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We investigate the leading-twist transverse-momentum-dependent distribution functions (TMDs) for a
physical electron, a spin-1=2 composite system consisting of a bare electron and a photon, using the basis
light-front quantization (BLFQ) framework. The light-front wave functions of the physical electron are
obtained from the eigenvectors of the light-front QED Hamiltonian. We evaluate the TMDs using the
overlaps of the light-front wave functions. The BLFQ results are found to be in excellent agreement with
those TMDs calculated using lowest-order perturbation theory.
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I. INTRODUCTION

A key tool for studying hadron structure is the deep
inelastic scattering process, where individual partons are
resolved. One can extract the parton distribution functions
(PDFs) [1–4] from such experiments. PDFs encode the
distribution of longitudinal momenta and polarizations
carried by the partons. Being functions of longitudinal
momentum fraction (x) only, they do not provide knowl-
edge about the transverse spatial location and motion of the
constituents inside the hadrons. On the other hand, the
transverse-momentum-dependent parton distribution func-
tions (TMDs) [5–7] provide essential information about the
distributions of both the longitudinal momentum fraction
(x) and the relative transverse momentum ðk⊥Þ as well as
the orbital motion of partons inside hadrons, allowing us
to draw three-dimensional pictures of the hadrons. They
appear in the description of semi-inclusive reactions like
the semi-inclusive deep inelastic scattering (SIDIS) [8,9]

and Drell-Yan process [10–14]. Quantum chromodynamics
(QCD) factorization theorems allow one to relate physical
observables, such as cross sections, to TMDs via pertur-
batively calculable kernels. Many theoretical studies have
concentrated on the formalism and the accompanying
factorization theorem of the TMDs [15–20].
At leading twist, there are eight TMDs for a composite

spin-1=2 system. They are characterized by different spin-
spin and spin-orbit correlations of the partons and the
system. Three of them are generalizations of the three
familiar collinear PDFs, namely the unpolarized f1ðxÞ,
helicity g1ðxÞ, and the transversity h1ðxÞ distributions.
TMDs reduce to collinear PDFs by integrating over the
transverse momenta. Basically, TMDs are the extended
version of collinear PDFs and one can extract the parton
densities for various configurations of the target and the
parton polarizations from TMDs. TMDs are very useful to
explain a range of phenomena even when we only consider
the leading-twist factorization. For example, one can
explain the Collins asymmetry using transversity TMD
h1ðx; k⊥Þ [21–23]; one can explain the double spin asym-
metry ALT in SIDIS [24] using g1Tðx; k⊥Þ, which encodes
the information of a longitudinally polarized parton in a
transversely polarized hadron; one can employ the distri-
bution corresponding to a transversely polarized parton in a
transversely polarized hadron, h⊥1Tðx; k⊥Þ, also known as

pretzelosity TMD, to explain the Asinð3ϕh−ϕSÞ
UT single spin

asymmetry [25].
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TMDs being nonperturbative in nature are always difficult
to obtain from the first principles of QCD and, thus, they
have been investigated in several QCD-inspired models.
Examples include the diquark spectator model [26,27], MIT
bag model [28–30], covariant parton model [31], light-cone
constituent quark model [32] and light-front quark-diquark
model with AdS/QCD predicted wave functions [33,34].
Meanwhile, promising theoretical frameworks for illuminat-
ing TMDs also include the Dyson-Schwinger equations
approach [35,36] and the discretized space-time Euclidean
lattice [37–41]. However, both the Dyson-Schwinger equa-
tions and the lattice QCD approaches are mostly working in
the Euclidean spacetime and therefore encounter challenges
in accessing TMDs directly.
In recent years, basis light-front quantization (BLFQ)

[42,43] has been developed as a nonperturbative approach
which is very useful for studying the structure of relativistic
bound states [44–49]. Starting with the light-front
Hamiltonian obtained from the Lagrangian via the
Legendre transformation, we solve for the light-front wave
functions (LFWFs). Once we have the LFWFs, we are able
to investigate several properties of the physical system,
including the anomalous magnetic moment and generalized
parton distributions (GPDs) of electrons [44,50], internal
structure of baryons [48] and mesons [49,51], as well as
scattering phenomena [52–54].
In quantum electrodynamics (QED), while the electron

is treated as an elementary field, it can fluctuate into an
electron-photon pair, e.g., e → eγ → e, with the same
quantum number. The virtual photon can further break
up into virtual electron and positron pairs with all possible
combinations. Thus, an electron is no longer an isolated
particle but is surrounded by virtual clouds of electrons,
positrons and photons. In analogy to the partonic structure
of hadrons, one can interpret them as partons contained in
the physical electron. TMDs of the physical electron, as
a system composed of a bare electron and a bare photon,
have been investigated in Refs. [55,56] using the lowest-
order perturbation theory. Many other observables of the
electron, e.g., the electromagnetic and gravitational form
factors as well as spin and orbital angular momentum [57],
GPDs [58–61], Wigner distributions [62], etc., have been
investigated in a model based on the quantum fluctuations
of the electron in QED.
In this paper, we employ BLFQ to obtain TMDs of the

physical spin-1=2 particle in QED, i.e., electron. Only the
leading two Fock sectors (jei and jeγi) are considered.
During the diagonalization of the Hamiltonian, we use a
mass counterterm in the first Fock sector to renormalize the
mass of the system to that of the physical electron and we
obtain the LFWFs of the ground state for the physical
electron. It is reasonable to treat the perturbative results as
equivalent to experimental data in QED. We then compare
the BLFQ results with the perturbative results reported in
Refs. [55,56]. It is our aim to demonstrate that the BLFQ

