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We study the time evolution of the chirality imbalance n5 and the chiral magnetic effect (CME) under the
external parallel electromagnetic (EM) fields without assuming the artificial chiral asymmetric source. We
adopt the time-dependent Sauter-type electric and constant magnetic field, and obtain analytical solutions of
the Dirac equation for a massive fermion. We use the point-split regularization to calculate the vacuum
contribution in the gauge invariant way. As aresult, we find that n5 and CME current increase substantially as
the electric field increases, and stay finite after the electric field is switched off. The chirality imbalance and
CME current are shown to consist of a dominant contribution, which is essentially proportional to relativistic
velocity, and a small oscillating part. We find a simple analytical relation between ns and the fermion pair-
production rate from the vacuum. We also discuss the dynamical origin of the chirality imbalance in detail.
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I. INTRODUCTION

Recently, roles of the chiral anomaly have attracted
considerable theoretical and experimental interest in vari-
ous subjects of physics. The chiral (Adler-Bell-Jackiw)
anomaly is a violation of the (partial) axial-vector current
conservation due to quantum effects [1,2], and causes the
CP-violating processes observed experimentally. For the
past decade, macroscopic manifestations of the chiral
anomaly are discussed in the context of hydrodynamic
and transport phenomena in systems with chiral fermions,
e.g., the quark-gluon plasma or the Dirac/Weyl semimetals
[3-5]. One of the important effects induced by the anomaly
is chiral magnetic effect (CME), which is the generation of
“nondissipative” electric current along the direction of the
magnetic field [6-8];

_Hs
27>

J B, (1)

where ps is the chiral chemical potential. The chiral
chemical potential characterizes an asymmetry of the
chirality of the system, and is conjugate to the chirality
imbalance of the fermions, ns, which is a difference of
right-handed and left-handed fermion number densities,

ns =ng —ng = (Wyorsy).
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In the quark-gluon plasma produced in the heavy ion
collisions, the interaction with the nontrivial gluonic field
would change quark chiralities and thus produce the
chirality imbalance between right-handed and left-handed
quarks [4]. With the strong magnetic field, eB ~ m2,
created by the heavy ion collision, CME may produce
asymmetry of the charged particle distributions which can
be measured experimentally [9]. On the other hand, CME is
an important topic in the condensed matter system [5],
where the massless Dirac mode has been realized in the
Dirac/Weyl semimetals [10,11]. The experimental result for
observing CME in such a system is reported in Ref. [11].

For various applications in QCD/condensed matter, the
existence of the chirality imbalance ns and the chiral
chemical potential p5 is a priori assumed to study specific
transport phenomena. However, appearance of the initial
chirality imbalance is still under debate. For example, in
the quark-gluon plasma, metastable local CP-violating
domains may be generated by transitions of the non-
perturbative gluonic configurations [7,12,13]. In Ref. [11]
for the semimetal system with the electromagnetic field, ys
is estimated as ps = wa(%ZE - Bt), where 7 is the relax-
ation time of the chirality imbalance. In our opinion, it is
important to calculate the chirality imbalance and the chiral
magnetic effect within the field theoretical method without
introducing additional assumptions.

On the other hand, it is also necessary to clarify the use of
Eq. (1) in equilibrium. Although the CME formula [Eq. (1)]
is used for various applications, it has to be interpreted with
care. It is pointed out that such a current is forbidden in the
equilibrium system [14,15]. There are also some cautions
from theoretical calculations [16,17]. It seems that the
introduction of the chiral chemical potential implicitly
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assumes a system out of equilibrium [18]. In order to clarify
this issue, it is crucial to calculate time evolution of the
chirality imbalance and the CME current within a specific
model and compare their characteristic timescales.

In addition, the CME current for a massive fermion is to
be studied carefully. It is well known that the anomaly
relation receives a contribution from the mass-dependent
term:

2
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(2)

with a = e*>/4x being the fine structure constant. To
estimate the contribution from the mass, one should
calculate a vacuum expectation value of the pseudoscalar
density, which is also time dependent. In particular, it is of
interest to understand a relation between CME and the
spontaneous breakdown of chiral symmetry. In Ref. [19],
the CME current is suppressed in the insulator phase, which
may correspond to the chiral symmetry breaking phase.

For these purposes, we study time evolution of the
chirality imbalance 7n5 and the chiral magnetic effect in the
vacuum under the electromagnetic field solving the Dirac
equation analytically without initial chiral chemical poten-
tial [20]. We consider the vacuum state (zero temperature
and zero fermion chemical potential) with external parallel
electromagnetic fields, which provide the chirality imbal-
ance of the fermion number density due to the chiral
anomaly. We adopt the time-dependent half-pulse electric
field (Sauter-type), and constant magnetic field in order to
solve the Dirac equation for a massive fermion analytically.
To calculate the infinite vacuum contribution in the gauge
invariant way, we use the point-split regularization [21,22]
and calculate vacuum expectation values of the various
bilinear fermion operators including ns; and CME. In
addition, we expect production of fermion-antifermion
pairs from the vacuum under the electric field by the
Schwinger mechanism [23,24]. We systematically study
relations between ns, CME current and the pair-creation
rate using the Bogoliubov transformation. Our results are to
be compared with the previous works obtained with the
Schwinger mechanism with constant electromagnetic field
[18], the Wigner function method with collinear electro-
magnetic fields [25], the Wigner function method with the
chiral chemical potential [26], and cylindrical Dirac equa-
tion with the chiral chemical potential [27].

