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Measurements of cosmic neutrinos have a reach potential for providing an insight into fundamental
neutrino properties. For this a precise knowledge about an astrophysical environment of cosmic neutrinos
propagation is needed. However this is not always possible, and the lack of information can bring about
theoretical uncertainties in our physical interpretation of the results of experiments on cosmic neutrino
fluxes. We formulate an approach that allows one to quantify the uncertainties using the apparatus of
quantum measurement theory. We consider high-energy Dirac neutrinos emitted by some distant source
and propagating towards Earth in the interstellar space. We take into account the neutrino magnetic moment
interaction with stochastic interstellar magnetic fields and describe the neutrino evolution in the formalism
of the Lindblad master equation for the neutrino density matrix. It is supposed that neutrinos on their way to
Earth pass through highly magnetized dense layers of a cosmic object that “stops” left-handed neutrinos
and lets only sterile, right-handed neutrinos to propagate farther. Such a filter mimics the strongest effect on
the neutrino flux that can be induced by the cosmic object and that can be missed in the theoretical
interpretation of the lab measurements due to the insufficient information about the astrophysical
environment of the neutrino propagation. Treating the neutrino interaction with the neutrino filter of
the cosmic object as the first, neutrino-spin measurement, whose result is not recorded, we study its
invasive effect on the second, neutrino-flavor measurement in the lab. We quantify the invasiveness of the
first, blind measurement by means of quantum witness that in the discussed case has an advantage over the
well-known Leggett-Garg inequality, since the latter explores two-time correlation functions of the same
operator. We solve analytically the Lindblad master equation for time evolution of the neutrino density
matrix and on this basis we calculate the quantum witness for measuring cosmic electron neutrinos in the
lab. We present numerical illustrations of the robust invasive effect showing that the quantum witness as a
function of the distance between Earth and a cosmic object can be an asymptotically nonvanishing quantity
despite the thermalization of the neutrino spin induced by stochastic interstellar magnetic fields.
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I. COSMIC NEUTRINOS AND THE CONCEPT
OF QUANTUM MEASUREMENT

Many objects in the Universe produce vast amount of
cosmic neutrinos with different energies. These include
particles from a low-energy (∼10 MeV), a high-energy
(> 100 MeV), to an extremely high-energy ð> 1 PeVÞ or
even an ultrahigh-energy (> 1 EeV) range. Neutrinos carry

unique information about the internal environment of high-
energy astrophysical objects that are not normally directly
observable.
It is known that 99% of the energy of a core collapse

supernova explosion is carried away by a neutrino flux. All
these particles should contribute to the diffuse supernova
neutrino background [1] that is not yet detected. Still the first
albeit only detection of a neutrino burst from a single
supernova explosion was detected for the 1987 event that
occurred 51 kpc away [2]. The neutrino (antineutrino) flux
from this extragalactic explosion arrived before the visible
light of the explosion reached Earth. Neutrinos from the core
of the protoneutron star have traveled away from a strongly
magnetized interior and were emitted toward Earth.
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Detection of 25 neutrinos in this experiment gave birth to
neutrino astronomy. Three decades later, neutrino detectors
have improved significantly. It is estimated that we would
detect tens of thousands of neutrinos if a supernova similar
to the 1987 event [3] were to explode today. Today, it is
possible to estimate neutrino signals as progenitors of
supernova explosions for neutrino observatories, including
JUNO [4], DUNE [5], Hyper-Kamiokande [6], and
IceCube [7]. We have already been waiting a decade for
a supernova explosion in our cosmic neighborhood—an
event that is expected to occur a few times a century.
Neutrino flux from such an event will give us a bonanza of
astrophysical and particle physics information [8] that will
significantly advance our understanding of high-energy
astrophysical phenomena.
Magneticmoments of the neutrinos emitted from the core-

collapse supernova should be aligned toward the magnetic
field axis of the developing neutron star. Strongest polari-
zation should occur for neutrinos emitted from magnetars,
where a magnetic field can reach up to 1014 − 1015 G. These
objects are developed from at least 10% of the core collapse
supernova and are known for having the strongest magnetic
fields in the Universe [9].
Even stronger flux of magnetically polarized neutrinos

should originate from the neutron star mergers. Two cases of
this phenomenon, long thought to be an exotic event, have
already been detected using the gravitational wave signal
[10]. Simultaneous detection of the gravitational wave and
neutrino flux will allow us to employ these particles in
multimessenger astronomy. The list of exotic events pro-
ducing high-energy neutrino fluxes in strong magnetic
fields may include hypothesized quark nova and collapsars.
At extra high-energy scales, neutrinos are born during

gamma ray bursts from hypernova [11]. Similar energies
are expected to be emitted by quasars in the active galactic
nuclei, where supermassive black holes create relativistic
outflows [12,13]. With much higher uncertainties of local
properties of these objects, it is clear that a strong magnetic
field should be present near the active area [14]. Thus, these
luminous sources of neutrinos can be detected for extra-
galactic distances exceeding 1 Gpc.
Neutrino fluxes reaching us from such distant sources are

influenced by galactic and extragalactic magnetic fields.
These weak fields can exert a dissipative effect on the
neutrino spin polarization by their stochastic components.
Although microscopic in amplitudes these fields affect
particles at cosmic distances and can have a significant
cumulative effect. Magnetic fields in our Galaxy do not
exceed 4 μG on average [15], although they are stronger at
the Galactic Center.
Magnetic fields are detected at extragalactic scales as

well. These fields can reach 10−9 G amplitudes at 1 Mpc
scale [16]. Assuming a turbulent spectrum of extragalactic
magnetic fields, we may estimate a small-scale stochastic
component to reach up to 0.3 μG amplitudes [17]. These

weak fields can affect ultrahigh-energy neutrinos that travel
up to Gpc distances.
From the plethora of cosmic neutrino emitting objects,

we focus on such sources that can be found both in the low-
energy and in the high-energy as well as in extra high-
energy intervals. Below, we consider evolution of neutrinos
that are emitted from a distant source and traverse the
cosmic space diluted with the stochastic magnetic fields
until they reach the detector in the lab. While propagating in
a magnetic field, neutrinos experience spin and spin-flavor
oscillations due to a nonzero neutrino magnetic moment
[18,19]. For simplicity we limit ourselves with the case of
two neutrino flavors (νe and νμ).
In this paper we propose a new tool for the theoretical