approach, which is inherently nonperturbative, provides
results, up to finite basis artifacts, that agree with the
perturbative results. We also aim to show how we may
mitigate the finite basis artifacts by achieving convergence
of suitably smoothed BLFQ results. In achieving these
aims, we establish the methods to be used in applications
that require a nonperturbative approach.
For the purposes of this work, we set the gauge link

generating from infinite many photon exchanges in the
final-state interaction [63,64] to unity. This leaves us
five nonzero TMDs out of the eight leading-twist TMDs.
We also present spin-spin correlations between the bare
electron and the physical electron for different polarization
configurations. A detailed analysis of the TMDs with a
nontrivial gauge link in the BLFQ approach will be
reported in future studies.
The paper is organized as follows. We introduce the

basics of the BLFQ approach in Sec. II. A discussion of
mass renormalization is also given in this section. In
Sec. III, the TMDs of electrons are evaluated. The numeri-
cal results of the TMDs and the spin densities in the
transverse-momentum space for different spin configura-
tions of the bare and the physical electrons are presented
and discussed in Sec. IV. The summary is given in Sec. V.

II. BASIS LIGHT-FRONT QUANTIZATION

BLFQ is based on the Hamiltonian formalism and adopts
light-front quantization [65]. The mass spectrum and light-
front Fock state wave functions are obtained from the
solution of the following eigenvalue equation:

ĤjP;Λi ¼ M2jP;Λi; ð1Þ

where the Fock space representation of the system state
with momentum P and light-front helicity Λ, jP;Λi is
expanded in terms of multiparticle light-front basis states
as [7]

jP;Λi ¼
X
n

X
λ1…λn

Z Yn
i¼1

�
dxid2k⊥iffiffiffiffi
xi

p
16π3

�
16π3δ

�
1 −

Xn
i¼1

xi

�
δ2

×

�Xn
i¼1

k⊥i
�
ψΛ
λ1…λn

ðfxi; k⊥i gÞ

× jn; xiPþ; xiP⊥ þ k⊥i ; λii: ð2Þ

Here xi ¼ kþi =P
þ is the longitudinal fraction, k⊥i is the

relative transverse momentum and λi is the light-front
helicity, both of the ith constituent. n represents the number
of particles in a Fock state. The physical transverse
momenta of the constituents are p⊥

i ¼ xiP⊥ þ k⊥i and
the physical longitudinal momenta of the constituents
pþ
i ¼ kþi ¼ xiPþ. The boost-invariant light-front wave

functions ψΛ
λ1…λn

are independent of the total momentum
of the state Pþ and P⊥ and depend only on xi and k⊥i .
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Like in QCD, we treat the physical electron as a
composite particle, where we could find the bare electrons,
positrons and photons as its partons. In this work, we
restrict ourselves to only the first two Fock sectors:

jephyi ¼ jei þ jeγi: ð3Þ
The full Hamiltonian we diagonalize is

Ĥ ¼ ĤQED þ Ĥ0; ð4Þ
where the light-front1 QED Hamiltonian ĤQED ¼
PþP̂−

QED − ðP̂⊥Þ2. We obtain P̂−
QED from the QED

Lagrangian [65,66] through the Legendre transform and
adopting the light-cone gauge Aþ ¼ 0. Restricted to the
leading two Fock sectors, P̂−

QED is given by [44,52]

P−
QED ¼

Z
d2x⊥dx−

�
1

2
Ψ̄γþ

m2
e þ ði∂⊥Þ2

i∂þ Ψ

þ 1

2
Ajði∂⊥Þ2Aj þ ejμAμ

�
; ð5Þ

with the electron massme and the physical electromagnetic
coupling constant e. Ψ and Aμ are the fermion and the
gauge boson fields, respectively.
In the single-particle coordinate, ĤQED incorporates the

transverse center-of-mass (c.m.) motion, which is not
necessarily zero. The advantage of using the single-particle
coordinate is that each particle in the Fock space can be
treated on equal footing, and this facilitates dealing with
(anti)symmetry among identical particles when higher
Fock sectors are taken into account [44]. The disadvantage
is that the c.m. motion of the system is mixed up with
intrinsic motion.
In order to overcome this disadvantage, we add a

constraint term

Ĥ0 ¼ λLðĤc:m: − 2b2ÎÞ ð6Þ
to the light-front QED Hamiltonian to factorize out the
transverse c.m. motion from the intrinsic motion. Here Î
represents the unit operator and the c.m. motion is governed
by a harmonic oscillator (HO),

Ĥc:m: ¼
�X

i
p̂⊥
i

�
2 þ b4

�X
i
xir̂⊥i

�
2 ð7Þ

with b being its scale parameter. Moreover, by subtracting
the zero-point energy 2b2 and multiplying by a Lagrange
multiplier λL, we are able to shift the excited states of c.m.
motion to higher energy and retain low-lying states that
contain only the simplest (Gaussian) state of c.m. motion

times the intrinsic motion. A detailed discussion of the c.m.
factorization within the BLFQ framework can be found in
Refs. [45,67].
The basis state used in BLFQ for a single particle is the

direct product of the momentum eigenstate in the longi-
tudinal direction, the two-dimensional harmonic oscillator
basis state in the transverse direction and the helicity
eigenstate. This choice is motivated by the success of
ab initio calculation of nuclei structure [68,69] and also
holographic QCD [46,70].
In the longitudinal direction, we impose (anti)periodic

boundary condition on (fermions) bosons inside a box of
length 2L, resulting in

pþ
i ¼ 2π

L
ki; ð8Þ

where ki is an integer (boson) or half-integer (fermion).2 In
the transverse direction, the basis states are the eigenstates
of the two-dimensional harmonic oscillator (2D HO)
Hamiltonian with two quantum numbers ni, mi and
corresponding eigenenergies 2ð2ni þ jmij þ 1Þb2 [67].
Here ni represents the radial quantum number and mi
the quantum number of orbital motion in the transverse
plane. In the momentum space, the transverse basis states
are given by

ϕnmðp⊥Þ ¼ 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π × n!

