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Schwinger pair production is analyzed in a Belavin, Polyakov, Schwarz and Tyupkin (BPST) instanton
background and in its SLð2;CÞ complex extension for complex scalar particles. A non-Abelian extension
of the worldline instanton method is utilized, wherein Wong’s equations in a coherent state picture adopted
for SLð2;CÞ are solved in Euclidean spacetime. While pair production is not predicted in the BPST
instanton, a complex extension of the BPST instanton, existing as parallel fields in Minkowski spacetime, is
shown to decay via the Schwinger effect.
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I. INTRODUCTION

The quantum field theoretic (QFT) vacuum in a strong
electric field is thought unstable against the production
of particle anti-particle pairs in what is known as the
Schwinger mechanism [1]. Observation of the Schwinger
effect could be impactful for the understanding of non-
perturbative QFTs, and is actively being or to be sought not
only in strong quantum electrodynamics (QED) in high-
power laser facilities (e.g., ELI beam lines, etc. reviewed in
[2]), but also in analog condensed matter settings, whereby
the effect is facilitated through Landau-Zener transitions
[3]. Yet, due to a strong exponential suppression, (i.e.,
m2c3π=eEℏ for homogeneous electric field, E, and scalar/
fermion mass, m), the effect still has not been seen. While
smallish in high-power lasers, the Schwinger mechanism is
thought to be a prominent feature of non-Abelian chromo-
electric flux tube breaking in heavy-ion collisions [4],
during which, in topologically nontrivial fields, chiral
transport phenomena can develop.
The Schwinger mechanism has been argued to underlie

the chiral anomaly for finite fermion mass systems [5],
and has been confirmed numerically [6]. The axial
Ward identity at operator level in QED reads ∂μj

μ
5 ¼

−ðe2=16π2ÞϵμναβFμνFαβ þ 2mψ̄iγ5ψ , with jμ5 the axial cur-
rent density and ψ the fermion field [7]. Then in homo-
geneous fields with nonzero Chern-Pontryagin density, the

matrix element vacuum polarization (i.e., in-out expect-
ation values), of the axial Ward identity indicates an
anomaly cancellation; however in-in expectation values
of the identity, properly accounting for the Schwinger
effect, restore the anomaly [8]. And, a pertinent and
intuitive question one may ask is how does the anomaly
behave under the Schwinger mechanism in non-Abelian
and nontrivial topological fields? To address this we must
first understand the Schwinger effect for massive particles
under such fields. The case of massless fermions under a
isotropic and homogeneous SU(2) gauge field background
with a nonvanishing Chern-Pontryagin density leading to
the chiral anomaly via the Schwinger effect was explored in
[9]. And massive pair production has also been studied in
axion-SU(2) field during inflation [10].
The index theorem is well known to relate the fermionic

left and right zero modes to the Pontryagin number [11]. A
key example [12] is provided through the Dirac operator
in a Belavin, Polyakov, Schwarz, and Tyupkin (BPST)
instanton [13] background, and therefore the instanton is an
intuitive choice of a topologically nontrivial background
under which to study Schwinger pair production. A measure
of pair production is provided through the vacuum non-
persistence, namely the appearance of an imaginary part in
the background field effective action; the nonpersistence
predicts the vacuum instability sum over any number of pair
permutations [14]. One may characterize the nonpersistence
as arising for the condition, jhΩoutjΩinij2 ≠ 1, for in and out
asymptotic vacuum states. Then, as the BPST instanton
interpolates between differing asymptotic winding numbers
in Euclidean time, one should not dismiss out of hand a role
played by the Schwinger mechanism. Nevertheless, an
imaginary part of the fermion/boson determinant in a
BPST instanton is not seen; they have been evaluated exactly
in [15]. Not only do we seek to explain this, but moreover
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we also seek to explore under what conditions does
Schwinger pair production occur.
Pair production under inhomogeneous background fields

can be analytically cumbersome, but has been well studied
using the nonperturbative worldline instanton (WI) method
[16–18]. Thus, it is instructive to study the more compli-
cated topological fields through a non-Abelian extension of
the WI method. To avoid confusion with the WIs, let us
refer to disparate BPST instantons compactly as Yang-Mills
instantons (YMI); anti-instantons are simply anti-YMI.
The WI reminiscent Lorentz force equation is to an
Abelian system what Wong’s equations [19–21] are to a
non-Abelian system. And Wong’s equations describe the
classical evolution of a particle in a Yang-Mills field. To
arrive at Wong’s equations we employ a coherent state
formalism [22] on the Wilson loop, converting the pro-
pertime ordered matrix weighted exponential into a path
integral over the Haar measure. This process is known for
the non-Abelian Stokes theorem [23,24] as well as for the
chiral kinetic theory [25], with non-Abelian degrees of
freedom [26]. The chiral kinetic theory has also been
explored on the worldline [27–29]. And worldline tech-
niques under a coherent state formalism have proved
valuable for the calculation of polarized deeply inelastic
scattering [30]. Let us last point out that color degrees of
freedom in the Wilson loop have also equivalently been
described with auxilary fields; see [31,32] for the more
general case.
What is novel in our approach is the extension of the

coherent state formalism for the Wilson loop to a non-
compact SLð2;CÞ group. There is a topological equiva-
lence between the coherent states and coset elements, here
SLð2;CÞ=SUð2Þ, that is manifest in the construction of
the Hilbert space, H. Group complexifications of the type
HC=H—most remarkably SU(2)—have played a stellar
role in various fields. For instance, precise formulation of
the AdS=CFT correspondence requires Euclidean anti–de
Sitter space AdS3 string theory topologically equivalent
SLð2;CÞ=SUð2Þ [33,34]. Also Chern-Simons gauge
theory with complex gauge group SLð2;CÞ [35] has been
found to exhibit many interesting connections with three-
dimensional quantum gravity and the geometry of a hyper-
bolic three-manifold; see [36] and references within. Let us
also comment that most spinfoam models for 4D gravity
have been constructed as discretized path integrals for
constrained background field theories with SLð2;CÞ [37].
In this paper we consider SUð2ÞC, extending the WI
formalism to explore non-Abelian topologically nontrivial
fields, and also through analytical continuation we para-
metrize the effective action.
The WI method has also been extended to finite temper-

ature [38] and to worldline sphalerons [39]. However, we
treat the effective action to one-loop at zero temperature,
and we also negate backreaction effects. Last, we focus
on complex scalar production. In a YMI background the

fermion functional determinant is proportional to that of a
complex scalar [40], since the spectrums are similar apart
from a multiplicity factor and zero modes. Furthermore,
apart from a prefactor the fermion effective action only
differs from the complex scalar one through a spin factor,
whose contributions can be safely neglected in performing
the WI method for homogeneous, Sauter-type, or sinusoi-
dal potentials [17].
Thiswork is organized as follows: we beginwith a cursory

examination of the Schwinger effect, and its absence in SU
(2) Euclidean fields in Sec. II. Thenwe develop theworldline
formalism for non-Abelian field in Sec. III. Then as a
demonstration of the absence, we examine pair production
in a YMI in Sec IV. And its complex extension, which does
yield pair production, is sought in Sec. V. Conclusions are
finally presented in Sec. VI.