analysis of cosmic neutrino measurements, which is based
on the theoretical framework for quantum witness experi-
ments. For this we define two consequent quantum mea-
surements of a neutrino. Figure 1 shows a sketch illustration
of the quantum witness experiment using cosmic neutrinos.
Suppose that neutrinos propagate away from their source, in
central areas of high-energy cosmic objects. Neutrinos pass
through the outer shell of a highly magnetized dense
environment, where left-handed neutrinos are deflected or
absorbed, and mainly right-handed neutrinos pass to travel
towards Earth. Setting the first deflection event as a quantum
spin measurement, we may use neutrino flavor detection in
the lab as the second measurement. The absence of infor-
mation about the results of the firstmeasurement implies that
the measurement was blind. The blind measurement has no
invasive effect on the neutrino state.
Often high energy cosmic objects are covered by a

neutrinosphere—a layer transparent for neutrinos. In this
case, both left- as well as right-handed neutrinos will
propagate away from the source. In the opposite limit,
active areas of cosmic objects covered by highlymagnetized
dense material that can deflect left-handed neutrinos and
create spin asymmetry in the emitted neutrino flux can serve
as a “cosmic neutrino filter” around astrophysical sources.
We describe the measurements by the positive-operator

valued measure projectors. The first projector measurement
is the essence of the quantum Maxwell Demon [20], which
holds the information, whether neutrinos of particular types
get in and out of the cosmic filter. The second projector
measurement is a typical neutrino experiment in the lab that
defines the neutrino flavor. However, the result of the
second measurement incisively depends on the outcome of
the first measurement: our interpretation of the result (for
example, such as the origin of neutrinos, the initial neutrino
flux, its flavor and spectral composition, etc.) can be
critically affected by whether Demon shares his results
with us or not. In the latter case, the first measurement
appears to be a blind measurement, i.e., its results are not
recorded. Clearly, this mimics the situation when we do not
have enough information about the conditions of cosmic
neutrino propagation, in particular, about the presence of
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the cosmic neutrino filter. Since the lack of information can
lead to an incorrect physical interpretation of cosmic
neutrino measurements in the lab, the approach developed
in this work allows us to quantify the credibility of our
interpretation.
In what follows, we analyze cosmic neutrinos in the

interstellar space filled with a magnetic field and explore
the invasive effect of the cosmic neutrino filter on the
neutrino measurement in the lab. The standard tool for
analyzing the invasiveness of quantum measurements is the
Leggett-Garg method. For neutrino physics, Leggett-Garg
inequality was studied only recently in the case of unitary
evolution [21]. However, in the case of open quantum
systems, exploring the two-time correlation functions is a
formidable problem [22], analytically not accessible for the
neutrino problem. Therefore, as an alternative to the
Legget-Garg method, we exploit the concept of quantum
witness and the Novikov’s dissipative channel [23].
It should be noted that the phenomenon of neutrino

oscillations is closely related to the concept of quantum
coherence. This concept touches upon the macroscopic
coherence, i.e., superposition of a macroscopic large num-
ber of states and involves two core principles: (i) macro-
scopic realism per se argues that the preexisting value of the
quantity in question can be inferred through the measure-
ments done on the macroscopic system, (ii) noninvasive
measurability means that one can perform measurements
without distorting the state of the system [24–33]. In reality
the situation is more complex. Except for specific initial
states, the measurement has a backaction and induces
noncommuting dynamical changes in an observable [34].
When the system initially is prepared in the superposition of
two (or more) states jϕi ¼ ajψni þ bjψmi, using the
measurement operator

Q̂
n ¼ jψnihψnj, n ∈ N , one cannot

determine the state of the system without a destructive effect
on the state (the invasive measurement). The quantum
witness quantifies the invasiveness of the measurement.
Up-to-date in quantum metrology mainly nonrelativistic
quantum systems have been discussed. Nevertheless, the
interest in studies of such relativistic systems as neutrinos
has recently emerged [21,27].
Below we elaborate on the general formalism for

describing the quantum witness of the cosmic neutrino
measurement and discuss its application in feasible neu-
trino experiments. We treat the neutrino evolution using
the method based on the Lindblad master equation [35].
This approach is presently widely used in studies of
neutrino quantum decoherence in different environments
and under various experimental conditions (see, for in-
stance, Refs. [36–48]).
The work is organized as follows. In Sec. II, the general

formulation is presented. In Sec. III we define the quantum
witness for the neutrino flavor measurement in the lab.
Section IV is devoted to the analytical derivation of the
quantum witness from the neutrino density matrix. In
Sec. V, we give illustrations of the invasive effect of the
cosmic neutrino filter on the neutrino flavor measurement
in the lab. In Sec. VI we compare statistical dispersion for
supernova neutrino detection with the quantum invasive
effect. Section VII summarizes this work. In the appen-
dixes, we deliver details of solving the Lindblad master
equation for neutrino evolution.

II. NEUTRINO EVOLUTION IN AN
INTERSTELLAR MAGNETIC FIELD

In the scope of our interest are two Dirac neutrino
helicity basis states jν�1 i, jν�2 i with masses m1 and m2. For

FIG. 1. Illustration of the quantum witness experiment using cosmic neutrino observations. Neutrinos propagating away from their
source (i.e., a core-collapse supernova or a protoneutron object developed from a neutron star merger) pass through the outer high-
density environment of the cosmic object with extreme magnetic fields. Here left-handed neutrinos can be deflected, and only right-
handed (anti)neutrinos propagate to be observed by neutrino detectors on Earth. Such a cosmic filter can be considered the first “invasive
measurement,” while the neutrino detection event as the second measurement. The first measurement has a quantum invasive effect on
the second measurement, depending on the neutrino flux properties emitted from the source area. If information is not extracted through
the first measurement, it has no invasive effect and is termed blind.
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the sake of convenience we switch from the mass basis
ðνþ1 ; ν−1 ; νþ2 ; ν−2 ÞT to the flavor basis ðνRe ; νLe ; νRμ ; νLμ ÞT :

jνR;Le i ¼ cos θjν�1 i þ sin θjν�2 i;
jνR;Lμ i ¼ − sin θjν�1 i þ cos θjν�2 i: ð1Þ

The Hamiltonian of the problem is given by (see
Refs. [49,50])

Ĥeff ¼ Ĥvac þ ĤB; ð2Þ

where Ĥvac is the vacuum part

Ĥvac ¼ ων

0
BBB@

− cos 2θ 0 sin 2θ 0

0 − cos 2θ 0 sin 2θ

sin 2θ 0 cos 2θ 0

0 sin 2θ 0 cos 2θ

1
CCCA; ð3Þ

with

ων ¼
Δm2

4Eν
; Δm2 ¼ m2

2 −m2
1; ð4Þ

and Eν being the neutrino energy. The Hamiltonian of the
neutrino interaction with a magnetic field in the flavor
representation can be presented as [51,52]

