expressed as the NLO
approximation to a factor that is almost a complex phase.
This complex phase can be interpreted as the phase shift
from the successive exchange of pions. If the complex
phase factor is factored out of the expression for
(27/u)/ T, (p), the remaining factor has an expansion
in powers of p with the linear term —ip as in Eq. (98):

2 2—r)r?
z/H ~ exp <—i(r)rg,2,1<*)
Ter(p) 37[\/ 1 —-r

1
X [—m —ip+3 reyp* + 0(P3)} . (103)

In the CT scheme, the coefficient y,, is just y. The
coefficient ry, is

Fop = Ry +2F,9% +

4 [_i(l +V1-r)r?

3 41 —r
on _(4—|—r)\/ﬁrl/2 7
+ lmarccos(\/;) +i 3 -
2
—I—\/l—r<y> ]g,%. (104)
Ky

The contributions to rg, that are almost pure imaginary
could alternatively be absorbed into terms proportional to
p? in the phase shift. At NLO, 1/7 . (p) has a well-
behaved effective range expansion though order p? modulo
an overall phase factor. It would be interesting to know if
this remains true at higher orders.

In Ref. [15], Jansen et al. pointed out that the effective
range expansion for D**DY scattering breaks down beyond
LO in XEFT, because of the effects of the exchange of a
pion that can be on its energy shell. They argued that the S-
wave D*D0 scattering length remains well defined, but
that the breakdown of the effective range expansion made
the effective range undefined. Jansen et al. calculated the
scattering length to NLO in original XEFT, truncating the
expression at first order in an expansion in powers of
vx/V2mé and at leading order in m/M or, equivalently,
r~2m/M [15]. Their result for 1/a,, depends on a
renormalization scale A through terms of the form
1/(y — A). These terms were produced by an infrared
resummation that was apparently incompatible with their
renomalization prescription.

In Ref. [12], the inverse scattering length at NLO was
calculated using Galilean-invariant XEFT in the COS
renormalization scheme. Using the result for Icog(E) in
Eq. (89) with x(E) set to 0 and the result for W,(E,,0)
from Eq. (88), the inverse scattering length at NLO can be
expressed as

1

aSJr

=7x + gizr (G(Epole’ O) - 2G(E*, O) - %’Q) Yx

1 %
+ ZR()?/%( - 972r <F4(Epole) + Fil (Epole) ﬁ) ’ (105)

where F,(E) is given in Eq. (66) and G(E,0) is

Y 1—rr (2ruE)3? = 2u(E—E,)*?

G(E.0) 3t (2ruE)-2u(E—E,)]

(106)
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Note that 1/a,. in the COS scheme does not depend on the
choice for the renormalization constant Z, for the pair
propagator. This result in Eq. (105) is much more com-
plicated than that in the CT scheme in Eq. (102). The
inverse scattering length cannot be calculated analytically
because of the F, terms in Eq. (105). Those terms have
expansions in powers of yy that begin at order y%. An
analytic expression for 1/a,, in the COS scheme can be
obtained as an expansion in powers of yy. The expansion
through fourth order in yy is

1 (2=r)r? 1
— <1 - 17( ) gzk*)yx +-Ror%

Qg 6rv1—r " 4
2+ V1= gk V1-r\ grk
—1 + f4 - 2
6 Ky 3z K:
(107)

where f, is given in Eq. (64). The coefficient of each power
of yx in Eq. (107) can be expanded in powers of the small
parameter r of XEFT. The expansion of 1/a,, truncated
after the y% term reduces to

— | SO 3/2 1)\ 7x
l/a.§+—yx+4R0yX+3ﬂg,,K*{ ir 1+8r Py
3 3 1 1 4
—ir'2(1-272 x +(1=—zr—=r? x .
8 Ky 2 8 K,
(108)

The coefficient of each term has been expanded to relative
order r2. In each of the three NLO correction terms
proportional to g2 that are shown, the sum of the power
of yx and the leading power of /r is equal to 4. The higher
powers of yy/k, are therefore partly compensated for by
the fewer powers of /r. In Ref. [12], there is an error in the
result for 1/a,, in the COS scheme: the coefficient of
vx/k. has a factor 1 —1r +1r% instead of 1+ §r7.