This paper is organized as follows. In Sec. II, we show
analytical solutions of the Dirac equation with the parallel
electromagnetic fields. Using them we perform the canoni-
cal quantization and define the vacuum state at t - —oo in
Sec. III. We introduce the point-split regularization in
Sec. IV to calculate vacuum expectation values of the
fermion operators in a gauge invariant way. We present our
numerical results for the time evolution of the vacuum

expectation values of the chirality imbalance and CME in
Sec. V. In Sec. VI we also discuss relations between the
chirality imbalance and the fermion pair-production rate,
and give a simple formula for CME current. Using them,
we show how the chirality imbalance is dynamically
generated in this model. Finally, Sec. VII is devoted to
the summary and discussion.

II. SOLUTION OF DIRAC EQUATION UNDER
SOLVABLE EXTERNAL EM FIELDS

A. Dirac equation with electromagnetic fields

We need an analytical solution of the Dirac equation
under the constant magnetic and the time-dependent
electric field, which plays a key role in our work. The
Dirac equation for a fermion field y(x) with the mass m
under an external electromagnetic potential, A,(x), is
given by

[iD — my(x) = 0. (3)

where we introduce the covariant derivative D, =
0, + ieA,(x). The squared Dirac equation is given by

D*®(x) = —m*®(x). (4)

Hereafter, we concentrate on finding solutions of the
squared Dirac equation ®(x), from which we can obtain
y(x) by a suitable projection,

w(x) = (iD + m)®(x). (5)

We consider specific forms of the external electromag-
netic field in this work to obtain analytical solutions;

B = (0,0,—B), (©6)
E = (0,0, E/cosh?(t/7)), (7)

where parameters B and E are nonzero real constants, and
7 > 0. The magnetic field is time independent and uniform
along the z-direction. On the other hand, the electric field is
spatially homogeneous but time dependent with a pulse
structure, which is known as Sauter-type electric field [28].
The corresponding electromagnetic potential is

A, = (0,0, Bx, Ez(tanh(t/7) + 1)). (8)

Note that the vector potential is finite even at t — $oo. If
we adopted the constant electric field [22,24], the vector
potential would diverge at t - o0, A3 = Et.

To understand roles of the electromagnetic field, it is
convenient to introduce the so-called “magnetic helicity”
density [29] as
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h(r) = % / &xA -B. (9)

Although the magnetic helicity is not gauge invariant in
general, it is useful when we discuss the topological
structure of the gauge field. With Eq. (8), the magnetic
helicity density in our case is calculated as

h(t) = —BEz(tanh(t/7) + 1). (10)

At the initial state, t - —oo, both electric field and the
magnetic helicity h(f) are zero, and they increase as ¢
increases. In the final state, t — oo, E vanishes rapidly,
while the magnetic helicity /(¢) is kept finite. This peculiar
behavior of the magnetic helicity is due to the Sauter
electric field, and appropriate to discuss the production of
the chirality imbalance, as we will show later.

With the chiral representation for the gamma matrices,
the Dirac operator  and its squared form D? are given by

0 0 —¢_ ia
e 0 0 —iate,
¢, —ia
iat —¢_ 0
¢, +aa’ 0 0 0
Do 0 epe_+ata 0 0
B 0 0  e¢.o_+aal 0 ’
0 0 +

¢, = (—i0, + eEr(tanh(t/7) + 1)) + i0,

¢_ = (—i0, + eEz(tanh(t/7) + 1)) — i0,
a = (=idy + eBx) + 0,

o' = (—idy + eBx) — 0,.

Because D* commute both 9, and 9, the solution of the
squared Dirac equation, @, can be written as a separable
form, ®(z,x) = exp(ip,y + ip.z)¢(t. x), with momenta of
y and z directions being constants. For ®(z,x), we
explicitly introduce the four component form as

¢1(t,x)
$(t,x)
¢(t, x)
Pa(t, x)

P(1,x) = (11)

We then obtain a set of equations for ¢;(#,x) (i = 1,2, 3,4)
as follows:

[e_e, +aa" +m?)gy(t,x) =0 (12)
(6, +ata+ m?g,(t,x) =0 (13)
(& 0_ +aa’ + m?|gs(t,x) =0 (14)
[e_e. +ata+ m?)gy(t,x) = 0. (15)

Note that the operators ¢,, ¢_ include only 7 and 0,
variables, whereas a, a' contain only x and 0,. Hence,
these equations can be solved as

(1)1 (x)
Ja(1)ga(x)
f2(1)g1(x)

(1)g2(x)

fi1(t)ga(x

®(x) = exp(ip,y +ip.z) (16)

with eigenfunctions, f;(7), g;(x) (i = 1, 2), which satisfy
the following eigenvalue equations:

aa’ g, (x) = kg (x) (17)
a'ag,(x) = kg (x) (18)
-y fi(t) = =(c+m?)fy(1) (19)
eie_fo(t) = —(k+m?) f1(1). (20)

We note that the eigenvalue « is real and positive-semi-
definite because the operators a'a, aa' are Hermitian.

B. Solutions for the x-dependent part

The eigenfunction and the eignevalue of Eqgs. (17) and
(18) are easily obtained with the standard technique for the
harmonic oscillator.