HB ¼

0
BBBBBBBB@

�
μ
γ

�
ee
Bk μeeB⊥ −

�
μ
γ

�
eμ
Bk μeμB⊥

μeeB⊥ −
�
μ
γ

�
ee
Bk μeμB⊥ −

�
μ
γ

�
eμ
Bk

−
�
μ
γ

�
eμ
Bk μeμB⊥ −

�
μ
γ

�
μμ
Bk μμμB⊥

μeμB⊥ −
�
μ
γ

�
eμ
Bk μμμB⊥ −

�
μ
γ

�
μμ
Bk

1
CCCCCCCCA
;

ð5Þ

where Bk and B⊥ are the parallel and transverse magnetic-
field components with respect to the neutrino velocity, and
the magnetic moments μll0 and ðμ=γÞll0 (l;l0 ¼ e, μ) are
related to those in the mass representation μjk (j, k ¼ 1, 2)
as follows:

μee ¼ μ11cos2θ þ μ22sin2θ þ μ12 sin 2θ;

μeμ ¼ μ12 cos 2θ þ
1

2
ðμ22 − μ11Þ sin 2θ;

μμμ ¼ μ11sin2θ þ μ22cos2θ − μ12 sin 2θ; ð6Þ

and

�
μ

γ

�
ee

¼ μ11
γ1

cos2θ þ μ22
γ2

sin2θ þ μ12
γ12

sin 2θ;

�
μ

γ

�
eμ

¼ μ12
γ12

cos 2θ þ 1

2

�
μ22
γ2

−
μ11
γ1

�
sin 2θ;

�
μ

γ

�
μμ

¼ μ11
γ1

sin2θ þ μ22
γ2

cos2θ −
μ12
γ12

sin 2θ: ð7Þ

Here γ1 and γ2 are the Lorenz factors of the massive
neutrinos, and

1

γ12
¼ 1

2

�
1

γ1
þ 1

γ2

�
: ð8Þ

We consider the case when the galactic and extragalactic
magnetic fields are composed of the large-scale regular
component B⃗ that enters Eq. (5) and a small-scale stochas-
tic component h⃗.
The stochastic magnetic field h⃗ is a result of interstellar

fluctuations, galactic winds, cosmic turbulence, and pri-
mordial magnetic field fluctuations. It is characterized by
the correlation function [53] hhαðtÞhβð0Þi ¼ w2

2μ2ν
δðtÞ, where

μν is a putative neutrino magnetic moment and w2 ¼ kBT,
with T being the effective temperature.
The density matrix of the system obeys the Lindblad

master equation [35] in the form

dϱ̂
dt

¼ −i½Ĥ; ϱ̂� − w2

2
ðϱ̂V̂2 þ V̂2ϱ̂ − 2V̂ ϱ̂ V̂Þ: ð9Þ

In the most general case the V̂ matrix in Eq. (9) is given by

Vik ¼ hijÎðνeÞ ⊗ v̂ðνμÞ þ ÎðνμÞ ⊗ v̂ðνeÞjki; ð10Þ

where jii and jki (i, k ¼ 1, 2, 3, 4) are the eigenstates of the
Hamiltonian Ĥeff (see Ref. [49] for details). ÎðνlÞ is the
2 × 2 unit matrix acting in the Hilbert space of the νl
neutrino. The 2 × 2 matrix v̂ðνlÞ also acts in the Hilbert
space of the νl neutrino. It can be presented as

v̂ðνlÞ ¼ v0Î þ v⃗ · ˆσ⃗; ð11Þ

where ˆσ⃗ is the Pauli vector. Below we utilize the following
parametrization:

v⃗ ¼ ðv sin β cos α; v sin β sin α; v cos βÞ: ð12Þ

In its general form the dissipator (10) describes relaxation
of both transverse and longitudinal neutrino spin compo-
nents. However, in the particular case β ¼ π=2, the cosmic
magnetic field does not thermalize the σz component of the
neutrino spin.

P. KURASHVILI et al. PHYS. REV. D 103, 036011 (2021)

036011-4



We analytically solve Eq. (9) in the eigenbasis of the
Hamiltonian (2). The solution ϱ̂ðtÞ is cumbersome and is
presented in Appendix A.

III. QUANTUM WITNESS OF COSMIC
NEUTRINO MEASUREMENTS

As was already mentioned, if neutrinos pass through the
cosmic neutrino filter they acquire a preferential helicity
polarization, since the high-density matter filters out the
left-handed neutrinos. This process can be described by the
positive-operator valued measure (POVM) projectors, pro-
jecting the neutrino state on the direction of the neutrino
flux propagation.
Let us first consider the case when neutrinos pass

through a neutrino filter (we call this “the first propagation
scheme”). The initial neutrino state at t ¼ 0, i.e., just before
entering the filter, is jϕi. In the general case the efficient
quantum measurement of neutrino spin polarization trans-
forms this state into the postmeasurement state

jΦi ¼ ðΠ̂s⃗ ⊗ ÎðlÞÞjϕiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕjðΠ̂s⃗ ⊗ ÎðlÞÞjϕi

q ; ð13Þ

where s⃗ is a unit vector of spin polarization of the neutrino on
the way out of the neutrino filter and ÎðlÞ is the identity
operator acting on the flavor space. Taking into account that
the left-handedneutrinos aremostly filtered-out by the cosmic
object, the postmeasurement density matrix is given by

ϱ̂post ¼ jΦihΦj ¼ ðΠ̂þ ⊗ ÎðlÞÞϱ̂ðÎðlÞ ⊗ Π̂þÞ
TrððΠ̂þ ⊗ ÎðlÞÞϱ̂ðÎðlÞ ⊗ Π̂þÞÞ

; ð14Þ

where ϱ̂ ¼ jϕihϕj is the initial density matrix and the
positive-helicity projector operator is

Π̂þ ¼ 1

2

�
1þ p⃗ σ⃗

jp⃗j
�
: ð15Þ

After measuring helicity we evolve the density matrix
through the trace-preserving Novikov’s map F̂ ½ϱ̂post� that
mimics the effect of a stochastic magnetic field in Eq. (9).
The second measurement is then performed by detecting
the active flavor neutrino state jνLli in the lab. We describe
this detection procedure through the projector operator
Π̂νLl

¼ Π̂−Π̂l, where the negative-helicity projector oper-
ator reads

Π̂− ¼ 1

2

�
1 −

p⃗ σ⃗

jp⃗j
�
; ð16Þ

and the flavor projector operator is Π̂l ¼ jlihlj, l ¼ e, μ.
Thus, the probability of detecting the active flavor neutrino
state jνLli is given by

QðlÞ
L ¼ TrfΠ̂νLl

F̂ ½ϱ̂post�g: ð17Þ

We now consider the second propagation scheme, meaning
that the neutrinos do not meet the neutrino filter and pass
through a transparent neutrinosphere on their way from the
source to the detector. In this case, the neutrino flavor state
is measured without preliminary measurement of the
neutrino helicity. The probability of detecting the active
flavor neutrino state jνLli is given by

PðlÞ
L ¼ TrfΠ̂νLl

F̂ ½ϱ̂�g: ð18Þ

The difference between the two neutrino propagation
schemes is due to the invasive effect of the neutrino helicity
measurement “performed” by the cosmic neutrino filter.
For quantifying the invasiveness of the neutrino measure-
ment in the lab we use the quantum witness

WðlÞ
L ¼ jPðlÞ

L −QðlÞ
L j: ð19Þ

Note that quantum witness ranges from 0 to 1, so that the
value of 0 corresponds to no invasive effect and that of 1 to
a maximal invasive effect of the first measurement per-
formed by the neutrino filter. Accordingly, the confidence
in the interpretation of the result of the second measurement
is either maximal or minimal depending on whether
quantum witness (19) equals 0 or 1.