II. MINKOWSKI ELECTRIC FIELDS
AND THE SCHWINGER EFFECT

Let us begin our discussion of pair production (or the
lack thereof) in a YMI by examining the large instanton
limit, R2 ≫ x2 for instanton parameter R; this is for the
field strength of the YMI in the regular gauge,

−
4R2

gðx2 þ R2Þ2 σμν → −
4

gR2
σμν; ð1Þ

weuse conventional notations that are listed below. The large
instanton limit was explored in [41]. The key point here
is that in the large instanton limit, the YMI resembles a
homogeneous field, one with (in a Minkowski spacetime
picture) magnetic fields, Bj¼−ð2=gÞ½R2=ðρ2þR2Þ2�σj, and
imaginary electric fields, Ej¼ið2=gÞ½R2=ðρ2þR2Þ2�σj. As
is well understood for the Abelian homogeneous case, there
can be no pair production in sole constant magnetic fields
[42]. And the imaginary electric fields too act as a magnetic
field, giving rise to no poles in Schwinger proper time.
Therefore, it is anticipated there should be no pair production
in the YMI.
It is simple to see why this should be the case. Pair

production is governed by the nonpersistence criteria,
which goes as, for a complex scalar, jhΩoutjΩinij2 ¼
j detð−D2 þm2Þj. The determinant can be written as a
product of eigenvalues of the scalar operator. However, in a
Euclidean metric, since the scalar operator under a YMI
background is Hermitian, its squared operator eigenvalues
must be semipositive definite. And one would not expect to
see a complex phase emerging from the determinant. Put
another way, one must have the sign problem in order to see
Schwinger pair production, that is the sign problem in a
worldline path integral formalism in a Euclidean metric,
which is unambiguous. AfterWick rotation, real Minkowski
electric fields become imaginary in Euclidean spacetime,
giving rise to the sign problem in the worldline action.
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Through similar reasoning, we would anticipate a similar
pair production absence for a number of topological Yang
Mills solutions in SU(2), such as for Wu-Yang monopoles
[43], merons [44], among others [45]. Sphalerons [46],
however, exist at finite temperature, to which the above
arguments may not apply. But it is curious to ask to what
topological objects may Schwinger pair production play a
role. In light of the large instanton limit an intuitive surmise
would be objects with real electric fields in Minkowski
spacetime. We explore such objects below in a natural
extension to the YMI. However, a real SU(2) background
field in Minkowski spacetime after Wick rotation becomes
an SLð2;CÞ field in Euclidean spacetime [47]. We apply
the WI method to study pair production, and to make the
extension to the most general complex field we apply the
coherent state method to noncompact groups, doing so
furthermore furnishes us with a worldline action amenable
to Wong’s equations and WIs. Even if one were to not
employ a Euclidean metric the extension to a complexified
group is expected, indeed, even for the Abelian case,
complex WIs are important [48].

III. NON-ABELIAN WORLDLINE INSTANTONS

To more fully explore the Schwinger effect in nontrivial
topological fields let us build on the WI method [16–18].
Our starting point is the one-loop effective action for a
complex scalar particle with mass, m, in a non-Abelian
Euclidean background field,

Γ½A� ¼ −
1

2
log detð−D2 þm2Þ; ð2Þ

where in the fundamental representation we have Dμ ¼
∂μ − igAμðxÞwithAμðxÞ ¼ Aa

μðxÞTa.Gμν ¼ ∂μAν − ∂νAμ−
ig½Aμ; Aν�. Also we use the Euclidean convention, for metric
gμν ¼ diag½þ;þ;þ;þ�, such that our magnetic and electric
fields in Minkowski spacetime read Gij ¼ ϵijkBk and
G4i ¼ −iEi, respectively. In the worldline path integral
formalism the non-Abelian effective action may be written
as [49]

Γ½A� ¼
Z

∞

0

dT
T

e−m
2T

I
Dxe−

R
T

0
dτ1

4
_x2W: ð3Þ

Here the coordinate boundary conditions, xð0Þ ¼ xðTÞ ¼ x0,
are periodic with path integral measure

H
Dx ≔

R
dx0

R
Dx.

_x ≔ dx=dτ. Spacetime indices to be summed over are
understood and suppressed for readability. The path ordered
Wilson loop reads

W ≔ trPeig
R

T

0
dτA_x: ð4Þ

The challenge here in contrast to an Abelian gauge for
the application of steepest descents is a matrix weighted

worldline action. However, with application of a coherent
state approach, we will show that the Wilson loop may
be cast as a path integral with two merits: (1) the world-
line action becomes a c number amenable to a worldline
instanton approach. (2) The path ordering is negated.
Furthermore, for the most general configuration we extend
the application of the coherent state formalism to the
Wilson loop in SLð2;CÞ.

A. Coherent state formalism in SLð2;CÞ
To cast the Wilson loop as a coherent state path integral

we follow the approach used in [22,23], whereby we
extend applicability of the coherent state Wilson loop to
the noncompact group, G ¼ SLð2;CÞ. The essence of the
approach entails one find a Haar measure leading to a
resolution of the identity, to which one may insert into the
infinitesimally segmented Wilson loop.
Let us first go over relevant or basic details of G; G is

described through the algebra, ½li; li� ¼ iϵijklk, ½li; ki� ¼
iϵijkkk, and ½ki; ki� ¼ −iϵijkkk, for li ¼ σi=2 and ki ¼ ili

corresponding to the generators of SU(2) and SU(1,1),
respectively, and so both l and k transform as vectors under
SU(2).
One can make use of the coherent state formalism [22]

through an exploitation of the one-to-one correspondence
between coherent states jαi, representing elements of the
group G, and points α in the complex plane. The map is a
continuous manifestation of the topological equivalence
between these two spaces. In this way, distances are
determined by the intrinsic metric associated to the inner
product, of which this Hilbert space is endowed with.
The Lie algebra of G, slð2;CÞ, is semisimple, and so

it is more convenient to rewrite it in its standard Cartan
basis: fHβ; Eβ; E−βg, with the usual diagonal, Hβ, and
off diagonal, Eβ, shift operators. For the construction of
coherent states of a dynamical group G, we will require a
normalized reference state jΛi ∈ HΛ with Hilbert space
HΛ corresponding to the unitary irreducible representation
of G. And we will also require the maximum stability
subgroupH and cosetG=H [22]. Here we haveH ¼ SUð2Þ
pointing towards G=H ¼ SLð2;CÞ=SUð2Þ as the target
space. The slð2;CÞ algebra is obtained through complex-
ification of SU(2) group algebra, e.g., suð2Þ ⊗ isuð2Þ, and
so its topology is S3 ×H3. G=H is topologically equivalent
to the upper sheet of a three-dimensional mass hyperboloid
Hþ

