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We study the time evolution of the chirality imbalance n5 and the chiral magnetic effect (CME) under the
external parallel electromagnetic (EM) fields without assuming the artificial chiral asymmetric source. We
adopt the time-dependent Sauter-type electric and constant magnetic field, and obtain analytical solutions of
the Dirac equation for a massive fermion. We use the point-split regularization to calculate the vacuum
contribution in the gauge invariant way. As a result, we find that n5 andCME current increase substantially as
the electric field increases, and stay finite after the electric field is switched off. The chirality imbalance and
CME current are shown to consist of a dominant contribution, which is essentially proportional to relativistic
velocity, and a small oscillating part. We find a simple analytical relation between n5 and the fermion pair-
production rate from the vacuum. We also discuss the dynamical origin of the chirality imbalance in detail.
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I. INTRODUCTION

Recently, roles of the chiral anomaly have attracted
considerable theoretical and experimental interest in vari-
ous subjects of physics. The chiral (Adler-Bell-Jackiw)
anomaly is a violation of the (partial) axial-vector current
conservation due to quantum effects [1,2], and causes the
CP-violating processes observed experimentally. For the
past decade, macroscopic manifestations of the chiral
anomaly are discussed in the context of hydrodynamic
and transport phenomena in systems with chiral fermions,
e.g., the quark-gluon plasma or the Dirac/Weyl semimetals
[3–5]. One of the important effects induced by the anomaly
is chiral magnetic effect (CME), which is the generation of
“nondissipative” electric current along the direction of the
magnetic field [6–8];

J ¼ μ5
2π2

B; ð1Þ

where μ5 is the chiral chemical potential. The chiral
chemical potential characterizes an asymmetry of the
chirality of the system, and is conjugate to the chirality
imbalance of the fermions, n5, which is a difference of
right-handed and left-handed fermion number densities,
n5 ≡ nR − nL ≡ hψ̄γ0γ5ψi.

In the quark-gluon plasma produced in the heavy ion
collisions, the interaction with the nontrivial gluonic field
would change quark chiralities and thus produce the
chirality imbalance between right-handed and left-handed
quarks [4]. With the strong magnetic field, eB ∼m2

π ,
created by the heavy ion collision, CME may produce
asymmetry of the charged particle distributions which can
be measured experimentally [9]. On the other hand, CME is
an important topic in the condensed matter system [5],
where the massless Dirac mode has been realized in the
Dirac/Weyl semimetals [10,11]. The experimental result for
observing CME in such a system is reported in Ref. [11].
For various applications in QCD/condensed matter, the

existence of the chirality imbalance n5 and the chiral
chemical potential μ5 is a priori assumed to study specific
transport phenomena. However, appearance of the initial
chirality imbalance is still under debate. For example, in
the quark-gluon plasma, metastable local CP-violating
domains may be generated by transitions of the non-
perturbative gluonic configurations [7,12,13]. In Ref. [11]
for the semimetal system with the electromagnetic field, μ5
is estimated as μ5 ¼ ℏvFð3e24 E · BτÞ, where τ is the relax-
ation time of the chirality imbalance. In our opinion, it is
important to calculate the chirality imbalance and the chiral
magnetic effect within the field theoretical method without
introducing additional assumptions.
On the other hand, it is also necessary to clarify the use of

Eq. (1) in equilibrium. Although the CME formula [Eq. (1)]
is used for various applications, it has to be interpreted with
care. It is pointed out that such a current is forbidden in the
equilibrium system [14,15]. There are also some cautions
from theoretical calculations [16,17]. It seems that the
introduction of the chiral chemical potential implicitly
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assumes a system out of equilibrium [18]. In order to clarify
this issue, it is crucial to calculate time evolution of the
chirality imbalance and the CME current within a specific
model and compare their characteristic timescales.
In addition, the CME current for a massive fermion is to

be studied carefully. It is well known that the anomaly
relation receives a contribution from the mass-dependent
term:

∂μ

Z
d3xhψ̄γμγ5ψi ¼ 2im

Z
d3xhψ̄γ5ψi þ 2α

π

Z
d3xE ·B;

ð2Þ

with α ¼ e2=4π being the fine structure constant. To
estimate the contribution from the mass, one should
calculate a vacuum expectation value of the pseudoscalar
density, which is also time dependent. In particular, it is of
interest to understand a relation between CME and the
spontaneous breakdown of chiral symmetry. In Ref. [19],
the CME current is suppressed in the insulator phase, which
may correspond to the chiral symmetry breaking phase.
For these purposes, we study time evolution of the