IV. QUANTUM WITNESS AND THE
DENSITY MATRIX

In the mass basis, the entire 4 × 4 density matrix can be
presented in the conventional form

ϱ̂ ¼
�
ϱð1Þ ϱð2Þ

ϱð3Þ ϱð4Þ

�
; ð20Þ

where ϱðα¼1;2;3;4Þ are the matrices of dimension 2 × 2. The
elements of the four quadrants can be enumerated with
separate sets of indices 1 and 2, corresponding to the spin-
up and spin-down states, respectively. We expand the
quadrants over the basis of Pauli matrices:

ϱðαÞ ¼ rðαÞ0 I þ σ⃗r⃗ðαÞ: ð21Þ

The elements of matrices ϱðαÞ are linked to the respective

coefficients rðαÞi¼0;1;2;3 through the following relations:

ϱðαÞ11 ¼ rðαÞ0 þ rðαÞ3 ; ð22Þ

ϱðαÞ22 ¼ rðαÞ0 − rðαÞ3 ; ð23Þ

ϱðαÞ12 ¼ rðαÞ1 − irðαÞ2 ; ð24Þ
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ϱðαÞ21 ¼ rðαÞ1 þ irðαÞ2 : ð25Þ

In these variables, the entire Lindblad equation for the
density matrix splits into a set of four independents linear
systems. Each quadrant contains four elements and admits

the exact analytical solution rðαÞi ðtÞ. We evolve the density
matrix through the trace-preserving dissipative channel,
conserving the entire density matrix’s trace. Therefore the
sum of traces of the diagonal quadrants ϱð1Þ and ϱð4Þ is the
integral of motion.
The measurement is the essence of the action of flavor

and spin projection matrices on the density matrix. In terms
of Eq. (20), the effect of the application of the spin
projection operator is expressed as the action of the
operator Π̂� on both sides of the 2 × 2 matrix minors
ϱðαÞ, where α is either 1 or 4:

Π̂s⃗ϱ
ðαÞð0ÞΠ̂s⃗ ¼

1

4
ð1þ σ⃗ s⃗Þ½rðαÞ0 ð0ÞI þ σ⃗r⃗ðαÞð0Þ�

× ð1þ σ⃗ s⃗Þ

¼ 1þ σ⃗ s⃗
2

½rðαÞ0 ð0Þ þ r⃗ðαÞð0Þs⃗�: ð26Þ

The respective traces read

Nþ ¼ TrðΠ̂þϱð1Þð0ÞΠ̂þÞ þ TrðΠ̂þϱð4Þð0ÞΠ̂þÞ
¼ rð1Þ0 ð0Þ þ rð1Þ3 ð0Þ þ rð4Þ0 ð0Þ þ rð4Þ3 ð0Þ

¼ 1

2
þ ðrð1Þ3 ð0Þ þ rð4Þ3 ð0ÞÞ ð27Þ

and

N− ¼ TrðΠ̂−ϱð0ÞΠ̂−Þ þ TrðΠ̂−ϱ
ð4Þð0ÞΠ̂−Þ

¼ rð1Þ0 ð0Þ − rð1Þ3 ð0Þ þ rð4Þ0 ð0Þ − rð4Þ3 ð0Þ

¼ 1

2
− ðrð1Þ3 ð0Þ þ rð4Þ3 ð0ÞÞ: ð28Þ

Note that in terms of components of the full 4 × 4matrix, ϱ̂,
Nþ ¼ ϱ̂11ð0Þ þ ϱ̂33ð0Þ, N− ¼ ϱ̂22ð0Þ þ ϱ̂44ð0Þ.
The postmeasurement density matrix quadrants are

equal to

ϱðαÞpostð0Þ ¼
1

2

ðrðαÞ0 ð0Þ þ rðαÞ3 ð0ÞÞð1þ σzÞ
Nþ

¼ rðαÞ0 ð0Þ þ rðαÞ3 ð0Þ
1þ 2ðrð1Þ3 ð0Þ þ rð4Þ3 ð0ÞÞ

ð1þ σzÞ: ð29Þ

The postmeasurement density matrices ϱðαÞpost obey the
equation of motion but for different initial conditions as
compared to the case when the neutrino density matrix is

not filtered out through the first helicity measurement. The

coefficient rðαÞ0 of the expansion in Eq. (21) is, in essence,
the trace of a 2 × 2 matrix ϱðαÞ and is conserved in time.
Let us derive the projection operators for the electron

neutrino in explicit form:

Π̂νR;Le
¼ jνR;Le ihνR;Le j
¼ ðcos θjν�1 i þ sin θjν�2 iÞ
× ðhν�1 j cos θ þ hν�2 j sin θÞ: ð30Þ

Following the same recipe, one can derive the POVM
projectors for the muon neutrino. Therefore we deduce for
the flavor projectors in the mass basis:

Π̂e ¼
�

c2ν cνsν
cνsν s2ν

�
ð31Þ

and

Π̂μ ¼
�

s2ν −cνsν
−cνsν c2ν

�
; ð32Þ

where we introduced the notations cν ¼ cos θ, sν ¼ sin θ.
In what follows, we exploit the flavor projection operators
in the form

Π̂e ¼
1

2
ð1þ σ1 sin 2θ þ σ3 cos 2θÞ; ð33Þ

Π̂μ ¼
1

2
ð1 − σ1 sin 2θ − σ3 cos 2θÞ: ð34Þ

We insert these operators into the expression for the
result in the second measurement scheme (18):

PðlÞ
L ¼ TrfΠ̂νLl

F̂ ½ϱ̂�g ¼ TrfΠ̂νLl
ϱ̂ðtÞΠ̂νLl

g
¼ TrfΠ̂−Π̂lϱ̂ðtÞΠ̂lΠ̂−g: ð35Þ

Employing the density matrix in the form Eq. (20) and
applying the spin and flavor projection operators given by
Eqs. (16), (31), and (32), respectively, we obtain