3 , and is thus endowed with a hyperbolic metric as we
will see. The coset element can be generated through the
action of the displacement operator, with u ∈ SLð2;CÞ
where we write jΛ; ui ≔ ujΛi,

jΛ; ui ¼ expðηβEβ − η̄βE−βÞjΛi; ð5Þ

where a sum over the roots of the algebra—above denoted
with β—is implicit, with angle ηβ ∈ C. The states are in
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one-to-one correspondence and topologically equivalent to
G=H. Then making use of Baker-Campbell-Hausdorff for-
mula one can show the displacement operator becomes [22]

jΛ; ui ¼ ezαEαeγσHσe−z̄βE−β jΛ; zi; ð6Þ

¼ Nðz; z̄Þ−1=2 expðzαEαÞjΛ; zi: ð7Þ

All powers of e−z̄βE−β vanish after acting on the extremal
state. The actionofeγσHσ gives rise to thenormalization factor
Nðz; z̄Þ identified as the Kähler potential K ≔ logNðz; z̄Þ.
The invariant metric then can be found as the second
derivative of the potential gαβ ¼ ∂∂̄K, with Kähler two-
form ω ¼ igαβdzα ∧ dz̄β. And the invariant measure is used
in the construction of theHaarmeasure; to find themeasure it
is convenient to make use of a complex projective map.
Let us then consider the Cartan decomposition g ¼ q ⊕

p of the slð2;CÞ Lie algebra, with q the Lie algebra of
suð2Þ and p ¼ ηβEβ − η̄E−β its orthogonal complement,
such that ½q; q� ⊂ q, ½q; p� ⊂ p, and ½p; p� ⊂ q as outlined in
[22]. Then we can see that for noncompact groups, such as
our case, the matrix representations of generators RðqÞ,
RðpÞ are skew symmetric and symmetric, respectively;
therefore the coset SLð2;CÞ=SUð2Þ is a symmetric space.
Let us look at a matrix representation of the noncompact
coset group [50],

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ww̄

p
w

w̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ww̄

p
�
; ð8Þ

with w ¼ η sinhðjηjÞ=jηj. Likewise, our coset group defined
as the set of all Hermitian two-by-two matrices with
determinant one, can be parametrized by the convenient
global coordinates of Hþ

3 as

�
1 z

0 1

��
eγ=2 0

0 e−γ=2

��
1 0

z̄ 1

�

¼
�
e

γ
2þjzj2e−γ

2 ze−
γ
2

z̄e−
γ
2 e−

γ
2

�
: ð9Þ

Equivalently, one may arrive at this expression by explicitly
working from the displacement operator, Eq. (5). Equating
these two parametrizations for the coset group leads us
to the complex projective map: z ¼ wð1þ ww̄Þ1=2 and
eγ=2 ¼ ð1þ ww̄Þ−1=2. It follows that any group element u ∈
SLð2;CÞ (parametrized by coefficients α, β, γ, δ) acting on
a coset element z is a holomorphic Möbius transformation,
i.e., TuðzÞ ¼ ðαzþ βÞ=ðγzþ δÞ.
Equipped with this chart, we can rewrite the left hand

side of Eq. (9) purely in terms of z and express it in the form
of Eq. (7). The normalization of these states follows from
an explicit computation of the exponential operator on the
reference state.

jΛ; ui ¼ 1

ð1 − zz̄ÞΛ expðzαEαÞjΛ; zi: ð10Þ

At this point the Kähler potential, and hence its invariant
Haar coset metric, can be recognized:

gαβ̄ ¼ −Λ∂∂̄ logð1 − zz̄Þ; ð11Þ

¼ Λ
ð1 − zz̄Þ2 ðδαβ̄ð1 − zz̄Þ þ zαz̄βÞ: ð12Þ

The Haar measure eventually becomes

dμΛðz; z̄Þ ¼
2Λþ 1

4π

dzdz̄
ð1 − zz̄Þ2 ; ð13Þ

for the coset SLð2;CÞ=SUð2Þ, that is the complex projec-
tion of upper sheet of the three-dimensional hyperboloid
Hþ

3 , the Poincare disk metric.
We can in this way expand any arbitrary state jΨi ∈ HΛ

Hilbert space into coherent space whose coefficients
are smooth functions in u defined over the coset space.
However, due to the overcompleteness of coherent states,
the expansion is not unique. And so the expansion
coefficients may be deformed. This set of functions
will on the other hand allow us to construct the basis for
function space L2ðSLð2;CÞ=SUð2ÞÞ [33]:

H≡ L2ðHþ
3 Þ ¼

Z
⊕

s∈Rþ
dss2H−1=2þis; ð14Þ

through the principal series decomposition of the group,
where the spin j takes on complex values, j ¼ − 1

2
þ is,

s ∈ R, coming from the Casimir having a continuous
spectrum. For a detailed account on SLð2;CÞ we refer
the reader to [51].
Equipped with the Haar measure and hence the reso-

lution of identity we may transform the Wilson loop into a
path integral over coherent states. To cast Eq. (4) into its
path integral form we must both expand the path ordered
exponential of parallel transporter WLðτ0; τÞ and evaluate
its trace to recover the Wilson loop. This is a standard
procedure; we first partition the path L∶τ0 → τ into
infinitesimal segments,

P exp

�
ig
Z

τ

τ0

dτA_x

�
¼ P

YN−1

k¼0

ð1þ igϵA_xÞ; ð15Þ

where ϵ ¼ ðτ − τ0Þ=N and take proper limits at the end. To
evaluate trace of this object we are required to choose a set
of states resolving the identity 1 ¼ R jΛ; ukidμðukÞhΛ; ukj,
with uk a coset element at τk and Haar measure given in
Eq. (13), to which we may insert at each partition point. The
Wilson loop becomes
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W ¼
Z

DμC exp

�
ig
2

I
C
ðmaAadxþ ωðxÞÞ

�
; ð16Þ

with Dμ corresponding to the product of the invariant Haar
measure per coset element and ma ¼ hΛjuðxÞTau−1ðxÞjΛi
and ωðxÞ ¼ hΛjuðxÞdu−1ðxÞjΛi. Let us notice that the
argument of the exponential has been brought down to
Abelian quantities allowing us to apply Stokes’ theorem
[hence coined the non-Abelian Stokes theorem as demon-
strated for SUðNÞ in [23,24] ] and express W over the
surface bounded by C,

W ¼
I

Dμ exp

�
ig
2

Z
T

0

dτtr

�
σ3

�
uA_xu−1 þ i

g
u _u−1

���
:

ð17Þ
Having demonstrated the Wilson loop may be represented
in SLð2;CÞ as a path integral over a complex isospin, let us
now show how periodic solutions to Wong’s equations in
Euclidean spacetime are non-Abelian worldline instantons.
In evaluating the trace we adopt coherent states, which
are equipped with properties that will prove useful to
explore more exotic field configurations. Coherent states,
in terms of the language of group theory, are embedded in a
topologically nontrivial geometrical space facilitating the
perfect machinery to probe instanton and other nontrivial
configurations.