If we take the limit g2 — 0, the expansion of the
reciprocal of the NLO T-matrix element in the CT scheme
at small p reduces to

2z/u
Ts+ (P)

R 2 3R(2) 4 ~R(2) 5
020 =0 b5+ O(p").
ST +l16y2p +O(p°)

=—-y—ip+
(109)

The p° term indicates an obvious breakdown of the
effective range expansion, but the negative power of
y in the coefficient of the p* term is another indication.
Comparison with the effective range expansion in Eq. (98)
reveals that R, has a simple interpretation in the CT scheme.
It is the effective range in the limit in which pion interactions
are turned off.

F. Pion-exchange resummation

We have found that pion exchange causes a breakdown
of the effective range expansion for the T-matrix element
for D*D? scattering in the S-wave C = + channel. In the
case of strong short-range interactions plus weak long-
range interactions, the effective range expansion can be
modified in various ways. The simplest possible modifi-
cation is additional odd powers of p beginning at order p>.
Some of the odd powers of p could be factored out into an
overall phase shift. However the modifications could be
much more dramatic. An extreme case of a long-range
interaction is the Coulomb interaction between charged
particles. In this case, it is necessary to resum the effects of
Coulomb interaction to all orders. The resummation of
Coulomb interactions in low-energy proton-proton scatter-
ing was first treated in an effective field theory framework
by Kong and Ravndal et al. [17]. The formalism was
extended in Ref. [18] to a two-channel system of dark
matter particles in which one channel is a pair of charged
particles and the other channel is a pair of neutral particles.
The T-matrix element in the S-wave channel for a single
pair of charged particles with strong short-range inter-
actions has the form

T(p) = (2z/u)[Ac(p) + We(p)Ai(p)].  (110)

For a pair of charged particles with opposite unit electric

charges, the resummation of Coulomb interactions without

any short-range interactions gives the S-wave Coulomb
amplitude Aq(p):

[(1 —iau/p)\ in

dip - (1Lt e

C(1 +iau/p)) up’ (1)

where a is the fine-structure constant of QED. The
resummation of Coulomb interactions before the first
short-range interaction or after the last short-range inter-
action gives the amplitude W(p), whose square is

W2(p) = 2zau/p I'(1 —iau/p)

= 1= oxp(2aa/p) T T iagjp). 12

The amplitude A, (p) in Eq. (110) comes from short-range
interactions only. The T-matrix element from this term only
would presumably have a conventional effective range
expansion analogous to that in Eq. (98).

The T-matrix element for D**DY scattering in the C = +
S-wave channel in Eq. (94) has the same form as that for
strong short-range interactions plus Coulomb interactions
in Eq. (110). The analogous off-shell C = 4 S-wave
transition amplitude is given in Eq. (84). Each of the three
terms in Eq. (84) has been calculated to NLO in the XEFT
power counting. The only diagram that contributes to
AL (E, p, p') at NLO is one in which a pion is exchanged
between the charm mesons. The NLO correction to
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W,(E, p) comes from a diagram with the exchange of a
pion. The accuracy of the T-matrix element could be
improved by calculating all three terms in Eq. (94) to
NNLO. The NNLO contributions to A, and W, come from
diagrams with two successive pion exchanges. Since the
pions that are exchanged can be on shell, the terms .4, and
W, include effects from much longer distances than the pair
self-energy II(E). It is possible that an accurate calculation
of the T-matrix element would require the resummation of
successive pion exchanges to all orders in A, and in W .

VII. OUTLOOK

As an effective field theory for a sector of QCD that
includes the X(3872), XEFT allows systematically improv-
able calculations of some of the properties of this resonance.
In the original formulation of XEFT, the interactions of the
charm mesons with pions were chosen to have a form
motivated by the approximate chiral symmetry of QCD [11].
The Galilean-invariant formulation of XEFT developed in
Ref. [12] was a significant improvement, because the
Galilean symmetry constrains the ultraviolet divergences
and it significantly simplifies analytic results. We have
introduced a new formulation of Galilean-invariant XEFT
with a dynamical pair field that annihilates a pair of charm
mesons in the resonant channel. The new formulation
simplifies calculations at NLO by making some cancella-
tions of UV divergences between diagrams automatic. The
terms in the Lagrangian for this formulation of XEFT are
given in Sec. III and the Feynman rules are given in Sec. I'V.
We also introduced a new renormalization scheme called the
complex threshold (CT) scheme that makes analytic results
at NLO much simpler than with the complex on-shell (COS)
scheme introduced in Ref. [12]. The advantages of the CT
scheme were illustrated with NLO calculations of the
complex pole energy of X in Sec. V and the elastic
D*DY scattering amplitude in Sec. VL.

