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XEFT is a low-energy effective field theory for charm mesons and pions that provides a systematically
improvable description of the Xð3872Þ resonance. To simplify calculations beyond leading order, we
introduce a new formulation of XEFT with a dynamical field for a pair of charm mesons in the resonant
channel. We simplify the renormalization of XEFT by introducing a new renormalization scheme that
involves the subtraction of amplitudes at the complex D�0D̄0 threshold. The new formulation and the new
renormalization scheme are illustrated by calculating the complex pole energy of X and the D�0D̄0

scattering amplitude to next-to-leading order using Galilean-invariant XEFT.
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I. INTRODUCTION

The Xð3872Þ was the first of the dozens of exotic
hadrons whose fundamental constituents include a heavy
quark and its antiquark that have been discovered since the
beginning of the century [1–4]. Determining the nature
of X remains central to the problem of understanding the
exotic heavy hadrons. The discovery of X by the Belle
Collaboration in 2003 was through the decay mode
J=ψπþπ−, which reveals that its constituents include a
charm quark and its antiquark (cc̄) [5]. The JPC quantum
numbers of X were determined to be 1þþ by the LHCb
Collaboration in 2013 [6]. The possibilities for the particle
structure of X that are compatible with this information
include

(i) the χc1ð2PÞ charmonium state, whose quark con-
stituents are cc̄,

(ii) a compact isospin-1 tetraquark meson, whose di-
quark constituents are ðcuÞðc̄ūÞ − ðcdÞðc̄d̄Þ,

(iii) an isospin-0 charm-meson molecule, whose hadron
constituents are ðD�0D̄0 þD0D̄�0Þ þ ðD�þD−þ
DþD�−Þ, which correspond to quark constitu-
ents ðcūÞðc̄uÞ þ ðcd̄Þðc̄dÞ.

The Belle Collaboration discovered X at a mass that
was surprisingly close to the scattering threshold for
D�0D̄0. The measured energy relative to the threshold
was ðþ0.9� 1.3Þ MeV [5]. They put an upper bound on its
width of about 2.3 MeV. Over the subsequent years, the
measurements of the masses of X, D�0, and D̄0 have all
been improved significantly. The LHCb Collaboration has
recently made the most precise measurements of the mass
of X to date, and they made the first measurements of its
width [7,8]. With the line shape of the X in the J=ψπþπ−
decay channel modeled by that of a Breit-Wigner reso-
nance, their results for the energy relative to the D�0D̄0

threshold and for the width are

EBW ¼ ð−0.07� 0.12Þ MeV; ð1aÞ

ΓBW ¼ ð1.19� 0.19Þ MeV: ð1bÞ

An alternative prescription for the energy and the width
of a resonance are the real and imaginary parts of the
pole energy EX − iΓX=2. With the line shape modeled by
that of a Flatté amplitude that takes into account the
width of the D�0, the LHCb Collaboration obtained
ðþ0.025 − 0.140iÞ MeV for the pole energy relative to
the D�0D̄0 threshold [7]. The energy EX is consistent with
the measurement in Eq. (1a), while the width ΓX is about
4 times smaller than the measurement in Eq. (1b).
The extremely small energy of X relative to the D�0D̄0

threshold in Eq. (1a) has dramatic implications for the
structure of X. The quantum numbers 1þþ of X imply that it
has an S-wave coupling to D�0D̄0 and D0D̄�0. Since these
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mesons are electrically neutral, they interact with each
other through short-range interactions with a range of order
1=mπ , where mπ is the pion mass. However the tiny energy
of X relative to the D�0D̄0 threshold implies that the
interaction between the charm mesons is resonant. Thus
X is an S-wave resonance near the threshold for a pair of
particles with short-range interactions. General principles
of quantum mechanics guarantee that X must have uni-
versal properties determined by its binding energy [9].
They guarantee that the dominant component of X must be
a charm-meson molecule with the particle structure

X ¼ 1ffiffiffi
2

p ðD�0D̄0 þD0D̄�0Þ: ð2Þ

If EX < 0, X is a bound state whose spatial structure is
described by a universal wave function expð−r=aÞ=r,
where a ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μjEXj

p
is the S-wave scattering length

of D�0D̄0 in the C ¼ þ channel and μ is the reduced mass
of D�0D̄0. The mean separation of the constituents is
hri ¼ a=2. If the energy EX is identified with the Breit-
Wigner energy in Eq. (1a), the lower bound on the energy at
the 90% confidence level is EX > −0.22 MeV. Thus the
mean separation is larger than 4.8 fm.
The universality of S-wave near-threshold resonances is

a truly remarkable aspect of quantum mechanics [10]. If a
model for the X with any particle structure, such as one of
those itemized above, is extended to allow couplings to
D�0D̄0 and D0D̄�0 scattering states, it will be dramatically
transformed by the resonant couplings to the scattering
states. If the model has an adjustable parameter that can be
used to tune the resonance energy to the D�0D̄0 threshold,
the resonance will in the limit develop the particle structure
in Eq. (2) with the universal wave function expð−r=aÞ=r.
This remarkable phenomenon is widely recognized in the
case of a charm-meson molecule. That it occurs also in the
case of a charmonium state or a compact tetraquark is not as
widely recognized.
The universality of S-wave near-threshold resonances

provides a basis for a systematically improvable treatment
of the X resonance using effective field theory. An
appropriate effective field theory was invented by
Fleming et al. and named XEFT [11]. XEFT is a non-
relativistic effective field theory for charm mesons and
pions. In the simplest version of XEFT, the only fields are
those for the neutral charm mesons D�0, D̄�0, D0, and D̄0

and the neutral pion π0. The only components of X that are
treated explicitly are those in Eq. (2) and D0D̄0π0. The
effects of all other particles must be taken into account in
the parameters of XEFT. In particular, different models for
X with resonance energy far enough away from the D�0D̄0

threshold, such as those itemized above, correspond to
different choices for the parameters of XEFT. The simplest
version of XEFT is sufficient if the total energy of D�0D̄0,

D0D̄�0, or D0D̄0π0 is close enough to the D�0D̄0 threshold.
The region of validity of XEFT can be extended by adding
fields for the charged charm mesonsD�þ,D�−,Dþ, andD−

and the charged pions πþ and π−. In this case, the additional
components of X that are treated explicitly are D�þD−,
DþD�−, DþD−π0, DþD̄0π−, and D0D−πþ.
An effective field theory can be simplified by taking

advantage of exact and approximate symmetries. A remark-
able aspect of the sector of QCD consisting of D�D̄, DD̄�,
and DD̄π that is described by XEFT is that the sum of the
masses is very nearly conserved. Galilean invariance is a
possible symmetry of a nonrelativistic field theory that
requires exact conservation of the kinetic mass. In
Ref. [12], a Galilean formulation of XEFT was developed.
Galilean invariance provides strong constraints on the
ultraviolet (UV) divergences from loop amplitudes. It
therefore greatly simplifies the renormalization of XEFT.
In this paper, we introduce a new formulation of Galilean-
invariant XEFT with a dynamical field for a pair of charm
mesons in the resonant channel. This new formulation
further simplifies calculations beyond leading order.
The accuracy of an effective field theory can be greatly

improved by using an appropriate renormalization scheme.
Analytic results can also be greatly simplified by the choice
of an appropriate renormalization scheme. In the pioneer-
ing paper on XEFT, the momentum distribution for the
decay of X into D0D̄0π0 was calculated at next-to-leading
order (NLO) using dimensional regularization with power
divergence subtraction [11]. The only UV divergences are
linear divergences, and they were removed by absorbing
them into interaction parameters. In Ref. [12], the elastic
scattering amplitude for D�0D̄0 was calculated at NLO
using dimensional regularization in Galilean-invariant
XEFT. There are both linear and logarithmic UV diver-
gences, and they were removed by subtractions at the
complex pole energy of X. In this paper, we introduce a
simpler renormalization scheme for XEFT in which diver-
gences are removed instead by subtractions at the complex
threshold energy of D�0D̄0. This new renormalization
scheme greatly simplifies analytic results at NLO.
In Sec. II, we introduce Galilean invariance and we

describe various formulations of XEFT. In Sec. III, we
present the Lagrangian for the new formulation of Galilean-
invariant XEFT with a dynamical pair field. In Sec. IV, we
present the Feynman rules for this new formulation of
XEFT. In Sec. V, we calculate the pair propagator at NLO
and we obtain the complex pole energy of X at NLO. In
Sec. VI, we calculate the D�0D̄0 elastic scattering ampli-
tude at NLO and we analyze the breakdown of the effective
range expansion from pion exchange. We summarize our
results and suggest other useful applications in Sec. VII. In
Appendix A, we present results for loop integrals that arise
in calculations at NLO. In Appendix B, we present the
results for individual Feynman diagrams for the D�0D̄0

transition amplitude at NLO.
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II. GALILEAN-INVARIANT XEFT

In this section, we introduce Galilean invariance,
describe various formulations of XEFT, and give the
numerical values of some of its parameters.

A. Galilean invariance

Galilean invariance is a possible space-time symmetry of
a nonrelativistic field theory [13,14]. In a nonrelativistic
theory, the energy-momentum relation for an on-shell
particle with rest energy ε and kinetic mass m is

EðpÞ ¼ εþ p2=ð2mÞ: ð3Þ

Galilean symmetry requires invariance under a Galilean
boost with an arbitrary velocity vector v. The effects of the
Galilean boost on the energy and momentum are

E → Eþ v · pþ 1

2
mv2; ð4aÞ

p → pþmv: ð4bÞ

The invariant energy E − p2=2m is invariant under Galilean
boosts.
A unique feature of the sector of QCD consisting of

spin-0 charm mesons D and D̄, spin-1 charm mesons D�

and D̄�, and pions π is that mass is very nearly conserved
by the transitions D� ↔ Dπ. In the decay D�0 → D0π0, the
sum of the masses of the D0 and π0 is lower than the mass
of the D�0 by 7.0 MeV, which is only 0.35%. Since the
isospin splittings between the charm mesons are at most
4.8 MeV and the isospin splitting between πþ and π0 is
4.6 MeV, all the transitions D� ↔ Dπ come very close to
satisfying mass conservation. There are no other hadrons
with such narrow widths that have transitions that come so
close to satisfying mass conservation.
Galilean invariance requires the exact conservation of the

kinetic mass [13]. In a Galilean-invariant description of
charm mesons and pions, the spin-0 charm mesons must all
have the same kinetic mass M and the pions must all have
the same kinetic massm. Conservation of kinetic mass then
requires the kinetic mass of all the spin-1 charm mesons to
be M þm.
In a nonrelativistic effective field theory for charm

mesons, one can impose a phase symmetry that guarantees
the separate conservation of the number Nc of charm
quarks and the number Nc̄ of charm antiquarks. These
quark numbers can be expressed in terms of meson
numbers. In a theory with only neutral charm mesons
and π0, the quark numbers are

Nc ¼ ND�0 þ ND0 ; ð5aÞ

Nc̄ ¼ ND̄�0 þ ND̄0 : ð5bÞ

If the theory also includes charged charm mesons and
charged pions, the charm quark number Nc also includes
the numbers of D�þ and Dþ. In a Galilean-invariant
effective field theory for charm mesons and pions, the
exact conservation of kinetic mass in the transitions
D� ↔ Dπ provides motivation for introducing an addi-
tional phase symmetry that guarantees the conservation of
pion number. In a theory with only neutral charm mesons
and π0, the pion number is

Nπ ¼ Nπ0 þ ND�0 þ ND̄�0 : ð6Þ

If the theory also includes charged charm mesons and
charged pions, the pion number Nπ also includes the
numbers of πþ, π−, D�þ, and D�−.

B. XEFT

XEFT is a nonrelativistic effective field theory for charm
mesons and pions invented by Fleming et al. [11]. It
provides a systematically improvable description of the
sector of QCD consisting of D�D̄, DD̄�, and DD̄π with
total energy near the D�D̄ threshold. It therefore can be
used to calculate some properties of the X resonance
systematically. In XEFT with only neutral charm mesons
and π0, the only fields are complex scalar fields for D0, D̄0,
and π0 and complex vector fields for D�0 and D̄�0. For the
sector of QCD consisting of D�0D̄0, D0D̄�0, D0D̄0π0, and
X, the region of validity of XEFTwith only neutral particles
extends at most to the D�þD− threshold, which is 8.2 MeV
above the D�0D̄0 threshold. The region of validity can be
extended to higher energies by introducing additional fields
for the charged charm mesons and the charged pions.
At leading order (LO) in the power counting of XEFT,

the only adjustable parameter is the LO binding momentum
γ of X, which was assumed to be a real parameter in
Ref. [11]. At next-to-leading order (NLO), there are addi-
tional adjustable interaction parameters. In Ref. [11], XEFT
was used to calculate the differential decay rate of X into
D0D̄0π0 at NLO. It depends on two additional adjustable
real parameters: a length r0 associated with the effective
range in the resonant S-wave even-charge-conjugation
(C ¼ þ) channel and a parameter for the coupling of
D�0D̄0 to D0D̄0π0. Fleming et al. calculated the partial
decay rate of X into D0D̄0π0 numerically as a function of
the LO binding energy γ2=ð2μÞ. Their estimate of the width
of the error band from the two NLO interaction parameters
decreased from about 25% to about 10% as γ2=ð2μÞ
decreased from 0.1 to 0.01 MeV. The relatively wide error
bands even for extremely tiny values of γ raises the question
of whether the power-counting expansion for XEFT con-
verges fast enough for it to be quantitatively useful. The
original formulation of XEFT in Ref. [11] has also been
applied to the D�0D̄0 scattering length at NLO [15]. The
NLO calculation of the decay rate for X into D0D̄0π0 was
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recently revisited by Dai et al. [16]. They pointed out that
the power-counting rules of chiral effective field theories
for heavy mesons implied that there are two additional
NLO interaction parameters: the S-wave scattering lengths
for D0D̄0 and for D0π0. Their estimate of the width of the
error band from the four NLO interaction parameters
decreased from about 60% to about 30% as γ2=ð2μÞ
decreased from 0.1 to 0.01 MeV. The wide error bands
even for extremely tiny values of γ further emphasizes the
convergence problem of XEFT.
An alternative formulation of XEFT was developed in

Ref. [12]. It differs from the original formulation in
Ref. [11] in three important ways:
(1) Galilean invariance.
(2) Systematic treatment of the width of D�0, which

requires the LO binding momentum γ to be complex.
(3) Complex on-shell (COS) renormalization scheme,

in which the UV divergences in D�0D̄0 and
D0D̄�0 amplitudes are removed by subtractions at
the complex pole energy EX − iΓX=2.

Taking into account theD�0 width is essential if XEFT is to
give an accurate description of the X resonance. In the COS
scheme, the adjustable real parameters at LO are EX and
ΓX. In Ref. [12], Galilean-invariant XEFT was used to
calculate the D�0D̄0 scattering length at NLO. The result
depends on a single additional adjustable parameter that
can be identified with the parameter r0 in Ref. [11]. One
drawback of the COS scheme is that the analytic expression
for the D�0D̄0 scattering amplitude is rather complicated.
Galilean invariance simplifies the renormalization of
XEFT. It implies, for example, that the S-wave scattering
lengths for D0D̄0 and for D0π0, which were argued to be
NLO parameters of XEFT in Ref. [16], are not required by
renormalization.
In this paper, we present an alternative formulation of

Galilean-invariant XEFT. It differs from the formulation of
Galilean-invariant XEFT in Ref. [12] in three impor-
tant ways:
(1) An additional complex vector field, which we call

the pair field, that annihilates a pair of charmmesons
in the resonant channel.

(2) New Feynman rules in which D�0D̄0 and D0D̄�0
couple to the resonant channel only through the
intermediate pair propagator.

(3) Complex threshold (CT) renormalization scheme, in
which the UV divergences in D�0D̄0 and D0D̄�0
amplitudes are removed by subtractions at the
complex threshold for D�0D̄0 scattering states.

The new Feynman rules simplify calculations beyond LO
by making some cancellations of UV divergences between
diagrams automatic. The CT scheme dramatically simpli-
fies analytic expressions for amplitudes beyond LO. It
reveals the existence of an additional adjustable interaction
parameter at NLO that was not recognized in Ref. [12]. It
may also provide a solution to the problem of the large

NLO corrections in XEFT that were encountered in
Refs. [11,16].