ðnþ jmjÞ!

s
eimθLjmj

n ðρ2Þρjmje−ρ2=2: ð9Þ

Here, θ ¼ argðp⊥Þ, ρ ¼ jp⊥j=b and Ljmj
n is the associated

Laguerre function. Each single-particle basis state is
identified using four quantum numbers:

αi ¼ ðki; ni; mi; λiÞ; ð10Þ

where λi represents the light-front helicity [71] of the
particle.
The basis states of a Fock sector with multiple particles

are then expressed as the direct product of each single-
particle basis state in the Fock sector

jαi ¼⊗i jαii: ð11Þ

All the basis states have a well-defined value of the total
angular momentum projection

X
i

ðλi þmiÞ ¼ Λ: ð12Þ

1Here, we follow the convention for light-front four-vector
v ¼ ðvþ; v−; v⊥Þ, where vþ ¼ v0 þ v3, v− ¼ v0 − v3 and
v⊥ ¼ ðv1; v2Þ.

2We neglect the zero mode for bosons. For convenience we
subtract 1

2
from state labels ki for fermions so that the longitudinal

quantum number of all particles and their sum K will be
designated as integers.
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This follows from the commutation between ĴZ and P̂
−
QED.

3

In addition, they all have the same total longitudinal
momentum Pþ ¼ P

i p
þ
i . One then parameterizes Pþ

using a dimensionless variable K ¼ P
i ki such that

Pþ ¼ 2π
L K. For a given particle i, the longitudinal momen-

tum fraction is then represented as xi ¼ pþ
i =P

þ ¼ ki=K.
Another element in reducing the infinite-dimensional

basis to a finite-dimensional basis is the truncation of
quantum numbers in the transverse direction. We retain the
basis states satisfyingX

i

ð2ni þ jmij þ 1Þ ≤ Nmax: ð13Þ

Note that Nmax not only restricts the HO quanta, but also
introduces an IR (∼b=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
) and UV (∼b

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
) cutoff

in the transverse direction [52].
Overall, there are three basis parameters in our calcu-

lation, the scale of the 2D HO b, the transverse truncation
Nmax, and the longitudinal resolutionK. Wewill discuss the
dependence of our results upon these parameters while
discussing the numerical results in Sec. IV.
After solving Eq. (1) in the BLFQ basis under the

Fock sector truncation, Eq. (3), we get the single-particle
coordinate LFWF in the momentum space for the second
Fock sector as

ψΛ
λe;λγ

ðxe;p⊥
e ;xγ;p⊥

γ Þ¼
X
ne;me
nγ ;mγ

½ψðαe;αγÞϕneme
ðp⊥

e Þϕnγmγ
ðp⊥

γ Þ�;

ð14Þ

where ψðαe; αγÞ ¼ hαe; αγjP;Λi are the eigenvectors
obtained by diagonalizing the Hamiltonian Eq. (4). We
then convert the nonperturbative solutions in the single-
particle coordinates, as in Eq. (14), to that in the relative
coordinates, ψΛ

λe;λγ
ðxe; k⊥e ; xγ; k⊥γ Þ in Eq. (2), by factorizing

out the c.m. motion from Eq. (14) [45,67,72].

A. Δme and Z2

As mentioned before, we need to perform mass renorm-
alization during the diagonalization and we employ a Fock
sector-dependent renormalization procedure [73,74]. The
electron mass in the first Fock sector equals the bare
electron mass, me

e ¼ m0, and it depends on the regulators
(cutoff) in the renormalization process. We numerically
diagonalize the Hamiltonian matrix in an iterative scheme,
where we adjust me

e in the first Fock sector jei to obtain the
mass of the physical electronMe ¼ 0.511 MeV as the mass
of the entire system. Since in our Fock space truncation,
Eq. (3), the photon cannot fluctuate into electron-positron

pairs, for basis states in jeγi sector the electron mass
remains the same as the physical value, meγ

e ¼ Me.
We introduce the mass counterterm Δme ¼ m0 −Me

that represents the mass correction due to the quantum
fluctuations to higher Fock sectors. According to the light-
front perturbation calculation [65], Δme should increase
with increasing basis truncation parameters, which leads to
larger UV cutoff. This is confirmed in Fig. 1.
Furthermore, following the discussions in

Refs. [43,44,50,75], we rescale the naive TMDs by Z2:

hTMDi ¼ hTMDi0
Z2

; ð15Þ

to correct an artifact on the normalization of the LFWF in
the jeγi Fock sector, which is introduced by our Fock sector
truncation. Here, the prime designates that the results are
calculated directly by using the LFWF from Eq. (14). Z2 is
the electron wave function renormalization factor which in
our truncation can be interpreted as the probability of
finding a bare electron within a physical electron:

Z2 ¼
X
e

jhejephyij2: ð16Þ

The summation runs over all the basis states in the jei
sector. Z2 incorporates the contribution from the quantum
fluctuation between the jei and jeγi sectors and goes to
zero in the infinite basis limit. We show 1=Z2 as a function
of basis truncation parameters in Fig. 2. We comment that
such sawtooth patterns are a familiar odd-even effect in the
BLFQ formalism [44].