An important insight provided by our new formulation of
Galilean-invariant XEFT is that there is an additional
interaction parameter at NLO that was not recognized in
Ref. [12]. In the threshold expansion of the pair self-energy
in powers of k(E), the CT scheme requires the total
subtraction of the terms proportional to x°(E) and «(E).
Renormalization at NLO also requires a partial subtraction
of the term proportional to k*(E). The freedom in the
choice of the finite part of that subtraction leads to the real
interaction parameter F, in the renormalized pair self-
energy in Eq. (69). The other adjustable real interaction
parameters at NLO are the real and imaginary parts of y, the
effective range R in the absence of pion interactions, and
the strength of the D*°D® to D°D°z° transition.

Another insight provided by our new formulation of
Galilean-invariant XEFT is that renormalization of the
D*ODO scattering amplitude requires the pair renormaliza-
tion constant Z. At NLO, the UV divergences canceled by

this renormalization constant are linear UV divergences.
The need for this renormalization was not recognized in
Ref. [12], because conventional dimensional regularization
sets linear ultraviolet divergences to 0. If power divergence
subtraction had been used to make the linear UV diver-
gences explicit, the dependence on the renormalization
scale of both the numerator and the denominator of the
resonant term in the D**DY scattering amplitude in Eq. (94)
would have made the failure of the renomalization pro-
cedure evident.

Numerical calculations of the momentum distribution for
the decay of X into D°D°z° using original XEFT at NLO
have revealed that the NLO corrections are surprisingly
large [11,16]. The power counting rules of XEFT guarantee
that calculations can be systematically improved, but the
large NLO corrections raise the issue of whether the
systematic expansions converge fast enough to provide
useful quantitative approximations. Our new complex
threshold renormalization scheme for D*D and DD*
amplitudes provides a possible solution to the problem
of large NLO corrections. The NLO corrections to the
decay rate for X into D°D°z° from pion emission were
calculated numerically in Ref. [11] as functions of the LO
binding momentum, and they are surprisingly large even
for tiny values of y. However pion emission also gives an
imaginary correction to the binding momentum of X. Some
of the large NLO corrections can be attributed to expanding
LO results to first order in the correction to the binding
momentum. The suppression factor associated with
an imaginary correction to the binding momentum is
I',o/|Ex|. In the CT scheme, this correction is absorbed
into the parameter y. The calculation of the decay rate of X
into D°D%7z° at NLO using the CT scheme would involve a
subtraction of part of the NLO corrections in Refs. [11,16].
If the remaining NLO corrections are suppressed by
v/+/2ud, the problem of large NLO corrections would
be solved. An analytic calculation of the decay rate of X
into D°D°z° at NLO would therefore reveal whether the
CT scheme provides a solution to this problem [19].

Jansen et al. pointed out that the effective range
expansion for D**D° scattering in XEFT breaks down at
NLO from the effects of the exchange of pions that can be
on shell [15]. Our calculation of the T-matrix element for
DD scattering in the C = + S-wave channel to NLO
makes the breakdown of the effective range expansion
explicit. Its form differs from that required by unitarity for a
system with short-range interactions only already at order
p. The breakdown of the effective range expansion raises
the issue of whether the power counting rules of XEFT
provide a systematically improvable approximation for this
scattering amplitude. It could be that an accurate approxi-
mation requires resumming the effects of successive pion
exchanges to all orders in both the amplitude A, for
scattering through pion exchange only and in the amplitude
W, that takes into account the effects of pion exchange
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after the last pair amplitude. The analogous amplitudes in
the case where the long-range interactions are successive
Coulomb interactions have been calculated analytically.
The analytic calculation of these amplitudes in the case
where the long-range interactions come from successive
exchanges of pions that can be on shell is a challenging
problem.