PðeÞ
L ðtÞ ¼ c2ν½rð1Þ0 ðtÞ − rð1Þ3 ðtÞ� þ s2ν½rð4Þ0 ðtÞ − rð4Þ3 ðtÞ�

þ cνsν½rð2Þ0 ðtÞ þ rð3Þ0 ðtÞ − rð2Þ3 ðtÞ − rð3Þ3 ðtÞ�
¼ rðeÞ0 ðtÞ − rðeÞ3 ðtÞ; ð36Þ

where

rðeÞi ðtÞ ¼ c2νr
ð1Þ
i ðtÞ þ s2νr

ð4Þ
i ðtÞ þ cνsν½rð2Þi ðtÞ þ rð3Þi ðtÞ�;

ð37Þ
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for i ¼ 0, 1, 2, 3. For the case of measuring active muon
neutrinos we get

PðμÞ
L ðtÞ ¼ rðμÞ0 ðtÞ − rðμÞ3 ðtÞ; ð38Þ

where

rðμÞi ðtÞ ¼ s2νr
ð1Þ
i ðtÞ þ c2νr

ð4Þ
i ðtÞ − cνsν½rð2Þi ðtÞ þ rð3Þi ðtÞ�:

ð39Þ

The result in the case of the first measurement scheme
(17) has the form

QðlÞ
L ¼ TrfΠ̂νLl

F̂ ½ϱ̂post�g ¼ TrfΠ̂−Π̂lϱ̂postðtÞΠ̂lΠ̂−g: ð40Þ

The final expressions are formally identical to Eqs. (36) and
(38). However, the functions related to the quadrants of the

density matrix, ρðαÞi ðtÞ, must be replaced by the functions
corresponding to the postmeasurement matrix ϱ̂postðtÞ.
Since at t ¼ 0 only the right-handed electron neutrino

component is different from zero, the functions rð1Þpost;0ðtÞ,
rð1Þpost;3ðtÞ obey the same equation of motion, but with
different initial conditions:

rð1Þpost;0ð0Þ ¼ rð1Þpost;3ð0Þ ¼
rð1Þ0 ð0Þ þ rð1Þ3 ð0Þ

1þ 2ðrð1Þ3 ð0Þ þ rð4Þ3 ð0ÞÞ
: ð41Þ

The same holds for rð4Þpost;0ð0Þ and rð4Þpost;3ð0Þ. Note that
the sum in the parentheses in the denominator can be
presented as

rð1Þ3 ð0Þ þ rð4Þ3 ð0Þ ¼ rðeÞ3 ð0Þ þ rðμÞ3 ð0Þ: ð42Þ

Hence

rðeÞpost;0ð0Þ ¼ c2νr
ð1Þ
post;0ð0Þ þ s2νr

ð4Þ
post;0ð0Þ

þ sνcν½rð2Þpost;0ð0Þ þ rð3Þpost;0ð0Þ�; ð43Þ

where

rð2Þpost;0ð0Þ þ rð3Þpost;0ð0Þ ¼
rð2Þ0 ð0Þ þ rð3Þ0 ð0Þ

1þ 2ðrðeÞ3 ð0Þ þ rðμÞ3 ð0ÞÞ
: ð44Þ

Using the derived results for PðeÞ
L and QðeÞ

L in the
expression for the quantum witness (19), we get

WðeÞ
L ¼ jrðeÞ0 ðtÞ − rðeÞ3 ðtÞ − rðeÞpost;0ðtÞ þ rðeÞpost;3ðtÞj: ð45Þ

The time evolution of the density matrix ϱ̂ and factors

rðαÞi follow the solution of the equation of neutrino motion

and Novikov’s map in Eq. (9). The details of solving
analytically the Lindblad equation and, in particular,
deriving the minors of the density matrix ϱ̂ in the eigenbasis
of the Hamiltonian (2) are presented in Appendixes B
and C.

V. ILLUSTRATION OF THE INVASIVE EFFECT

In the present work, we study the effect of two sequential
measurements done on neutrinos traversing the interstellar/
extragalactic space. Due to the cosmic magnetic fields,
propagation of a massive neutrino is accompanied by spin-
flavor oscillations, while the stochastic component of these
fields has a random influence on neutrino spin polarization
and leads to the decoherence effect.
We aim at examining the invasive effect of the first, blind

measurement, namely the effective neutrino spin filtering
by the cosmic object, on the result of the second meas-
urement of an active neutrino performed in the lab on Earth.
For this purpose we consider two measurement schemes:
we filter out left-handed neutrinos in the cosmic neutrino
filter and then measure its active flavor state at the lab, or
measure the active flavor state directly, without spin
filtering. Note that the measurement that performs the
cosmic neutrino filter is blind because its result is not
recorded. For classical systems, the first blind measurement
is always noninvasive. The difference between results
recorded in the lab in the cases of the first and second
neutrino propagation schemes is entirely a quantum phe-
nomenon and we quantify it through the quantum wit-
ness (19).
Below we illustrate the invasive effect of the first, blind

measurement, assuming μ11 ¼ μ22 ¼ μ12 ¼ μν and that the
energy of the neutrino magnetic moment interaction with
an interstellar magnetic field is μνB ¼ 10−32 eV. This
energy corresponds to the putative magnetic moment,
μν ≈ 4 × 10−20μB, that agrees with the value predicted
for the Dirac neutrino by the minimally extended standard
model [54],

μν ≈ 3.2 × 10−19
�

mν

1 eV

�
μB;

taking into account current upper bounds on the neutrino
massmν (see, for instance, Refs. [55,56]). When describing
the influence of the stochastic magnetic field h⃗ in the
Lindblad master equation (9), without loss of generality, we
exploit the parametrization (12) of the dissipator term with
a unit vector length v ¼ 1 and a zero angle α ¼ 0. Further,
from Eq. (12) it follows that if α ¼ 0 the matrix V̂ given by
Eq. (10) is real, and only v1;3 components enter in the
dissipator term, which now depends on the parameter w2

and the angle β. The Lindblad equation parameter w2

characterizes the strength of the dissipation and is usually
equal to some fraction of the energy of the interaction with
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the magnetic field B⃗. Here we use a reasonable value
w2 ¼ 0.1μνB. For the angle β we use a value of π=4,
implying that both neutrino longitudinal and transverse
spin components are thermalized due to the stochastic
magnetic field on equal footing.
Figure 2 shows the quantum witness (45) as a function of

the distance between the cosmic object and Earth when the
neutrino flux at t ¼ 0 (i.e., at the moment of time
corresponding to the neutrino passing through the cosmic
filter in the first propagation scheme) consists only of
electron neutrinos. It is assumed in Fig. 2 that the neutrinos
have already traveled a large distance before being filtered,
so their spins have been fully thermalized. For this reason,

we set rðeÞ3 ð0Þ ¼ 0, meaning that the numbers of right- and
left-handed neutrinos entering the cosmic spin filter are
equal. The shown quantum witness function decays,
exhibiting oscillations, and tends to zero at large distances.
The latter means that the invasive effect of the cosmic filter
on the result of the measurement performed in the lab
vanishes. Such a decaying behavior of the quantum witness
is not general. In Fig. 3 we show the quantum witness (45)
when the density matrix describing the neutrino flux before
entering the cosmic spin filter is fully thermalized in the
flavor basis. It can be seen that the quantum witness
function has now a more complex behavior, which is
different from “quantum beats” observed in Fig. 2. First,
it decays only at small distances. Second, it also exhibits
oscillations, but the oscillation pattern shows a super-
position of two functions that oscillate with the same or
almost the same frequency but in antiphase: the one
function is decaying and the other is growing. The observed
picture is explained by the behaviors of the probabilities