chirality imbalance n5 and the chiral magnetic effect in the
vacuum under the electromagnetic field solving the Dirac
equation analytically without initial chiral chemical poten-
tial [20]. We consider the vacuum state (zero temperature
and zero fermion chemical potential) with external parallel
electromagnetic fields, which provide the chirality imbal-
ance of the fermion number density due to the chiral
anomaly. We adopt the time-dependent half-pulse electric
field (Sauter-type), and constant magnetic field in order to
solve the Dirac equation for a massive fermion analytically.
To calculate the infinite vacuum contribution in the gauge
invariant way, we use the point-split regularization [21,22]
and calculate vacuum expectation values of the various
bilinear fermion operators including n5 and CME. In
addition, we expect production of fermion-antifermion
pairs from the vacuum under the electric field by the
Schwinger mechanism [23,24]. We systematically study
relations between n5, CME current and the pair-creation
rate using the Bogoliubov transformation. Our results are to
be compared with the previous works obtained with the
Schwinger mechanism with constant electromagnetic field
[18], the Wigner function method with collinear electro-
magnetic fields [25], the Wigner function method with the
chiral chemical potential [26], and cylindrical Dirac equa-
tion with the chiral chemical potential [27].
This paper is organized as follows. In Sec. II, we show

analytical solutions of the Dirac equation with the parallel
electromagnetic fields. Using them we perform the canoni-
cal quantization and define the vacuum state at t → −∞ in
Sec. III. We introduce the point-split regularization in
Sec. IV to calculate vacuum expectation values of the
fermion operators in a gauge invariant way. We present our
numerical results for the time evolution of the vacuum

expectation values of the chirality imbalance and CME in
Sec. V. In Sec. VI we also discuss relations between the
chirality imbalance and the fermion pair-production rate,
and give a simple formula for CME current. Using them,
we show how the chirality imbalance is dynamically
generated in this model. Finally, Sec. VII is devoted to
the summary and discussion.

II. SOLUTION OF DIRAC EQUATION UNDER
SOLVABLE EXTERNAL EM FIELDS

A. Dirac equation with electromagnetic fields

We need an analytical solution of the Dirac equation
under the constant magnetic and the time-dependent
electric field, which plays a key role in our work. The
Dirac equation for a fermion field ψðxÞ with the mass m
under an external electromagnetic potential, AμðxÞ, is
given by

½iD −m�ψðxÞ ¼ 0; ð3Þ

where we introduce the covariant derivative Dμ ¼
∂μ þ ieAμðxÞ. The squared Dirac equation is given by

D2ΦðxÞ ¼ −m2ΦðxÞ: ð4Þ

Hereafter, we concentrate on finding solutions of the
squared Dirac equation ΦðxÞ, from which we can obtain
ψðxÞ by a suitable projection,

ψðxÞ ¼ ðiDþmÞΦðxÞ: ð5Þ

We consider specific forms of the external electromag-
netic field in this work to obtain analytical solutions;

B ¼ ð0; 0;−BÞ; ð6Þ

E ¼ ð0; 0; E=cosh2ðt=τÞÞ; ð7Þ

where parameters B and E are nonzero real constants, and
τ > 0. The magnetic field is time independent and uniform
along the z-direction. On the other hand, the electric field is
spatially homogeneous but time dependent with a pulse
structure, which is known as Sauter-type electric field [28].
The corresponding electromagnetic potential is

Aμ ¼ ð0; 0; Bx; Eτðtanhðt=τÞ þ 1ÞÞ: ð8Þ

Note that the vector potential is finite even at t → �∞. If
we adopted the constant electric field [22,24], the vector
potential would diverge at t → �∞, A3 ¼ Et.
To understand roles of the electromagnetic field, it is

convenient to introduce the so-called “magnetic helicity”
density [29] as
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hðtÞ≡ 1

V

Z
d3xA · B: ð9Þ

Although the magnetic helicity is not gauge invariant in
general, it is useful when we discuss the topological
structure of the gauge field. With Eq. (8), the magnetic
helicity density in our case is calculated as

hðtÞ ¼ −BEτðtanhðt=τÞ þ 1Þ: ð10Þ

At the initial state, t → −∞, both electric field and the
magnetic helicity hðtÞ are zero, and they increase as t
increases. In the final state, t → ∞, E vanishes rapidly,
while the magnetic helicity hðtÞ is kept finite. This peculiar
behavior of the magnetic helicity is due to the Sauter
electric field, and appropriate to discuss the production of
the chirality imbalance, as we will show later.
With the chiral representation for the gamma matrices,

the Dirac operator D and its squared form D2 are given by

iD¼

0
BBB@

0 0 −ĉ− iâ

0 0 −iâ† ĉþ
ĉþ −iâ 0 0

iâ† −ĉ− 0 0

1
CCCA

D2¼

0
BBB@
ĉ−ĉþþ ââ† 0 0 0

0 ĉþĉ−þ â†â 0 0

0 0 ĉþĉ−þ ââ† 0

0 0 0 ĉ−ĉþþ â†â

1
CCCA;

where we have defined the following operators:

ĉþ ¼ ð−i∂z þ eEτðtanhðt=τÞ þ 1ÞÞ þ i∂t

ĉ− ¼ ð−i∂z þ eEτðtanhðt=τÞ þ 1ÞÞ − i∂t

â ¼ ð−i∂y þ eBxÞ þ ∂x

â† ¼ ð−i∂y þ eBxÞ − ∂x:

Because D2 commute both ∂y and ∂z, the solution of the
squared Dirac equation, Φ, can be written as a separable
form, Φðt; xÞ ¼ expðipyyþ ipzzÞϕðt; xÞ, with momenta of
y and z directions being constants. For Φðt; xÞ, we
explicitly introduce the four component form as