We find a solution with the normalized Hermite poly-
nomial H, (n =0,1,2,...),

91(X) = gn-1p,(x) (21)

92 (%) = g p, (¥) (22)

with eigenvalues x = 2eBn and eigenfunctions g, , (x);

(BN
i) = (12) " exot 2

1
n
VleB|

where n denotes the Landau level. When n =0, the
normalizable solution of g;(x) does not exist, thus we
define g_; , (%) = 0.

(py +[eBlx), (23)
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The eigenfunctions satisfy the orthonormal condition as

/ A5G p, (), (X) = B (24)

Moreover, the completeness identity also holds:

Zgn oy (X) G, (

Additionally, integration over p, also gives a relation,

X)) = 8(x —x). (25)

/ ADrGnp, (V. (¥) = [eBl6,  (26)

which guarantees the orthogonal condition for y in Eq. (16).

C. Solutions for the z-dependent part
Next, we will solve equations for the time-dependent
part. The operators ¢_c¢,, ¢, ¢_ in Eqs. (19) and (20) are
written explicitly as

AA 2 2 ;
¢,¢é_ =07+ (p. + eEr(tanh(t/7) + 1))* + ie cosh?(1/7)
(27)
¢_&, = 0%+ (p, + eEr(tanh(t/7) +1))> — ieL
T : cosh?(t/7)’
(28)

which reduce to the hypergeometric differential equation
for f1(x). We obtain the eigenfunctions for f(x) in (19)
and f,(x) in (20) as follows:

~ (0 (0 ira(l .b
B0 =[2G = (o))
(29)
<(0) o [@0) =P
¢n~[7:(t)_ 20)(0) u 2 (1 u) -
x F< ! _2“’_10_ b, u(t)), (30)

where F (“;b ;u) are Gauss’s hypergeometric function. The
parameters a, b, ¢ are given by

1 n 0 ] n 1
L 2. )+”“) . >+ieE12 (31a)
) 2
. ; 0 / " 1
_ i, )+ itw,, (1) ieE2 (31b)
B 2
¢ =1 - itw,, (0). (31c)

where

w%!pr(u) = (p, +2eEtu)* + 2|eBln + m>  (32)

u(t) = = (tanh(/7) + 1). (33)

t\)l'—‘

We find a simple relation,

B (DP + 1B (D2 = 1, (34)

which holds independent of ¢, and is useful for further
calculations.

D. Classical solutions of Dirac equation

We then obtain solutions of the squared Dirac equation,
q)n,p\,.pz (X), as follows:

o

n.p,.p. = €Xp(ip,y +ip.z)

Gt p, N5 (0 + N85 (1))
G, INS B (1) + NSO Bt (1)}
Gt p, VINS B (1) + NS BT (1))
)

Gup, VNS G5 () + N @il (1))

(35)
where Nl(-i) are normalization constants. To construct
the solutions of the Dirac equation, we properly choose
solutions in Eq. (35), and extract the right-handed/left-
handed solutions by performing the suitable projection.
Here, we choose four-independent solutions proportional to
N (li), Ngi) in Eq. (35), which satisfy the orthogonal and
completeness relations, as we will show later.

First, we obtain the “right-handed” solutions, operating
iy*D, + m to the first row in Eq. (35):

vy = N exp(ip,y + ip.2)
€086, + gu1p, () Buly (1)
0
“ _ (36)

Gt p, (%) - Piip. (1)
isinG, - g, (x) - duy) (1)

Ny exp(ipyy +ip.2)

Cos en . gn—pr ()C) : &Z(;)([)
0

—9n- Lpy (x) 12 ( ) ,
ising, - g, , (x) '&n,p; (1)

(37)
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where 6, is defined by

0, = arctan

(Y

Hereafter, we use the shorthand notationp = (n, p,, p,) for
simplicity.

Similarly, we obtain the “left-handed” solutions operat-
ing iy*D, + m to the fourth row in Eq. (35):

vy = N exp(ipyy + ip.z)
i sin 9n : gn—l,p}. (x> ' @:g?(ﬁ
N O R VAG) (39)
0

€080, * Gy, () - 'y (1)

yy ) =N exp(ip,y + ip.z)
isin6, X g,y . (x) - oy (1)
o TRy X R TS
0

Cos Gn “n.p, (X) : &52{;) (t)

In the massless limit, m — 0, the solutions of Eq. (36) are
exact eigenspinors of the chirality operator y° with the
eigenvalue +1, while Eq. (39) is the chirality eigenstate
with the eigenvalue —1. Note that y/é’ip'f; = 0 because of
g-1,p, = 0 and sin 6, = 0.

These solutions of the Dirac equation form the complete
orthonormal basis. By choosing the normalization con-
stants, Ngﬂ = N(,_) = fo) = fo> = 1, the orthonormal
relations are given by

[ et )

= (2ﬂ>25uu’5ss’5nn’5(py - p;)é(pz - plz)’
which holds except for y/(()ipfei, Moreover, one can show
the completeness relation for Eqgs. (36), (37), (39), and (40):

ST S )l (1.2

which guarantees the validity of our construction from
Eq. (35).

III. QUANTIZATION AND VACUUM
EXPECTATION VALUES OF CURRENTS

To construct the quantum field theory with the external
EM field, we first introduce the fermionic field operators
from Eqgs. (36), (37), (39), and (40):

. = [dp, [ dp,

x fr—

) Z/ Var) Vs
<N by () + Ay (). (41)

s=R.L

5. cAi;p (lAasﬁp, Zis‘p) are interpreted as creation
(annihilation) operators of the particles and antiparticles.
These operators obey the anticommutation relations,

where b

{bs,pv Z’i’,p’} = {as,pva;,p/} = 633"5nn’6(py - p;)é(pz - p/z)

which is equivalent to the anticommutation relations for the
field operators,

{ralt. )9 (1.5)} = 69 (x = x')3,.