QðeÞ
L and PðeÞ

L of measuring the active electron neutrino at

the lab in the first and second propagation schemes,
respectively.

VI. THE STATISTICAL DISPERSION VS
QUANTUM UNCERTAINTY

Information extracted through the detection of the
neutrino ensemble has a statistical character. Statistical
dispersion of the ensemble data can be broader than the
invasive effect of the quantum measurement. Analysis of
the quantum uncertainty can be important when its effect is
larger compared to the statistical dispersion of the neutrino
flux measurements. In this section, we compare the
statistical distribution of the ensemble data with the effect
of quantum witness and show that for the standard
parameters that mimic experimentally feasible neutrino
detectors, the effect of quantum witness can be substantial.
For illustrative purposes, we discuss the case of super-

nova explosions producing tremendous outbursts of neu-
trinos of energies of several MeV. If such an event happens
in our galaxy, the neutrinos can be detected in considerable
numbers by the current neutrino detectors. As it was shown
through theoretical models, 99% of the gravitational bind-
ing energy of the core-collapse supernova is emitted in the
form of neutrinos of all flavors. Total energy of such a
neutrino flux can reach up to 1053 erg energy levels.
Still, most neutrinos emitted from such sources fall in the
12–16 MeV energy range. If a supernova occurs in our
cosmic neighborhood at distances up to 10 kpc, the neutrino
flux produced by it will be substantial [57]. Moreover,
neutrino detectors today already have sufficiently high-
energy resolution to provide high precision reconstruction of
the neutrino spectra from nearby supernova sources.
For the majority of present date detectors the most

common reaction for the neutrino-type particle detection
is the inverse beta decay with interacting electron antineu-
trino and a proton inside the detector, ν̄e þ p → eþ þ n.

FIG. 2. The quantum witness for detecting left-handed electron
neutrinos at the lab depending on the distance from the cosmic
object to Earth. In the initial state, there are only electron
neutrinos with equal fractions of left- and right-handed particles:

rðeÞ0 ð0Þ ¼ 1=2, rðeÞ3 ð0Þ ¼ 0.

FIG. 3. The same as in Fig. 2, but when in the initial state the
density matrix in the flavor basis is given by ϱ̂ ¼ diagð1=4;
1=4; 1=4; 1=4Þ.
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Other, more rare events include elastic neutrino-proton and
neutrino-electron scattering, or even neutral-current inter-
actions with 12C nuclei. Although it is still characterized by a
tiny cross section, in IceCube, Super-Kamiokande, and
future large neutrino telescopes JUNO [58] and Hyper-
Kamiokande [59], it will be possible to detect jointly up to
90,000 such events if the supernova event similar to
SN1987a occurs at 50 kpc distance today [60]. Moreover,
it is expected that we will be able to reconstruct neutrino
spectra for supernova explosions in the nearby galaxies, up
to the Mpc scales [61].
Monte Carlo supernova simulations with synthetic data

indicate the capacity of modern neutrino detectors to
analyze neutrino flux spectrum with high precision: it is
estimated that the energy spectrum of the incoming
neutrino flux can be reconstructed with statistical errors
well below 10% in the 10–30 MeV energy range. Direct
comparison with a quantum witness experiment (see Fig. 2)
shows that the invasive effect of the cosmic neutrino
measurement set by outer layers of the distant supernova
can exceed statistical error of the neutrino energy spectrum
measurements at distances not exceeding 10 Mpc. This
estimate reveals that the effect of quantum uncertainty
induced by a cosmic neutrino filter is detectable for
supernova explosions inside our galaxy or even in a local
group of galaxies that span distances up to 3 Mpc.

VII. SUMMARY

In this work we have developed a new approach for
interpretation and analysis of the data of experiments with
cosmic neutrinos. Our approach employs the concepts of
invasiveness and quantum witness that are used in the
theory of quantum measurements. We have considered two
subsequent measurements of neutrinos from a distant
source traversing the interstellar and intergalactic space
and interacting with stochastic cosmic magnetic fields
along the propagation trajectory. The first measurement
is performed by a neutrino filter of the dense cosmic object,
which effectively absorbs active, left-handed neutrinos,
thus letting only right-handed neutrinos to propagate
further to Earth. The second measurement is performed
in the lab at Earth and is a typical measurement of active
flavor neutrinos. The first measurement is blind and has an
invasive effect on the result of the second measurement,
undermining the credibility of our physical interpretation of
the results obtained in the lab. In order to quantify this
credibility, we defined the quantum witness for the neutrino
measurement in the lab and obtained analytical expressions
for the quantum witness in terms of the elements of the
neutrino density matrix. Using an analytical solution of the
Lindblad master equation for the neutrino density matrix,
we demonstrated the invasive effect of the cosmic filter on
the neutrino measurement in the lab. We showed that the
quantum witness can exhibit qualitatively different behav-
iors for different properties of the neutrino flux that meets

the neutrino filter. In particular, the decay of the quantum
witness as a function of the distance from the cosmic object
that one may naively expect due to the neutrino spin
thermalization effects is not observed when the density
matrix of the neutrino flux meeting the neutrino filter has in
the flavor basis a diagonal form with all four neutrino states
equally populated. Our approach can be used for quantify-
ing theoretical uncertainties associated with the lack of
information about the conditions of cosmic neutrinos
propagation when interpreting and analyzing the results
of experiments with neutrinos from distant astrophysical
sources.
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APPENDIX A: THE LINDBLAD MASTER
EQUATION

In what follows, we use the eigenbasis ðν̃1; ν̃2; ν̃3; ν̃4ÞT of
the Hamiltonian (2) (see Ref. [49]). In this representation
the Lindblad master equation (9) takes the form

dρnm
dt

¼ −iðEn − EmÞϱmn −
w2

2

X
q

ðρnqV2
qm þ V2

nqϱqmÞ

þ w2
X
q;s

VnqϱqsVsm; ðA1Þ

where E1;2;3;4 are the eigenvalues of the Hamiltonian (2).
We present the density matrix as