B. Wong’s equations

Wong’s equations follow as classical equations of
motion of the worldline action. Let us however first arrange
terms in the action to more suitably elicit their connection
to worldline instantons; to accomplish this we first take the
Schwinger proper time integral, T, as was done in [16,17].
First, using the coherent state represented Wilson loop in
Eq. (17), we have for the effective action, Eq. (3), after the
substitution, τ → Tτ0

Γ½A� ¼
Z

∞

0

dT
T

I
DxDμe−S; ð18Þ

S ¼
Z

1

0

dτ

�
m2T þ _x2

4T
−
ig
2
tr

�
σ3

�
uA_xu−1 −

i
g
_uu−1

���
:

ð19Þ

Let us evaluate the proper time integral through steepest
descents—or rather the Laplace method. We expand
T ¼ Tn þ K expðiαnÞ for stationary points, Tn, about
K ∈ ½0;∞Þ, with phase αn ¼ π=2 − 1=2 argðf00ðTnÞÞ, for
fðTÞ ¼ −m2T − 1

4T

R
1
0 dτ _x2. We also have that f00ðTÞ ¼

− 1
2T3

R
1
0 dτ _x

2. However, in what follows we will confine
our attention to the case of only real and positive Tn, and
hence the phase factor expðiαnÞ ¼ 1. We find for the
stationary points

T2
n ¼

1

4m2

Z
1

0

dτ _x2; ð20Þ

whose n minima can be had alongside steepest descents
in coordinate and isospin space. The proper time integral
becomes

Z
∞

0

dT
T

e−m
2T− 1

4T

R
1

0
dτ _x2 ≈

X
n

ffiffiffiffiffiffiffiffiffi
πTn

4m2

r
e−2m

2Tn : ð21Þ

Importantly, so that steepest descents be valid, a large mass

and or weak fields—characterized by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
1
0 dτ _x

2
q

[16,17]—

must be assumed, i.e., m2Tn ≫ 1. The criteria is safely met
for a low probability of pair production occurrence.
Furthermore, while we solveWong’s equations for complex
trajectories, we will find that only real periodic paths will
contribute to pair production for the fields examined. Last,
the Schwinger effect is dominated by an exponential
suppression, therefore we ignore prefactor terms. Let us
then turn our attention to the worldline action, Eq. (19), for
a given stationary point in proper time, Eq. (20),

Sn ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
1

0

dτ _x2

s
−
ig
2

Z
1

0

dτtr

�
σ3

�
uA_xu−1 −

i
g
_uu−1

��
:

ð22Þ

Classical solutions of the above action lead to Wong’s
equations, and with the Euclidean periodicity criteria,
also lead to worldline instantons. Let us begin with the
gauge element, u, leading to Wong’s equation describing
the precession of isospin.
One may straightforwardly apply the Euler-Lagrange

equations to the action in the gauge element through an
introduction of an infinitesimal angle to the gauge element
as outlined in [21]. Let us assume the gauge element can be
parametrized by the independent set of variables given by
Θ; then we have for σ̄i ¼ ðσ⃗; iσ⃗Þ,

uðΘðβÞÞ ≔ e
i
2
βiσ̄iuðΘÞ; ð23Þ

∂
∂βi uðΘðβÞÞ

				
β¼0

¼ ∂Θj

∂βi
∂

∂Θj
uðΘðβÞÞ

				
β¼0

; ð24Þ

where the define Mij ≔
∂Θj

∂βi jβ¼0. And we find

∂
∂Θj

uðΘÞ ¼ M−1
ij

i
2
σ̄iuðΘÞ: ð25Þ

M must have a nonzero determinant owing to the linear
independence of σ̄. Then, using the fact that _u−1 ¼
−u−1 _uu−1 and likewise ∂

∂Θi
u−1 ¼ −u−1ð ∂

∂Θi
uÞu−1, we find

for parameter, Θi,
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δS
δΘi

¼ i
2
M−1

ji tr½u−1σ̄juf½I; igA_x� þ ½I; u−1 _u�g�: ð26Þ

Here we have introduced the isospin variable,

I ¼ 1

2
u−1σ3u: ð27Þ

Then using that _I ¼ ½I; u−1 _u�, we can find for the isospin
portion of Wong’s equations as

_I ¼ ½igA_x; I�: ð28Þ

Let us digress on some properties of the isospin. It is
conserved as trI2 ¼ ð1=2ÞIiIi ¼ 1=2, where I ¼ ðIi=2Þσi
and Ii ¼ tr½σiI�. We can see therefore that the isospin
performs a precessional motion [19] despite its complex
nature.
One may also write the isospin equation, Eq. (28), as

½ð1=2Þσ3; uigA_xu−1 þ _uu−1� ¼ 0, and hence we can see
that a solution to the isospin equation of motion is
analogous to finding a gauge transformation of the
Hamiltonian igA_x such that the transformed Hamiltonian
becomes diagonal. Alternatively, a solution to the isospin
equation of motion furnishes such a gauge. An exact
solution can be had in principal such that the off diagonal
pieces of the geometric phase _uu−1 cancel with those of the
uigA_xu−1 term. We, however, exploit an adiabatic approxi-
mation giving way to the familiar Berry’s phase [52] to
arrive at a solution of Eq. (28).
Wong’s other equation is the non-Abelian equivalent of

the Lorentz force equation. This can be found straightfor-
wardly by minimizing the worldline action, Eq. (22), with
respect to the coordinate x, making use of the isospin
equation, Eq. (28), and the fact that _x2 is a constant owing
to the antisymmetric field strength tensor. We find for the
Lorentz force portion of Wong’s equations as

ẍμ ¼ −
igj_xj
m

tr½IGμν�_xν; ð29Þ

j_xj ≔
ffiffiffiffiffi
_x2

p
. Equations (28) and (29) make up Wong’s

equations. Their solutions in Euclidean spacetime about
periodic boundary conditions are worldline instantons
predicting a particle antiparticle tunneling from the QFT
vacuum. Here, we focus on the dominant exponential
suppression and confine our attention to the classical
worldline action, whose form is

Sn ¼ mj_xj −
Z

1

0

dτtr

�
IigA_xþ 1

2
σ3 _uu−1

�
; ð30Þ

for instanton number, n, governed by Eqs. (28) and (29).
Let us next look at the simplest case of non-Abelian fields
that posses nonzero Chern-Pontryagin density; these are

homogeneous parallel fields. This step is instructive in
that we can check the validity of the extension of the
worldline instanton method to non-Abelian fields. But
moreover, a key difference between the electric and
magnetic field applicability to the WI method is revealed,
which is beneficial to expose in a comparatively simple
setting. The non-Abelian WI method devised above is new,
and let us remark that one may also arrive at our results
starting from an auxiliary field approach [31,32] to a
complexification of the group to SUð2ÞC.

C. Homogeneous Abelian-like parallel fields

Let us examine homogeneous parallel fields in the x̂3
direction, which are in an Abelian-like representation:

G12 ¼ Bσ3; G34 ¼ iEσ3; ð31Þ

A2 ¼ Bx1σ3; A4 ¼ iEx3σ3: ð32Þ

These fields correspond to SU(2) parallel fields, B⃗ ¼ Bx̂3
and E⃗ ¼ Ex̂3, in Minkowski spacetime; here they are in
SLð2;CÞ. For Abelian-like (here proportional to σ3), non-
Abelian fields the isospin, according to Eq. (28), takes a
trivial solution. Note that for fields not proportional to σ3,
the Schwinger effect characteristics differ markedly [53].
Since ½σ3; Aμ� ¼ 0 we may select a propertime independent
gauge; let us take u−;þ ¼ iσ1;3 and u−1−;þ ¼ −iσ1;3. Then for
IH� ¼ 1

2
u−1� σ3u�, we find two independent solutions for the

isospin as

IH� ¼ � 1

2
σ3: ð33Þ

Variables of solutions in a homogeneous parallel field
background are affixed with superscript, H, to contrast
later solutions in a BPST instanton background, I, and a
complex equivalent, CI.
The Lorentz force equation, Eq. (29) reduces to