XEFT was originally presented as an effective field
theory for the sector of QCD consisting of D*D, DD*,
and DDx, and X with total energy near the D*D threshold
[11]. As pointed out in Ref. [20], XEFT can also be applied
to the sector of QCD consisting of D*D*, D*Dz, DD*x,
DDz, and Xr with total energy near the D*D* threshold.
It was used to calculate cross sections for D*D* — zX and
7X — D*D* [20]. XEFT has also been used to calculate
cross sections for DX scattering and D*X scattering [21].
One interesting application of XEFT in the sector of QCD
that includes Xz is to the calculation of charm-meson
triangle singularities in the production of Xz or Xy from
D*D* created at short distances. Back in 2006, Dubynskiy
and Voloshin pointed out the existence of a peak in the
cross section for e* e~ annihilation into Xy near the D*°D*0
threshold [22]. Braaten, He, and Ingles pointed out the
existence of peaks in the production rate of Xz near the
D*D* threshold in B meson decay into KXz [23] and in
the prompt production of Xz at hadron colliders [24]. They
did not immediately recognize that the peaks were pro-
duced by triangle singularities. Guo was the first to point
out that charm-meson triangle singularities can produce
peaks in Xy production rates near the D**D*0 threshold
[25]. He suggested that their line shapes could be used for a
precise determination of the mass of X. Braaten, He, and
Ingles presented a thorough study of e*e™ annihilation into
Xy near the D**D*" threshold that was informed by the
triangle singularity [26]. The effects of the charm-meson
triangle singularity on the momentum distributions for
D*D° +y were studied in Ref. [27]. There have been
several other recent studies of the effects of triangle
singularities on the production of X [28-30]. All of the
studies thus far have been carried out using methods
equivalent to XEFT at LO. The methods developed in this
paper could be used to extend the accuracy to NLO.

Although it is not widely recognized in the high energy
physics community, the applicability of XEFT is not
limited to a charm-meson molecule whose energy has been
tuned to near the D**DP threshold. It applies equally well to
the y.;(2P) charmonium state or to a compact tetraquark
whose energy has been tuned to near the D*°DO threshold.
In any of these cases, the resonant interactions with the
pairs of charm mesons D**D® and D°D*° transform the
meson into a large weakly bound molecule with the particle
content in Eq. (2). The differences between the various
possibilities for the state when its energy is not tuned to
near the D**DC threshold can only be taken into account

through the parameters in the effective Lagrangian for
XEFT. The development of a formulation of XEFT that is
convenient for calculations beyond leading order provides
motivation for deducing constraints on the parameters of
XEFT that reflect the various possibilities for its nature in
the absence of the fine tuning of its energy.
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APPENDIX A: LOOP INTEGRALS

The loop integrals required to calculate the NLO
transition amplitude using dimensional regularization were
evaluated in Appendix A of Ref. [12]. There were errors in
some of the loop integrals. In this Appendix, we present all
the relevant integrals, and we point out some of the errors
in Ref. [12].

The loop integrals are functions of an energy E that is
near the complex threshold energy E, defined in Eq. (9).
The integrals have branch cuts that must be taken into
account to evaluate the integrals correctly. The energy E,,
which has a small negative imaginary part, is actually on
the second sheet of a complex variable with a branch point
at 0. This can be emphasized by writing E, in the form

E, = e (5 —iT,/2), (A1)
where the second factor is on the first sheet. Thus E, is
close to the energy & + ie in the limit € — 0T, which is on
the first sheet. If —2uFE, is raised to a variable power p, the
correct branch is given by

(=2uE,)P = e=iPri2l (A2)

where k, is the square root of a variable on the first sheet:

K, = \/2u(8 — il /2). (A3)
1. One-loop momentum integrals

The 1-loop momentum integrals whose integrands are a
D* propagator raised to an integer power are

|
InlE) = /,, [p? = 2u(E - E,)|"

(A4)
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The analytic result for this integral in d dimensions is

J(E) = I'(n—d/2)

= WM_‘[PM(E* — E) .