ϱ̂ ¼
�
ϱð1Þ ϱð2Þ

ϱð3Þ ϱð4Þ

�
; ðA2Þ

where ϱðαÞ are the 2 × 2 minors.
Then in Eq. (A1) one has the expressions of the form

X2
q¼1

ðvðνlÞ2nq ϱðαÞqm þ RðαÞ
nq v

ðνlÞ2
qm Þ; ðA3Þ

and

X2
q;s¼1

vðνlÞnq RðαÞ
qs v

ðνlÞ
sm ðA4Þ

for the first and second sums, respectively. All ϱðαÞ along
with vðνlÞ are expanded in the basis of the three Pauli
matrices and 2 × 2 unit matrix:

RðαÞ ¼ rðαÞ0 I þ r⃗ðαÞ · σ⃗; ðA5Þ
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and

vðνlÞ ¼ v0I þ v⃗ · σ⃗; ðA6Þ

with

rðαÞ0 ¼ 1

2
ðϱðαÞ11 þ ϱðαÞ22 Þ; ðA7Þ

rðαÞ1 ¼ 1

2
ðϱðαÞ12 þ ϱðαÞ21 Þ; ðA8Þ

rðαÞ2 ¼ i
2
ðϱðαÞ12 − ϱðαÞ21 Þ; ðA9Þ

rðαÞ3 ¼ 1

2
ðϱðαÞ11 − ϱðαÞ22 Þ: ðA10Þ

Analogous relations are used between the elements of the
matrix v and coefficients of its expansion.
We now expand Eqs. (A3) and (A4) and exploit

Eqs. (A6) and (A5):

X2
q¼1

ðvðνlÞ2nq ϱðαÞqm þ ϱðαÞnq v
ðνlÞ2
qm Þ

¼ 2½ðv20 þ v2ÞrðαÞ0 þ 2v0v⃗ · r⃗ðαÞ�Inm
þ 4v0r

ðαÞ
0 v⃗ · σ⃗nm þ 2ðv20 þ v2Þr⃗ðαÞ · σ⃗nm; ðA11Þ

X2
q;s¼1

vðνlÞnq ϱðαÞqs v
ðνlÞ
sm

¼ ½ðv20 þ v2ÞrðαÞ0 þ 2v0v⃗ · r⃗ðαÞ�Inm
þ 2½v0rðαÞ0 þ v⃗ · r⃗ðαÞ�v⃗ · σ⃗nm
þ ðv20 − v2Þr⃗ðαÞ · σ⃗nm: ðA12Þ

Summing up Eqs. (A11) and (A12) with the same
weights as in Eq. (A1), one gets the following dissipative
contribution:

LðαÞ ¼ −
w2

2

X2
q¼1

ðvðνlÞ2nq ϱðαÞqm þ ϱðαÞnq v
ðνlÞ2
qm Þ

þ w2
X2
q;s¼1

vðνlÞnq ϱðαÞqs v
ðνlÞ
sm

¼ 2w2½ðv⃗ · r⃗ðαÞÞv⃗ · σ⃗nm − v2r⃗ðαÞ · σ⃗nm�: ðA13Þ

Equation (A13) is also decomposed in the basis of 2 × 2
matrices:

LðαÞ ¼ ΛðαÞ
0 I þ Λ⃗ðαÞ · σ⃗; ðA14Þ

where

ΛðαÞ
0 ¼ 0; ðA15Þ

ΛðαÞ
i ¼ 2w2½ðv⃗ · r⃗ðαÞÞvi − v2rðαÞi �: ðA16Þ

Let us derive the equations for the elements of the minor
ϱð1Þ. Using Eqs. (A5), (A7), (A11), (A12), (A13), and (A1),
one gets

d
dt

ϱ11 ¼
d
dt

ðrð1Þ0 þ rð1Þ3 Þ ¼ Λð1Þ
3 ; ðA17Þ

d
dt

ϱ22 ¼
d
dt

ðrð1Þ0 − rð1Þ3 Þ ¼ −Λð1Þ
3 ; ðA18Þ

d
dt

ϱ12 ¼
d
dt

rð1Þ− ¼ −iω12rð1Þ− þ Λð1Þ
− ; ðA19Þ

d
dt

ϱ21 ¼
d
dt

rð1Þþ ¼ −iω21r
ð1Þ
þ þ Λð1Þ

þ ; ðA20Þ

where r� ¼ r1 � ir2, Λð1Þ
� ¼ Λð1Þ

1 � iΛð1Þ
2 , and ω12 ¼

E1 − E2 ¼ −ω21. Note that the sum of the diagonal matrix

elements ϱ11 þ ϱ22 ¼ rð1Þ0 is constant in time. The set of
equations for ϱð4Þ is obtained from Eqs. (A17)–(A20) by
changing rð1Þ to rð4Þ and ω12 to ω34. The sum ϱ33 þ ϱ44 ¼
rð4Þ0 is also conserved as well as the complete trace of the
density matrix.
The set of equations for the minor ϱð2Þ reads

d
dt

ϱ13 ¼
d
dt

ðrð2Þ0 þ rð2Þ3 Þ

¼ −iω13ðrð2Þ0 þ rð2Þ3 Þ þ Λð2Þ
3 ; ðA21Þ

d
dt

ϱ24 ¼
d
dt

ðrð2Þ0 − rð2Þ3 Þ

¼ −iω24ðrð2Þ0 − rð2Þ3 Þ − Λð2Þ
3 ; ðA22Þ

d
dt

ϱ14 ¼
d
dt

rð2Þ− ¼ −iω14rð2Þ− þ Λð2Þ
− ðA23Þ

d
dt

ϱ23 ¼
d
dt

rð2Þþ ¼ −iω23r
ð2Þ
þ þ Λð2Þ

þ : ðA24Þ

The equations for ϱð3Þ are obtained from Eqs. (A21)–(A24)
upon Hermitian conjugation.