C. Known parameters

We denote the masses of D�0, D0, and π0 by M�0, M0,
and m0, respectively. The difference between the D�0 mass
and the D0π0 threshold is

δ≡M�0 − ðM0 þm0Þ ¼ ð7.04� 0.03Þ MeV: ð7Þ

The decay width of the D�0 can be predicted by assuming
the decays D� → Dπ respect chiral symmetry, isospin
symmetry, and Lorentz invariance. The measured branch-
ing fraction for D�0 → D0π0 is B�0π ¼ ð64.7� 0.9Þ%.
Using the decay width of the D�þ and the branching
fractions for D�0 → D0π0 and D�þ → D0πþ as inputs, the
prediction for the total D�0 width is

Γ�0 ≡ Γ½D�0� ¼ ð55.4� 1.5Þ keV: ð8Þ

In Galilean-invariant XEFT, the spin-0 charm mesons all
have the same kinetic mass M and the pions all have the
same kinetic mass m. We choose the kinetic masses M and
m ofD0 and π0 to be equal to their physical massesM0 and
m0, respectively. The rest energies of D0 and π0 are
therefore both zero. Galilean invariance requires the kinetic
mass of D�0 to be M þm. The D�0 has the complex rest
energy

E� ¼ δ − iΓ�0=2; ð9Þ

where δ is the energy in Eq. (7) and Γ�0 is the D�0 width
in Eq. (8).
The reduced mass μπ for D0π0 and the reduced kinetic

mass μ for D�0D̄0 are

μπ ≡ mM
M þm

¼ 125.87 MeV; ð10aÞ

μ≡MðM þmÞ
2M þm

¼ 965.0 MeV: ð10bÞ

The ratio of these reduced masses is a small parameter in
Galilean-invariant XEFT:

r≡ μπ=μ ¼ 0.1304: ð11Þ

The D�0-to-D0π0 coupling constant in XEFT is conven-
tionally denoted by g=ð2 ffiffiffiffi

m
p

fπÞ. This coupling constant
can be determined from the partial width of D�0 into
D0π0:

Γ�0;π ≡ Γ½D�0 → D0π0� ¼
�

g2

4mf2π

�
μπ
3π

ð2μπδÞ3=2; ð12Þ
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where δ is the energy in Eq. (7). It is convenient to define a
coupling constant g2π with dimensions 1=ðmomentumÞ:

g2π ≡ ðg2=4mf2πÞμ2 ¼ ½ð29.7� 0.7Þ MeV�−1: ð13Þ

III. LAGRANGIAN

In this section, we write down the Lagrangian for
Galilean-invariant XEFT for the neutral charm mesons
and π0. We introduce a new form for the Lagrangian with a
dynamical pair field for a pair of charm mesons in the
resonant channel. We include all terms required to calculate
to NLO in the XEFT power counting.

A. LO Lagrangian

The fields for the D0 and D̄0 are complex scalar fields D
and D̄. The field for the π0 is a complex scalar field π. The
fields for the D�0 and D̄�0 are complex vector fields D and
D̄. The kinetic terms in the Lagrangian for D0 and π0 are

LD ¼ D†½i∂t þ∇2=ð2MÞ�D; ð14aÞ

Lπ ¼ π†½i∂t þ∇2=ð2mÞ�π: ð14bÞ

The kinetic term for D̄0 is obtained from Eq. (14a) by
replacing D by D̄. The kinetic term in the Lagrangian for
D�0 is

LD� ¼ D† · ½i∂t þ∇2=ð2ðM þmÞÞ − E��D; ð15Þ

where E� is the complex rest energy of D�0 in Eq. (9). The
kinetic term for D̄�0 is obtained by replacing D by D̄.
There is a resonance in the S-wave channel for the

superposition of D�0D̄0 and D0D̄�0 with even charge
conjugation (C ¼ þ) in Eq. (2). The interaction term in
the Lagrangian for XEFT at LO is a contact interaction in
the resonant channel:

LLO;int ¼ −
C0

2
ðD̄DþDD̄Þ† · ðD̄DþDD̄Þ: ð16Þ

It is convenient to introduce a complex vector field ϕ that
we call the pair field that annihilates a pair of charm
mesons in the resonant channel:

ϕ ¼ C0ffiffiffi
2

p ðD̄DþDD̄Þ: ð17Þ

The normalization factor has been chosen for later con-
venience. Using the pair field ϕ, we can write down an
alternative interaction term in the Lagrangian for XEFT
at LO:

LLO;int¼
1

C0

ϕ† ·ϕ−
1ffiffiffi
2

p ½ðD̄DþDD̄Þ† ·ϕþϕ† ·ðD̄DþDD̄Þ�:

ð18Þ

The field equation for ϕ implies Eq. (17). The field
equation can be used to eliminate ϕ from Eq. (18), which
reduces it to Eq. (16). The two interaction Lagrangians are
therefore equivalent.
There have been previous efforts to describe the Xð3872Þ

using an effective Lagrangian that includes a local vector
field either for the X itself or for the χc1ð2PÞ charmonium
state. The vector field necessarily has an S-wave coupling
to the charm-meson pairs D�D̄ and DD̄�. If rescattering of
the charm-meson pairs is treated as a perturbation, the tree-
level scattering amplitude for charm mesons is a Breit-
Wigner resonance. If rescattering of the charm-meson pairs
is treated nonperturbatively, the resulting scattering ampli-
tude for charm mesons near the threshold is the universal
amplitude for a loosely bound S-wave molecule. In our
new formulation of XEFT with a vector field, the charm-
meson scattering amplitude has this universal behavior at
leading order in the pion-exchange interaction, but XEFT
allows corrections from pion-exchange to be calculated
systematically.

B. NLO interaction terms

In the original paper on XEFT in Ref. [11], all the
interaction terms in the Lagrangian needed for calculations
to NLO in the power-counting of XEFTwere written down
explicitly. They included pion interaction terms that allow
transitions between D�0 and D0π0 and between D̄�0 and
D̄0π0. In Galilean-invariant XEFT, the pion interaction
terms are [12]

LD�↔Dπ ¼
g

2
ffiffiffiffi
m

p
fπ

�
D† · ðD∇

↔
πÞ þ ðD∇

↔
πÞ† · D

þ D̄† · ðD̄∇
↔
πÞ þ ðD̄∇

↔
πÞ† · D̄

�
; ð19Þ

where ∇
↔

¼ ðM∇⃗ −m∇⃖Þ=ðM þmÞ is a Galilean-invariant
derivative. The pion interaction term in the Lagrangian for
original XEFT in Ref. [11] can be obtained by replacing the

operator ∇
↔

in Eq. (19) by ∇⃗.
The NLO interaction terms in the Lagrangian for original

XEFT in Ref. [11] include ∇2 interaction terms that
produce transitions between incoming D�0D̄0 or D0D̄�0

and outgoing D�0D̄0 or D0D̄�0. There are equivalent
interaction terms involving the pair field ϕ. In Galilean-
invariant XEFT, the ∇2 interaction t involving ϕ are
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L∇2 ¼ C2

2
ffiffiffi
2

p
C0

�
ϕ† · ðD̄∇

↔
2DþD∇

↔
2D̄Þ

þ ðD̄∇
↔

2DþD∇
↔

2D̄Þ† · ϕ
�
; ð20Þ

where ∇
↔ ¼ ðM∇⃗ − ðM þmÞ∇⃖Þ=ð2M þmÞ is a Galilean-

invariant derivative. The ∇2 interaction terms in Ref. [12]
can be obtained by eliminating ϕ using the field equation in
Eq. (17). The ∇2 interaction terms in the Lagrangian for
original XEFT in Ref. [11] can be obtained by replacing the

operator ∇
↔
in Eq. (20) by ð∇⃗ − ∇⃖Þ=2 and then eliminatingϕ

using its field equation.
The NLO interaction terms in the Lagrangian for original

XEFT in Ref. [11] include counterterms that produce
transitions between incoming D�0D̄0 or D0D̄�0 and out-
going D�0D̄0 or D0D̄�0. There is an equivalent counterterm
involving the pair field only:

Lcounter ¼−ð1=C2
0Þ½δC0ϕ† ·ϕþD0ϕ† · ðiDt−E�Þϕ�: ð21Þ

where iDt¼ i∂tþ∇2=ð2ð2MþmÞÞ is a Galilean-invariant
derivative. The constant subtracted from iDt is arbitrary.
The choice E� corresponds to the complex on-shell
renormalization scheme for the D�0 propagator. The
NLO counterterms in the Lagrangian for original XEFT
in Ref. [11] can be obtained by eliminating ϕ from Eq. (21)
using the field equation in Eq. (17).
In the original paper on XEFT in Ref. [11], the

Lagrangian included another NLO interaction term that
allowed transitions between D�0D̄0 or D0D̄�0 and D0D̄0π0.
There is an equivalent NLO interaction term involving the
pair field. In Galilean-invariant XEFT, the DD̄π interaction
terms involving ϕ are

LDD̄π ¼
B1ffiffiffiffiffiffiffi
2m

p
C0

½ϕ† · ðDD̄∇
↔
πÞ þ ðDD̄∇

↔
πÞ† · ϕ�; ð22Þ

where ∇
↔ ¼ ð2M∇⃗ −m∇⃖Þ=ð2M þmÞ is a Galilean-invari-

ant derivative. The DD̄π interaction term in the Lagrangian
for original XEFT in Ref. [11] can be obtained by first

replacing the operator ∇
↔

in Eq. (22) by ∇⃗ and then
eliminating ϕ from Eq. (22) using the field equation
in Eq. (17).
The NLO interaction terms in Eqs. (20)–(22) are all

required by renormalization. In the original paper on XEFT
in Ref. [11], the momentum distributions from the decays
of X into D0D̄0π0 were calculated to NLO. The ultraviolet
divergences were removed by renormalizations of the
coupling constants C2 in Eq. (20) and B1 in Eq. (22). In
Ref. [12], Galilean-invariant XEFT was used to calculate
the D�0D̄0 elastic scattering amplitude to NLO. The ultra-
violet divergences were removed by renormalizations of the

coefficients δC0 and D0 in the counterterm in Eq. (21) and
the coupling constant C2 in Eq. (20).
In the original paper on XEFT in Ref. [11], the authors

developed power-counting rules. A convenient way to
implement the XEFT power counting is to assign orders
in the coupling constant g for pion emission and absorption
to the coupling constants of all other interaction terms.
A complete calculation then requires calculating all dia-
grams to a given order in g. The coupling constant C0 is
order g0. The coupling constant C2 in Eq. (20) is order g2.
The counterterm coefficients δC0 and D0 in Eq. (21) are
order g2. The coupling constant B1 in Eq. (22) is order g3.
These are the only coupling constants required by renorm-
alization in XEFT at NLO.
In Ref. [16], the authors argued that the Lagrangian for

XEFT at NLO should also include interactions terms that
allow the S-wave scattering reactions D0D̄0 → D0D̄0 and
D0π0 → D0π0. These interaction terms are NLO according
to the power-counting rules for chiral effective field
theories of heavy mesons. In Galilean-invariant XEFT,
there are no diagrams for the reaction D0D̄0 → D0D̄0,
because the pion interaction terms in Eq. (19) do not allow
an incoming D0 or D̄0 to emit a π0. There are therefore no
ultraviolet divergences that would require introducing an
S-waveD0D̄0 interaction term. In Galilean-invariant XEFT,
the reaction D0π0 → D0π0 proceeds only in the P-wave
channel through an intermediate D�0. There are no loop
diagrams, so there are no ultraviolet divergences that would
require introducing an S-wave D0π0 interaction term. Thus
there are no S-wave D0D̄0 and D0π0 interaction terms in
Galilean-invariant XEFT. These interaction terms can of
course be introduced as first-order perturbations to the
Lagrangian of XEFT in order to estimate the effects of such
hadronic interactions on observables.

IV. FEYNMAN RULES

In this section, we write down the Feynman rules for
Galilean-invariant XEFTwith a dynamical pair field, whose
Lagrangian is given in Sec. III. A set of Feynman rules that
are useful for calculations at NLO are given below as
expressions enclosed in boxes.

A. Particle propagators

In XEFT, the charm quark and antiquark numbers Nc
and Nc̄ are conserved. In Galilean-invariant XEFT, the pion
number Nπ is also conserved. These conservation laws can
be built into the Feynman rules by appropriate notation for
the propagators. We use a dashed line for the pion
propagator, a solid line for the D and D̄ propagators,
and a double line consisting of a solid and a dashed line for
the D� and D̄� propagators. In the propagators for D and
D�, the solid line has a forward arrow. In the propagators
for D̄ and D̄�, the solid line has a backward arrow.
The propagators for D0 and π0 are illustrated in Fig. 1.
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The propagator for D�0 is illustrated in Fig. 2. In XEFT,
conservation of charm-quark number requires the numbers
of solid lines with forward arrows entering and leaving a
vertex to be equal. Conservation of charm-antiquark number
requires the numbers of solid lines with backward arrows
entering and leaving a vertex to be equal. In Galilean-
invariant XEFT, conservation of pion number requires the
numbers of dashed lines entering and leaving a vertex to also
be equal. If the arrows on internal lines of a diagram are
omitted, there is an implied sumover the twodirectionsof the
omitted arrows. In Galilean-invariant XEFTwith a pair field,
the pair propagator is a triple line consisting of two solid lines
and a dashed line, as illustrated in Fig. 3. For simplicity, we
omit the opposite arrows on the two solid lines.
The Feynman rules for the propagators of D0 or D̄0 and

π0 are

i
E − p2=ð2MÞ þ iϵ

; ð23aÞ

i
E − p2=ð2mÞ þ iϵ

; ð23bÞ

where E is the kinetic energy of the particle and p is its
momentum. The Feynman rule for the propagator ofD�0 or
D̄�0 with vector indices i and j is

iδij

E − p2=ð2ðM þmÞÞ − E�
; ð24Þ

where E is the energy ofD�0 relative to theD0π0 threshold,
p is its momentum, and E� is the complex rest energy of
D�0 in Eq. (9). Galilean invariance requires the kinetic mass
of D�0 to be the sum M þm of the kinetic masses of D0

and π0. Since E� has a negative imaginary part, an explicit
iϵ prescription is unnecessary in the D�0 propagator in
Eq. (24).
In XEFT beyond LO, there are corrections to the D�0

propagator from interactions involving pions. TheD�0 self-
energy ΣðE; pÞ is a function of its energy E and its
momentum p. In Galilean-invariant XEFT, the conserva-
tion of pion number implies that the exact D�0 propagator
can be calculated analytically by summing a geometric
series in the 1-loop D�0 self-energy diagram in Fig. 4. It is
useful to have a Feynman rule for this subdiagram. Galilean
invariance implies that the self-energy Σ depends on E and
p only through the invariant energy

Erest ¼ E −
p2

2ðM þmÞ ; ð25Þ

which is equal to the D�0 energy in its rest frame. With
dimensional regularization in d spatial dimensions, the
Feynman rule for the subdiagram in Fig. 4 with theD�0 legs
amputated is

−iΣðErestÞδij ¼ i
4r2g2π
d

ErestI1ðErestÞδij; ð26Þ

where g2π is given in Eq. (13) and r is the reduced-mass
ratio in Eq. (11). The function I1ðEÞ is given by a 1-loop
momentum integral:

I1ðEÞ ¼
Γð1 − d=2Þ
ð4πÞd=2 Λ3−d½e−iπ2μπE�d=2−1; ð27Þ

where Λ is a renormalization scale with dimensions of
momentum and μπ is the D0π0 reduced mass in Eq. (10a).
This loop integral has a linear ultraviolet divergence that is
manifested as a pole in d − 2. The analytic function I1ðEÞ
has a branch cut along the positive real E axis. The complex
phase inside the square brackets in Eq. (27) is chosen so
that it gives the correct branch of the function when E is
near δþ iϵ on the first sheet and near E� on the sec-
ond sheet.
The D�0 self-energy diagram in Fig. 4 has linear ultra-

violet divergences. These divergences are canceled by the

FIG. 1. The propagators for D0 and π0 are represented by a
solid line with an arrow and a dashed line, respectively. The
Feynman rules for these propagators are given in Eqs. (23). The
propagator for D̄0 looks like that for D0 with the arrow reversed.

FIG. 2. The propagator for D�0 is represented by a double line
(solid with an arrow and dashed). The Feynman rule for this
propagator is given in Eq. (24). The propagator for D̄�0 looks like
that for D�0 with the arrow reversed.