(AS)

In Ref. [12], the factor of I'[n] in the denominator was
omitted. The 1-loop momentum integrals whose integrands
are a m propagator raised to an integer power are

1,(E) —/ 1
" 14 [pZ _2/"71E_ ie]n '

where y, is the z#D reduced mass. The analytic result for
this integral in d dimensions is

(A6)

I'(n—4d/2)

" )

A2y, EY.(AT)
In Ref. [12], the factor of I'[n] in the denominator was
omitted. The integral in Eq. (A6) defines an analytic
function of E with a branch cut along the positive real
axis. If the real part of E is positive, the branch of the
function can be selected by replacing the minus sign inside
the square brackets by the appropriate complex phase.

The 1-loop momentum integrals whose integrands have
a D* propagator raised to an integer power and a single z
propagator are

1
EnlEp) = /q [4> - 2u(E—E.))"
« 1/(2px)
(p+4q)%/2m)+ (P +¢*)/(2M) —E —ie’

(A8)

The function L, can be expressed in terms of the integral /;
given by Eq. (A7):

Lo(E. p) = I,(E = p*/(2p)).

The function L, can be expressed as a Feynman parameter
integral:

(A9)

T2 —-d/2)
(4”)d/2
X /1 dx(ZxﬂE* + x4+ (1=x)r)
0

X [2uE + (1 - x)pz})d/z_z,

Ll(E7p) = A3_d

(A10)

where r = u,/u is the reduced-mass ratio in Eq. (11). In
Ref. [12], there were errors in the expression for this integral.

2. Two-loop momentum integrals

The 2-loop momentum integrals whose integrands have
one or two D* propagators and a z propagator all raised to
integer powers are

1
Klmn(E):/p/q[pz_2M<E_E*)}m[q2—2/4(E—E*)]"

(2u)™!
(P*+4¢*)/(2M) - E—ie]"”
(A11)

1

(p+4q)*/(2m)+

The specific integrals that appear in the NLO pair propa-
gator are K¢, K129, and K. The integrals with a single
D* propagator can be expressed as integrals over a single
Feynman parameter:

KunlE) = -y — a7 [ as(1 2
X [2u(xE, — E)]*2, (Al2a)
—d\rd/? 1
Ko (E) F(3(47:;21 6—2dA dxx(l—x)_d/2

(A12b)

The integrals with two D* propagators can be expressed as
an integral over two Feynman parameters:

(3 —d)r¥/?
(47)

1
x/ di[l = w + re(1 ]9,
0

1
K (E) = A6_2dA dww[2u(wE, — E)]4-3

(A13)

3. Poles in d -2

In a dimensionally regularized loop integral, poles in
d — 2 are associated with linear ultraviolet (UV) divergen-
ces in three spatial dimensions. The poles in d — 2 of the
loop integrals were determined in Appendix A of Ref. [12].
The 1-loop integrals J; and [/; defined by Eqgs. (AS) and
(A7) have single poles in d — 2. In the NLO pair propa-
gator, these integrals appear in the combinations J,(E)?
and /,(E,)J(E), which have double and single poles. The
pole and the constant term in the two integrals are

JUE) — - A L (Alda)
RN
! 2 |ld—2 28 4

N I e ;
- ——A|——=+=(log——+logr— :
2 |d—2 T\ (08T TR T

(A14b)

2,u(E/{2— E)} |

The momentum scale in the denominator of the loga-
rithms is

A = Vare /2N, (A15)
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where yg is Euler’s constant. The integral L, in Eq. (A9)
has a single pole in d — 2:

1
Ly(E,p) > —————A.

27(d - 2) (A16)

The 2-loop integral Ko defined in Eq. (A12a) has double
and single poles in d — 2:

KllO(E>

2r 1 | W(E.~E) 1
A2 ] - | .
~ (an)? [(d—2)2+d—2<0g A 2 Ogr>]

(A17)

The 2-loop integral K, defined in Eq. (A12b) has a single
pole in d — 2 proportional to 1/(E — E, ). However in the
NLO pair propagator, this integral appears in the combi-
nation K5y(E) — rI,(E,)J,(E) in which the pole cancels.