In order to describe the fermion field under the time-
dependent EM field, we adopt the Heisenberg picture in the
following calculations, and define the vacuum state |0) at
t— —oo:

b,p0)=0, d,,|0)=0 (foralls,p), (0[0)=1. (42)

We obtain asymptotic behavior of the eigenfunctions
&;?:(t) at t — —co as

(43a)

(t > —o0). (43b)
Apparently, the eigenfunction (27,(1+,,)(t) [J)f{,}z(t)] at
t - —oo coincides a positive (negative) energy solution
of the free Dirac fermion.
By using the quantized fields, the classical current,
J(T;x) = w(x)Tw(x), is replaced by the current operator

J(Tsx) = 5 [ (x). T (x)]

>

[0 () Ty (x) = Tyt () ()]

N = ] =

where I' are products of y matrices, i.e., I'=(1,iy5.7,.757,)-
We can calculate the vacuum expectation value (VEV) of
the corresponding current as follows:
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(@ (x)Tw(x)) = (0]j(I's x)[0) (44a)
dpy [dp;
S, ( 44b
n= 0/ / ( )
where we define S, (x;T") as
S,0e0) =2 3 7 rvs ()
— 7" Ty (). (43)

Using Egs. (36), (37), (39), and (40), we find S, (x;T) for
various I as

S (677 = (521, = G 1B = B30 P] (46)
S(67%) = [21 . + G B P = @) (47)
Sp(x:ir%) =202, , = Ghp ] cos O,Im@) B )] (48)
Sp(x:1°7) = 2lg2_1, + G2 ) cos O,Im[B5) 4] (49)
Sp(x:i7'7) =212, ,, = G2, | cOSORB )] (50)
Sp(x:1) =2[g2, . + Gap, ) cOSORe[PL) piy ). (1)

For further calculations, we shall integrate the right-hand
side over p,, paying attention to g_; , = 0, namely,

[l (9= i, 0 = ~leBlon (52

[ A,lGis 00+ Go, (0] = leBlar. (53

where «a,, are defined by

itn=0

1
an_{ . (54)
2 ifn=1,2,3,...

IV. REGULARIZED VEV AND
CHIRAL ANOMALY

A. Regularization and VEVs of currents

The VEVs of the current derived in the previous section
diverge when we integrate over p., thus we need some sort
of regularization. Because we could obtain these VEVs as a
result of the subtle cancellation of the divergent integrals,
use of the gauge invariant regularization is certainly

important. Here, we use the point-split regularization
[21,22], which is known as the gauge invariant regulari-
zation scheme.

The regularization method in the p, integral essentially
introduces the nonlocality in the z space. We replace the
local current operator, ¥ (x)[y(x), by the integral of the
nonlocal current as follows:

w()ly(z) = / dZy(Z)é(z = )ly(z)  (55)

=lim [ dzp(Z)h.(z = )Ty (2), (56)
where
2
(=) =5 men(-550) @)

which is reduced to the delta function §(z — ') as € — 0.

This nonlocality clearly breaks the local gauge invari-
ance of the matrix elements. To recover the gauge invari-
ance, we insert the Wilson line into the nonlocal current,

U(z.z) = P exp [ie /Z ) d)”c”Aﬂ()”c)] : (58)

where the choice of the integral path P is arbitrary. We may
choose a straight line which connects z’ and z for the path
function U(Z, z):

¥ (x)Ty (x) — / dz'p()he(z = 2)U(Z, )Ty (2). (59)
Carrying out the 7z’ integration, we obtain the regularized
VEV of the current,

/ dpy / dp.

x Z exp(—£[p; + eA(1)*)S, (x:T).

s=R\L

(i (x)l

(60)

The regularization factor, exp(—¢[p. + eA.(7)]?), is now
inserted into the integrand for the VEVs. Because the
parameter ¢ has the dimension of (mass)~2, we introduce
the cutoff parameter A> = 1/¢ with the dimension of A
being (mass)'.

We arrive at final expressions for the regularized VEVs
of the currents:
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v =52 [ T A5 OF = 135, (0P
(61)
wir'vu) =25, [ 0 fulo:) - Reld) (045 0]
()
wir'y) =25 [ L pup) - mldl) (045 o)
(63)
v = [ % d”fz an AP B O =135 (0]
(64)
<l/_/l//> = _2‘;—? dzl;z iaan(pz) COos en
n=0
x Re[dh 'y, (1), (1) (65)
(wiy°rPw) = 2‘;—?' deZaan (p.)cosB,
xlm[&sﬁl.p.,,(r)gzsgp,(z)], (66)

where f(p.) = exp(=[p; + eA.(1)]*/A?).

It is clear that only the lowest Landau level (LLL), n = 0
contributes to the chirality imbalance Eq. (61), pseudosca-
lar density Eq. (63), and the tensor density Eq. (62). On the
other hand, we need sum up contributions from all possible
Landau levels for the vector current Eq. (64) as well as the
scalar density (65). This is different from calculations with
the chiral chemical potential [26,27], where the vector
current is given by the contribution from only the lowest
Landau level. In our case, when there is no electric field

(t = —0), |(;5,(1+p)|2 and \J)E,_,“z in (64) show the same
momentum distribution for each n, and a cancellation gives
null vector current. After the electric field is turned on

(t > 0), however, momentum distributions of |($,(fp)|2 and

|(;5,(,,_,3: |? with the regularization function become different in
Egs. (29) and (30), and the resulting vector current is finite
for each n, although contributions from higher Landau
levels are small. Our results are consistent with Ref. [22].