FIG. 3. The pair propagator is represented by a triple line (solid,
dashed, and solid). The Feynman rule for this propagator is given
in Eq. (37).

FIG. 4. The 1-loop D�0 self-energy diagram. This is the
only D�0 self-energy diagram in Galilean-invariant XEFT. The
Feynman rule for the subdiagram with the external legs ampu-
tated is given in Eq. (26).
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D�0 propagator counterterm vertex, which is illustrated in
Fig. 5. A renormalization prescription for the D�0 propa-
gator can be expressed in terms of subtractions to the D�0
self-energy. In the complex on-shell (COS) renormalization
scheme for the D�0 propagator, its pole in Erest is at the
complex value E� in Eq. (9) and the residue of that pole is
the same as at LO. This requires the first two terms in the
expansion of ΣðErestÞ in powers of Erest − E� to be
subtracted. The Feynman rule for the D�0 propagator
counterterm vertex in the COS scheme is

i½ΣðE�Þ þ Σ0ðE�ÞðErest − E�Þ�δij

¼ −i 4r
2g2π
d I1ðE�Þ

�
E� þ d

2
ðErest − E�Þ

�
δij:

ð28Þ

The Feynman rules for T-matrix elements include
external-line factors for incoming and outgoing particles.
For D0, D̄0 and π0, the external-line factors are simply 1.
The corrections to the D�0 propagator from interactions
involving pions change the residue of the pole in the D�0
propagator by a multiplicative factor Z�. The external-line
factor for D�0 includes a residue factor

ffiffiffiffiffi
Z�

p
. In the COS

scheme for the D�0 propagator, Z� ¼ 1. The external-line
factor for an incomingD�0 or D̄�0 with polarization vector ε
and vector index i is

εi: ð29Þ

The external-line factor for an outgoing D�0 or D̄�0 is the
same except that εi is replaced by its complex conjugate.

B. Pair propagator

If we use dimensional regularization with d spatial
dimensions, it is useful to introduce a renormalization
scale Λ to keep the dimensions of coupling constants the
same as in the physical dimension d ¼ 3. This would have
the effect of multiplying an interaction vertex with n
external lines by n − 2 powers of Λð3−dÞ=2. In a Green’s
function with n external legs, the net effect of these powers
of Λ is a factor of Λ3−d for every loop integral and an
overall multiplicative factor of Λð3−dÞðn−2Þ=2. The factor of
Λ3−d associated with a loop integral can be absorbed into its
integration measure. If the Green’s function is made finite
by renormalization, the overall multiplicative factor of
Λð3−dÞðn−2Þ=2 can simply be discarded, because it is equal
to 1 in the physical dimension d ¼ 3. The resulting
Feynman rules have no powers of Λ in the vertices and

the coupling constants have the same dimensions as
in d ¼ 3.
In XEFT at LO, the only interaction term in the

Lagrangian is the contact interaction term in Eq. (16) for
D�0D̄0 and D0D̄�0 in the C ¼ þ channel. The Feynman
rule is the same for the four vertices for D�0D̄0;
D0D̄�0 → D�0D̄0; D0D̄�0: −ið1= ffiffiffi

2
p Þ2C0δ

ij. The factors
of 1=

ffiffiffi
2

p
come from projecting a pair of charm mesons

onto the C ¼ þ channel. Two C0 interactions can be
connected by a D�0D̄0 loop or a D0D̄�0 loop. In
Galilean-invariant XEFT, the loop integral is a function
of the invariant energy of the pair of charm mesons:

Ecm ¼ E −
P2

2ð2M þmÞ ; ð30Þ

where E is their total energy relative to theD�0D̄0 threshold
and P is their total momentum. This invariant energy is
equal to the total energy of the pair of charmmesons in their
center-of-momentum (CM) frame. The sum of the two loop
diagrams with two C0 interactions can be expressed as the
vertex multiplied by −2μC0J1ðEcmÞ, where the function
J1ðEÞ is defined by a 1-loop integral. Using dimensional
regularization in d spatial dimensions, the loop integral is

J1ðEÞ ¼
Γð1 − d=2Þ
ð4πÞd=2 Λ3−d½2μðE� − EÞ�d=2−1; ð31Þ

where Λ is the renormalization scale. This loop integral has
a linear ultraviolet divergence that is manifested as a pole
in d − 2.
The C0 interaction must be treated nonperturbatively in

XEFT. The set of diagrams consisting of an arbitrary
number of successive C0 interactions connected by
D0D̄�0 or D�0D̄0 loops is a geometric series that can be
summed to all orders analytically. The factor in the
resulting amplitude that depends on the invariant energy
is a function AðEcmÞ with dimensions 1=ðmomentumÞ. In
Ref. [12], ð2π=μÞAðEÞ was called the LO transition
amplitude. In this paper, we refer to AðEÞ as the pair
propagator, because it is equal to the propagator for the
pair field ϕ defined in Eq. (17) up to a constant multipli-
cative factor. If we use dimensional regularization in d
spatial dimensions, the pair propagator is

AðEÞ ¼ 1

−2π=ðμC0Þ − 4πJ1ðEÞ
: ð32Þ

Since J1ðEÞ has a pole in d − 2, this amplitude has a finite
limit as d → 2 only if 1=C0 also has a pole in d − 2. The
coupling constant C0 can be tuned as a function of d so that
the LO transition amplitude has a finite limit as d → 3:

FIG. 5. The D�0 propagator counterterm vertex. Its Feynman
rule is given in Eq. (28).
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AðEÞ ¼ 1

−γ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μðE − E�Þ

p ðd ¼ 3Þ; ð33Þ

where γ is an interaction parameter that we refer to as the
LO binding momentum. A minimal choice for the depend-
ence of 1=C0 on d is that it is the sum of a pole in d − 2 and
a constant:

2π

μC0

¼
�

2

d − 2
− 2

�
Λþ γ: ð34Þ

In the limit d → 3, C0 approaches the finite value 2π=ðμγÞ.
The pair propagator in Eq. (33) has a pole in the energy E

at the complex energy

Epole;LO ¼ E� − γ2=ð2μÞ: ð35Þ

This LO pole energy has an imaginary part −iΓ�0=2 from
the D�0 rest energy E� in Eq. (9). This imaginary part gives
a contribution to the width of X that can be interpreted as
arising from its decays intoD0D̄0π0 andD0D̄0γ, which can
proceed through the decay of a constituent D�0 or D̄�0. But
X also has short-distance decay modes that do not involve
decay of a constituent, such as J=ψπþπ−. The contribution
to the imaginary part of the pole energy from these decays
can only be taken into account through the imaginary part
of γ in Eq. (35). It is therefore convenient to take the LO
binding momentum γ to be a complex interaction param-
eter. Unitarity requires the positivity of Im½AðEÞ� for real
energy E, which requires Im½γ� to be positive. The real and
imaginary parts of γ are the only interaction parameters in
XEFT at LO.
The vertex corresponding to the LO transition amplitude

is the same for the four transitions D�0D̄0; D0D̄�0 →
D�0D̄0; D0D̄�0. In Ref. [12], the vertex was represented
by a blob, as in the diagram on the left side of Fig. 6. The
Feynman rule for each of the four vertices is

þi

�
1ffiffiffi
2

p
�

2 2π

μ
AðEcmÞδij: ð36Þ

It is convenient to express the 2 → 2 vertex whose
Feynman rule is given in Eq. (36) as the product of a
2 → 1 vertex, the pair propagator, and a 1 → 2 vertex, as
illustrated in Fig. 6. The Feynman rule for the propagator of

a pair with energy E, momentum P, and vector indices i and
j is

−i
2π

μ
AðEcmÞδij; ð37Þ

where Ecm is the Galilean-invariant combination of E and P
in Eq. (30). The vertices connecting D�0D̄0 lines or D0D̄�0
lines to a pair propagator are

−i
1ffiffiffi
2

p δij: ð38Þ

The factor of 1=
ffiffiffi
2

p
is the amplitude for the pair of charm

mesons to be in the C ¼ þ channel. The vertices connect-
ingD�0D̄0 lines to a pair propagator are illustrated in Fig. 7.
It is easy to verify that the product of the pair propagator in
Eq. (37) and two of the vertices in Eq. (38) reproduces the
2 → 2 interaction vertex in Eq. (36).
The pair field defined in Eq. (17) can serve as an

interpolating field for the X. The complete pair propagator
that takes into account interactions beyond LO has the same
form as in Eq. (37) but with AðEcmÞ replaced by a more
complicated function of the energy. An incoming or
outgoing X in a Feynman diagram can be represented by
a triple line as in Fig. 3. The external-line factor for an
incoming X with polarization vector ε and vector index i is

ffiffiffiffiffiffi
ZX

p
εi; ð39Þ

whereZX is the residue of the pole inEcm of the coefficient of
iδij in the complete pair propagator analogous to Eq. (37).
The external-line factor for an outgoingX is the same except
that εi is replaced by its complex conjugate. The LO pole
energy is the pole in the pair propagator AðEÞ in Eq. (32):

Epole ¼ E� −
2πΛ2

μ

�
−2π=μ

Γð1 − d=2ÞΛC0

�
2=ðd−2Þ

: ð40Þ

IfC0 is replaced by the expression given by Eq. (34), the LO
pole energy reduces to Eq. (35) in the limitd → 3. At LO,ZX
is the residue of the pole in E of −ð2π=μÞAðEÞ:

FIG. 6. The D�0D̄0-to-D�0D̄0 vertex in Ref. [12] can be
expressed as the product of a pair propagator and two vertices
that connect the pair propagator to D�0D̄0 legs.

FIG. 7. Vertices connecting D�0D̄0 lines to a pair propagator.
Their Feynman rules are given in Eq. (38).
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ZX;LO¼
4π2Λ

Γð2−d=2Þμ2
�

−2π=μ
Γð1−d=2ÞΛC0

�ð4−dÞ=ðd−2Þ
: ð41Þ

In the limit d → 3, the LO residue factor reduces to

ZX;LO ¼ 2πγ=μ2 ðd ¼ 3Þ: ð42Þ

C. Pion interaction vertices

The charm mesons interact with pions in XEFT through
the transitions D� ↔ Dπ and D̄� ↔ D̄π. The vertices
connecting D�0 to D0π0 are illustrated in Fig. 8. The
Feynman rules for the D�0 ↔ D0π0 and D̄�0 ↔ D̄0π0

vertices in Galilean-invariant XEFT are

� g
2

ffiffiffiffi
m

p
fπ

ðMq −mp0Þi
M þm

; ð43Þ

where q and p0 are the momenta of π0 and D0 or D̄0,
respectively. The overall sign isþ if theD0π0 or D̄0π0 lines
are outgoing and − if they are incoming. In the D0π0 CM
frame defined by p0 þ q ¼ 0, the momentum-dependent
factor in Eq. (43) reduces to qi. This is the momentum-
dependent factor in all frames in original XEFT.

D. NLO interaction vertices

In this subsection, we present Feynman rules for NLO
interaction vertices in Galilean-invariant XEFT whose legs
include a pair propagator. The Feynman rules are given
below as boxed expressions. They replace the Feynman
rules for NLO interaction vertices in Ref. [12].
The NLO ∇2 interaction terms in the Lagrangian are

given in Eq. (20). The interaction vertices that connect
D�0D̄0 lines to a pair propagator are illustrated in Fig. 9.
The Feynman rules for the corresponding vertices con-
necting D�0D̄0 or D0D̄�0 lines to a pair propagator are

−i
C2

2
ffiffiffi
2

p
C0

ððM þmÞp0 −Mp1Þ2
ð2M þmÞ2 δij; ð44Þ

where p0 and p1 are the momenta of the spin-0 and spin-1
charm mesons. These four vertices replace the four ∇2

vertices in Ref. [12] that connect D�0D̄0 or D0D̄�0 lines to

D�0D̄0 or D0D̄�0 lines. In the CM frame defined by
p0 þ p1 ¼ 0, the momentum-dependent factor in Eq. (44)
reduces to p2

0.
The NLO counterterm in the Lagrangian is given in

Eq. (21). The pair-propagator counterterm vertex is illus-
trated in Fig. 10. Its Feynman rule is

−i
1

C2
0

½δC0 þD0ðEcm − E�Þ�δij: ð45Þ

This vertex replaces the four counterterm vertices in
Ref. [12] that connect D�0D̄0 or D0D̄�0 lines to D�0D̄0

or D0D̄�0 lines.
The vertices connecting D0D̄0π0 lines to a pair propa-

gator are illustrated in Fig. 11. The DD̄π interaction terms
in the Lagrangian are given in Eq. (22). In Galilean-
invariant XEFT, the Feynman rules for the vertices con-
necting a pair propagator to D0D̄0π0 lines are

� B1ffiffiffiffiffiffiffi
2m

p
C0

ð2Mq −mðp0 þ p00ÞÞi
2M þm

; ð46Þ

where q, p0, and p00 are the momenta of π0, D0, and D̄0,
respectively. The overall sign is þ if the D0D̄0π0 lines are
outgoing and − if they are incoming. In the CM frame
defined by p0 þ p00 þ q ¼ 0, the momentum-dependent
factor in Eq. (46) reduces to qi.

FIG. 8. The vertices for the pionic transitions D�0 → D0π0 and
D0π0 → D�0. The Feynman rules for the vertices are given
in Eq. (43).

FIG. 9. The ∇2 interaction vertices connecting D�0D̄0 lines to a
pair propagator. The Feynman rules for the vertices are given
in Eq. (44).

FIG. 10. The pair-propagator counterterm vertex. The Feynman
rule for the vertex is given in Eq. (45).

FIG. 11. The DD̄π interaction vertices connecting D0D̄0π0

lines to a pair propagator. The Feynman rules for the vertices are
given in Eq. (46).
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Calculations beyond LO using the Feynman rules for
NLO interaction vertices presented above are simpler than
calculations using the Feynman rules in Ref. [12]. There are
sets of diagrams whose sums are the same with either set of
Feynman rules. The Feynman rules above give the terms in
such a sum more directly and with fewer UV divergences.
The same terms can be obtained using the Feynman rules in
Ref. [12] by using diagrammatic identities. An example of
such a diagrammatic identity is shown in Fig. 12. The
analytic expression for the identity is

J1ðEÞAðEÞ þ 1

4π
¼ −

1

2μC0

AðEÞ: ð47Þ

This identity follows from the expression for the LO
transition amplitude in d dimensions in Eq. (32). It allows
the loop integral J1ðEÞ to be canceled against the loop
integral in the denominator of the pair propagator AðEÞ.

V. NLO PAIR PROPAGATOR

In this section, we use Galilean-invariant XEFT to
calculate the complete pair propagator to NLO.

A. Complete pair propagator

The pair propagator in XEFT at LO is given by the
Feynman rule in Eq. (37), where the function AðEÞ in d
spatial dimensions is given in Eq. (32). In three dimensions,
AðEÞ reduces to Eq. (33). In XEFT beyond LO, there are
corrections to the pair propagator from interactions involv-
ing pions and from other interactions. The corrections to the
pair propagator can be organized into a geometric series of
pair self-energy diagrams. The complete pair propagator is
obtained by summing the geometric series. It can be
expressed in the form

−i
2π

μ

1

AðEcmÞ−1 − Π0ðEcmÞ
δij; ð48Þ

where Π0ðEÞ is a function with dimensions of momentum
that we call the pair self-energy.
The NLO diagrams for the pair self-energy are shown in

Fig. 13. The expressions for those diagrams can be obtained
from Appendix B, in which the NLO diagrams for the

transition amplitude for D�0D̄0 → D�0D̄0 are calculated.
Some of the diagrams for D�0D̄0 → D�0D̄0 have pair self-
energy subdiagrams. The expression for each pair self-
energy subdiagram can be obtained by removing the initial
and final vertex factors and the two pair propagators from
the diagram for D�0D̄0 → D�0D̄0. The NLO pair self-
energy can be expressed as

Π0ðEÞ ¼ g2πFðEÞ þ ðC2=C0ÞHðEÞ
− ð2π=ðμC2

0ÞÞ½δC0 þD0ðE − E�Þ�: ð49Þ

The functions FðEÞ and HðEÞ can be expressed in terms of
the 1-loop integrals Jn and In and the 2-loop integrals Klmn
defined in Appendix A. The function FðEÞ, which has
dimensions of ðmomentumÞ2, comes from the first two
rows of diagrams in Fig. 13. It can be obtained from the
2-loop pion-exchange diagram in Eq. (B5) and the D�
propagator correction diagrams in Eqs. (B8) and (B9):

FðEÞ¼−
8πr
d

�
1ffiffiffiffiffiffiffiffiffi
1−r

p ½2K110ðEÞ−2ð2μE�−rμEÞK111ðEÞ

−ð2−rÞJ1ðEÞ2�þ2K110ðEÞ

−4μE�½K120ðEÞ−rI1ðE�ÞJ2ðEÞ�−drI1ðE�ÞJ1ðEÞ
�
;

ð50Þ

where r ¼ μπ=μ is the ratio of reduced masses defined in
Eq. (11). The function HðEÞ, which has dimensions of
ðmomentumÞ3, comes from the third row of diagrams in
Fig. 13. It can be obtained from the 1-loop ∇2 vertex
diagrams in Eq. (B12):

HðEÞ ¼ 8πμðE − E�ÞJ1ðEÞ: ð51Þ

FIG. 12. A diagrammatic identity that can be used to show that
the Feynman rules in Ref. [12] give the same Green’s functions as
the Feynman rules in this section. The open circle on the left side
is an arbitrary vertex that connects to D�0D̄0 or D0D̄�0 lines. The
open circle on the right side is the corresponding vertex that
connects to a pair propagator.