4. Values at the complex threshold

The value of the one-loop integral J, defined by Eq. (A4)
at the complex threshold E = E, is equal to 0 by the rules
of dimensional regularization, because the integral has no
momentum scale:

Note however that if J,,(E) is first analytically continued to
d = 3 and then evaluated at £ = E,, it is infrared divergent
for n > 3/2. The one-loop integral 7, defined by Eq. (A6)
evaluated at the complex threshold can be obtained by
setting E = k2/(2u) in Eq. (A7) and replacing the minus
sign inside the square brackets by the complex phase e~/

['(n—d/2)

3—d[ —ir
(47)2T(n)

e~ T pK2] 42,

In(E*) = (A19)

The two-loop integrals K, and K,y defined in
Egs. (Al2a), (A12b) can be evaluated analytically at the
complex threshold:

2r(2 - d)ri/?

Kiio(E.) = m/\é_zd[e_mkﬂd_z, (A20a)
Ar(2 — d)r/? .
Ki(E,) = ( i 6-2d]e=im3]4=3 . (A20b)

The two-loop integral K;; defined in Eq. (A13) can be
evaluated analytically at the complex threshold in terms of
a hypergeometric function:

Ar2—dyr 2 /1 1 1
Klll(E*) :—szl id— 1,561— l,id,l—r

X N6~ [gim2]d=3 (A21)

5. Limits as d - 3

The one-loop integrals J,, and I, have finite limits as
d — 3. The integrals J; and J, are

J1(E) = —i—i), (A22a)
Jy(E) = 8m<1(E>, (A22b)

where k(E) is defined in Eq. (58). In Ref. [12], there was an
overall sign error in the expression for J,(E). The values of
I, and I, at the complex threshold E = E, are

1/2
L(E)=i" 4;* : (A23a)
172
L(E) =i—0. A23b
B =i (A23b)

In Ref. [12], there was also an overall sign error in the
expression for I,(E) at d = 3.

The one-loop integrals L, depend on p as well as on E.
The limits of Ly and L; as d — 3 are

Lo(E,p) = i’:—: \/2uE — p?, (A24a)
Li(E, p) l;
Srcmp
5 log\/? 2uE — p? + ix(E) + \/mp‘
VIV2UE — p? + ix(E) =1 =rp
(A24b)

The 2-loop integrals K, K29, and K;;; all have single
poles in d — 3 that arise from logarithmic UV divergences.
The integrals Ko and K, can be evaluated analytically
by making subtractions on the Feynman-parameter inte-
grals in Eqs. (A12) that can be evaluated analytically in d
dimensions, taking the limit d — 3 in the remaining
integral, and then evaluating that convergent integral in
terms of logarithms. One of the possible subtractions is the
2-loop integral at the complex threshold E, . The subtracted
integrals are
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213/ 1 1 K2
KllO(E) _KIIO(E*) = - |:l27Z'K*K(E) <—2+ 10gr+10g ﬂ')Kz(E)

(47)? d-3 2 A2
+ [k, + k(E)]? log <= X (E) | k. — k(E)] log K_K"(Eq , (A252)
r3/2 K K
Kial) = Kiso(E) = 145 |15 (i +
P HDE e RE) KB o)) (A25h)

In Ref. [12], the subtraction of K, at the complex threshold was reduced in the limit d — 3 to a convergent integral over a
single Feynman parameter. The subtracted integral is

P32 w E — wE,

(47T)3/) dw\/l —w(l—w+ rw2/4)10g(1 - w)E,

Km(E)—Km(E*):— (A26)

6. Threshold expansions

The loop integrals K, defined in Eq. (A11) have threshold expansions in powers of E — E,. In the limit d — 3, these
expansions are in half-integer powers of E — E, or, equivalently, in integer powers of the function «x(E) defined in Eq. (58).
The threshold expansions for K;;y and K,y can be obtained using Eqs. (A20a), (A20b) and Egs. (A25a), (A25b),
respectively. The threshold expansions through second order in E — E, are

2132 1 K E
Ki1o(E) = (r o ﬁ[(——Z—I—zlogr—l—log——m) + iZﬂKi )

+ <ﬁ +1+ ;log r+ log u i ) K2K(2E) - ék4lc(f) + O(K6(E)):|, (A27a)
732 K2 [ k K K2 Kt
K2 (E) = El—> [(d ! 3 2logr—k log ) + i§ <K(g> + z(cE)> +% K(f) +31—0 K(f) +O*(E))|. (A27b)

In Ref. [12], the k*(E) terms have the wrong sign. A method to obtain the threshold expansion for K;; was presented in
Ref. [12]. The coefficients can be expressed analytically in terms of hypergeometric functions. The threshold expansion
through second order in E — E, is