We also find that the VEVs for all other I's vanish. In
particular, the spin expectation value of the z component
vanishes, (fy3ysy) ~ (S.) = 0. Thus, there is no magneti-
zation of the vacuum due to the chiral anomaly. This is in
contrast with the result for the tensor matrix element,
(wooy) # 0,1in Eq. (62), which is nonzero. This difference
may come from roles of antifermions for these matrix
elements, i.e., (Wysysy) expresses a sum of fermion and

antifermion contributions, while the tensor matrix element
describes their differences.

We are particularly interested in the z-component of the
electric current, J, = e(yy’y), in view of the chiral
magnetic effect. From Egs. (61) and (64), we find a simple
relation between J, and the chirality imbalance ns in the
LLL approximation (n = 0) as

|EB| dp 7 (+) 2 ~ (=) 2
Jeme 2 [ 5 5 ap)lido, (OF = 166, (OF]
eB
eB
= sgn(eB)ens. (67)

Equation (67) tells us that J, is essentially proportional to
ns in the limit of the strong magnetic field, where the use of
the LLL approximation can be justified. The result agrees
with one obtained in the previous work [8], although the
existence of the chiral chemical potential is assumed in
Ref. [8]. Here, we recover Eq. (67) by considering the
massive fermion under the external EM fields, without
assuming the chirality asymmetric source.

B. Chiral anomaly with the regularization

We are also interested in the modification of the con-
servation law for the axial-vector current [1]. Neglecting
the surface term from the current divergence, the chiral

anomaly relation is given by
2
+= / d*xE - B.
V3

(68)

9, / Ex ) = 2im / Px(pry)

Here, the second term of the rhs is just an input of the model
calculation in our case. On the other hand, we have already
calculated the lhs and the first term of the rhs individually.
Thus, we can check a consistency of our calculations with
the point-split regularization.

For the lhs of the chiral anomaly, we simply calculate the
time derivative of the chirality imbalance. If we used
Eq. (46) for the chirality imbalance without invoking
the momentum regularization, the time derivative would
yield

o(w°rw)
=2im-2[g2_; , (x) = G2, ()] cos O, Im[@L). (1)l . ()]
= 2im{jrw). (69)

This is just a classical conservation law for the axial-vector
current.

However, the gauge invariant regularization provides
an additional time-dependent factor coming from
exp(—|[p, + eA,(1)]>/A?), in the integrand of the chirality
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imbalance. Using the regularized result, Eq. (61), we obtain
a modified conservation law as

B o 2a
0wy’ rw) = 2im(pr’y) + —E(1)BFA(1),  (70)
where

© p.+eA_(t
FA(t)_/ szZAizz()
—0o0 Z

< Fa(p)lldoh (OF = 1B (1),

This is the axial-vector current conservation law in our
framework. If the momentum cutoff is large enough,
A > m, we obtain a simple relation limp_ F(7) = 1,
which is explicitly shown in the Appendix, and thus
reproduce the correct anomaly relation Eq. (68).

V. TIME EVOLUTION OF THE VEVs
OF THE CURRENTS

In this section, we show numerical results for the time
evolution of the chirality imbalance and CME in the
vacuum. Here, we have three independent parameters of
the model, magnitudes of the electric and magnetic fields,
and the fermion mass, which are expressed in units of the
electron mass m, = 0.5 MeV. We also need the parameter
A in the regularization function, and take A = 30m,, which
is much larger than the fermion mass scale.

In our study, we calculate the VEVs of the vacuum under
parallel constant magnetic and the time-dependent Sauter
electric fields, whose magnitudes can be fixed independ-
ently. However, as far as we understand, the chirality
imbalance is well studied by considering the magnetic
helicity density % defined in Eq. (9). As we have discussed
in the previous section, our calculation is fully consistent
to the chiral anomaly relation. In the massless limit, it is
simplified as

_ 200
0, / &x(y’yy) = — / E-B

_ _at(%a/cﬁxA-B) (71)

since we consider the time-independent magnetic field. The
integrand of the rhs is just magnetic helicity 4(¢). Hence,
with our EM field, the chirality imbalance becomes

ns(t = o) = —27ah(t = o) = e’BEt/n*, (72)

which is true only for massless fermions. Nevertheless, it is
convenient to express the chirality imbalance (and CME) in
the unit of the magnetic helicity, e?BEzt/x>.

1.0f
Ni o0sf / 0.0
= 06 e
K
S TP S Y (N S SR m/m. = 1.0
NQ.)
R L Y B N m/me = 2.0
£
0.0 e 1/ cosh?®(t/T)

FIG. 1. The time evolution of chirality imbalance ns.
eE/m2 =4.0, tm, = 0.5, eB/m2 = 8.0.

In Fig. 1, we first show the chirality imbalance ns as a
function ¢ with a shape of the Sauter electric field by the
dash-dotted curve. In the massless case (solid curve), ns
increases by the electric field, and approaches a finite value,
e’BEt/n?, at t — oo even after the E field diminished. On
the other hand, in the case of the finite fermion mass, the
chirality imbalance consists of both a constant part and an
oscillating part at + — co. When the mass is comparable
with the magnitude of the electric field, m? ~ (¢eE), the
chirality imbalance is largely suppressed as depicted by the
dotted curve. Thus, we find that the average chirality
imbalance is almost zero, if m?> > (eE). We will relate
these results with the fermion pair production from the
vacuum in view of the Schwinger mechanism [24].