III. TMD IN QED

We treat the physical electron as a spin-1=2 composite
particle, with a bare electron and a photon emerging from
quantum fluctuation as its partons. The TMDs of a fermion

FIG. 1. The mass counterterm Δme ¼ me −Me as a function
of the basis truncation parameter in BLFQ. All the results are
evaluated atK ¼ Nmax and b ¼ Me. The solid (blue) line with dots
represents theBLFQresults,while the dashed (red) line corresponds
to the linear fitting of the results: Δme ¼ −0.339þ 0.0218Nmax.

3See Ref. [66] for detailed discussion about the symmetry in
the light-front dynamics.
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inside the physical electron are defined through the
fermion-fermion correlator function as4

Φ½Γ�ðx; k⊥;P; SÞ

¼ 1

2

Z
dz−d2z⊥
2ð2πÞ3 eik·zhP; SjΨ̄ð0ÞΓUð0⊥; z⊥ÞΨðzÞjP; Sijzþ¼0;

ð17Þ

where x ¼ kþ
Pþ and k⊥ stands for the relative transverse

momentum of the bare electron. Γ is a Dirac γ matrix. For
the leading-twist TMDs, Γ ¼ γþ, γþγ5 or iσjþγ5, corre-
sponding to unpolarized, longitudinally polarized or trans-
versely polarized fermion inside the physical electron,
respectively. jP; Si (hP; Sj) stands for the initial (final)
state of the physical electron with momentum P and spin
four-vector S. The gauge link U guarantees the gauge
invariance of this nonlocal operator. In the light-cone gauge
Aþ ¼ 0, the gauge link for SIDIS process5 is given by
[8,9,14,56,63,64]

Uð0⊥; z⊥Þ

¼ P exp

�
ie
Z

z⊥

0⊥
dη⊥ · A⊥ðηþ ¼ 0þ; η− ¼ ∞−; η⊥Þ

�

¼ 1þ ie
Z

z⊥

0⊥
dη⊥ · A⊥ðηþ ¼ 0þ; η− ¼ ∞−; η⊥Þ þ � � � :

ð18Þ

The term in the correlator of Eq. (17) involving the gauge
link of order g sandwiched between two jeγi Fock sectors
vanishes. This is because the photon coming from the
final or initial state interaction cannot couple to the
spectator photon. The only relevant contributions will
then come from the terms where the matrix element is
between the states jei and jeγi. In this picture, the gauge
photon that interacts with the bare electron in the initial
or final state coincides with the photon in the dressed
electron. Ignoring these contributions definitely induces
an error that is of higher order in perturbation theory.
However, the contributions of the transverse gauge link in
QED at order g to the electron TMDs appear only at the
end point x ¼ 1 [56]. In this work, we restrict ourselves
only to the leading-order term (identity operator) of the
gauge link operator and perform the calculation of
electron TMDs in the light-cone gauge and for x ≠ 1,
k⊥ ≠ 0⊥, which is consistent with the perturbative cal-
culation done in Ref. [56].
We work in a frame where the momentum and spin

four-vector of the physical electron are represented as

P ¼ ðPþ; M
2
e

Pþ ; 0⊥Þ and S ¼ ðS3 Pþ
Me

;−S3 Me
Pþ ; S⊥Þ, respec-

tively. It is easy to verify that this covariant spin vector
satisfies P · S ¼ 0 and also S2 ¼ −1 if we choose the three-
dimensional spin vector to be

S⃗ ¼ ðS1; S2; S3Þ ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ: ð19Þ

The spin vector state can then be transformed from
the light-front helicity state [71] using the following
formulas [7]:

� jP; Si
jP;−Si

�
¼

�
cos θ

2
e−i

φ
2 sin θ

2
ei

φ
2

− sin θ
2
e−i

φ
2 cos θ

2
ei

φ
2

�� jP;þi
jP;−i

�
: ð20Þ

This transformation is crucial because the eigenstates we
obtain in BLFQ are the states associated with the light-front
helicities Λ ¼ �ð1=2Þ rather than the spin vectors S.
There exist eight leading-twist TMDs which are defined

as [55,56]

Φ½γþ�ðx; k⊥;P; SÞ ¼ fe1 −
ϵijkiSj

Me
f⊥e
1T ; ð21Þ

Φ½γþγ5�ðx; k⊥;P; SÞ ¼ S3ge1L þ k⊥ · S⊥
Me

ge1T; ð22Þ

Φ½iσjþγ5�ðx; k⊥;P;SÞ ¼ Sjhe1 þ S3
kj

Me
h⊥e
1L

þ Si
2kikj − ðk⊥Þ2δij

2M2
e

h⊥e
1T þ ϵijki

Me
h⊥e
1 :

ð23Þ

FIG. 2. The electron wave function renormalization factor Z2,
as a function of the basis truncation parameters in BLFQ. All the
results are evaluated at K ¼ Nmax and b ¼ Me. The dots con-
nected by solid (blue) line segments represent the BLFQ results,
while the dashed (red) line corresponds to the logarithm fitting of
the results: 1=Z2 ¼ 0.9279þ 0.03392 lnðNmaxÞ.

4Our convention is different from that of Ref. [56] by a factor
of 1=2. This comes from the different convention for the light-
front four-vector.