FIG. 13. The NLO diagrams for the pair self-energy. The sum
of the amputated diagrams is i½μ=ð2πÞ�Π0ðEÞδij.
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The δC0 and D0 terms in Eq. (49) come from the last
diagram in Fig. 13. They can be obtained from the pair-
propagator counterterm diagram in Eq. (B13).

B. Renormalization

The renormalizability of XEFT as an effective field
theory requires that ultraviolet divergences can be canceled
order by order in the power counting by renormalization of
the parameters of XEFT. With dimensional regularization,
the UV divergences in loop integrals produce poles in d − 2
and poles in d − 3. A pole in d − 3 represents a logarithmic
UV divergence, and a pole in d − 2 represents a linear UV
divergence. In the previous calculations in XEFTat NLO in
Refs. [11,15,16], power divergence subtraction was used to
remove the poles in d − 2. The subsequent limit d → 3
produces terms with positive integer powers of the renorm-
alization scale Λ. It may also produce terms that depend
logarithmically on Λ. If power divergence subtraction is
used to make linear UV divergences explicit in the limit
d → 3, renormalization must remove both the poles in
d − 3 and the dependence on Λ.
Green’s functions in XEFT should be multiplicatively

renormalizable. A renormalized amputated connected
Green’s function can be defined by multiplying the
amputated connected Green’s function by an appropriate
renormalization factor

ffiffiffiffi
Z

p
for every external leg. For D0

and D̄0 legs, the renormalization constant is Z ¼ 1. ForD�0

and D̄�0 legs, the renormalization constant in the COS
scheme for the D�0 propagator is Z� ¼ 1. When the
Lagrangian for XEFT is formulated using the pair field
ϕ as in Sec. III, there are also Green’s functions with
external pair legs. We denote the corresponding dimension-
less renormalization constant by Zϕ. It is equal to 1 at LO,
but Zϕ has corrections beyond LO.
The renormalized complete pair propagator differs from

the complete pair propagator in Eq. (48) by a multiplicative
factor 1=Zϕ. The renormalized pair self-energyΠðEÞ can be
defined by

Zϕ½AðEÞ−1 − Π0ðEÞ� ¼ AðEÞ−1 − ΠðEÞ: ð52Þ

The renormalization constant at NLO can be expressed
as Zϕ ¼ 1þ δZϕ. The renormalized pair self-energy at
NLO is

ΠðEÞ ¼ g2πFðEÞ þ ðC2=C0ÞHðEÞ
− ð2π=ðμC2

0ÞÞ½δC0 þD0ðE − E�Þ�
− δZϕAðEÞ−1: ð53Þ

It must be possible to choose δZϕ so the linear and
logarithmic UV divergences in this expression all cancel.
We first consider the poles in d − 2 in the renormalized

NLO pair self-energy ΠðEÞ in Eq. (53). The poles in d − 2
for the loop integrals are given in Appendix A 3.

The function FðEÞ in Eq. (50) has double poles in d − 2
from the 2-loop integral K110 and from the products of
1-loop integrals J21 and I1J1. Along with the double poles,
which do not depend on E, there are single poles whose
coefficients include a logarithm of the form logðE� − EÞ.
There are also canceling single poles in d − 2 in the
combination K120 − rI1J2. The double poles and the
constant single poles in FðEÞ can be canceled by
the counterterm δC0 in Eq. (53). The function HðEÞ in
Eq. (51), which has a factor E − E�, has a single pole in
d − 2 from the loop integral J1. The single pole can be
canceled by the counterterm D0 in Eq. (53). The poles in
d − 2 from the loop integrals in ΠðEÞ that cannot be
canceled by the counterterms δC0 and D0 are the single
poles with energy dependence logðE� − EÞ. The sum of
these terms and the δZϕ term in Eq. (53) are

2r
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
g2πΛ2

ðd − 2Þπ log
2μðE� − EÞ

Λ2
− δZϕAðEÞ−1: ð54Þ

The argument of the logarithm has been made dimension-
less by using the renormalization scale Λ. The expression
for the amplitude AðEÞ in Eq. (32) in the limit d → 2 is

lim
d→2

AðEÞ ¼ 1=Λ
logð2μðE� − EÞ=Λ2

2Þ
; ð55Þ

where the momentum scale Λ2 in the logarithm is deter-
mined by the constant under the pole in d − 2 of C−1

0 . The
dependence on E cancels between the two terms in Eq. (54)
if δZϕ has a pole in d − 2 with the appropriate residue. The
renormalization constant at NLO must have the form

Zϕ ¼ 1þ
�
2r

ffiffiffiffiffiffiffiffiffiffi
1 − r

p
g2πΛ

ðd − 2Þπ þ finite

�
; ð56Þ

where the finite NLO term has a finite limit as d → 2. The
cancellation of the logðE − E�Þ terms leaves a single pole
with a factor logðΛ2

2=Λ2Þ that can be canceled by the
counterterm δC0. We conclude that all the poles in d − 2 in
the NLO pair self-energy can be canceled by the counter-
terms δC0 and D0.
Having verified that all the linear UV divergences in the

renormalized pair self-energy can be canceled by the
counterterms δC0 and D0 there is nothing to be gained
by making them explicit using power divergence subtrac-
tion. We therefore choose to simplify intermediate results
by using conventional dimensional regularization in which
the only explicit UV divergences are poles in d − 3.
We now consider the poles in d − 3 in the renormalized

NLO pair self-energy ΠðEÞ in Eq. (53). The poles in d − 3
for the loop integrals are given in Appendix A 5. The only
poles in d − 3 come from the 2-loop integrals K110, K120,
andK111 in the function FðEÞ in Eq. (50). The poles inK120

and K111 are constants. The pole in K110 is a linear function
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of E. Thus all the poles in d − 3 can be canceled by the
counterterms δC0 andD0. We conclude that the logarithmic
UV divergences in the NLO pair self-energy can be
canceled by these counterterms.

C. Minimal subtraction renormalization scheme

We have verified that the linear and logarithmic UV
divergences in the NLO pair self-energy can be canceled by
the counterterms δC0 and D0 and the NLO term δZϕ in the
pair renormalization constant. A renormalization scheme
forD�0D̄0 andD0D̄�0 amplitudes in XEFT corresponds to a
specific choice for those counterterms. The simplest
renormalization scheme is the minimal subtraction (MS)
scheme, in which δC0, D0, and δZϕ are chosen to cancel
only the poles in d − 3. Since δZϕ has a pole in d − 2 but no
poles in d − 3, δZϕ ¼ 0 in the MS scheme. At NLO, the
poles in d − 3 in the pair propagator appear only in the
function FðEÞ in Eq. (50). The explicit form of the poles in
d − 3 of FðEÞ is

½FðEÞ�pole
¼ r2

3π2ðd−3Þ
���

1ffiffiffiffiffiffiffiffiffi
1−r

p þ3

� ffiffiffi
r

p
−
2−r
1−r

arccosð ffiffiffi
r

p Þ
�
μE�

−
��

1ffiffiffiffiffiffiffiffiffi
1−r

p þ1

� ffiffiffi
r

p
−

r
1−r

arccosð ffiffiffi
r

p Þ
�
μðE−E�Þ

�
:

ð57Þ

A pole in d − 3 of FðEÞ is accompanied by the logarithm
logð2μE�=Λ̄2Þ, where Λ̄ is a renormalization scale. In the
MS scheme, the cancellation of the poles in d − 3 by the
counterterms leaves terms in FðEÞ that depend on Λ̄. They
can be obtained by replacing 1=ðd − 3Þ in Eq. (57) by
logð2μE�=Λ̄2Þ. The logarithm multiplying the constant μE�
term can be absorbed into an NLO correction to the LO
parameter γ. However there is also a logarithm multiplying
the μðE − E�Þ term. The renormalization scale Λ̄ in this
logarithm can be interpreted as an additional real-valued
interaction parameter in the MS scheme associated with
renormalization of the coupling constant D0. The existence
of this additional interaction parameter was not recognized
in Ref. [12].

D. Complex threshold renormalization scheme

We introduce a new renormalization scheme for D�0D̄0

and D0D̄�0 amplitudes in XEFT that we call the complex
threshold (CT) renormalization scheme. It is defined by
specifying the behavior of the renormalized pair propagator
near the complex threshold E ¼ E�. The renormalized
inverse pair propagator has a threshold expansion in
half-integer powers of E − E� or, equivalently, in integer
powers of the function κðEÞ defined by

κðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðE� − EÞ

p
: ð58Þ

The CT scheme is partly defined by specifying the first two
leading terms in the threshold expansion:

AðEÞ−1 − ΠðEÞ ¼ −γ þ κðEÞ þOðκ2ðEÞÞ: ð59Þ

At NLO, the definition of the CT scheme is completed by
specifying the real part of the coefficient of κ2ðEÞ in the
threshold expansion of ΠðEÞ. We choose to denote that real
part by F2g2π, where F2 is a dimensionless adjustable
interaction parameter. At higher orders, the definition of
the CT scheme may need to be extended by specifying the
real parts of coefficients of higher integer powers of κ2ðEÞ.
We proceed to obtain a more explicit expression for the

renormalized NLO pair self-energy ΠðEÞ in the limit
d → 3. The expression for ΠðEÞ in Eq. (53) depends on
the functions FðEÞ andHðEÞ, which are expressed in terms
of loop integrals in Eqs. (50) and (51). The threshold
expansions in powers of E − E� of the loop integrals in
Ref. [12] are given in Appendix A 6. In the limit d → 3, the
function HðEÞ is very simple:

HðEÞ ¼ κ3ðEÞ: ð60Þ

In the limit d → 3, the function FðEÞ can be expanded in
integer powers of κðEÞ:

FðEÞ ¼ f0κ2� þ f1κ�κðEÞ þ f2κ2ðEÞ þ f4κ4ðEÞ=κ2� þ…;

ð61Þ

where κ� ¼
ffiffiffiffiffiffiffiffiffiffi
2μE�

p
. The dimensionless coefficients fn are

functions of the reduced-mass ratio r ¼ μπ=μ. The f1 term
is the only one with an odd power of κðEÞ. The coefficient
f1 is pure imaginary, and it is suppressed by a factor of r5=2:

f1 ¼ i
r5=2

3π
ffiffiffiffiffiffiffiffiffiffi
1 − r

p : ð62Þ

The coefficients f0 and f2 have single poles in d − 3, and
they have finite imaginary parts:

Im½f0�¼
r2

6π

�
2−r
1−r

arccosð ffiffiffi
r

p Þ−
�
3þ 1ffiffiffiffiffiffiffiffiffi

1−r
p

� ffiffiffi
r

p �
; ð63aÞ

Im½f2� ¼ −
r5=2

6π

�
1þ 1ffiffiffiffiffiffiffiffiffiffi

1 − r
p −

ffiffiffi
r

p
1 − r

arccosð ffiffiffi
r

p Þ
�
: ð63bÞ

All the higher coefficients have finite limits as d → 3, and
they are real valued. The coefficients fn with n ≥ 2 can be
expressed analytically in terms of hypergeometric func-
tions. The coefficient f4 is
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f4 ¼
2ð2 − rÞ
3π2

ffiffiffiffiffiffiffiffiffiffi
1 − r

p
�

2F1

�
−
1

2
;−

1

2
;
3

2
; 1 − r

�

þ 2 − 4r − r2

8
ffiffiffiffiffiffiffiffiffiffi
1 − r

p arccosð ffiffiffi
r

p Þ

þ ð12 − 22r − 5r2Þ ffiffiffi
r

p
24ð2 − rÞ −

ffiffiffiffiffiffiffiffiffiffi
1 − r

p
r5=2

40ð2 − rÞ
�
: ð64Þ

Its value in the limit r → 0 is f4 ¼ 2=ð3πÞ. Its numerical
value at r ¼ 0.1304 is f4 ¼ 0.1979. The renormalized
NLO pair self-energy in Eq. (53) can be expressed as

ΠðEÞ ¼ ½f0g2πκ2� − 2πδC0=ðμC2
0Þ þ δZϕγ�

þ ½f1g2πκ� − δZϕ�κðEÞ
þ ½f2g2π þ πD0=ðμ2C2

0Þ�κ2ðEÞ
þ ðC2=C0Þκ3ðEÞ þ g2πF4ðEÞ; ð65Þ

where F4ðEÞ is obtained by subtracting from FðEÞ the first
three terms in its expansion in powers of κðEÞ:

F4ðEÞ ¼ FðEÞ − ½f0κ2� þ f1κ�κðEÞ þ f2κ2ðEÞ�: ð66Þ

It has a threshold expansion in even powers of κðEÞ that
begins with a κ4ðEÞ term.
We proceed to implement the CT scheme for the

complete pair propagator at NLO. The first four terms in
the threshold expansion for the NLO renormalized pair
self-energy ΠðEÞ are already explicit in Eq. (65). There are
poles in d − 3 in the coefficients f0 and f2. The CT scheme
requires the total subtraction of the leading term and the
κðEÞ term in Eq. (65) and the partial subtraction of the
κ2ðEÞ term.
We first consider the κðEÞ term in the threshold expan-

sion for ΠðEÞ in Eq. (65). The total subtraction of the κðEÞ
term requires δZϕ ¼ f1g2πκ�. The coefficient f1 is finite at
d ¼ 3 and pure imaginary. The resulting expression for the
renormalization constant Zϕ in the CT scheme is

Zϕ ¼ 1þ i
r5=2

3π
ffiffiffiffiffiffiffiffiffiffi
1 − r

p g2πκ� ðd ¼ 3Þ: ð67Þ

If we include in δZϕ the pole in d − 2 in Eq. (56), we must
also include an additional finite term that cancels that pole
term at d ¼ 3, so that Zϕ in the limit d → 3 is again given
by Eq. (67). Since the finite renormalization in Eq. (67) is
not an essential aspect of the CT scheme, we will continue
to regard δZϕ as arbitrary.
We next consider the leading term in the threshold

expansion for ΠðEÞ in Eq. (65). The NLO binding
momentum with δZϕ ¼ f1g2πκ� is

γNLO ¼ γ þ f1g2πκ�γ þ f0g2πκ2� − 2πδC0=ðμC2
0Þ; ð68Þ

where f1 is given in Eq. (62) and the imaginary part of f0 is
given in Eq. (63a). The terms f1g2πκ�γ and i Im½f0�g2πκ2� give
positive contributions to the imaginary part of γNLO. These
contributions, which take into account the decay of X into
D0D̄0π0, add to the imaginary part of γ, which takes into
account short-distance decays of X, such as its decay into
J=ψπþπ−. The counterterm δC0 must cancel the pole in
d − 3 from the coefficient f0 in Eq. (68). It could be chosen
to cancel also the real finite part of f0. The CT scheme
requires the total subtraction of the leading term in Eq. (65),
which implies γNLO ¼ γ.
We finally consider the κ2ðEÞ term in the threshold

expansion for ΠðEÞ in Eq. (65). The counterterm D0 must
cancel the pole in d − 3 from the coefficient f2 in Eq. (65).
It can be chosen to also cancel an arbitrary real part of f2.
We denote the remaining finite real part of that coefficient
by F2. The resulting expression for the renormalized pair
self-energy at NLO is

ΠðEÞ ¼ ½f1g2πκ� − δZϕ�κðEÞ þ ðF2 þ i Im½f2�Þg2πκ2ðEÞ
þ ðC2=C0Þκ3ðEÞ þ g2πF4ðEÞ: ð69Þ

In the CT scheme, the term proportional to κðEÞ is absent.
The adjustable real interactions parameters in XEFT at
NLO in the CT scheme are Re½γ�, Im½γ�, F2, and C2=C0.
The existence of the additional interaction parameter F2

was not recognized in Ref. [12].