ẍH�1 ¼∓ igj_xj
m

B_xH�2; ẍH�2 ¼ � igj_xj
m

B_xH�1; ð34Þ

ẍH�3 ¼ � gj_xj
m

E_xH�4; ẍH�4 ¼∓ gj_xj
m

E_xH�3: ð35Þ

As we are looking for only solutions that yield real and
positive j_xj we examine only solutions corresponding to
the electric field. One can readily see that the coordinates
associated with the magnetic field will be periodic
about an imaginary argument for a hyperbolic sinusoidal
function, whereas the electric field periodicity is governed
by a real argument in a sinusoidal function. No simulta-
neous solutions for both the electric and magnetic parts
exist. Physically, this stems from the fact that a sole
magnetic field cannot elicit Schwinger pair production.
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Therefore one may take for the magnetic field coordinates,
xH1 and xH2 , a trivial constant value. Whereas for the electric
field coordinates, we find for the non-AbelianWIs the same
as in the Abelian case [16,17]:

xHþ3ðτÞ ¼ xH−4ðτÞ ¼
m
gE

sin

�
gj_xjE
m

τ

�
;

xHþ4ðτÞ ¼ xH−3ðτÞ ¼
m
gE

cos
�
gj_xjE
m

τ

�
; ð36Þ

with two distinct WIs circling either clockwise or counter-
clockwise according to the isospin, Eq. (33). And to satisfy
periodic boundary conditions we must have similarly

j_xj ¼ 2nπm
gE

∀ n ∈ Zþ: ð37Þ

The WIs indicate an exponential suppression of Schwinger
pair production according to Eq. (30) of

Sn� ¼ πnm2

gE
; ð38Þ

which is the same for either I�. The exponential suppres-
sion follows the exact solution, Eq. (A5), as is calculated in
the Appendix. Having illustrated the simplest case of non-
Abelian pair production via the worldline instanton
method, let us address the case of pair production in a
YMI background; we will find as expected pair production
is absent.

IV. PAIR PRODUCTION (OR LACK THEREOF) IN
A BPST INSTANTON BACKGROUND

To provide a convenient point of comparison for later
discussions, let us write out the BPST instanton (YMI)
field, AI , in the regular gauge,

AI
μðxÞ ¼

i
g

x2

x2 þ R2
Gðx̂Þ†∂μGðx̂Þ; ð39Þ

where R denotes the size of the instanton, but has no effect
on the topological winding number. The anti-YMI, AĪ, can
be found with the replacement G⇌G†. We use the
conventions of [54]. Then for the gauge element
Gðx̂Þ ¼ x̂μσ̄μ, where σμ ≔ ðiσ⃗; 1Þ and σ̄μ ≔ ð−iσ⃗; 1Þ, the
gauges read

AI
μðxÞ¼

1

g
2

x2þR2
σμνxν; AĪ

μðxÞ¼
1

g
2

x2þR2
σ̄μνxν; ð40Þ

where σμν ≔ 1
4i ½σμσ̄ν − σνσ̄μ� and σ̄μν ≔ 1

4i ½σ̄μσν − σ̄νσμ�.
And the field strength tensors are of course

GI
μν¼−

4R2

gðx2þR2Þ2σμν; GĪ
μν¼−

4R2

gðx2þR2Þ2 σ̄μν: ð41Þ

For the calculations that follow it is convenient to use a
matrix form for Lorentz indices; contractions are under-
stood and xT ¼ ðx1; x2; x3; x4Þ. Let us show this for the ‘t
Hooft symbols. For σμν ¼ 1

2
ηaμνσa and σ̄μν ¼ 1

2
η̄aμνσa, we

have for the symbols, ηaμν ¼ εaμν4 þ δaμδν4 − δaνδ4μ and
η̄aμν ¼ εaμν4 − δaμδν4 þ δaνδ4μ. The ‘t Hooft symbols can
be shown to satisfy several relationships. They are anti-
symmetric: ηTi ¼ −ηi and η̄Ti ¼ −η̄i. And also, since the
symbols transform under SOð4Þ ¼ SUð2Þ ⊗ SUð2Þ, we
can find the following:

ηiηj ¼ −½δij þ εijkηk�; η̄iη̄j ¼ −½δij þ εijkη̄k�: ð42Þ

Let us go ahead and express Wong’s equations in the
above form for the YMI, Eq. (39); they are

_IIc ¼ −
2

xI2 þ R2
εabc _xITηaxIIIb; ð43Þ

ẍI ¼ ij_xIj
m

2R2

ðxI2 þ R2Þ2 η · I
I _xI: ð44Þ

Before explicit computation, we can see that as was the
case for the magnetic fields in the previous section, see
Sec. III C and Eq. (31), the Lorentz force equation has a real
field strength argument, in contrast to the electric field.
Moreover, eigenvalues of tr½IIGI

μν� are all real, and hence
only project magnetic parts. We can explore this more
deeply with the aid of a large instanton limit and through
fixing the isospin in the direction of the gauge. Let us also
point out that Wong’s equation in the YMI have been
studied in [55]; however, our WI approach as well as
calculation technique are new.

A. Adiabatic theorem and the large instanton

Let us first evaluate the isospin equation of motion.
Consider for fictitious Hamiltonian, H ¼ igA_x, the isospin
equation of motion provided by ½1

2
σ3; uHu−1 þ _uu−1� ¼ 0;

see also Eq. (28). One can immediately see a solution is
provided by the selection of a gauge element, u, such thatH
takes a diagonal form, and that off diagonal parts of the
geometric phase, _uu−1, may be ignored. This is an adiabatic
theorem leading to Berry’s phase(s) [52], one for each
monopole singularity governing level crossing in H. We
will demonstrate shortly that the adiabatic approximation is
equivalent to (complex) circular solutions for the WIs, as
we calculated in Sec. III C, and the importance of which we
highlighted in Sec. II. Moreover, there, for the homo-
geneous fields circular solutions to Wong’s equations were
found, and homogeneous fields were also found to be the
limiting form in the large instanton limit, Eq. (1). Thus the
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adiabatic theorem and large instanton limits go hand in
hand. We take for the gauge element, uI , such that

uIAI _xIðuIÞ−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AIa _xIAIa _xI

p
σ3; ð45Þ

and likewise for AĪ. Let us just treat the YMI from this
point, and report on the anti-YMI below. One can see that
the above corresponds to

IIa ¼
_xITηaxIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_xITηaxI _xITηaxI
p : ð46Þ

We can see the isospin is fixed in the direction of the gauge
field, whose magnitude is always unity since the isospin is
an element of the coset SUð2Þ=Uð1Þ and is tracing out a
point on the surface of the unit sphere. One can see an
adiabatic approximation entails isospin also to be indepen-
dent of proper time, since according to Eq. (43), _II ¼ 0.
Then consider Eq. (46), since ηa are all antisymmetric
tensors we can see that to satisfy _II ¼ 0 we must have that

xI ∝ ẍI: ð47Þ

We also take the large instanton limit R2 ≫ x2; then one
can see the field strength tensor takes on the following form
(cf. Sec. II)

ẍI ≈
2ij_xIj
mR2

η · II _xI: ð48Þ

It proves convenient to evaluate the above using projection
operators of the field strength tensor, as one might do for
the Abelian Lorentz force equation [56]. However, due to
the self-duality of the YMI, we find a compact form for the
operators, only linear in tr½IIGI�; they are

PI
− ≔

1

2
ð1þ iη · IIÞ; PIþ ≔

1

2
ð1 − iη · IIÞ: ð49Þ

Apart from a Lorentz index assignment there is no
real identification for electric and magnetic projection
operators; they both project out magnetic field com-
ponents. Some useful properties of the projection operators
include idempotency, a completeness, and an orthogonality
between unlike projectors:

PI2
� ¼ PI

�; PI
− þ PIþ ¼ 1; PI

�P
I∓ ¼ 0: ð50Þ

Last, the projection operators project their respective
eigenvalues of the field strength tensor,

η · IPI
− ¼ −iPI

−; η · IPIþ ¼ iPI
−: ð51Þ

One can use the projection operators to decouple the
isospin from the Lorentz force equation.