5For Drell-Yan process, the gauge link would go in the
opposite direction.
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Here, i, j run in the transverse plane, and antisymmetric
tensor ϵ12 ¼ −ϵ21 ¼ 1. However, if we set the gauge link to
unity, two of them, the Boer-Mulders function h⊥e

1 [76] and
the Sivers function f⊥e

1T [77], reduce to zero because of their
T-odd property. Furthermore, we find that h⊥e

1T mainly
comes from the D-wave component and the D-wave
component is zero in our current Fock sector truncation.
Thus, h⊥e

1T is also zero. This is consistent with the result of
the perturbative light-front calculation [55,56].
Therefore, under the approximation that the gauge link is

the identity operator and our current Fock sector truncation,
there exist five nonzero TMDs at leading twist. We are now
able to evaluate those TMDs using the LFWF in the jeγi
Fock sector [ψΛ

λe;λγ
ðxe; k⊥e ; xγ; k⊥γ Þ in Eq. (2)] as [7,56]

fe1 ¼
Z

½deγ�
X
λγ

½jψþ
þ;λγ

j2 þ jψþ
−;λγ j2�; ð24Þ

ge1L ¼
Z

½deγ�
X
λγ

½jψþ
þ;λγ

j2 − jψþ
−;λγ j2�; ð25Þ

ge1T ¼ Me

ðk⊥Þ2
Z

½deγ�
X
λγ

2Re½k⊥Rψþ�
þ;λγ

ψ−
þ;λγ

�; ð26Þ

he1 ¼
Z

½deγ�
X
λγ

½ψþ�
þ;λγ

ψ−
−;λγ �; ð27Þ

h⊥e
1L ¼ Me

ðk⊥Þ2
Z

½deγ�
X
λγ

2Re½k⊥Rψþ�
−;λγψ

þ
þ;λγ�; ð28Þ

where k⊥R ¼ k1 þ ik2 and we use the abbreviation

½deγ� ¼ dxedxγd2k⊥e d2k⊥γ
16π3

δðxe þ xγ − 1Þ
× δ2ðk⊥e þ k⊥γ Þδðx − xeÞδ2ðk⊥ − k⊥e Þ: ð29Þ

We omit the argument of LFWFs (fxi; k⊥i g) and TMDs
(x; k⊥) for the sake of conciseness.
The unpolarized TMD fe1 describes the distribution of an

unpolarized bare electron in an unpolarized physical
electron, while the helicity TMD ge1L gives the information
of the momentum distribution of a longitudinally polarized
bare electron when the physical electron is also longitu-
dinally polarized. fe1 and g

e
1L are obtained by the sum of and

the difference between the squares of S- and P-wave
components under our Fock sector truncation, respectively.
On the other hand, the transversity TMD he1 describes the
correlation between the transversely polarized bare electron
and the transversely polarized physical electron. Being
chiral odd in nature, he1 involves a helicity flip of the bare
electron from initial to final state, which is accompanied by
a helicity flip of the physical electron in the same direction.
This TMD receives contributions from the partial waves

with Lz ¼ �1. The TMD ge1T is the distribution of a
longitudinally polarized bare electron in a transversely
polarized physical electron, whereas h⊥e

1L provides the
momentum distribution for the transversely polarized bare
electron in a longitudinally polarized physical electron.
Meanwhile, as a spin-1=2 composite system, the three

leading-twist PDFs of the physical electron can be retrieved
by integrating fe1ðx; k⊥Þ, ge1Lðx; k⊥Þ, and he1ðx; k⊥Þ over k⊥:

fe1ðxÞ ¼
Z

d2k⊥fe1ðx; k⊥Þ; ð30Þ

ge1ðxÞ ¼
Z

d2k⊥ge1Lðx; k⊥Þ; ð31Þ

he1ðxÞ ¼
Z

d2k⊥he1ðx; k⊥Þ: ð32Þ

IV. NUMERICAL RESULTS

A. Averaging method and convergence behavior

In Fig. 3, we show the TMD fe1ðx; k⊥Þ in x and k⊥
directions for fixed values of k⊥ and x, respectively. In
these plots, the BLFQ computations are compared with
those from the perturbative calculations in Refs. [55,56]. It
can be noticed that in the transverse direction the BLFQ
results oscillate around the perturbative results, which can
be viewed as a proxy for the experiment data in QED.
In this section we discuss the method we adopt to reduce

the oscillation in the transverse direction, i.e., with respect
to k⊥ and also study the convergence behavior of our results
as a function of the basis truncation parameters.
The oscillation in the TMD computed by the BLFQ

method finds its root in the oscillating behavior of the
HO basis states that we use in the transverse plane. As
mentioned in Sec. II, Nmax, the truncation parameter in the
transverse direction, together with b (the scale of the
transverse 2D HO basis), determines our transverse basis
states. This motivates us to average over the BLFQ results
at different Nmax and b to reduce these finite basis artifacts.
We also have another truncation parameter K in the
longitudinal direction. Nmax and K are truncation param-
eters introduced by our calculation method, so their effects
must be studied to differentiate between truncation artifacts
and the underlying physics extracted from the BLFQ
results.
In our calculations, we set the 2D HO scale b the same as

the mass of physical electron, i.e., b ¼ Me. Here, we only
discuss the dependence of our results on Nmax and K. In
Fig. 3, we illustrate the BLFQ computations at different
Nmax with K ¼ 50 and b ¼ Me. We see that if we only
change Nmax, the phase of oscillation changes. The phase
shift between computations atNmax ¼ nþ 2 and atNmax ¼
n is nearly a half period. This is another consequence of the
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FIG. 4. The BLFQ results after averaging and the perturbative results (black dashed lines) [55,56] for fe1 in the transverse direction
(left) and longitudinal direction (right). Calculations are performed at xe ≈ 0.5 (left) and at k⊥e ¼ 1.25 ðMeV2Þ (right). Curves with
different dash styles (colors) are results averaged from the BLFQ computations at different Nmax sets with fixed K ¼ 50 and b ¼ Me.