E. Other previous renormalization schemes

In Refs. [11,16], the differential decay rate of the X into
D0D̄0π0 was calculated to NLO in original XEFT. The LO
binding momentum γ was taken to be a real adjustable
parameter. The calculation of the NLO diagrams did not
produce any poles in d − 3. Power divergence subtraction
was used to make the poles in d − 2 explicit as dependence
on the renormalization scale Λ, which was denoted by
ΛPDS=2. The pair propagatorAðEÞ in d dimensions is given
in Eq. (32). If the pole in d − 2 is subtracted from the loop
integral J1ðEÞ in Eq. (31), then the pole in d − 2 must also
be subtracted from 2π=ðμC0Þ in Eq. (34). The resulting
expression for C0 satisfies

C0ð2Λ − γÞ ¼ −2π=μ: ð70Þ

In Refs. [11,16], the remaining dependence on the renorm-
alization scale appeared in the following combinations:

C2ð2Λ − γÞ2 ¼ ðπ=μÞR0; ð71aÞ

½B1 þ ðgμ=fπÞC2�ð2Λ − γÞ ¼ η=ð100 MeVÞ3: ð71bÞ

These equations defined two renormalized interaction
parameters: R0 (denoted by r0 in Ref. [11]), which has
dimensions 1=ðmomentumÞ, and η, which is dimensionless.
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In Refs. [11,16], R0 was assumed to be positive and less
than 1=ð100 MeVÞ and η was assumed to be in the
range jηj < 1.
In our calculations, we have chosen not to make linear

UV divergences manifest by using power divergence
subtraction. The same results could be obtained by using
power divergence subtraction and then setting Λ ¼ 0. If we
divide Eq. (71a) by Eq. (70) and then set Λ ¼ 0, we find

C2=C0 ¼ R0=ð2γÞ: ð72Þ

Thus we can replace C2=C0 in our NLO corrections by
R0=ð2γÞ, where R0 is the renormalized interaction param-
eter introduced in Ref. [11].
In Ref. [15], the D�0D̄0 scattering length was calculated

to NLO in original XEFT. In addition to terms proportional
to Λ, Λ2, logΛ, there was explicit dependence on Λ from
terms proportional to 1=ð2Λ − γÞ. These terms were intro-
duced by a resummation prescription for dealing with an
infrared divergence at the D�0D̄0 threshold. The terms
proportional to 1=ð2Λ − γÞ were not removed by the
renormalization of the parameters. This failure of the
renormalization procedure suggests that the resummation
prescription for the infrared divergences in Ref. [15] was
incompatible with the renormalization prescription.
In Ref. [12], which introducedGalilean invariant XEFT, a

renormalization prescription for D�0D̄0 and D0D̄�0 ampli-
tudes called the complex on-shell (COS) renormalization
scheme was introduced. The COS scheme requires the pole
in the energy and the residue of the pole in the D�0D̄0

transition amplitude to be the same as at LO. This renorm-
alization scheme will be discussed in Sec. VI C after the
NLO calculation of the D�0D̄0 transition amplitude.

F. NLO pole energy

The complete pair propagator ΠðEÞ has a pole in E at a
complex energy that is conveniently expressed as

Epole ¼ E� − γ2X=ð2μÞ; ð73Þ

where γX is the complex binding momentum. The pole
energy at NLO in the CT scheme is a zero of the
renormalized inverse pair propagator −γ þ κðEÞ − ΠðEÞ,
where ΠðEÞ is given in Eq. (69). The equation for γX at
NLO can be obtained by substituting E → Epole in the
expression for ΠðEÞ and then setting it equal to −γ þ γX.
The equation can be expressed as

γX ¼ γ þ ½f1g2πκ� − δZϕ�γX þ ðF2 þ iIm½f2�Þg2πγ2X
þ R0

2γ
γ3X þ g2πF4ðE� − γ2X=ð2μÞÞ: ð74Þ

In the CT scheme, the term on the right side proportional to
γX is zero. We have used Eq. (72) to set C2=C0 ¼ R0=ð2γÞ.

The equation for γX can be solved as an expansion in
powers of γ. The solution for the first few terms in the CT
scheme is

γX ¼ γ þ 1

2
½R0 þ 2ðF2 þ i Im½f2�Þg2π�γ2

þ 3

4
½R0 þ 2ðF2 þ i Im½f2�Þg2π�

×

�
R0 þ

4

3
ðF2 þ i Im½f2�Þg2π

�
γ3 þ…: ð75Þ

In the calculation of the rate for a reaction with X as an
incoming or outgoing particle, the T-matrix element has a
factor

ffiffiffiffiffiffi
ZX

p
for the X. The residue factor ZX is determined

by the derivative with respect to E of the renormalized
inverse pair propagator in Eq. (52) evaluated at Epole. The
reciprocal of the residue factor can be expressed as

Z−1
X ¼ Z−1

X;LO þ ðμ=ð2πÞÞΠ0ðEpoleÞ; ð76Þ

where ZX;LO is the LO residue factor in Eq. (41). The NLO
pair self-energyΠðEÞ is given in Eq. (69). The reciprocal of
the residue factor at NLO in the limit d → 3 is

Z−1
X;NLO ¼ μ2

2π

�
1

γ
− ðf1g2πκ�−δZϕÞ

1

γX
−2ðF2þ iIm½f2�Þg2π

−
3

2

R0γX
γ

þg2π
μ
F0
4ðE�− γ2X=ð2μÞÞ

�
ðd¼ 3Þ: ð77Þ

Note that the choice δZϕ ¼ f1g2πκ� in the CT scheme
simplifies both the equation for the binding momentum in
Eqs. (74) and the residue factor in (77).

VI. D�0D̄0 SCATTERING

In this section, we use Galilean-invariant XEFT to
calculate the D�0D̄0 elastic scattering amplitude to NLO
and we discuss the breakdown of the effective range
expansion.

A. NLO transition amplitude

The amputated connected Green’s function forD�0D̄0 →
D�0D̄0 is a tensor T ij whose vector indices are those of the
incoming and outgoing D�0 lines. If the incoming and
outgoing D̄0 are on their energy shells but the incoming and
outgoing D�0 are off their energy shells, this transition
tensor T ijðE; p; p0Þ is a function of the total energy E of the
pair of charm mesons in their CM frame and the relative
momenta p and p0 of the incoming and outgoing charm
mesons. The transition tensor T ij

þ for the C ¼ þ channel is
the sum of the transition tensors for D�0D̄0 → D�0D̄0,
D�0D̄0 → D0D̄�0, D0D̄�0 → D�0D̄0, and D0D̄�0 → D0D̄�0
multiplied by 1=2. The S-wave contribution to the tran-
sition tensor can be obtained by averaging over the
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directions of p and p0. It is diagonal in the vector indices i
and j, and it is a function of E, p, and p0. The C ¼ þ S-
wave transition tensor can be expressed in the form

hT ij
þðE; p; p0Þip̂;p̂0 ¼

2π

μ
AsþðE; p; p0Þδij; ð78Þ

where the scalar transition amplitude Asþ has dimensions
1=momentum. At LO, the C ¼ þ S-wave transition ampli-
tude reduces to the pair propagator AðEÞ in Eq. (33).
The NLO diagrams for the transition tensor forD�0D̄0 →

D�0D̄0 are calculated in Appendix B. There are three pion-
exchange diagrams shown in Fig. 14: two 1-loop diagrams
and a 2-loop diagram. There are two D� propagator
correction diagrams shown in Fig. 16: a 2-loop diagram
with aD� self-energy subdiagram and a 1-loop diagramwith
a D� self-energy counterterm. With the Feynman rules for
NLO interaction vertices in Sec. IV D, there are four ∇2

vertex diagrams in Fig. 17: two tree diagrams and two 1-loop
diagrams. There is also a tree diagramwith a pair-propagator
counterterm vertex in Fig. 18. There are analogous diagrams
for the other three amplitudes D�0D̄0 → D0D̄�0, D0D̄�0 →
D�0D̄0, andD0D̄�0 → D0D̄�0. The amplitudes forD�0D̄0 →
D0D̄�0 and D0D̄�0 → D�0D̄0 also have a tree-level pion
exchange diagram. The tree diagram forD�0D̄0 → D0D̄�0 is
shown in Fig. 15.
The complete NLO C ¼ þ S-wave transition amplitude

can be expressed as

AsþðE; p; p0Þ ¼ AðEÞ þAπðE; p; p0Þ

þ
�
g2π½GðE; pÞ þGðE; p0Þ�

þ ðC2=C0Þðp2 þ p02Þ=2
�
AðEÞ

þ Π0ðEÞA2ðEÞ; ð79Þ

where Π0ðEÞ is the pair self-energy given in Eq. (49). The
tree-level pion-exchange term Aπ can be obtained from
Eq. (B7):

AπðE;p;p0Þ¼−
rg2π

6π
ffiffiffiffiffiffiffiffiffi
1−r

p
�
2ð2−rÞrμE−rðp2þp02Þ

4
ffiffiffiffiffiffiffiffiffi
1−r

p
pp0

×log
2rμE−p2−p02þ2

ffiffiffiffiffiffiffiffiffi
1−r

p
pp0

2rμE−p2−p02−2
ffiffiffiffiffiffiffiffiffi
1−r

p
pp0−ð2−rÞ

�
;

ð80Þ

where r ¼ μπ=μ. The function GðE; pÞ, which has dimen-
sions of momentum, comes from the 1-loop pion-exchange
diagram in Eq. (B4):

GðE; pÞ ¼ 2r

d
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
�
−rL0ðE; pÞ

þ r½2μE� þ 2ð1 − rÞμE − p2�L1ðE; pÞ

þ ð2 − rÞJ1ðEÞ
�
: ð81Þ

The terms proportional toAðEÞ in Eq. (79) have a single
pole in the energy E. The terms proportional to A2ðEÞ in
Eq. (79) have an unphysical double pole in E. The N2LO
contribution would have a triple pole and higher order
contributions would have even higher poles. These unphys-
ical multiple poles can be summed to all orders, in which
case they produce a shift in the position of the single pole in
the LO amplitude. An expression for the C ¼ þ S-wave
transition amplitude that has NLO accuracy but only a
single pole in E is

AsþðE;p;p0Þ ¼AπðE;p;p0Þ

þWπ0ðE;pÞ
1

AðEÞ−1 −Π0ðEÞ
Wπ0ðE;p0Þ;

ð82Þ
where Π0ðEÞ is the NLO pair self-energy in Eq. (49). The
numerator factors at NLO are given by

Wπ0ðE; pÞ ¼ 1þ g2πGðE; pÞ þ ðC2=C0Þp2=2: ð83Þ

By expressing the numerator as a product as in Eq. (82), the
residue of the pole at E ¼ Epole is guaranteed to factor into
the product of a function of the incoming relative momen-
tum p and a function of the outgoing relative momentum
p0. The denominator factor in Eq. (82) is the complete pair
propagator at NLO, which can be obtained by summing the
geometric series of NLO pair self-energy diagrams.
In Ref. [12], the NLO C ¼ þ S-wave transition ampli-

tude in Eq. (79) was calculated only in the limit p → 0,
p0 → 0. The numerator factor W2

π0ðE; 0Þ was expanded to
NLO and expressed as 1þ g2πGðEÞ, where GðEÞ ¼
2GðE; 0Þ. It was stated in Ref. [12] that to NLO accuracy,
the g2πGðEÞ terms in the numerator could equally well be
moved to the denominator in a factor multiplying AðEÞ−1.
This is incorrect, because it changes the pole energy. The
numerator and the denominator in Eq. (82) could however
both be multiplied by the same constant Zϕ.

B. Renormalization

The renormalized transition amplitude for D�0D̄0 in the
C ¼ þ S-wave channel can be obtained from the transition
amplitude in Eq. (82) by multiplying it by the appropriate
renormalization constants for the external D�0 lines. If
the COS renormalization is used for the D�0 propagator,
the renormalization constant for D�0 is Z� ¼ 1. Thus the
transition amplitude in Eq. (82) must be UV finite.
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There are however UV divergences in the pair propagator
Π0ðEÞ and in the numerator factors. A manifestly finite
expression for the transition amplitude can be obtained by
multiplying the numerator and denominator of Eq. (82) by
Zϕ. The resulting denominator is the renormalized inverse
pair propagator in Eq. (52). The product of the numerator
factor Wπ0ðE; pÞ and

ffiffiffiffiffiffi
Zϕ

p
defines a renormalized numer-

ator factor WπðE; pÞ. The resulting renormalized expres-
sion for the C ¼ þ S-wave transition amplitude is

AsþðE; p; p0Þ ¼ AπðE; p; p0Þ

þWπðE; pÞ
1

AðEÞ−1 − ΠðEÞWπðE; p0Þ:

ð84Þ

The renormalized numerator factor at NLO is

WπðE;pÞ¼ 1þg2πGðE;pÞþðR0=γÞp2=4þδZϕ=2; ð85Þ

where GðE; pÞ is given in Eq. (81). We have used Eq. (72)
to set C2=C0 ¼ R0=ð2γÞ, where R0 is a renormalized
interaction parameter. The renormalized self-energy
ΠðEÞ at NLO is given in Eq. (53), with C2=C0 replaced
by R0=ð2γÞ.
We proceed to verify that the terms in the renormalized

transition amplitude in Eq. (84) are all UV finite at NLO.
We have already verified the cancellation of all the poles in
d − 2 and d − 3 of the renormalized self-energy ΠðEÞ at
NLO. The function GðE; pÞ has single poles in d − 2 from
the loop integrals L0 and J1. It can be easily verified that the
poles are canceled by the δZϕ=2 term in Eq. (85), where
δZϕ is the NLO term in the renormalization constant in
Eq. (56). We conclude that the linear UV divergences in
WπðE; pÞ cancel at NLO.
Having verified that the linear UV divergences in the

numerator factors in Eq. (84) cancel, there is nothing to be
gained by making them explicit using power divergence
subtraction. We therefore choose to simplify the numerator
factors by using conventional dimensional regularization
in which loop integrals are analytically continued to the
neighborhood of d ¼ 3. Since the function GðE; pÞ has no
poles in d − 3, we can simply set d ¼ 3 in the renormalized
numerator factor Wπ.

C. Complex on-shell renormalization scheme

In Ref. [12], which introduced Galilean invariant
XEFT, a renormalization prescription for D�0D̄0 and
D0D̄�0 amplitudes called the complex on-shell (COS)
renormalization scheme was introduced. The D�0D̄0 tran-
sition amplitude has a pole in the CM energy at the same
complex energy Epole as the complete pair propagator. The
pole energy is expressed in terms of the binding momentum
γX in Eq. (73).