4 1 K2
K”](E)__W[(d 3 2—|—logr—|—log e iﬂ)\/%arccos(\/?)

d 1 1 2—r K*(E)
+r—Fi|\=d-1,-d—-1,-d;1—r + arccos(\/r) + 2+/r
dd? 1(2 >d=3 <v1—r V) \/_> K>

1
2 2
4 1 13 2—4r+r? 3—-4r K E) 6
_;<2F1<—§,—§,§,1—r>—I—T/Trarccos(\/;)—i- B \/;> 3 + O(« (E))} (A238)

In Ref. [12], the x*(E) term has the wrong sign.

APPENDIX B: DIAGRAMS FOR NLO TRANSITION AMPLITUDES

In this Appendix, we give the results for the NLO Feynman diagrams for the amputated connected Green’s functions for
the transitions D*°D°, D°D*® — D*9DO DOD*0. Most of the diagrams were evaluated in Appendix B of Ref. [12]. We
correct errors in some of the pion-exchange diagrams in Ref. [12]. We calculate the NLO diagrams using the new Feynman
rules in Sec. IVD. We verify that the sum of the diagrams is the same as that calculated using the Feynman rules
in Ref. [12].
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1. Leading order diagram

The amputated connected Green’s function for D*D° —
DD is a tensor i7"/ whose vector indices are those of the
incoming and outgoing D** lines. We set the incoming and
outgoing spin-0 charm mesons on their energy shells. The
transition tensor 7/ (E, p,p’) is then a function of the total
energy E of the charm mesons in their CM frame and the
relative momenta p and p’ of the incoming and outgoing
spin-0 charm mesons. The S-wave contribution to the
transition tensor can be obtained by averaging over the
directions of p and p’.

The diagram for the transition tensor 7 for D*D° —
D*DY at LO is the right side of Fig. 6. This transition tensor
|

ragz/p

is diagonal in the vector indices, and it is a function of £ only.
The LO transition tensor for D**D° — D*0D? is
o V2) '

2. Pion-exchange diagrams

(B1)

There are three NLO pion-exchange diagrams for
DD° — D*DO. They are shown in Fig. 14 and are
labeled A1, A2, and A3.

The amplitudes for the 1-loop diagrams Al and A2 in
Fig. 14 are tensors in the indices i and j that depend on the
relative momenta p’ and p, respectively. The amplitude for
the diagram A2 is

T (E.p) = —— e A(E){ [(A(E. p) = 2rp?) Lo (E. p)

(d—1)V1—rp?

— (A(E. p)* = 8ruE, p*)L,(E, p) — (A(E. p) —2p*)J, (E)} (67 = p'p!/p*)

— (d=1D)[A(E. p)Lo(E. p) = A(E. ) (A(E. p) = 2rp?) Ly (E. p)

- (A(E.p) +2(1 = NP1 (E) | P'p /1.

where r = u,/u and A is a linear function of E and p?:
A(E, p) = 2uE, = 2(1 = r)uE + p*. (B3)

The S-wave contribution of the diagram can be obtained by
averaging over the directions of p in d spatial dimensions:

(TE)y =7 (1.

— r(A(E, p) —4uE, )L, (E. p)
r(2- r)Jl(E)}A(E)éif.

(B4)

(B2)

The S-wave contribution (7%, (E.p’ ))p to the diagram Al
can be obtained by replacing p in Eq. (B4) by p’. In
Ref. [12], it was stated incorrectly that the p’ p// p? terms in
Eq. (B2) cancel in the limit p — 0. They do however cancel
in the limit p — 0 after averaging over the directions of p.

The 2-loop diagram A3 in Fig. 14 is the sum of a diagram
with a D**D° loop and a diagram with a D°D*° loop. The
amplitude for this diagram is

723(@ = —7? r—»ﬁgi/f
= (2= N (EP A(E)S.

[2K110(E) —2u(2E, - rE)K 11 (E)

(B5)

FIG. 14. The pion-exchange diagrams for D*°D® — D*9DO consist of the 1-loop diagrams A1 and A2 and the 2-loop diagram A3. The
absence of arrows on the charm-mesons lines in the loop for the diagram A3 implies a sum over the two possible directions of the arrows.
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FIG. 15. The pion-exchange tree diagram for D*°D? — D°D*0,
which is labeled 7. There are also three loop diagrams that can be
obtained from those in Fig. 14 by changing the directions of some
of the arrows.