We also examine effects of the magnetic field on the
chirality imbalance. If we increase the strength of the
magnetic field, the magnitude of the chirality imbalance is
also increased which is just proportional to the magnetic
helicity. However, the time dependence of ns is never
changed as expected.

We then show the vector current along the z-direction in
Fig. 2 which could be understood as the chiral magnetic
effect. Again, the vector current is shown in units of the
magnetic helicity density. In the case of the massless limit,
the vector current depicted by the solid curve consists of a
dominant constant part and a tiny oscillating part, which is
somewhat different from the behavior of the chirality
imbalance ns. This is because ns is solely determined by
the lowest Landau level contribution, while the vector

10

 osf m/m. = 0.0
=

[T 178 Y v (. m/m, = 1.0
[a]

[\S)
A I m/me = 2.0

N o o .

= 0.0 - e 9

et —ememe 1/ cosh(t/7)
e R T
t/T

FIG. 2. The time evolution of vector current density j,
wm, = 0.5, eB/m? = 8.0.
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current gets contributions from higher Landau levels in
Eq. (64). The average CME current almost vanishes for the
small electric field m?> > (eE), which is similar with the
chirality imbalance.

From Fig. 2, for /7> 1 where there is no electric
field, the CME current for the massless fermion is
expressed as

¢’BEr  «a
i~ = —B(8E7).
o= B s 7)

The form of Eq. (73) is the same as Eq. (1) if we substitute
8E7 for us. This crude identification is justified only if ¢ is
large enough compared with the timescale 7 of the electric
field in Eq. (7).

For completeness, we also show the pseudoscalar density
in Fig. 3 calculated with Eq. (63). As expected from the
chiral anomaly relation Eq. (70), the pseudoscalar density is
significant only at ¢ ~ 0.

VI. RELATION TO THE FERMION
PAIR PRODUCTION

In order to understand appearance of the chirality
imbalance from the vacuum, we relate it with the fermion
pair production [24,30]. To do so, we try to find a relation
between the “in-state” vacuum at r - —oo and the “out-
state” vacuum at t — oo. As discussed in Egs. (74) and
(75), our original in-state vacuum at t - —oo,
cides with the free particle vacuum (although B # 0).
However, due to the Sauter electric field, the vacuum at
t = 00, |0),, is not the same as the original vacuum |0).

To proceed calculations, we need asymptotic forms of
the eigenfunction qﬁffp)z (t)att — —oo and at t — oo. For the
in-state, the eigenfunctions reduce to

Pup. (1) x exp(—im, , (0)1) (1 — —c0)  (74)

Piop. (1) x exp(+iw, , (0)1) (1 ——c0)  (75)

which agree with positive/negative energy plane wave
solutions with the energy +w(0) defined [Eq. (32)]. On
the other hand, with the help of the connection formula for
the Gauss hypergeometric function, out-state eigenfunc-
tions are rewritten as

P (1) =y p Doitn p (1) = iy Biitnp (1) (76)

Do (1) = @y Dot p (1) + By Do (1), (TT)

X

where
~ 1 2¢eE (0 il
¢(()-|:t)’n7pz(t) _ \/a)( ) +2[£(Zl—;- e T]M_T()(l —u) o(1)
b
XF<1+aa+b_C;1—u> (78)
~(— - 2 itw(0 ito(1
45(()“2’,1’1,?(2‘) — \/a)(l) 2[({)751‘;' eET]u 2( )(1 _ u)_%
0), coin- e < 11+—Ca,_1a—_bb; . u) ’ (19)
and
|
_ |w(0) + p, w(l) 2i
Gnr: =N\ 0(0) \ @(1) + [p. + 2¢Ed] 7[0(0) + (1) — 2¢Ex]
I['(1 —itw(0))['(—izw(1)) (80)
(-0 _ o) _jep2)r (-0 _imol) | jop2)
_ |w(0) + p, w(l) 2i
Pup. = w(0) (1) = [p. + 2¢eEr] 7[w(0) — w(1) — 2eE7]
['(1 4 itw(0))['(—izw(1)) (81)

X - - - - .
F(n'w(O) _ l‘m;(l) + ieETZ)F(lrrljz(O) _ l‘m)z N _ ieErz)

2

%gﬁgm ».(t) and g;ﬁf,;t)n ».(t) are further simplified as

Portnp. (1) xexp(=iw(1)1) (1 —o0)  (82)

Poatnp. (1) xexp(io(1)) (1 c0),  (83)

|
which are the free fermion wave functions with the energy
w(1). From these functions, we can construct the
Bogoliubov transformation between in-state and out-state
[24,30]. We already introduced the annihilation operators
and the vacuum for the in-state:

b, ,|0) =0,

d,,|0)=0 (foralls,p), (0[0)=1. (84)
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0.01p

0.00

‘(.." ,/
= -o01f bl ] m/me = 0.0
1=
= 002 & iS ] mmm- m/m. = 1.0
Y S -y R I e, m/me = 2.0

FIG. 3. The time evolution of pseudoscalar density.
m, = 0.5 MeV, eE/m? = 4.0, tm, = 0.5, eB/m2 = 8.0.