The renormalization prescription for the COS scheme in
Ref. [12] is that the pole in E in the transition amplitude in
Eq. (84) at p ¼ p0 ¼ 0 has the same value and the same
residue as at LO. The pole energy Epole has the same
value if the LO binding momentum γ is equal to γX. The
condition for the pole at p ¼ p0 ¼ 0 to have the same
residue is

W2
πðE;0Þ

−γX þ κðEÞ−ΠCOSðEÞ
→

−γX=μ
E−Epole

as E→ Epole; ð86Þ

where ΠCOSðEÞ is the renormalized pair self-energy in the
COS scheme. The two renormalization conditions for
ΠCOSðEÞ are

ΠCOSðEpoleÞ ¼ 0; ð87aÞ

Π0
COSðEpoleÞ ¼

μ

γX
½W2

πðEpole; 0Þ − 1Þ�: ð87bÞ

We proceed to implement the COS scheme for the complete
pair propagator at NLO. The expansion to NLO of the
numerator on the left side of Eq. (86) is

W2
πðE; 0Þ ¼ 1þ 2g2πGðE; 0Þ þ δZϕ: ð88Þ

The renormalized pair self-energy ΠCOSðEÞ at NLO in the
COS scheme is given by Eq. (65) with C2=C0 replaced by
R0=ð2γÞ and with appropriate complex values for the
counterterms δC0 and D0. These counterterms correspond
to subtractions proportional to κ0ðEÞ ¼ 1 and κ2ðEÞ. The
solution to the renormalization conditions in Eq. (87) is

ΠCOSðEÞ¼f1g2πκ�

�
κðEÞ−γX

2
−

1

2γX
κ2ðEÞ

�
−δZϕ½κðEÞ−γX�

−
g2πGðEpole;0Þ

γX
½κ2ðEÞ−γ2X�

þ R0

2γX

�
κ3ðEÞþγ3X

2
−
3γX
2

κ2ðEÞ
�
þg2πF4;subðEÞ;

ð89Þ

where F4;subðEÞ is obtained by subtracting from F4ðEÞ in
Eq. (66) the first two terms in its expansion in powers of
E − Epole:

F4;subðEÞ¼F4ðEÞ−F4ðEpoleÞ−F0
4ðEpoleÞðE−EpoleÞ: ð90Þ

It is easy to verify that the self-energy in Eq. (89) vanishes
at E ¼ Epole by using κðEpoleÞ ¼ γX. One can verify that
its derivative with respect to E at Epole agrees with the
NLO term on the right side of Eq. (87b) by also
using κ0ðEpoleÞ ¼ −μ=γX. The additional renormalization
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freedom associated with the renormalization constant Zϕ

was not recognized in Ref. [12], so δZϕ was set to 0.
The expression for the renormalized self-energy

ΠCOSðEÞ in the COS scheme in Eq. (89) is significantly
more complicated than that for ΠðEÞ in the CT scheme in
Eq. (69). The adjustable real interaction parameters in
ΠCOSðEÞ in Eq. (89) are Re½γX�, Im½γX�, and R0. There is no
additional real interaction parameter analogous to F2 in
ΠðEÞ in Eq. (69). Such a parameter arises inevitably from
the freedom in the choice of the finite real part accom-
panying the pole in d − 3 of the counterterm D0. The
absence of such a term in Eq. (89) indicates that the
renormalization conditions in Eq. (87) are insufficient. It is
not clear how to extend these renormalization conditions to
allow for the adjustable parameter F2. The parameters
Re½γX� and Im½γX� in ΠCOSðEÞ are determined by the real
and imaginary parts of the pole energy Epole ¼ EX − iΓX=2.
The inputs EX and ΓX are not ideal parameters, because
they are difficult to determine experimentally. The only
experimental determinations of the pole energy thus far are
by the LHCb Collaboration using the Flatté model [7], and
their results do not have error bars. One might as well use
Re½γ� and Im½γ� as the real adjustable parameters, as in the
CT scheme.

D. NLO scattering amplitude

We consider the elastic scattering of D�0D̄0 and D�0D̄0

in the CM frame with incoming relative momentum p and
outgoing relative momentum p0. Conservation of energy
requires p0 ¼ p. The scattering angle θ is defined by
p̂ · p̂0 ¼ cos θ. The polarization vectors of the incoming
and outgoing D�0 are ε and ε0. The energy shell conditions
require the total energy E to have the complex value

Ep ¼ E� þ p2=ð2μÞ: ð91Þ

The T-matrix element for D�0D̄0 → D�0D̄0 is obtained by
multiplying the on-shell amputated connected Green’s
function T ijðEp; p; p0Þ by the external line factors in
Eq. (29) for the incoming and outgoing D�0:

T ðp; ε; p0; ε0Þ ¼
X
ij

T ijðEp; p; p0Þεiε0j�: ð92Þ

The T-matrix element for scattering in theC ¼ þ channel is
the sum of the T-matrix elements for D�0D̄0 → D�0D̄0,
D�0D̄0 → D0D̄�0, D0D̄�0 → D�0D̄0, and D0D̄�0 → D0D̄�0
multiplied by 1=2. It can be projected onto the S-wave
channel by averaging over the directions of the momenta
p and p0.
The T-matrix element for S-wave scattering in theC ¼ þ

channel can be expressed in terms of the scalar transition
amplitude Asþ in Eq. (84) evaluated on shell by setting
p0 ¼ p and E ¼ Ep:

T sþðpÞ ¼ ð2π=μÞAsþðEp; p; pÞ: ð93Þ

The T-matrix element for S-wave scattering in the C ¼ þ
channel at NLO is

T sþðpÞ ¼ ð2π=μÞ
�
AπðEp; p; pÞ þ

W2
πðEp; pÞ

ð−γ − ipÞ − ΠðEpÞ
�
:

ð94Þ

The tree-level pion-exchange term is obtained by evaluat-
ing Eq. (80) on shell:

AπðEp; p; pÞ ¼
rg2π

6π
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
�
r½ð2 − rÞκ2� − rp2�

4
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
p2

× log
rκ2� − ð1þ ffiffiffiffiffiffiffiffiffiffi

1 − r
p Þ2p2

rκ2� − ð1 − ffiffiffiffiffiffiffiffiffiffi
1 − r

p Þ2p2
þ ð2 − rÞ

�
:

ð95Þ

The numerator factor is obtained by evaluating GðE; pÞ in
Eq. (81) on shell and inserting it into Eq. (85). The function
GðE; pÞ reduces on shell to

GðEp; pÞ ¼ i
r

6π
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
�
r½ð2 − rÞκ2� − rp2�

2
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
p

× log
ffiffiffi
r

p
κ� þ ð1þ ffiffiffiffiffiffiffiffiffiffi

1 − r
p Þpffiffiffi

r
p

κ� þ ð1 − ffiffiffiffiffiffiffiffiffiffi
1 − r

p Þp

þ ð2 − rÞp − r3=2κ�

�
: ð96Þ

The renormalized pair propagator at E ¼ Ep can be
obtained by replacing κðEÞ by −ip in Eq. (69):

ΠðEpÞ ¼ ðδZϕ − f1g2πκ�Þip − ðF2 þ i Im½f2�Þg2πp2

þ i
R0

2γ
p3 þ g2πF4ðEpÞ: ð97Þ

In the CT scheme, the coefficient of ip is 0.

E. Breakdown of the effective range expansion

In the case of only short-range interactions, a scattering
amplitude can be expanded in powers of the relative
momentum. This expansion is called the effective range
expansion. The scattering length a and the effective range
re can be defined as coefficients in the expansion of the
reciprocal of the T-matrix element T ðpÞ in powers of the
momentum p:

2π=μ
T ðpÞ ¼ −

1

a
− ipþ 1

2
rep2 þOðp4Þ: ð98Þ
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Unitarity requires that the only odd power of p in the
expansion is the −ip term.
At LO, the C ¼ þ S-wave transition amplitude reduces

to the pair propagator AðEÞ in Eq. (33). The T-matrix
element for S-wave scattering in the C ¼ þ channel at LO
is therefore

T sþ;LOðpÞ ¼
2π=μ

−γ − ip
: ð99Þ

Comparing with Eq. (98), we see the inverse scattering
length 1=asþ in the C ¼ þ S-wave channel at LO is equal
to γ and the effective range at LO is zero.
We proceed to consider the expansion of the reciprocal

of the C ¼ þ S-wave T-matrix at NLO in powers of p. The
tree-level pion-exchange term in Eq. (95) has an expansion
in powers of p2. It reduces at small p to

AπðEp; p; pÞ ¼ −
2

ffiffiffiffiffiffiffiffiffiffi
1 − r

p
g2π

3πκ2�
p2 þOðp4Þ: ð100Þ

The numerator factor in Eq. (94) has an expansion in
powers of p. It reduces at small p to

WπðEp; pÞ ¼ 1þ 1

2

�
δZϕ þ i

2
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
r3=2

3π
g2πκ�

�

þ
�
R0

4γ
þ i

ð4þ rÞ ffiffiffiffiffiffiffiffiffiffi
1 − r

p
r1=2

9π

g2π
κ�

�
p2

− i
2

ffiffiffiffiffiffiffiffiffiffi
1 − r

p
g2π

3πκ2�
p3 þOðp4Þ: ð101Þ

Note that there is no term linear in p. The inverse scattering
length 1=asþ can be obtained by taking the p → 0 limit of
T sþ in Eq. (94). The expansion of 1=asþ to NLO in g2π is

1=asþ ¼
�
1 − δZϕ − i

2
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
r3=2

3π
g2πκ�

�
γ: ð102Þ

In the CT scheme, δZϕ is replaced by the correction to 1
in Eq. (67).
In the expansion of ð2π=μÞ=T sþðpÞ in powers of p, the

term linear in p differs from the term −ip in Eq. (98) that is
required by unitarity if all interactions have short range.
This breakdown of the effective range expansion can be
attributed to the effects of the successive exchange of pions
that are almost on their energy shell. The coefficient of −ip
differs from 1 by a term that is almost purely imaginary.
The coefficient can therefore be expressed as the NLO
approximation to a factor that is almost a complex phase.
This complex phase can be interpreted as the phase shift
from the successive exchange of pions. If the complex
phase factor is factored out of the expression for
ð2π=μÞ=T sþðpÞ, the remaining factor has an expansion
in powers of p with the linear term −ip as in Eq. (98):

2π=μ
T sþðpÞ

≈ exp

�
−i

ð2 − rÞr3=2
3π

ffiffiffiffiffiffiffiffiffiffi
1 − r

p g2πκ�

�

×

�
−γsþ − ipþ 1

2
rsþp2 þOðp3Þ

�
: ð103Þ

In the CT scheme, the coefficient γsþ is just γ. The
coefficient rsþ is

rsþ ¼ R0 þ 2F2g2π þ
4

3π

�
−i

ð1þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p Þr5=2
4

ffiffiffiffiffiffiffiffiffiffi
1 − r

p

þ i
r3

4ð1 − rÞ arccosð
ffiffiffi
r

p Þ þ i
ð4þ rÞ ffiffiffiffiffiffiffiffiffiffi

1 − r
p

r1=2

3

γ

κ�

þ
ffiffiffiffiffiffiffiffiffiffi
1 − r

p �
γ

κ�

�
2
�
g2π: ð104Þ

The contributions to rsþ that are almost pure imaginary
could alternatively be absorbed into terms proportional to
p2 in the phase shift. At NLO, 1=T sþðpÞ has a well-
behaved effective range expansion though order p2 modulo
an overall phase factor. It would be interesting to know if
this remains true at higher orders.
In Ref. [15], Jansen et al. pointed out that the effective

range expansion for D�0D̄0 scattering breaks down beyond
LO in XEFT, because of the effects of the exchange of a
pion that can be on its energy shell. They argued that the S-
wave D�0D̄0 scattering length remains well defined, but
that the breakdown of the effective range expansion made
the effective range undefined. Jansen et al. calculated the
scattering length to NLO in original XEFT, truncating the
expression at first order in an expansion in powers of
γX=

ffiffiffiffiffiffiffiffiffi
2mδ

p
and at leading order in m=M or, equivalently,

r ≈ 2m=M [15]. Their result for 1=asþ depends on a
renormalization scale Λ through terms of the form
1=ðγ − ΛÞ. These terms were produced by an infrared
resummation that was apparently incompatible with their
renomalization prescription.
In Ref. [12], the inverse scattering length at NLO was

calculated using Galilean-invariant XEFT in the COS
renormalization scheme. Using the result for ΠCOSðEÞ in
Eq. (89) with κðEÞ set to 0 and the result for WπðE�; 0Þ
from Eq. (88), the inverse scattering length at NLO can be
expressed as

1

asþ
¼ γX þ g2π

�
GðEpole; 0Þ − 2GðE�; 0Þ −

f1
2
κ�

�
γX

þ 1

4
R0γ

2
X − g2π

�
F4ðEpoleÞ þ F0

4ðEpoleÞ
γ2X
2μ

�
; ð105Þ

where F4ðEÞ is given in Eq. (66) and GðE; 0Þ is

GðE;0Þ ¼ i

ffiffiffiffiffiffiffiffiffiffi
1− r

p
r

3π

ð2rμEÞ3=2− ½2μðE−E�Þ�3=2
ð2rμEÞ− ½2μðE−E�Þ�

: ð106Þ
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Note that 1=asþ in the COS scheme does not depend on the
choice for the renormalization constant Zϕ for the pair
propagator. This result in Eq. (105) is much more com-
plicated than that in the CT scheme in Eq. (102). The
inverse scattering length cannot be calculated analytically
because of the F4 terms in Eq. (105). Those terms have
expansions in powers of γX that begin at order γ4X. An
analytic expression for 1=asþ in the COS scheme can be
obtained as an expansion in powers of γX. The expansion
through fourth order in γX is

1

asþ
¼

�
1− i

ð2− rÞr3=2
6π

ffiffiffiffiffiffiffiffiffiffi
1− r

p g2πκ�

�
γX þ 1

4
R0γ

2
X

− i
ð2þ rÞ ffiffiffiffiffiffiffiffiffiffi

1− r
p

r1=2

6π

g2πγ3X
κ�

þ
�
f4 −

ffiffiffiffiffiffiffiffiffiffi
1− r

p

3π

�
g2πγ4X
κ2�

;

ð107Þ

where f4 is given in Eq. (64). The coefficient of each power
of γX in Eq. (107) can be expanded in powers of the small
parameter r of XEFT. The expansion of 1=asþ truncated
after the γ4X term reduces to

1=asþ¼ γXþ
1

4
R0γ

2
Xþ

1

3π
g2πκ2�

�
−ir3=2

�
1þ1

8
r2
�
γX
κ�

−ir1=2
�
1−

3

8
r2
��

γX
κ�

�
3

þ
�
1−

1

2
r−

1

8
r2
��

γX
κ�

�
4
�
:

ð108Þ

The coefficient of each term has been expanded to relative
order r2. In each of the three NLO correction terms
proportional to g2π that are shown, the sum of the power
of γX and the leading power of

ffiffiffi
r

p
is equal to 4. The higher

powers of γX=κ� are therefore partly compensated for by
the fewer powers of

ffiffiffi
r

p
. In Ref. [12], there is an error in the

result for 1=asþ in the COS scheme: the coefficient of
γX=κ� has a factor 1 − 1

2
rþ 1

8
r2 instead of 1þ 1

8
r2.

If we take the limit g2π → 0, the expansion of the
reciprocal of the NLO T-matrix element in the CT scheme
at small p reduces to

2π=μ
T sþðpÞ

¼ −γ − ipþ R0

2
p2 −

3R2
0

16γ
p4 þ i

R2
0

16γ2
p5 þOðp6Þ:

ð109Þ

The p5 term indicates an obvious breakdown of the
effective range expansion, but the negative power of
γ in the coefficient of the p4 term is another indication.
Comparison with the effective range expansion in Eq. (98)
reveals thatR0 has a simple interpretation in the CT scheme.
It is the effective range in the limit in which pion interactions
are turned off.

F. Pion-exchange resummation

We have found that pion exchange causes a breakdown
of the effective range expansion for the T-matrix element
for D�0D̄0 scattering in the S-wave C ¼ þ channel. In the
case of strong short-range interactions plus weak long-
range interactions, the effective range expansion can be
modified in various ways. The simplest possible modifi-
cation is additional odd powers of p beginning at order p3.
Some of the odd powers of p could be factored out into an
overall phase shift. However the modifications could be
much more dramatic. An extreme case of a long-range
interaction is the Coulomb interaction between charged
particles. In this case, it is necessary to resum the effects of
Coulomb interaction to all orders. The resummation of
Coulomb interactions in low-energy proton-proton scatter-
ing was first treated in an effective field theory framework
by Kong and Ravndal et al. [17]. The formalism was
extended in Ref. [18] to a two-channel system of dark
matter particles in which one channel is a pair of charged
particles and the other channel is a pair of neutral particles.
The T-matrix element in the S-wave channel for a single
pair of charged particles with strong short-range inter-
actions has the form

T ðpÞ ¼ ð2π=μÞ½ACðpÞ þW2
CðpÞAsðpÞ�: ð110Þ

For a pair of charged particles with opposite unit electric
charges, the resummation of Coulomb interactions without
any short-range interactions gives the S-wave Coulomb
amplitude ACðpÞ:

ACðpÞ ¼
�
1 −

Γð1 − iαμ=pÞ
Γð1þ iαμ=pÞ

�
iπ
μp

; ð111Þ

where α is the fine-structure constant of QED. The
resummation of Coulomb interactions before the first
short-range interaction or after the last short-range inter-
action gives the amplitude WCðpÞ, whose square is

W2
CðpÞ ¼

2παμ=p
1 − expð−2παμ=pÞ

Γð1 − iαμ=pÞ
Γð1þ iαμ=pÞ : ð112Þ

The amplitude AsðpÞ in Eq. (110) comes from short-range
interactions only. The T-matrix element from this term only
would presumably have a conventional effective range
expansion analogous to that in Eq. (98).
The T-matrix element for D�0D̄0 scattering in the C ¼ þ

S-wave channel in Eq. (94) has the same form as that for
strong short-range interactions plus Coulomb interactions
in Eq. (110). The analogous off-shell C ¼ þ S-wave
transition amplitude is given in Eq. (84). Each of the three
terms in Eq. (84) has been calculated to NLO in the XEFT
power counting. The only diagram that contributes to
AπðE; p; p0Þ at NLO is one in which a pion is exchanged
between the charm mesons. The NLO correction to
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WπðE; pÞ comes from a diagram with the exchange of a
pion. The accuracy of the T-matrix element could be
improved by calculating all three terms in Eq. (94) to
NNLO. The NNLO contributions toAπ andWπ come from
diagrams with two successive pion exchanges. Since the
pions that are exchanged can be on shell, the terms Aπ and
Wπ include effects frommuch longer distances than the pair
self-energy ΠðEÞ. It is possible that an accurate calculation
of the T-matrix element would require the resummation of
successive pion exchanges to all orders in Aπ and in Wπ .