For each of the pion-exchange diagrams for D*D° —
DD in Fig. 14, there is an analogous diagram for
DD° - DD, DD - pP°  and D°D* —
DD*0. For D*°DY — DOD*0 and DD — D*ODO there
is also a tree diagram. The tree diagram for D*°D° —
D°D*Y is shown in Fig. 15, and it is labeled z. The
transition tensor for this diagram depends on the relative
momenta p and p’:

gz /1
E—(p*+p?)/2M)—(p+p')*/(2m)+ie

XL+’iL'+j (B6)
M+ P )\l TP)

This diagram vanishes in the zero-momentum limit
p.p’ — 0 with E fixed. Since this diagrams does not have
any UV divergences, the S-wave contribution of the
diagram can be obtained by averaging over the directions
of p and p’ in 3 spatial dimensions:

T{(Epp)=-

<T§{(E7P?P/)>ﬁ,iz’ =

_ rga/p <r[2(2 — r)uE = p* = p"”]
W=\ 4oy

2ruE — p* — p2 + 231 —rpp’

2ruE — p> = p"* =21 —rpp’

(B7)

x log

3. D* propagator correction diagrams

The two NLO diagrams involving D* propagator cor-
rections are shown in Fig. 16 and are labeled B1 and B2.
The diagram B1, which has a D* self-energy subdiagram
inserted into the D* propagator, can be reduced to

i 167t2rg,2,/,u
7, (8= -l

7 [K110(E) —2uE K 150(E))A*(E)5Y.

(B8)

FIG. 16. The D* propagator correction diagrams for D*°D? —
D*ODO consist of the 2-loop diagram B1 with a D* self-energy
subdiagram and the 1-loop diagram B2 with a D* self-energy
counterterm.

The diagram B2, which has a D* propagator counterterm
inserted into the D* propagator, can be reduced to

ij 87°r’gz/n
Th() = -
x A2(E)&Y.

I(E,)[4uE J,(E) — dJ,(E)]
(B9)

4. V? vertex diagrams

The four NLO diagrams with a V? vertex are shown in
Fig. 17 and are labeled C1, C2, C3, and C4. The diagram
C1 in which the incoming charm mesons interact through a
V2 vertex is

FIG. 17. The V? vertex diagrams for D**D° — D*0D? consist
of two tree diagrams C1 and C2 and two 1-loop diagrams C3
and C4.
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ﬂ'CZ
ZﬂCO

TH(E.p) = 22 AE)p*s7.  (BIO)

The diagram C2 in which the outgoing charm mesons
interact through a V? vertex is obtained by replacing p? by
p'?. The diagram C3 is

i 4n’C
TEH(E) = ——

(E—E,)J\(E)A*(E)8". (B11)

0

The expression for the diagram C4 is the same. The sum of
the four diagrams is

ii nC
TUE.p.p) =5 & (77 + P AE)

+ 167u(E — E,)J, (E) A2 (E)] 5. (B12)

With the Feynman rules in Ref. [12], the V? vertices are
2 — 2 vertices. There are four V? vertex diagrams: the V>
vertex, two 1-loop diagrams with a single factor of A(E),
and a 2-loop diagram with two factors of A(E). The
identity in Eq. (47) can be used to show the sum of the four
diagrams is the same as that in Eq. (B12).

FIG. 18. The pair propagator counterterm diagram for
D*DY — D*ODO which is labeled D.

5. Pair-propagator counterterm diagram

The NLO diagram with a pair-propagator counterterm is
shown in Fig. 18. The expression for the diagram is

272 ) y
—— [6Cy + Do(E — E,)]A*(E)5".

TYE) = —
p(E) 2C

(B13)

With the Feynman rules in Ref. [12], there is a 2 — 2
vertex counterterm. There are four NLO diagrams with a
counterterm vertex: the vertex counterterm, two I-loop
diagrams with a single factor of A(E), and a 2-loop
diagram with two factors of A(E). The identity in
Eq. (47) can be used to show the sum of the four diagrams
is equal to that in Eq. (B13).
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