Let us use the projection operators to separate the
coordinates into two parts

xIþ ≔ PIþxI; xI− ≔ PI
−xI: ð52Þ

Note also that the projection operators under interchange
of the Lorentz indices satisfy the following relation-
ship: PT

I� ¼ PI∓. Hence, we would have xIT� ¼ xITPI∓.
Furthermore, under the adiabatic approximation we
found the isospin becomes proper time independent.
Therefore, using Eq. (51), we find the Lorentz force
equation decouples as

ẍIþ ¼ −
2j_xj
mR2

_xIþ; ẍI− ¼ 2j_xj
mR2

_xI−: ð53Þ

One can readily find the solutions to the above as

xIþðτÞ ¼
mR2

2j_xIj
�
1 − exp

�
−
2j_xIj
mR2

τ

��
_xIþð0Þ þ xIþð0Þ;

ð54Þ

xI−ðτÞ ¼
mR2

2j_xIj
�
exp

�
2j_xIj
mR2

τ

�
− 1

�
_xI−ð0Þ þ xI−ð0Þ; ð55Þ

which can be combined giving one

xIðτÞ ¼ mR2

2j_xIj
�
sinh

�
2j_xIj
mR2

τ

�
þ cosh

�
2j_xIj
mR2

τ

�
iη · II

�
_xIð0Þ;

ð56Þ

with II given byEq. (46).We have also applied the constraint
given in Eq. (47); this gives xIð0Þ ¼ i mR2

2j_xI j η · I
I _xIð0Þ.

As anticipated, one can readily see that to satisfy the
periodicity requirement, xIð0Þ ¼ xIð1Þ, one must have

j_xIj ¼ imR2πn ∀ n ∈ Zþ; ð57Þ

in contradiction to the requirement of a real stationary
point, Eq. (20), and hence real worldline action,
Eq. (30). And thus, there can be no pair production.
The YMI acts like a magnetic field, as we saw in
Sec. III C, which does not give rise to the Schwinger
effect. Also, evaluation of the anti-YMI would result in
Eq. (57) as well.
Let us look at the worldline action. Using Eq. (56),

one can find that
R
1
0 dτtr½IIigAI _xI� ¼ ð1=2Þmj_xIj. Also, the

Berry’s phase term in Eq. (30), given by _uIðuIÞ−1 may also
only introduce a trivial factor of 4πi into the world-
line action. Thus the exponential suppression goes as
ð1=2Þim2R2πn, cf. Eq. (38). If one were to have real
electric fields, one would expect a similar but real quantity.
Then, let us explore just such a scenario.
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V. PAIR PRODUCTION IN A COMPLEX BPST
INSTANTON BACKGROUND

Above we demonstrated no pair production could occur
in a BPST instanton (YMI), and then (as alluded to before)
one may ask for what topologically nontrivial background
fields could one see pair production. In the homogeneous
parallel field case, Sec. III C, a real Minkowski electric
field was needed for the vacuum instability to be present.
Furthermore, in Sec. II it was shown in a large instanton
limit the YMI resembled in Minkowski spacetime non-
Abelian homogeneous imaginary electric fields and real
magnetic fields. An intuitive extension of the YMI that
might furnish pair production then would be to seek field
configurations in which both real electric and magnetic
non-Abelian fields are present. We construct such a back-
ground field here.
Let us however point out that Minkowski Yang-Mills

solutions with topology do exist [57–59], whose effect on
the anomaly have been studied [60]. But are, however,
analytically cumbersome for our purposes. The importance
of parallel real fields in Minkowski space for Yang-Mills
tunneling is stressed in [59]. Let us also note that our gauge
construction is similar in objective as the one demonstrated
in [61], and indeed we find here too that the Yang-Mills
equations of motion are not satisfied. Finally, we remark
that solutions to the Yang-Mills equations of motion in
Minkowski spacetime need not have integer Chern-Simons
number [58].

A. A complex BPST instanton

The desired background field can be had from a simple
identification: whereas a BPST instanton (YMI) represents
a solution with winding number difference in Euclidean
time, to wit, x4 → −∞ to x4 → ∞, the desired background
field stipulates a winding number difference in Minkowski
real time for x0 → −∞ to x0 → ∞ such that

ΔNMink ¼ NMinkðx0 → ∞Þ − NMinkðx0 → −∞Þ

¼
Z

dx0d3x
g2

16π2
tr½GMinkG̃Mink�: ð58Þ

Let us define the field under a Minkowski metric,
gμν ¼ diagð−;þ;þ;þÞ, with map

GMinkðx0; x⃗Þ ¼
1

ρ
ðx0 − ix⃗ · σ⃗Þ ∈ SUð2Þ; ð59Þ

G−1
Minkðx0; x⃗Þ ¼

1

ρ
ðx0 þ ix⃗ · σ⃗Þ; ð60Þ

with ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xμxμ þ 2x20

q
. GMink has the topology of S3,

however unlike the map in the YMI, Eq. (39), GMink cannot

map from a vacuum S3; as we will demonstrate our fields
are not classical Yang-Mills solutions. Also, ρ, is not a
Minkowski four-vector of unit length. Last, one may indeed
envision GMink as living in a Minkowski four-dimensional
cylinder with end caps in real time at NMinkðx0 → �∞Þ,
and disappearing at spatial infinity.
Using the above one can construct the following gauge

connection with ΔNMink ¼ 1,

ACI
Minkμðx0; x⃗Þ¼

i
g
fðx0; x⃗ÞG−1

Minkðx0; x⃗Þ∂μGMinkðx0; x⃗Þ: ð61Þ

Here f is a function such that fð0Þ ¼ 0 and fðρ → ∞Þ ¼ 1,
The above we can see is in precise analogy to the YMI with
x4 → x0, and thus analogous arguments hold here as well.
Notably Eq. (61) interpolates winding numbers at asymp-
totic real times. The field is also localized in real time
and space.
WIs have an intuitive periodic structure in Euclidean

time, therefore let us examine the above field in a
Euclidean metric. This provides the additional benefit of
contrast with the YMI. In a Euclidean metric sense, we
refer to the following solutions as complex (anti-)Yang-
Mills instantons (CYMI). For Wick rotation, x0 ¼ ix4,
we have