FIG. 5. The BLFQ results after averaging and the perturbative results (black dashed lines) [55,56] for fe1 in the transverse direction
(left) and longitudinal direction (right). Calculations are performed at xe ≈ 0.5 (left) and at k⊥e ¼ 1.25 ðMeV2Þ (right). Curves with
different dash styles (colors) are results averaged from the BLFQ computations at Nmax ¼ f50; 52; 54g, b ¼ Me but different K as
specified in the legends.

FIG. 3. The BLFQ computations at different truncation parameters and the perturbative results (black dashed lines) [55,56] for fe1 in
the transverse direction (left) and longitudinal direction (right). We use fe1 at x ≈ 0.5 and at ðk⊥Þ2 ¼ 1.1 ðMeV2Þ as examples. Curves
with different dash styles (colors) are the BLFQ results at different Nmax with fixed K ¼ 50 and b ¼ Me.
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same odd-even effect as seen in Fig. 2. Furthermore, the
oscillation period is not physical but is the dynamically
determined superposition of the oscillation periods of all
the HO basis states which are allowed by the Nmax
truncation with this chosen value of b. These basis artifacts
motivate us to perform an average over the BLFQ compu-
tations at different Nmax to reduce the oscillation of our
results.
In Fig. 4 we illustrate averages between the BLFQ

computations at Nmax ¼ n and Nmax ¼ nþ 2, with K ¼ n.
We further observe that the results obtained from averaging
between fNmax ¼ n; nþ 2g and between fNmax ¼ nþ 2;
nþ 4g also shift from each other by nearly a phase of π.
Based on these observations, we propose a two-step
averaging method involving the BLFQ computations at
fNmax ¼ n; nþ 2; nþ 4g, with K ¼ n:
(1) First take averages between the BLFQ computations

at Nmax ¼ n and Nmax ¼ nþ 2, with K ¼ n. Then
take averages between the BLFQ computations at
Nmax ¼ nþ 2 and Nmax ¼ nþ 4, with also K ¼ n.

(2) The final results are obtained by averaging between
those two averages produced in the first step.

The final averages for n ¼ 50 are also shown in Fig. 4 and
we see that they are very close to the perturbative results.
In Fig. 5 we plot the BLFQ results after implementing

the two-step averaging method using the same Nmax set but
different K. We observe that the BLFQ results change
minimally when K changes significantly since it is difficult
to distinguish the difference between those curves at
different K in Fig. 5. This suggests that our TMD results
converge very quickly with longitudinal truncation param-
eter K. For simplicity and resolution in the longitudinal
direction we from now on set K ¼ n while implementing
our averaging method.
In Fig. 6 we plot the BLFQ results averaged over

Nmax ¼ fn; nþ 2; nþ 4g, K ¼ n for different n in the

IR region (left panel) and also in the UV region (right panel)
in the transverse direction. It is clear from the left panel of
Fig. 6 that, after implementing our averaging method, the
BLFQ results approach the perturbative result as Nmax
increases. When we plot the BLFQ results in the UV region
(right panel of Fig. 6), we observe that our result drops to
zero abruptly after the UV cutoff (∼b

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
). Since the UV

cutoff increases as Nmax increases, the agreement extends to
the relevant higher-momentum region.
We still observe some discrepancies and oscillation in

the small jk⊥j region even after averaging. We argue that
this is due to truncation parameters leading to slowly
decreasing IR cutoffs (∼b=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
). From the left panel

FIG. 6. fe1 after averaging over the BLFQ computations at Nmax ¼ fn; nþ 2; nþ 4g, K ¼ n and b ¼ Me. (Here n is the lowest Nmax
we use for averaging.) We also plot the perturbative results (black dashed lines) [55,56] for comparison. In the left panel we plot in the IR
region. In the right panel we show the UV region. In the legend of the right panel, we list the square of the UV cutoff at x ¼ 0.5
introduced by the Nmax truncation, i.e., ðb ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmax=2

p Þ2. Curves with different dash styles (colors) are results averaged from the BLFQ
computations at different Nmax and K, with fixed b ¼ Me.

FIG. 7. The root mean square deviation ΔTMD of the BLFQ
results from the perturbation results as a function of n. All the
BLFQ results are averaged over Nmax ¼ fn; nþ 2; nþ 4g,
K ¼ n. The blue and the orange lines represent the average
deviations for fe1 and h⊥e

1L at x ≈ 0.5, respectively. We only
include the deviation within the UV and IR cutoff, i.e.,
b=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
< jk⊥j < b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmax=2

p
.
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FIG. 8. The BLFQ results (solid lines with different color) and the perturbative results (black lines with different dash styles) [55,56]
for five nonzero leading-twist TMDs neglecting the gauge link. The BLFQ results are obtained by averaging over the BLFQ
computations at Nmax ¼ f100; 102; 104g, K ¼ 100 and b ¼ Me. The left panels show k⊥ dependence at selected x and also the
envelope of the oscillation using shadowing as our numerical uncertainty. The right ones show x dependence at selected k⊥. Curves with
different dash styles or colors are results at different x (k⊥) for left (right) panels.
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FIG. 9. 3D plots of the BLFQ results for five nonzero TMDs neglecting the gauge link. Results are all obtained by averaging over the
BLFQ computations at Nmax ¼ f100; 102; 104g, K ¼ 100 and b ¼ Me.
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of Fig. 6 we see that the agreement in the small jk⊥j region
does improve when we relax the truncation parameters, and
thus we expect this discrepancy to disappear in the limit
that the truncation parameter Nmax goes to infinity.
To be more specific, we employ the following strategy to

quantify the proximity of the BLFQ results to the pertur-
bative results.