APPENDIX B: THE SOLUTION FOR ϱð1Þ

Below we consider the system of equations for the minor
ϱð1Þ, omitting upper indexes in rðαÞ and designating
ω ¼ ω12 ¼ −ω21. After redefinition of the time variable

τ ¼ 2w2t; ðB1Þ
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the equations acquire the following form:

d
dτ

r0 ¼ 0; ðB2Þ

d
dτ

rþ ¼
�
vþv−
2

− v23 − iω̄

�
rþ þ v2þ

2
r−

þ vþv3r3; ðB3Þ

d
dτ

r− ¼ v2−
2
rþ þ

�
−
vþv−
2

− v23 þ iω̄

�
r−

þ v−v3r3; ðB4Þ

d
dτ

r3 ¼ v−v3
rþ
2
þ vþv3

r−
2
− vþv−r3; ðB5Þ

where ω̄ ¼ ω=2w2.
In the case of v2 ¼ 1 and vy ¼ 0, one has v⃗ ¼

ðsin β; 0; cos βÞ and it is convenient to rewrite the system
of equations in terms of r1;2 instead of r�:

d
dτ

r0 ¼ 0; ðB6Þ

d
dτ

r1 ¼ −r1cos2β þ r2ω̄þ r3 sin β cos β; ðB7Þ

d
dτ

r2 ¼ −r1ω̄ − r2cos2β; ðB8Þ

d
dτ

r3 ¼ r1 sin β cos β − r3sin2β: ðB9Þ

To solve the above system, one must diagonalize the
3 × 3 matrix:

Mð1Þ ¼

0
B@

−cos2β ω̄ sin β cos β

−ω̄ −cos2β 0

sin β cos β 0 −sin2β

1
CA: ðB10Þ

The general solution of the system is a sum of exponents:

riðτÞ ¼
X3
k¼1

Cikeiνkτ; ðB11Þ

where νi are the eigenvalues of the above matrix and the
integration constants are given by the following expres-
sions:

Ci1 ¼
B0iν2ν3 − B1iðν2 þ ν3Þ þ B2i

ðν1 − ν2Þðν1 − ν3Þ
; ðB12Þ

Ci2 ¼
B0iν1ν3 − B1iðν1 þ ν3Þ þ B2i

ðν2 − ν1Þðν2 − ν3Þ
; ðB13Þ

Ci3 ¼
B0iν1ν2 − B1iðν1 þ ν2Þ þ B2i

ðν3 − ν1Þðν3 − ν2Þ
; ðB14Þ

where

B0i ¼ rið0Þ; ðB15Þ

B1i ¼
X3
k¼1

Mð1Þ
ik rkð0Þ; ðB16Þ

B2i ¼
X3
k;l¼1

Mð1Þ
ik M

ð1Þ
kl rlð0Þ: ðB17Þ

The equations for ϱð4Þ are similar to Eqs. (B2)–(B5), except
that one must replace ω ¼ ω12 with ω ¼ ω34 ¼ E3 − E4.
Note that there is a condition of the trace conservation:

Trϱ ¼
X
i

ϱii ¼ rð1Þ0 þ rð4Þ0 ¼ 1: ðB18Þ

Another limitation is that the density matrix should be
Hermitian, ϱ12 ¼ ϱ†21, ϱ34 ¼ ϱ†43, which is already satisfied
by (B12)–(B15).

APPENDIX C: THE SOLUTION FOR ϱð2Þ

The system of equations for the minor ϱð2Þ is given by

d
dτ

r0 ¼ −
i
2
ðω̄13 þ ω̄24Þr0 −

i
2
ðω̄13 − ω̄24Þr3; ðC1Þ

d
dτ

rþ ¼
�
−
vþv−
2

− v23 − iω̄23

�
rþ

v2þ
2
r−

þ vþv3r3; ðC2Þ

d
dτ

r− ¼ v2−
2
rþ þ

�
−
vþv−
2

− v23 − iω̄14

�
r−

þ v−v3r3; ðC3Þ

d
dτ

r3 ¼ −
i
2
ðω̄13 − ω̄24Þr0 þ

v−v3
2

rþ

þ vþv3
2

r− þ
�
−
i
2
ðω̄13 þ ω̄24Þ − vþv−

�
r3: ðC4Þ

Using the ansatz v⃗ ¼ ðsin β; 0; cos βÞ and changing to r1
and r2, one gets the system for ϱð2Þ as

d
dτ

r0 ¼ −iω̄þr0 − iω̄−r3; ðC5Þ

d
dτ

r1 ¼ ð−cos2β − iω̄þÞr1 þ ω̄0r2

þ r3 sin β cos β; ðC6Þ
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d
dτ

r2 ¼ −ω̄0r1 þ ð−cos2β − iω̄þÞr2; ðC7Þ

d
dτ

r3 ¼ −iω̄−r0 þ r1 sin β cos β

− ðiωþ þ sin2βÞr3: ðC8Þ

The frequencies in the above formulas are

ω̄0 ¼
ω̄12 þ ω̄34

2
; ðC9Þ

ω̄� ¼ ω̄13 � ω̄24

2
: ðC10Þ

Solving the system requires diagonalization of the 4 × 4
matrix:

Mð2Þ
4 ¼

0
BBB@

−iω̄þ 0 0 −iω̄−

0 −cos2β − iω̄þ ω̄0 sin β cos β

0 −ω̄0 −cos2β − iω̄þ 0

−iω̄− sin β cos β 0 −sin2β − iωþ

1
CCCA: ðC11Þ

The final solution is given in the form of a linear combination of exponential functions:

rð2Þi ðτÞ ¼
X4
k¼1

Cikeνkτ; ðC12Þ

with the integration constants

Ci1 ¼
−B0iν2ν3ν4 þ B1iðν2ν3 þ ν2ν4 þ ν3ν4Þ − B2iðν2 þ ν3 þ ν4Þ þ B3i

ðν1 − ν2Þðν1 − ν3Þðν1 − ν4Þ
; ðC13Þ

Ci2 ¼
B0iν1ν3ν4 − B1iðν1ν3 þ ν1ν4 þ ν3ν4Þ þ B2iðν1 þ ν3 þ ν4Þ þ B3i

ðν2 − ν1Þðν2 − ν3Þðν2 − ν4Þ
; ðC14Þ

Ci3 ¼
−B0iν1ν2ν4 þ B1iðν1ν2 þ ν1ν4 þ ν2ν4Þ − B2iðν1 þ ν2 þ ν4Þ þ B3i

ðν3 − ν1Þðν3 − ν2Þðν3 − ν4Þ
; ðC15Þ

Ci4 ¼
B0iν1ν2ν3 − B1iðν1ν2 þ ν1ν3 þ ν2ν3Þ þ B2iðν1 þ ν2 þ ν3Þ þ B3i

ðν4 − ν1Þðν4 − ν2Þðν4 − ν1Þ
; ðC16Þ

where

B0i ¼ rið0Þ; ðC17Þ

B1i ¼
X3
k¼1

Mð2Þ
ik rkð0Þ; ðC18Þ

B2i ¼
X3
k;l¼1

Mð2Þ
ik M

ð2Þ
kl rlð0Þ; ðC19Þ

B3i ¼
X3

k;l;m¼1

Mð2Þ
ik Mð2Þ

kl M
ð2Þ
lm rmð0Þ: ðC20Þ
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