Similarly, we define the out-state vacuum with operators

Bg(.)put) s EZ.(Y(EH) ’

b5 100w =0, d\3"10)o =0 (foralls,p), (0/0)=1,
(85)
where operators bf}:'t , dﬁ‘}ft) are introduced as coefficients

of gz')om’n,pw( ) and qﬁom.n,p"( ) in the standard way. Thus,
these operators are subject to the transformation,

@ﬁ»:<%mﬂm>0w) 6)
Zig);]t)—t _ﬂ;’pz a;ﬂpz Zi;;,s
where the Bogoliubov coefficients satisfy the unitary
condition |a, ,, |* +[f, ,.|* = 1. The expectation value
of the number operator at t+ = co between the original
vacuum becomes
(0[Bys" B3 10) = 16,1 (87)

which is understood as the probability to find a fermion
produced by the electric field with the momentum n, p, at
t = o0 [24,30,31]. It is well known that \ﬁn’pz|2 is signifi-
cant only if the electric field is larger than the fermion mass
square, eE > m?, which means spontaneous creation of
fermion pairs from the vacuum under the strong electric
field. Thus, we naively expect the chirality imbalance may
emerge for eE > m?.

Using these results, one can express the VEVs of the
vacuum at ¢ = oo in terms of the Bogoliubov coefficients.

For example, the chirality imbalance ns at = co is
calculated as

eB [dp p.+2eEt
nSlt:oo :Z/z—ﬂzf/\(l’z) |:_2ﬂ0,p,|2T1)

m —2iw
_2mRe[a0.pzﬁ0,p:e : (l)t}:|7 (88)

where the regularization function at ¢ = oo is

falp.) = expl—e(p. +2¢Ez)*/A’]. (89)

The first term is independent of time, and simply propor-
tional to |f , |* which is the probability to find a produced
particle in the lowest Landau level with p.. On the other
hand, the second term is proportional to the mass, and is
somehow interpreted as the “interference” term.

At first sight, ns is simply determined by the magnitude
of |ﬂ0,p,|2- However, existence of the chirality imbalance
strongly depends on details of the integration over p, in
Eq. (88), which is sensitive to a parameter 7, the timescale
of the electric field in Eq. (7). We will discuss how the
nonzero ns appears in some detail. In the massless limit, the

first term of Eq. (88), which we call ngo)’ becomes

0 dpz ) P; +2¢ET
n -2
0 = [ B |2 P
dp
=52 | 2 AP 2senlp. + 2] |fo, [ (90)

In the presence of the uniform magnetic field, all the
fermions move along the z-direction, and the spin of the
fermions in the lowest Landau level, which can contribute
to |y, P |, is parallel to the z-direction. Hence, the fermions
with positive canonical momenta, p, + 2eEt > 0, carry the
right-handed chirality, while those with p, + 2eE7 < 0 are
left handed. If the electric field were zero, the imbalance
ngo) would vanish, because of a cancellation between
contributions from p, > 0 and p, < 0 fermions by virtue
of the symmetrical p, distribution of the pair-production
probability f,,. However, the nonzero electric field
induces an asymmetry between momentum distributions
of right- and left-handed fermions in both the sign function
sgn[p, + 2eEz| and the regularization function f,, which
indeed generates the chirality imbalance in this model.

To study ng()) in the case of the finite mass, we show
Bo.p.|* and (p, +2eE7)/w(1) in Fig. 4, where (p,+
2¢E7)/w(1) is no longer the sign function. The pair-
creation probability |/ , |* peaked at p, = —eEz, whereas

m, = 0.5[MeV], ¢E/m? =
1.0

10.0,7m, = 0.1

0.5F
— [Bog.”
R Pz +2¢ET /wo(1)

0.0

-0.5} /

7
_____

-1.0

FIG. 4. p, distribution of the pair-production probability ||
and the sign function of p, + 2eEz/w(1).
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(p. +2eE7)/w(1) changes its sign at p, = —2eEz. Hence,
if 7 is very small (~0), the integration over p, is negligible
due to a cancellation, and thus the resulting chirality
imbalance almost vanishes.

For completeness, we show explicit z dependence of the
results. We first show the chirality imbalance as a function
of Tm, in Fig. 5 for several values of eE. If ¢eE < m?, the
chirality imbalance is almost zero, because the production
of the fermion pairs is forbidden. The large electric field
simply gives the larger chirality imbalance. However, if the
timescale 7 is quite small, 7 < 1/m,, the situation becomes
different. In Fig. 6, we show néo) for several values of zm,.
We find that, even if the magnitude of the electric field is
large enough, ngo) is very small for zm, < 0.01. This is
because the small z cannot provide enough asymmetry in
the integrand of Eq. (90).

A similar argument holds for the chiral magnetic effect,
the z-component of vector current at t = oo. We can write
the CME current in terms of Bogoliubov coefficients as

_ leB| [dp
<l//y3l//>|t:oo:_§ 2—; Alp2)

— p. +2¢Er
Xy a, [—2Iﬁn,pz P
n=0

w(1)
Vm?* +2eB .
_ 2MRe[an’pzﬂn,pze—bwl)t} ,

(1)

(1)
me = 0.5MeV]
. - .