(i) We subtract the perturbative results from the BLFQ
results after implementing our Nmax averaging
method, to obtain the deviation.

(ii) We then calculate the root mean square of those
deviations within the UV and IR cutoff, i.e.,
b=

ffiffiffiffiffiffiffiffiffiffi
Nmax

p
< jk⊥j < b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nmax=2

p
to obtain the aver-

age deviation.
We use ΔTMD to represent this average deviation and
illustrate the average deviations of fe1 and h⊥e

1L at x ≈ 0.5 as
a function of the truncation parameter in Fig. 7. It can be
seen that the average deviation after implementing our
Nmax averaging method is quite small compared with the
original distribution value and goes down when we increase

FIG. 10. Plots for the electron PDFs fe1ðxÞ, ge1ðxÞ and he1ðxÞ.
The BLFQ results (solid lines with different markers) are
compared with the perturbative results (black lines with different
dash styles) [55,56]. The BLFQ results are obtained by averaging
over the BLFQ computations at Nmax ¼ f100; 102; 104g, K ¼
100 and b ¼ Me. We also show an enlarged version of those
curves in the range 0.2 ≤ x ≤ 0.6 for a clearer comparison.

FIG. 11. Density plots in the transverse-momentum plane at different x for the unpolarized distribution, i.e., fe1. The BLFQ results are
shown in the lower row and the perturbative results [55,56] are shown in the upper row. From left to right, the longitudinal momentum
fraction of the bare electron is 0.1, 0.5 and 0.8, respectively. The BLFQ results are obtained by averaging over the BLFQ computations at
Nmax ¼ f100; 102; 104g, K ¼ 100 and b ¼ Me.
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nðNmaxÞ. The latter feature is a quantitative demonstration
of the convergence of our BLFQ results and we would
expect that the deviations vanish when we take nðNmaxÞ
to infinity.

B. TMDs

We evaluate the TMDs following Eqs. (24)–(28) and
then obtain the BLFQ results by averaging over the BLFQ
computations at Nmax ¼ f100; 102; 104g, K ¼ 100 and
b ¼ Me. If not stated otherwise, the BLFQ results that
we show in the following are all obtained in the same way.
In the left panel of Fig. 8, we show our five leading-twist
TMDs as functions of k⊥ at different values of x, and in the
right panel of Fig. 8, we show them as functions of x at
different values of k⊥. In these figures, we compare the
BLFQ results with the perturbative results evaluated in
Refs. [55,56] and also show the envelope of the oscillation
using shadowing as our numerical uncertainty. We find that
all five nonzero TMDs obtained by the BLFQ approach are
in excellent agreement with the perturbative results over the
entire region of x and with moderately large jk⊥j. The
envelope of the oscillation in the small jk⊥j region is sizable

in some TMDs but trends in the expected direction toward
zero with increasing Nmax. For example, for fe1 at x ≈ 0.5
and ðk⊥Þ2 ¼ 0.01 ðMeV2Þ, the width of this envelope is
0.00256 ðMeV2Þ at Nmax ¼ 50 but 0.00136 ðMeV2Þ
at Nmax ¼ 100.
The three-dimensional structures of our BLFQ results

after averaging are shown in Fig. 9. It is clearly seen
there that all five nonzero TMDs have peaks near
ðx; k⊥Þ ¼ ð1; 0Þ. These peaks indicate the dominant
probability is to find a bare electron in the physical
electron in each of the different polarization configu-
rations. For fe1, g

e
1L and he1, which appear very similar

by eye, the peak in the transverse direction runs higher
with increasing x but falls rapidly to zero or even
negative region (for ge1L) after x decreases below 0.7.
For ge1T and h⊥e

1L , the peak occurs very close to k⊥ ¼ 0

and falls rapidly toward zero as ðk⊥Þ2 increases toward
0.01 ðMeV2Þ.
PDFs of the bare electron within the physical electron

are illustrated in Fig. 10, where again we find a good
agreement between our BLFQ results after averaging
and the perturbative results. We remark that, in Fig. 10,

FIG. 12. Density plots in the transverse-momentum plane at different x for distribution with both physical and bare electron
polarized in the same longitudinal direction, i.e., ðfei þ ge1LÞ=2. The BLFQ results are shown in the lower row and the perturbative
results [55,56] are shown in the upper row. From left to right, the longitudinal momentum fraction of the bare electron is 0.1, 0.5 and
0.8, respectively. The BLFQ results are obtained by averaging over the BLFQ computations at Nmax ¼ f100; 102; 104g, K ¼ 100
and b ¼ Me.
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those three PDFs are very close and in the limit x → 1
they basically become the same. This feature is also
clearly seen if you take the same limit for the analytic
perturbative equations, i.e., Eqs. (38), (39), and (43) in
Ref. [56] or Eqs. (B3), (B5), and (B9) in Ref. [55]. In
that limit, those three TMDs actually equal each other
and thus their integration in the transverse direction also
becomes the same.