VII. OUTLOOK

As an effective field theory for a sector of QCD that
includes the Xð3872Þ, XEFTallows systematically improv-
able calculations of some of the properties of this resonance.
In the original formulation of XEFT, the interactions of the
charm mesons with pions were chosen to have a form
motivated by the approximate chiral symmetry ofQCD [11].
The Galilean-invariant formulation of XEFT developed in
Ref. [12] was a significant improvement, because the
Galilean symmetry constrains the ultraviolet divergences
and it significantly simplifies analytic results. We have
introduced a new formulation of Galilean-invariant XEFT
with a dynamical pair field that annihilates a pair of charm
mesons in the resonant channel. The new formulation
simplifies calculations at NLO by making some cancella-
tions of UV divergences between diagrams automatic. The
terms in the Lagrangian for this formulation of XEFT are
given in Sec. III and the Feynman rules are given in Sec. IV.
We also introduced a new renormalization scheme called the
complex threshold (CT) scheme that makes analytic results
at NLOmuch simpler than with the complex on-shell (COS)
scheme introduced in Ref. [12]. The advantages of the CT
scheme were illustrated with NLO calculations of the
complex pole energy of X in Sec. V and the elastic
D�0D̄0 scattering amplitude in Sec. VI.
An important insight provided by our new formulation of

Galilean-invariant XEFT is that there is an additional
interaction parameter at NLO that was not recognized in
Ref. [12]. In the threshold expansion of the pair self-energy
in powers of κðEÞ, the CT scheme requires the total
subtraction of the terms proportional to κ0ðEÞ and κðEÞ.
Renormalization at NLO also requires a partial subtraction
of the term proportional to κ2ðEÞ. The freedom in the
choice of the finite part of that subtraction leads to the real
interaction parameter F2 in the renormalized pair self-
energy in Eq. (69). The other adjustable real interaction
parameters at NLO are the real and imaginary parts of γ, the
effective range R0 in the absence of pion interactions, and
the strength of the D�0D̄0 to D0D̄0π0 transition.
Another insight provided by our new formulation of

Galilean-invariant XEFT is that renormalization of the
D�0D̄0 scattering amplitude requires the pair renormaliza-
tion constant Zϕ. At NLO, the UV divergences canceled by

this renormalization constant are linear UV divergences.
The need for this renormalization was not recognized in
Ref. [12], because conventional dimensional regularization
sets linear ultraviolet divergences to 0. If power divergence
subtraction had been used to make the linear UV diver-
gences explicit, the dependence on the renormalization
scale of both the numerator and the denominator of the
resonant term in theD�0D̄0 scattering amplitude in Eq. (94)
would have made the failure of the renomalization pro-
cedure evident.
Numerical calculations of the momentum distribution for

the decay of X into D0D̄0π0 using original XEFT at NLO
have revealed that the NLO corrections are surprisingly
large [11,16]. The power counting rules of XEFT guarantee
that calculations can be systematically improved, but the
large NLO corrections raise the issue of whether the
systematic expansions converge fast enough to provide
useful quantitative approximations. Our new complex
threshold renormalization scheme for D�D̄ and DD̄�
amplitudes provides a possible solution to the problem
of large NLO corrections. The NLO corrections to the
decay rate for X into D0D̄0π0 from pion emission were
calculated numerically in Ref. [11] as functions of the LO
binding momentum, and they are surprisingly large even
for tiny values of γ. However pion emission also gives an
imaginary correction to the binding momentum of X. Some
of the large NLO corrections can be attributed to expanding
LO results to first order in the correction to the binding
momentum. The suppression factor associated with
an imaginary correction to the binding momentum is
Γ�0=jEXj. In the CT scheme, this correction is absorbed
into the parameter γ. The calculation of the decay rate of X
into D0D̄0π0 at NLO using the CT scheme would involve a
subtraction of part of the NLO corrections in Refs. [11,16].
If the remaining NLO corrections are suppressed by
γ=

ffiffiffiffiffiffiffiffi
2μδ

p
, the problem of large NLO corrections would

be solved. An analytic calculation of the decay rate of X
into D0D̄0π0 at NLO would therefore reveal whether the
CT scheme provides a solution to this problem [19].
Jansen et al. pointed out that the effective range

expansion for D�0D̄0 scattering in XEFT breaks down at
NLO from the effects of the exchange of pions that can be
on shell [15]. Our calculation of the T-matrix element for
D�0D̄0 scattering in the C ¼ þ S-wave channel to NLO
makes the breakdown of the effective range expansion
explicit. Its form differs from that required by unitarity for a
system with short-range interactions only already at order
p. The breakdown of the effective range expansion raises
the issue of whether the power counting rules of XEFT
provide a systematically improvable approximation for this
scattering amplitude. It could be that an accurate approxi-
mation requires resumming the effects of successive pion
exchanges to all orders in both the amplitude Aπ for
scattering through pion exchange only and in the amplitude
Wπ that takes into account the effects of pion exchange
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after the last pair amplitude. The analogous amplitudes in
the case where the long-range interactions are successive
Coulomb interactions have been calculated analytically.
The analytic calculation of these amplitudes in the case
where the long-range interactions come from successive
exchanges of pions that can be on shell is a challenging
problem.
XEFT was originally presented as an effective field

theory for the sector of QCD consisting of D�D̄, DD̄�,
and DD̄π, and X with total energy near the D�D̄ threshold
[11]. As pointed out in Ref. [20], XEFT can also be applied
to the sector of QCD consisting of D�D̄�, D�D̄π, DD̄�π,
DD̄ππ, and Xπ with total energy near the D�D̄� threshold.
It was used to calculate cross sections for D�D̄� → πX and
πX → D�D̄� [20]. XEFT has also been used to calculate
cross sections for DX scattering and D�X scattering [21].
One interesting application of XEFT in the sector of QCD
that includes Xπ is to the calculation of charm-meson
triangle singularities in the production of Xπ or Xγ from
D�D̄� created at short distances. Back in 2006, Dubynskiy
and Voloshin pointed out the existence of a peak in the
cross section for eþe− annihilation into Xγ near theD�0D̄�0
threshold [22]. Braaten, He, and Ingles pointed out the
existence of peaks in the production rate of Xπ near the
D�D̄� threshold in B meson decay into KXπ [23] and in
the prompt production of Xπ at hadron colliders [24]. They
did not immediately recognize that the peaks were pro-
duced by triangle singularities. Guo was the first to point
out that charm-meson triangle singularities can produce
peaks in Xγ production rates near the D�0D̄�0 threshold
[25]. He suggested that their line shapes could be used for a
precise determination of the mass of X. Braaten, He, and
Ingles presented a thorough study of eþe− annihilation into
Xγ near the D�0D̄�0 threshold that was informed by the
triangle singularity [26]. The effects of the charm-meson
triangle singularity on the momentum distributions for
D�0D̄0 þ γ were studied in Ref. [27]. There have been
several other recent studies of the effects of triangle
singularities on the production of X [28–30]. All of the
studies thus far have been carried out using methods
equivalent to XEFT at LO. The methods developed in this
paper could be used to extend the accuracy to NLO.
Although it is not widely recognized in the high energy

physics community, the applicability of XEFT is not
limited to a charm-meson molecule whose energy has been
tuned to near theD�0D̄0 threshold. It applies equally well to
the χc1ð2PÞ charmonium state or to a compact tetraquark
whose energy has been tuned to near the D�0D̄0 threshold.
In any of these cases, the resonant interactions with the
pairs of charm mesons D�0D̄0 and D0D̄�0 transform the
meson into a large weakly bound molecule with the particle
content in Eq. (2). The differences between the various
possibilities for the state when its energy is not tuned to
near the D�0D̄0 threshold can only be taken into account

through the parameters in the effective Lagrangian for
XEFT. The development of a formulation of XEFT that is
convenient for calculations beyond leading order provides
motivation for deducing constraints on the parameters of
XEFT that reflect the various possibilities for its nature in
the absence of the fine tuning of its energy.
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APPENDIX A: LOOP INTEGRALS

The loop integrals required to calculate the NLO
transition amplitude using dimensional regularization were
evaluated in Appendix A of Ref. [12]. There were errors in
some of the loop integrals. In this Appendix, we present all
the relevant integrals, and we point out some of the errors
in Ref. [12].
The loop integrals are functions of an energy E that is

near the complex threshold energy E� defined in Eq. (9).
The integrals have branch cuts that must be taken into
account to evaluate the integrals correctly. The energy E�,
which has a small negative imaginary part, is actually on
the second sheet of a complex variable with a branch point
at 0. This can be emphasized by writing E� in the form

E� ¼ e−2πiðδ − iΓ�0=2Þ; ðA1Þ

where the second factor is on the first sheet. Thus E� is
close to the energy δþ iϵ in the limit ϵ → 0þ, which is on
the first sheet. If −2μE� is raised to a variable power p, the
correct branch is given by

ð−2μE�Þp ¼ e−ipπκ2p� ; ðA2Þ

where κ� is the square root of a variable on the first sheet:

κ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðδ − iΓ�0=2Þ

p
: ðA3Þ

1. One-loop momentum integrals

The 1-loop momentum integrals whose integrands are a
D� propagator raised to an integer power are

JnðEÞ ¼
Z
p

1

½p2 − 2μðE − E�Þ�n
: ðA4Þ
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The analytic result for this integral in d dimensions is

JnðEÞ ¼
Γðn − d=2Þ
ð4πÞd=2ΓðnÞΛ

3−d½2μðE� − EÞ�d=2−n: ðA5Þ

In Ref. [12], the factor of Γ½n� in the denominator was
omitted. The 1-loop momentum integrals whose integrands
are a π propagator raised to an integer power are

InðEÞ ¼
Z
p

1

½p2 − 2μπE − iϵ�n ; ðA6Þ

where μπ is the πD reduced mass. The analytic result for
this integral in d dimensions is

InðEÞ ¼
Γðn − d=2Þ
ð4πÞd=2ΓðnÞΛ

3−d½−2μπE�d=2−n: ðA7Þ

In Ref. [12], the factor of Γ½n� in the denominator was
omitted. The integral in Eq. (A6) defines an analytic
function of E with a branch cut along the positive real
axis. If the real part of E is positive, the branch of the
function can be selected by replacing the minus sign inside
the square brackets by the appropriate complex phase.
The 1-loop momentum integrals whose integrands have

a D� propagator raised to an integer power and a single π
propagator are

LnðE;pÞ ¼
Z
q

1

½q2 − 2μðE− E�Þ�n

×
1=ð2μπÞ

ðpþ qÞ2=ð2mÞ þ ðp2 þ q2Þ=ð2MÞ − E− iϵ
:

ðA8Þ
The function L0 can be expressed in terms of the integral I1
given by Eq. (A7):

L0ðE; pÞ ¼ I1ðE − p2=ð2μÞÞ: ðA9Þ
The function L1 can be expressed as a Feynman parameter
integral:

L1ðE; pÞ ¼ Λ3−d Γð2 − d=2Þ
ð4πÞd=2

×
Z

1

0

dx
	
2xμE� þ ðxþ ð1 − xÞrÞ

× ½−2μEþ ð1 − xÞp2�


d=2−2

; ðA10Þ

where r ¼ μπ=μ is the reduced-mass ratio in Eq. (11). In
Ref. [12], therewere errors in the expression for this integral.

2. Two-loop momentum integrals

The 2-loop momentum integrals whose integrands have
one or two D� propagators and a π propagator all raised to
integer powers are

KlmnðEÞ ¼
Z
p

Z
q

1

½p2 − 2μðE−E�Þ�m½q2 − 2μðE−E�Þ�n

×
ð2μÞ−l

½ðpþ qÞ2=ð2mÞþ ðp2þ q2Þ=ð2MÞ−E− iϵ�l :

ðA11Þ

The specific integrals that appear in the NLO pair propa-
gator are K110, K120, and K111. The integrals with a single
D� propagator can be expressed as integrals over a single
Feynman parameter:

K110ðEÞ ¼
Γð2 − dÞrd=2

ð4πÞd Λ6−2d
Z

1

0

dxð1 − xÞ−d=2

× ½2μðxE� − EÞ�d−2; ðA12aÞ

K120ðEÞ ¼
Γð3 − dÞrd=2

ð4πÞd Λ6−2d
Z

1

0

dx xð1 − xÞ−d=2

× ½2μðxE� − EÞ�d−3: ðA12bÞ

The integrals with two D� propagators can be expressed as
an integral over two Feynman parameters:

K111ðEÞ ¼
Γð3 − dÞrd=2

ð4πÞd Λ6−2d
Z

1

0

dww½2μðwE� − EÞ�d−3

×
Z

1

0

dt½1 − wþ rw2tð1 − tÞ�−d=2: ðA13Þ

3. Poles in d − 2
In a dimensionally regularized loop integral, poles in

d − 2 are associated with linear ultraviolet (UV) divergen-
ces in three spatial dimensions. The poles in d − 2 of the
loop integrals were determined in Appendix A of Ref. [12].
The 1-loop integrals J1 and I1 defined by Eqs. (A5) and
(A7) have single poles in d − 2. In the NLO pair propa-
gator, these integrals appear in the combinations J1ðEÞ2
and I1ðE�ÞJ1ðEÞ, which have double and single poles. The
pole and the constant term in the two integrals are

J1ðEÞ → −
1

2π
Λ
�

1

d − 2
þ 1

2
log

2μðE� − EÞ
Λ̄2

�
; ðA14aÞ

I1ðE�Þ → −
1

2π
Λ
�

1

d − 2
þ 1

2

�
log

2μE�
Λ̄2

þ log r − iπ

��
:

ðA14bÞ

The momentum scale in the denominator of the loga-
rithms is

Λ̄ ¼
ffiffiffiffiffiffi
4π

p
e−γE=2Λ; ðA15Þ
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where γE is Euler’s constant. The integral L0 in Eq. (A9)
has a single pole in d − 2:

L0ðE; pÞ → −
1

2πðd − 2ÞΛ: ðA16Þ

The 2-loop integral K110 defined in Eq. (A12a) has double
and single poles in d − 2:

K110ðEÞ

→
2r

ð4πÞ2Λ
2

�
1

ðd−2Þ2þ
1

d−2

�
log

2μðE�−EÞ
Λ̄2

þ1

2
logr

��
:

ðA17Þ

The 2-loop integral K120 defined in Eq. (A12b) has a single
pole in d − 2 proportional to 1=ðE − E�Þ. However in the
NLO pair propagator, this integral appears in the combi-
nation K120ðEÞ − rI1ðE�ÞJ2ðEÞ in which the pole cancels.