05 // eE/m?=0.1

!
04t I’ - | R — eE/m? =10
03t |/ ] 2

1] e eE/m: =2.0
02F ,!j ] )

! T —— > 2 = .
ol ,,,, ] eE/m: =5.0

P e ) 2
00 ,‘l;'.:/ ‘ : ‘ ‘ ‘ ) eE/m?=10.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T,
FIG. 5. 7 dependence of ng()) for several values of ¢E.
me = 0.5[MeV]
1.0 T ™
o8t ™m, = 0.01
R S Tm, = 0.05
e A R IR Tme, = 0.1
02p i —emmee Tme = 0.5
005 20 20 60 80 100
eE/m?
(0)
FIG. 6. eE dependence of ng’.

which is similar with one of the chirality imbalance. The
first term is independent of time and essentially given by a
product of |f ,, |* and (p, + 2¢Et)/w(1), which is inter-
preted as the z-component of relativistic velocity of
particles. Hence, this term is understood as a classical
analog of the electric current of the z-component carried by
the produced fermions. Note that the second oscillating
term is nonzero even in the massless limit.

VII. SUMMARY AND DISCUSSIONS

We have studied the chirality imbalance of the vacuum
under the time-independent magnetic field and the Sauter-
type pulsed electric field. In particular, we have focused on
the time evolution of the chirality imbalance and the chiral
magnetic effect from = —oc0 to 7= co0. Solving the
squared Dirac equation with the EM field, we have
constructed the quantized fermion field and the vacuum
at t = —oo. Then, we have calculated the vacuum expect-
ation values of various fermion current operators including
ns and CME in terms of the point-split regularization. Use
of the gauge invariant regularization method is important in
our study, because the VEVs diverge by the momentum
integration. Subtle cancellation between positive and
negative energy states provides nonzero contribution to
CME. We note that calculated VEVs are finite at t = oo,
and differ from the case with the constant electric and
magnetic fields, where the several VEVs become infinite at
t — oo [22]. In addition, we have found expressions for
the VEVs of other bilinear operators, e.g., (yysysy) = 0,
whereas (o) # 0.

We have shown the time evolution of the chirality
imbalance and CME current. The resulting chirality imbal-
ance is finite at r = oo where the Sauter electric field is
already turned off. We have also demonstrated that a part of
the chirality imbalance consists of the time-oscillating
contribution, which is proportional to the fermion mass.
The CME current also consists of the dominant time-
independent part and the oscillating part, which is similar
with the chirality imbalance. We have also discussed a
connection between the fermion pair creation by the
electric field and the chirality imbalance. As we have
obtained in Egs. (90) and (91), there are simple physical
interpretations for the generation of ns and CME.

The magnitudes of ns and CME in this model are
essentially determined by the following conditions:

1. enough magnitude of the electric field which is
much larger than the fermion mass scale;
2. enough asymmetric p, distribution of the produced
fermions (in the integrand of the chirality imbalance).
Asymmetries of the pair-production rate between p, > 0
and p, < 0 particles are important to produce the chirality
imbalance, and may depend on details of the external
electromagnetic fields. In fact, magnitudes of the chirality
imbalance for the massive fermion change largely if we
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change the time dependence of the electric field by using
the Gaussian packet formalism [32].

Although we consider the external electromagnetic fields
in this work, it may be important to include “backreaction”
of the external field. It is possible to include backreaction
effects on the electric field within this framework [24].
Work along this line is under consideration.
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APPENDIX: ANOMALY RELATION

We will provide a proof of the anomaly equation,
Eq. (70),

0,571 w) = 2imlin ) + 22 E(0BFA),  (A)

where

0 e e 2
Fa(t) = /_m dp,”* +A§AZ([) exp<— 7, +A2A(t)) )

< [1g6") (D17 = 1o (P = 1 (A = o0).

Using the solutions of the Dirac equation for the lowest
Landau level, ¢, , we first rewrite the integrand of
FA(t) as

2 (AP — 15O () — Pt eAl)
|¢0,p7(t)|2 |¢0,p; (N = \/mZ + (p, — eA(1))?
+G(p..1). (A2)

where the first term gives a finite contribution as p, — oo,
while the second term, G(p.,t), is a rapidly decreasing

function, lim,, | |G(p.. )| = 0. We decompose the inte-
grand of the first term using

2 2
Pz Pz
— —Ipl+ ol (25).

where a function H(p._, t) satisfies lim,, _,., H(p./m,t)—0.
Thus, we rewrite the first term as

0 p.+eA(t
/ dpz 2 Az Z()

X eXp (_ (p; + eA(t))2>

(A3)

p. + eA(?)
Vm?+ (p. — eA(r))?

2 [ p?
:P ) dpzpz|exp<_A_;>
2 [e p? p?
b [ avedpdi (25 ) exp (<55

2 2 0 2
:1+%/0 duH(u)exp(—%u) -1

A2

as A — oo, because of the fact H(Z—Z) -0 (p, > ).

On the other hand, the second term of Eq. (A2) can be
shown to vanish in the similar way. In our model with
the Sauter electric field, G(p., ) decreases rapidly for
|p.| > eEt independent of time 7, as shown in Fig. 4.
Hence, in the limit A — o0, i.e., A > eET7, the integral of
the second term is independent of A, and proportional to
(eEt)? by the dimensional analysis. [If the fermion mass is
comparable with (¢ E)!/?, the argument should be modified.
However, the essential result is not changed for A>>(eE)'/?
or m.] It leads to

® P+ eA (1 p. +eA(t))?
[ ap A (AR,
—oo 2
E
= (eAzr) x (A-independent constant) — 0.

Thus, we recover the correct anomaly relation in Eq. (70).
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