GðxÞ ¼ 1

ρ
ðix4 − ix⃗ · σ⃗Þ ¼ x̂μσ̄Cμ ∈ SLð2;CÞ; ð62Þ

G−1ðxÞ ¼ 1

ρ
ðix4 þ ix⃗ · σ⃗Þ ¼ x̂μσCμ ; ð63Þ

with now ρ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−2x24

p
, and also we have σCμ ≔ ðiσ⃗; iÞ and

σ̄Cμ ≔ ð−iσ⃗; iÞ. Then for ACI
μ ðxÞ ¼ ði=gÞfðρÞGðx̂Þ−1∂μGðx̂Þ,

one can find

GCI
μν ðxÞ ¼

2

gρ2

��
∂μf þ 2

ρ
ðf2 − fÞ∂μρ

�
σCνσxσ

−
�
∂νf þ 2

ρ
ðf2 − fÞ∂νρ

�
σCμσxσ

�

þ 4

gρ2
ðf2 − fÞσCμν; ð64Þ

where we have defined

σCμν≔
1

4i
½σCμ σ̄Cν −σCν σ̄

C
μ �; σ̄Cμν≔

1

4i
½σ̄Cμ σCν − σ̄Cν σ

C
μ �: ð65Þ

Then in analogy to the YMI we seek a solutions such that
∂μf þ 2

ρ ðf2 − fÞ∂μρ ¼ 0; this can be found as f ¼
ρ2=ðρ2 þ R2Þ, and hence we have for the CYMI and
anti-CYMI,
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ACI
μ ðxÞ¼2

g

σCμνxν
ρ2þR2

; GCI
μν ðxÞ¼−

4

g
R2

ðρ2þR2Þ2σ
C
μν; ð66Þ

ACĪ
μ ðxÞ¼2

g

σ̄Cμνxν
ρ2þR2

; GCĪ
μν ðxÞ¼−

4

g
R2

ðρ2þR2Þ2 σ̄
C
μν: ð67Þ

GCĪ describes a field configuration in which ΔNMink ¼ −1.
One can readily demonstrate the sought electric and

magnetic field decomposition of the CYMI is

ECI
i ¼−

2

g
R2

ðρ2þR2Þ2σi; ECĪ
i ¼2

g
R2

ðρ2þR2Þ2σi; ð68Þ

BCI
k ¼ BCĪ

k ¼ −
2

g
R2

ðρ2 þ R2Þ2 σk: ð69Þ

One can clearly see that the CYMI corresponds to “paral-
lel” fields, whereas the anti-CYMI corresponds to “anti-
parallel” fields in Minkowski spacetime (imaginary electric
fields in Euclidean spacetime). This property we will show
gives rise to pair production. Let us remark though that real
Minkowski electric fields are not a sufficient requirement
for pair production, a simple Abelian counterexample is
provided through plane waves. Before solving Wong’s
equations, let us discuss some basic properties of the fields.
The CYMI are not self-dual, but one can show the totally

antisymmetric field strength tensor is related to an imagi-
nary anti-CYMI. To show this let us introduce ‘t Hooft
symbols,

ηCaμν ¼ εaμν4 þ iδaμδν4 − iδaνδ4μ; ð70Þ

η̄Caμν ¼ εaμν4 − iδaμδν4 þ iδaνδ4μ; ð71Þ

for σCμν ¼ 1
2
ηCaμνσa and σ̄Cμν ¼ 1

2
η̄Caμνσa. Then we can find the

following identities:

η̃Caμν ¼
1

2
εμναβη

C
aαβ ¼ iη̄Caμν; ð72Þ

˜̄ηCaμν ¼
1

2
εμναβη̄

C
aαβ ¼ −iηCaμν: ð73Þ

To further explore the properties, let us introduce in
matrix form the ‘t Hooft symbols as combinatory rotation
and translation (imaginary rotation) generators of SO(4).
Namely we have that

Kaμν ¼ iδaμδν4 − iδaνδ4μ; Laμν ¼ εaμν4: ð74Þ

And we can write for the ‘t Hooft symbols ηCi ¼ Li þ Ki

and η̄Ci ¼ Li − Ki. We have that KT
i ¼ −Ki and LT

i ¼ −Li.
The generators satisfy the following algebra:

½Ki; Kj� ¼ εijkLk; ½Li; Lj� ¼ −εijkLk; ð75Þ

½Li; Kj� ¼ −εijkKk: ð76Þ
One may also show by introducing the tensor, Δμν ≔
δμν − 2δμ4δν4, the following relation holds: fLi; Kjg ¼
εijkKkΔ. Note, we also have that fLi; Ljg ¼ fKi; Kjg for
i ≠ j. Last, one can determine that

fηCi ; η̄Cj g ¼ 2εijkΔKk − 2δij: ð77Þ
Using the generators, Eq. (74), one may directly find that

not only do the CYMI have finite energies but also that they
vanish,

trGCI
μνGCI

νμ ¼ 0; trGCĪ
μνGCĪ

νμ ¼ 0: ð78Þ
One may also, using Eq. (77), confirm that we have

tr½GCI
μν G̃

CI
νμ � ¼ −

4 · 24i
g2

R4

ðρ2 þ R2Þ4 ; ð79Þ

and then in a Euclidean picture,

g2

16π2

Z
d4xtrGCI

μν G̃
CI
μν ¼ −1; ð80Þ

in agreement with the Minowski definition, Eq. (58).

Likewise we have that g2

16π2

R
d4xtrGCĪ

μν G̃
CĪ
μν ¼ 1.

The CYMI, however, does not solve the Yang-Mills
equation of motion. In fact one can find using the above
identities that

½DCI
μ ; GCI

μν � ¼
8

g
R2

ðρ2 þ R2Þ3 fx
TΔðLþ KÞ · σ − xTK · σgν:

ð81Þ
However the Bianchi identity holds as it should,
½DCI

μ ; G̃CI
μν � ¼ 0.

Wong’s equations in a CYMI written in a Lorentz index
matrix representation read,

_ICIc ¼ −
2

ρ2 þ R2
εabc _xCITηCa xCIICIb ; ð82Þ

ẍCI ¼ ij_xCIj
m

2R2

ðρ2 þ R2Þ2 η
C · ICI _xCI; ð83Þ

and we can evaluate them similar to as was accomplished in
Sec. IVA, namely through the usage of a large parameter
limit for the CYMI coupled with the adiabatic theorem in
isospin.

B. Adiabatic theorem and the large
complex instanton

Employing the adiabatic theorem one can determine
a gauge element, uCI ∈ SLð2;CÞ, such that the isospin
equation of motion, Eq. (82), is satisfied and
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uCIACI _xCIðuCIÞ−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ACIa _xCIACIa _xCI

p
σ3; ð84Þ

cf. Eq. (45). This gives us

ICIa ¼ _xCITηCa xCIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xCITηCa xCI _xCITηCa xCI

p : ð85Þ

The isospin for the CYMI is an element of the coset
SLð2;CÞ=SUð2Þ. Again we have propertime independence,
_ICI ¼ 0. And that wemay apply the adiabatic theorem and in
turn ignore off diagonal parts to Berry’s phase, owing to the
antisymmetric tensors, ηCA , one must have that xCI ∝ ẍCI.
For the evaluation of the Lorentz force equation we

examine the large complex instanton limit such that
R2 ≫ ρ2. And we have that

ẍCI ≈
2ij_xCIj
mR2

ηC · ICI _xCI; ð86Þ

which we evaluate using electric and magnetic projection
operators:

PCI
B ≔

1

2
½1−ðηC ·ICIÞ2�; PCI

E ≔
1

2
½1þðηC ·ICIÞ2�; ð87Þ

such that

ðηC · ICIÞ2PCI
B ¼ −PCI

B ; ðηC · ICIÞ2PCI
E ¼ PCI

E ; ð88Þ

with the properties of idempotency, ðPCI
B;EÞ2 ¼ PCI

B;E, and
also that PCI

E þ PCI
B ¼ 1 and PCI

E PCI
B ¼ 0. We may use the

projection operators to decouple the Lorentz force equa-
tion, and moreover the coordinates into electric and
magnetic degrees of freedom,

xCIE ¼ PCI
E xCI; xCIB ¼ PCI

B xCI: ð89Þ

The Lorentz force equation may be readily solved using
projection operators; see [56] for details. Alternatively, one
may simply find an SO(4) transformation such that the
coordinates in Eq. (86) are parallel in an arbitrary direction,
which also projects the electric and magnetic parts, and
leads to the exact same result. Solutions of the decoupled
Lorentz force yield

_xCIE ðτÞ¼
�
cos

�
2j_xCIj
mR2

τ

�
þ iηC ·ICI sin

�
2j_xCIj
mR2

τ

��
_xCIE ð0Þ;

ð90Þ

_xCIB ðτÞ ¼
�
cosh

�
2j_xCIj
mR2

τ

�

þ iηC · ICI sinh

�
2j_xCIj
mR2

τ

��
_xCIB ð0Þ: ð91Þ

The situation here is analogous to the one encountered
for homogeneous fields in Sec. III C. Namely, we cannot
both satisfy both equations given the periodic boundary
conditions; to maintain a real stationary point and hence
real j_xCIj we take the magnetic components trivial, i.e.,
xCIB ¼ constant. The electric components, given the circular
instanton constraint through xCI ∝ ẍCI , can be found as

xCIE ðτÞ ¼ imR2

2j_xCIj η̄
C · ICI _xCIE ðτÞ: ð92Þ

Then the WIs are solely determined from the electric fields.
We can immediately write down the WI periodic criteria as

j_xCIj ¼ nπmR2 ∀ n ∈ Zþ; ð93Þ

as anticipated, cf. Eq. (57). We do have pair production for
the CYMI, the topological fields decay by a vacuum
instability.
The Schwinger effect exponential suppression is

ð1=2Þnπm2R2, understood from the worldline action,
Eq. (30). One can calculate using Eqs. (90) and (92) the con-
tribution to the worldline action of

R
1
0 dτtr½ICIigACI _xCI� ¼

ðm=2Þj_xCIj. The Berry’s phase term, here too, only intro-
duces a trivial factor of 4πi.

VI. CONCLUSIONS

Schwinger pair production has been analyzed in the
topological BPST instanton (YMI), and due to the
Hermiticity of its construction, no vacuum decay via
the Schwinger effect was found as anticipated. How-
ever, as an anomaly cancellation is found for Abelian
homogeneous fields, (one which is revived through the
Schwinger mechanism), it is likewise anticipated that a
non-Abelian field configuration with Chern-Pontryagin
density should be present and decay via the Schwinger
effect. We construct such a field that is gauge invariant in
SLð2;CÞ, in a Euclidean metric, and SU(2), in a Minkowski
metric. The field resembles parallel or antiparallel fields in
Minkowski spacetime. To accomplish calculations, we
extended the WI method to non-Abelian fields.
The WI method is important for the study of Schwinger

pair production in inhomogeneous fields. Thus (apart from
the study of the Schwinger effect in YMI/CYMI), our
twofold scope included the development of the WI method
for a generically complex SLð2;CÞ background field. To
arrive at Wong’s equations—the non-Abelian equivalent of
the Lorentz force equation—we made use of the coherent
state method. There, color degrees of freedom were
summed over in a Haar measure extended for the non-
compact group.
The WI method in non-Abelian systems may prove

useful for not only the fields discussed in this work but also
for color-glass condensate [62] backgrounds, as are thought
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present in the early stages of heavy-ion collisions.
Furthermore, we expect the non-Abelian WI method to
be essential in the development of the worldline formalism
to handle a variety of topological field theories through the
construction of bulk or boundary G=H type coset theories,
such as the Wess-Zumino-Witten theory, conformal sigma
models, and Chern-Simons theories [33,63]. Last, a reali-
zation of large N SUðNÞ Yang-Mills and nonlinear sigma
models through coherent states has been reported in [24],
presenting us with an array of chiral models which would
be worthwhile to revisit under the light of the WI method
introduced here.
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APPENDIX: EXACT NONPERSISTENCE
IN ABELIAN-LIKE HOMOGENEOUS

PARALLEL FIELDS

Here we evaluate the contributions to Schwinger pair
production coming from the effective action exactly in non-
Abelian homogeneous parallel fields given by Eq. (31).
This is accomplished by summing over the eigenvalues of
the worldline Hamiltonian. Let us begin by writing the
effective action, Eq. (2), in Schwinger proper time as
Γ½A� ¼ tr

R
∞
0

dT
T exp½−ð−D2 þm2ÞT�. The homogeneous

fields are given in Eq. (32). It proves useful to first take
the color trace, summing over both colors. This is permis-
sible as the Hamiltonian is already diagonal in color. The
effective action becomes

Γ½A� ¼
Z

∞

0

dT
T

e−m
2T

Z
d4xhxj½eD2

þT þ eD
2
−T �jxi; ðA1Þ

D2
� ¼ ∂2

1 þ ∂2
3 þ ð∂2 ∓ igBx1Þ2 þ ð∂4 ∓ i2gEx3Þ2:

ðA2Þ

Let us define a Euclidean Fourier transform such that
phxjpi ¼ −i∂=∂xhxjpi, hx2jp2i ∼ expðip2x2Þ,

R dp
2π jpi×

hpj ¼ 1, and hpjp0i ¼ 2πδðp − p0Þ. Upon insertion of
complete sets of states, one may then find the eigenvalues
of Eq. (A2) as E�n;m ¼∓ 2ðnþ 1

2
ÞgB ∓ 2ðmþ 1

2
ÞigE,

for n;m ∈ ½0;∞Þ. Upon summing over the eigenvalues
one finds for the effective action

Γ½A� ¼ i
2

Z
∞

0

dT
T

Z
dx2;4

Z
dp2;4

ð2πÞ2
expð−m2TÞ

sinhðgBTÞ sinðgETÞ ;

ðA3Þ

where the contribution from D2
− is the same as that of D2þ.

The coordinate and momenta integrals are divergent; this is
due to our selection of homogeneous fields which are
unbounded. We may normalize the action by considering
a closed box with Landau modes such that

R
dx2 ¼ L andR

dp2 ¼ gBL, and likewise for Euclidean time for general
length L. Hence

Γ½A� ¼ 2ig2EBL4

ð4πÞ2
Z

∞

0

dT
T

expð−m2TÞ
sinhðgBTÞ sinðgETÞ : ðA4Þ

We can find the contribution which pertains to Schwinger
pair production by noting that ImΓMink½A� ¼ ReΓEuclidean½A�.
This can be found through the poles on the real positive axis
in the sine function.Taking the residues one can find the exact
to one-loop pair production nonpersistence as

ReΓ½A� ¼ g2EBL4

8π2
X∞
n¼1

ð−1Þnþ1

n
e−

πnm2

gE sinh−1
�
nπB
E

�
: ðA5Þ
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