4. Values at the complex threshold

The value of the one-loop integral Jn defined by Eq. (A4)
at the complex threshold E ¼ E� is equal to 0 by the rules
of dimensional regularization, because the integral has no
momentum scale:

JnðE�Þ ¼ 0: ðA18Þ

Note however that if JnðEÞ is first analytically continued to
d ¼ 3 and then evaluated at E ¼ E�, it is infrared divergent
for n ≥ 3=2. The one-loop integral In defined by Eq. (A6)
evaluated at the complex threshold can be obtained by
setting E ¼ κ2�=ð2μÞ in Eq. (A7) and replacing the minus
sign inside the square brackets by the complex phase e−iπ:

InðE�Þ ¼
Γðn − d=2Þ
ð4πÞd=2ΓðnÞΛ

3−d½e−iπrκ2��d=2−n: ðA19Þ

The two-loop integrals K110 and K120 defined in
Eqs. (A12a), (A12b) can be evaluated analytically at the
complex threshold:

K110ðE�Þ ¼
2Γð2 − dÞrd=2
ðd − 2Þð4πÞd Λ6−2d½e−iπκ2��d−2; ðA20aÞ

K120ðE�Þ ¼
4Γð2 − dÞrd=2
ð4 − dÞð4πÞd Λ6−2d½e−iπκ2��d−3: ðA20bÞ

The two-loop integral K111 defined in Eq. (A13) can be
evaluated analytically at the complex threshold in terms of
a hypergeometric function:

K111ðE�Þ ¼−
4Γð2−dÞrd−2
ðd−2Þð4πÞd 2F1

�
1

2
d−1;

1

2
d−1;

1

2
d;1− r

�

×Λ6−2d½e−iπκ2��d−3 ðA21Þ

5. Limits as d → 3

The one-loop integrals Jn and In have finite limits as
d → 3. The integrals J1 and J2 are

J1ðEÞ ¼ −
κðEÞ
4π

; ðA22aÞ

J2ðEÞ ¼
1

8πκðEÞ ; ðA22bÞ

where κðEÞ is defined in Eq. (58). In Ref. [12], there was an
overall sign error in the expression for J2ðEÞ. The values of
I1 and I2 at the complex threshold E ¼ E� are

I1ðE�Þ ¼ i
r1=2κ�
4π

; ðA23aÞ

I2ðE�Þ ¼ i
r−1=2

8πκ�
: ðA23bÞ

In Ref. [12], there was also an overall sign error in the
expression for I2ðEÞ at d ¼ 3.
The one-loop integrals Ln depend on p as well as on E.

The limits of L0 and L1 as d → 3 are

L0ðE; pÞ ¼ i
r1=2

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μE − p2

q
; ðA24aÞ

L1ðE; pÞ ¼ i
1

8π
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
p

× log
ffiffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μE − p2

p
þ iκðEÞ þ ffiffiffiffiffiffiffiffiffiffi

1 − r
p

pffiffiffi
r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μE − p2

p
þ iκðEÞ − ffiffiffiffiffiffiffiffiffiffi

1 − r
p

p
:

ðA24bÞ

The 2-loop integrals K110, K120, and K111 all have single
poles in d − 3 that arise from logarithmic UV divergences.
The integrals K110 and K120 can be evaluated analytically
by making subtractions on the Feynman-parameter inte-
grals in Eqs. (A12) that can be evaluated analytically in d
dimensions, taking the limit d → 3 in the remaining
integral, and then evaluating that convergent integral in
terms of logarithms. One of the possible subtractions is the
2-loop integral at the complex threshold E�. The subtracted
integrals are
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K110ðEÞ − K110ðE�Þ ¼ −
2r3=2

ð4πÞ3
�
i2πκ�κðEÞ þ

�
1

d − 3
− 2þ 1

2
log rþ log

κ2�
Λ̄2

− iπ

�
κ2ðEÞ

þ ½κ� þ κðEÞ�2 log κ� þ κðEÞ
κ�

þ ½κ� − κðEÞ�2 log κ� − κðEÞ
κ�

�
; ðA25aÞ

K120ðEÞ − K120ðE�Þ ¼
4r3=2

ð4πÞ3
�
i
π

2

�
κ�

κðEÞ þ
κðEÞ
κ�

�

þ ½κ� þ κðEÞ�2
2κ�κðEÞ

log
κ� þ κðEÞ

κ�
−
½κ� − κðEÞ�2
2κ�κðEÞ

log
κ� − κðEÞ

κ�
− 1

�
: ðA25bÞ

In Ref. [12], the subtraction of K111 at the complex threshold was reduced in the limit d → 3 to a convergent integral over a
single Feynman parameter. The subtracted integral is

K111ðEÞ − K111ðE�Þ ¼ −
r3=2

ð4πÞ3
Z

1

0

dw
wffiffiffiffiffiffiffiffiffiffiffi

1 − w
p ð1 − wþ rw2=4Þ log

E − wE�
ð1 − wÞE�

: ðA26Þ

6. Threshold expansions

The loop integrals Klmn defined in Eq. (A11) have threshold expansions in powers of E − E�. In the limit d → 3, these
expansions are in half-integer powers of E − E� or, equivalently, in integer powers of the function κðEÞ defined in Eq. (58).
The threshold expansions for K110 and K120 can be obtained using Eqs. (A20a), (A20b) and Eqs. (A25a), (A25b),
respectively. The threshold expansions through second order in E − E� are

K110ðEÞ ¼ −
2r3=2

ð4πÞ3 κ
2�

��
1

d − 3
− 2þ 1

2
log rþ log

κ2�
Λ̄2

− iπ

�
þ i2π

κðEÞ
κ�

þ
�

1

d − 3
þ 1þ 1

2
log rþ log

κ2�
Λ̄2

− iπ

�
κ2ðEÞ
κ2�

−
1

6

κ4ðEÞ
κ4�

þOðκ6ðEÞÞ
�
; ðA27aÞ

K120ðEÞ ¼
4r3=2

ð4πÞ3
��

1

d − 3
þ 1

2
log rþ log

κ2�
Λ̄2

− iπ

�
þ i

π

2

�
κ�

κðEÞ þ
κðEÞ
κ�

�
þ 1

3

κ2ðEÞ
κ2�

þ 1

30

κ4ðEÞ
κ4�

þOðκ6ðEÞÞ
�
: ðA27bÞ

In Ref. [12], the κ2ðEÞ terms have the wrong sign. A method to obtain the threshold expansion for K111 was presented in
Ref. [12]. The coefficients can be expressed analytically in terms of hypergeometric functions. The threshold expansion
through second order in E − E� is

K111ðEÞ ¼ −
4

ð4πÞ3
��

1

d − 3
− 2þ log rþ log

κ2�
Λ̄2

− iπ

�
rffiffiffiffiffiffiffiffiffiffi
1 − r

p arccosð ffiffiffi
r

p Þ

þ r
d
dd 2F1

�
1

2
d − 1;

1

2
d − 1;

1

2
d; 1 − r

�����
d¼3

þ
�

2 − rffiffiffiffiffiffiffiffiffiffi
1 − r

p arccosð ffiffiffi
r

p Þ þ 2
ffiffiffi
r

p �
κ2ðEÞ
κ2�

−
4

r

�
2F1

�
−
1

2
;−

1

2
;
3

2
; 1 − r

�
þ 2 − 4rþ r2

8
ffiffiffiffiffiffiffiffiffiffi
1 − r

p arccosð ffiffiffi
r

p Þ þ 3 − 4r
12

ffiffiffi
r

p �
κ4ðEÞ
κ4�

þOðκ6ðEÞÞ
�
: ðA28Þ

In Ref. [12], the κ2ðEÞ term has the wrong sign.

APPENDIX B: DIAGRAMS FOR NLO TRANSITION AMPLITUDES

In this Appendix, we give the results for the NLO Feynman diagrams for the amputated connected Green’s functions for
the transitions D�0D̄0; D0D̄�0 → D�0D̄0; D0D̄�0. Most of the diagrams were evaluated in Appendix B of Ref. [12]. We
correct errors in some of the pion-exchange diagrams in Ref. [12]. We calculate the NLO diagrams using the new Feynman
rules in Sec. IV D. We verify that the sum of the diagrams is the same as that calculated using the Feynman rules
in Ref. [12].
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1. Leading order diagram

The amputated connected Green’s function forD�0D̄0 →
D�0D̄0 is a tensor iT ij whose vector indices are those of the
incoming and outgoing D�0 lines. We set the incoming and
outgoing spin-0 charm mesons on their energy shells. The
transition tensor T ijðE; p; p0Þ is then a function of the total
energy E of the charm mesons in their CM frame and the
relative momenta p and p0 of the incoming and outgoing
spin-0 charm mesons. The S-wave contribution to the
transition tensor can be obtained by averaging over the
directions of p and p0.
The diagram for the transition tensor T ij for D�0D̄0 →

D�0D̄0 at LO is the right side of Fig. 6. This transition tensor

is diagonal in thevector indices, and it is a function ofE only.
The LO transition tensor for D�0D̄0 → D�0D̄0 is

T ij
LOðEÞ ¼

�
1ffiffiffi
2

p
�

2 2π

μ
AðEÞδij: ðB1Þ

2. Pion-exchange diagrams

There are three NLO pion-exchange diagrams for
D�0D̄0 → D�0D̄0. They are shown in Fig. 14 and are
labeled A1, A2, and A3.
The amplitudes for the 1-loop diagrams A1 and A2 in

Fig. 14 are tensors in the indices i and j that depend on the
relative momenta p0 and p, respectively. The amplitude for
the diagram A2 is

T ij
A2ðE; pÞ ¼

rπg2π=μ

ðd − 1Þ ffiffiffiffiffiffiffiffiffiffi
1 − r

p
p2

AðEÞ
nh

ðΔðE; pÞ − 2rp2ÞL0ðE; pÞ

− ðΔðE; pÞ2 − 8rμE�p2ÞL1ðE; pÞ − ðΔðE; pÞ − 2p2ÞJ1ðEÞ
i
ðδij − pipj=p2Þ

− ðd − 1Þ
h
ΔðE; pÞL0ðE; pÞ − ΔðE; pÞðΔðE; pÞ − 2rp2ÞL1ðE; pÞ

− ðΔðE; pÞ þ 2ð1 − rÞp2ÞJ1ðEÞ
i
pipj=p2

o
; ðB2Þ

where r ¼ μπ=μ and Δ is a linear function of E and p2:

ΔðE; pÞ ¼ 2μE� − 2ð1 − rÞμEþ p2: ðB3Þ

The S-wave contribution of the diagram can be obtained by
averaging over the directions of p in d spatial dimensions:

hT ij
A2ðE; pÞip̂ ¼

2πrg2π=μ

d
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
h
−rL0ðE; pÞ

− rðΔðE; pÞ − 4μE�ÞL1ðE; pÞ
þ ð2 − rÞJ1ðEÞ

i
AðEÞδij: ðB4Þ

The S-wave contribution hT ij
A1ðE; p0Þip̂0 to the diagram A1

can be obtained by replacing p in Eq. (B4) by p0. In
Ref. [12], it was stated incorrectly that the pipj=p2 terms in
Eq. (B2) cancel in the limit p → 0. They do however cancel
in the limit p → 0 after averaging over the directions of p.
The 2-loop diagram A3 in Fig. 14 is the sum of a diagram

with a D�0D̄0 loop and a diagram with a D0D̄�0 loop. The
amplitude for this diagram is

T ij
A3ðEÞ ¼ −

8π2rg2π=μ

d
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
h
2K110ðEÞ − 2μð2E� − rEÞK111ðEÞ

− ð2 − rÞJ1ðEÞ2
i
A2ðEÞδij: ðB5Þ

FIG. 14. The pion-exchange diagrams forD�0D̄0 → D�0D̄0 consist of the 1-loop diagrams A1 and A2 and the 2-loop diagram A3. The
absence of arrows on the charm-mesons lines in the loop for the diagram A3 implies a sum over the two possible directions of the arrows.
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For each of the pion-exchange diagrams for D�0D̄0 →
D�0D̄0 in Fig. 14, there is an analogous diagram for
D�0D̄0 → D0D̄�0, D0D̄�0 → D�0D̄0, and D0D̄�0 →
D0D̄�0. For D�0D̄0 → D0D̄�0 and D0D̄�0 → D�0D̄0, there
is also a tree diagram. The tree diagram for D�0D̄0 →
D0D̄�0 is shown in Fig. 15, and it is labeled π. The
transition tensor for this diagram depends on the relative
momenta p and p0:

T ij
π ðE;p;p0Þ¼−

g2π=μ2

E−ðp2þp02Þ=ð2MÞ−ðpþp0Þ2=ð2mÞþ iϵ

×

�
M

Mþm
pþp0

�
i
�

M
Mþm

p0 þp

�
j
: ðB6Þ

This diagram vanishes in the zero-momentum limit
p; p0 → 0 with E fixed. Since this diagrams does not have
any UV divergences, the S-wave contribution of the
diagram can be obtained by averaging over the directions
of p and p0 in 3 spatial dimensions:

hT ij
π ðE; p; p0Þip̂;p̂0 ¼ −

rg2π=μ

3
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
�
r½2ð2 − rÞμE − p2 − p02�

4
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
pp0

× log
2rμE − p2 − p02 þ 2

ffiffiffiffiffiffiffiffiffiffi
1 − r

p
pp0

2rμE − p2 − p02 − 2
ffiffiffiffiffiffiffiffiffiffi
1 − r

p
pp0

− ð2 − rÞ
�
δij: ðB7Þ

3. D� propagator correction diagrams

The two NLO diagrams involving D� propagator cor-
rections are shown in Fig. 16 and are labeled B1 and B2.
The diagram B1, which has a D� self-energy subdiagram
inserted into the D� propagator, can be reduced to

T ij
B1ðEÞ¼−

16π2rg2π=μ
d

½K110ðEÞ−2μE�K120ðEÞ�A2ðEÞδij:
ðB8Þ

The diagram B2, which has a D� propagator counterterm
inserted into the D� propagator, can be reduced to

T ij
B2ðEÞ ¼ −

8π2r2g2π=μ
d

I1ðE�Þ½4μE�J2ðEÞ − dJ1ðEÞ�
×A2ðEÞδij: ðB9Þ

4. ∇2 vertex diagrams

The four NLO diagrams with a ∇2 vertex are shown in
Fig. 17 and are labeled C1, C2, C3, and C4. The diagram
C1 in which the incoming charm mesons interact through a
∇2 vertex is

FIG. 15. The pion-exchange tree diagram forD�0D̄0 → D0D̄�0,
which is labeled π. There are also three loop diagrams that can be
obtained from those in Fig. 14 by changing the directions of some
of the arrows.

FIG. 16. The D� propagator correction diagrams for D�0D̄0 →
D�0D̄0 consist of the 2-loop diagram B1 with a D� self-energy
subdiagram and the 1-loop diagram B2 with a D� self-energy
counterterm.

FIG. 17. The ∇2 vertex diagrams for D�0D̄0 → D�0D̄0 consist
of two tree diagrams C1 and C2 and two 1-loop diagrams C3
and C4.
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T ij
C1ðE; pÞ ¼

πC2

2μC0

AðEÞp2δij: ðB10Þ

The diagram C2 in which the outgoing charm mesons
interact through a ∇2 vertex is obtained by replacing p2 by
p02. The diagram C3 is

T ij
C3ðEÞ ¼

4π2C2

C0

ðE − E�ÞJ1ðEÞA2ðEÞδij: ðB11Þ

The expression for the diagram C4 is the same. The sum of
the four diagrams is

T ij
CðE; p; p0Þ ¼ πC2

2μC0

h
ðp2 þ p02ÞAðEÞ

þ 16πμðE − E�ÞJ1ðEÞA2ðEÞ
i
δij: ðB12Þ

With the Feynman rules in Ref. [12], the ∇2 vertices are
2 → 2 vertices. There are four ∇2 vertex diagrams: the ∇2

vertex, two 1-loop diagrams with a single factor of AðEÞ,
and a 2-loop diagram with two factors of AðEÞ. The
identity in Eq. (47) can be used to show the sum of the four
diagrams is the same as that in Eq. (B12).

5. Pair-propagator counterterm diagram

The NLO diagram with a pair-propagator counterterm is
shown in Fig. 18. The expression for the diagram is

T ij
DðEÞ ¼ −

2π2

μ2C2
0

½δC0 þD0ðE − E�Þ�A2ðEÞδij: ðB13Þ

With the Feynman rules in Ref. [12], there is a 2 → 2
vertex counterterm. There are four NLO diagrams with a
counterterm vertex: the vertex counterterm, two 1-loop
diagrams with a single factor of AðEÞ, and a 2-loop
diagram with two factors of AðEÞ. The identity in
Eq. (47) can be used to show the sum of the four diagrams
is equal to that in Eq. (B13).
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