C. Spin densities in momentum space

By designating the three-dimensional spin vectors of the
bare electron and physical electron by s⃗ ¼ ðs1; s2; s3Þ and
S⃗ ¼ ðS1; S2; S3Þ, respectively, we can define the bare
electron’s momentum distribution inside a physical elec-
tron with different polarization combinations via those five
nonzero leading-twist TMDs as [56]

ρðx; k⊥; s; SÞ ¼ 1

2

�
fe1 þ s3S3ge1L þ s3

S⊥ · k⊥
Me

ge1T

þ S3
s⊥ · k⊥
Me

h⊥e
1L þ s⊥ · S⊥he1

�
: ð33Þ

Using this formula, we find that the momentum distribution
for both the bare and the physical electron polarized in the
same transverse direction can be computed by ðfe1 þ he1Þ=2.
Other polarization combinations are ðfe1 þ ge1LÞ=2 for
both polarized in the same longitudinal direction, ðfe1 þ
ky
Me

ge1TÞ=2 for longitudinally polarized bare electron inside

y-axis polarized physical electron and ðfe1 þ ky
Me

h⊥e
1L Þ=2 for

the converse arrangement.
In Figs. 11–13, we present the bare electron densities in

the transverse-momentum plane at different values of x
when both the bare and the physical electrons are unpo-
larized, longitudinally, and transversely polarized, respec-
tively. We find that those three distributions in momentum
space are azimuthally symmetric, having the maximum at
the center, and rapidly fall off toward the periphery of the
transverse-momentum plane. Note that h⊥e

1T and h⊥e
1 vanish

in our calculation which makes the transversely polarized
density symmetric. In principle, with a nontrivial gauge
link they will not vanish and the transversely polarized
density may not be symmetric. The densities grow larger
and larger with increasing x, which is consistent with the

FIG. 13. Density plots in the transverse-momentum plane at different x for distribution with both physical and bare electron
polarized in the same transverse direction, i.e., ðfei þ he1Þ=2. The BLFQ results are shown in the lower row and the perturbative
results [55,56] are shown in the upper row. From left to right, the longitudinal momentum fraction of the bare electron is 0.1, 0.5 and
0.8, respectively. The BLFQ results are obtained by averaging over the BLFQ computations at Nmax ¼ f100; 102; 104g, K ¼ 100
and b ¼ Me.
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right panels of Fig. 8. It is also observed from the right

panels of Fig. 8 that fe1, g
e
1L and he1 follow similar patterns

in the longitudinal direction, though they are not identical.

Thus, changes in the longitudinal direction in Figs. 11–13
are also quite similar. However, longitudinally and trans-
versely polarized distributions (Figs. 12 and 13) have
smaller values in the center with respect to unpolarized
distribution (Fig. 11), owing to averaging fe1 with ge1L and
fe1 with he1, respectively.
The distributions ðfe1 þ ky

Me
ge1TÞ=2 and ðfe1 þ ky

Me
h⊥e
1L Þ=2

are shown in Figs. 14 and 15, respectively, where we
clearly see the distortion introduced by different polari-
zation configurations of the bare and the physical elec-
tron. Both densities feature a significant dipole
deformation arising from the terms ky

Me
ge1T and ky

Me
he⊥1L in

the y axis. It can also be noticed that the distortion of a
longitudinally polarized bare electron in a transversely
polarized parent electron is opposite to that of a

transversely polarized bare electron in a longitudinally
polarized physical electron. The reason is that h⊥e

1L is
positive, while ge1T is negative. Since both the TMDs
have the peaks at large x, the distortions are stronger near
x ∼ 0.8 compared to other values of x.
The oscillation of the BLFQ results after averaging

(lower rows) around the perturbative results (upper rows)
is also observed in Figs. 11–15. Although we utilize
BLFQ results after averaging to calculate those density
plots, we could still see the oscillation clearly. For
Figs. 11–13, the oscillation comes directly from the
oscillation of fe1g

e
1L and he1 in the small k⊥ region even

after averaging, which can be seen from the left panels of
Fig. 8. And for Figs. 14 and 15, the original oscillation
shown in Fig. 8 is small but is amplified by the transverse
momentum ky in the definition of those distributions. We
anticipate that BLFQ calculations in larger basis spaces,
accompanied by a larger averaging domain, would further
reduce these finite basis artifacts.

FIG. 14. Density plots in the transverse-momentum plane at different x for distribution of a longitudinally polarized bare electron
in a y-axis polarized physical electron, i.e., ðfei þ ky

Me
ge1TÞ=2. The BLFQ results are shown in the lower row and the perturbative

results [55,56] are shown in the upper row. From left to right, the longitudinal momentum fraction of the bare electron is 0.1, 0.5 and
0.8, respectively. The BLFQ results are obtained by averaging over the BLFQ computations at Nmax ¼ f100; 102; 104g, K ¼ 100
and b ¼ Me.
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V. SUMMARY

In this paper, we have investigated the leading-twist
TMDs of the physical electron from its light-front wave
functions in the framework of basis light-front quantization.
These wave functions were obtained from the eigenvectors
of the light-front QED Hamiltonian in the light-cone gauge.
Our results have been compared with leading-order per-
turbative calculations. Our current study of the TMDs is
performed within the lowest nontrivial Fock sectors. With a
proper renormalization procedure and a rescaling of the
naive TMDs correcting the artifacts introduced by the Fock
space truncation, the BLFQ results are consistent with the
perturbative calculations. During the calculation, we have
also introduced an averaging method for reducing finite
basis artifacts of our BLFQ results. This method may be
used in the following nonperturbative investigation. In this
study, the gauge link has been set to unity which leaves us
five nonzero TMDs out of the eight leading-twist TMDs.
Employing those nonzero TMDs, we have also studied the
spin densities in the transverse-momentum plane of a bare
electron inside a physical electron with different polariza-
tion configurations. The quantitative results of the densities

are also consistent with the perturbative results. These
calculations constitute a comprehensive and accurate test
of the BLFQ approach. For further investigation, future
developments will focus on the inclusion of a nontrivial
gauge link that will provide a prediction of the Boer-
Mulders function h⊥e

1 and the Sivers function f⊥e
1T in QED.

The main purpose of this study is to establish the founda-
tion for studying the TMDs for strongly interacting systems
in QCD, like the baryon and meson which are highly
nonperturbative.
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