ϕðt; xÞ ¼

0
BBB@

ϕ1ðt; xÞ
ϕ2ðt; xÞ
ϕ3ðt; xÞ
ϕ4ðt; xÞ

1
CCCA: ð11Þ

We then obtain a set of equations for ϕiðt; xÞ (i ¼ 1, 2, 3, 4)
as follows:

½ĉ−ĉþ þ ââ† þm2�ϕ1ðt; xÞ ¼ 0 ð12Þ

½ĉþĉ− þ â†âþm2�ϕ2ðt; xÞ ¼ 0 ð13Þ

½ĉþĉ− þ ââ† þm2�ϕ3ðt; xÞ ¼ 0 ð14Þ

½ĉ−ĉþ þ â†âþm2�ϕ4ðt; xÞ ¼ 0: ð15Þ

Note that the operators ĉþ, ĉ− include only t and ∂t

variables, whereas â, â† contain only x and ∂x. Hence,
these equations can be solved as

ΦðxÞ ¼ expðipyyþ ipzzÞ

0
BBB@

f1ðtÞg1ðxÞ
f2ðtÞg2ðxÞ
f2ðtÞg1ðxÞ
f1ðtÞg2ðxÞ

1
CCCA ð16Þ

with eigenfunctions, fiðtÞ, giðxÞ (i ¼ 1, 2), which satisfy
the following eigenvalue equations:

ââ†g1ðxÞ ¼ κg1ðxÞ ð17Þ

â†âg2ðxÞ ¼ κg2ðxÞ ð18Þ

ĉ−ĉþf1ðtÞ ¼ −ðκ þm2Þf1ðtÞ ð19Þ

ĉþĉ−f2ðtÞ ¼ −ðκ þm2Þf2ðtÞ: ð20Þ

We note that the eigenvalue κ is real and positive-semi-
definite because the operators â†â, ââ† are Hermitian.

B. Solutions for the x-dependent part

The eigenfunction and the eignevalue of Eqs. (17) and
(18) are easily obtained with the standard technique for the
harmonic oscillator.
We find a solution with the normalized Hermite poly-

nomial Hn ðn ¼ 0; 1; 2;…Þ,

g1ðxÞ ¼ gn−1;py
ðxÞ ð21Þ

g2ðxÞ ¼ gn;py
ðxÞ ð22Þ

with eigenvalues κ ¼ 2eBn and eigenfunctions gn;py
ðxÞ;

gn;py
ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi

2nn!
p

�jeBj
π

�
1=4

HnðηÞ expð−η2=2Þ

η≡ 1ffiffiffiffiffiffiffiffiffijeBjp ðpy þ jeBjxÞ; ð23Þ

where n denotes the Landau level. When n ¼ 0, the
normalizable solution of g1ðxÞ does not exist, thus we
define g−1;py

ðx̃Þ ¼ 0.
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The eigenfunctions satisfy the orthonormal condition asZ
dxgn;py

ðxÞgm;py
ðxÞ ¼ δmn: ð24Þ

Moreover, the completeness identity also holds:

X∞
n¼0

gn;py
ðxÞgn;py

ðx0Þ ¼ δðx − x0Þ: ð25Þ

Additionally, integration over py also gives a relation,Z
dpygn;py

ðxÞgm;py
ðxÞ ¼ jeBjδmn; ð26Þ

which guarantees the orthogonal condition for y in Eq. (16).

C. Solutions for the t-dependent part

Next, we will solve equations for the time-dependent
part. The operators ĉ−ĉþ, ĉþĉ− in Eqs. (19) and (20) are
written explicitly as

ĉþĉ− ¼ ∂2
t þ ðpz þ eEτðtanhðt=τÞ þ 1ÞÞ2 þ ie

E
cosh2ðt=τÞ

ð27Þ

ĉ−ĉþ ¼ ∂2
t þ ðpz þ eEτðtanhðt=τÞ þ 1ÞÞ2 − ie

E
cosh2ðt=τÞ ;

ð28Þ

which reduce to the hypergeometric differential equation
for f1ðxÞ. We obtain the eigenfunctions for f1ðxÞ in (19)
and f2ðxÞ in (20) as follows:

ϕ̃ðþÞ
n;pzðtÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð0Þ þ pz

2ωð0Þ

s
u−

iτωð0Þ
2 ð1 − uÞiτωð1Þ2 F

�
a; b

c
; uðtÞ

�

ð29Þ

ϕ̃ð−Þ
n;pzðtÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð0Þ − pz

2ωð0Þ

s
u

iτωð0Þ
2 ð1 − uÞ−iτωð1Þ

2

× F

�
1 − a; 1 − b

2 − c
; uðtÞ

�
; ð30Þ

where Fða;bc ; uÞ are Gauss’s hypergeometric function. The
parameters a, b, c are given by

a ¼ 1 −
iτωn;pz

ð0Þ
2

þ iτωn;pz
ð1Þ

2
þ ieEτ2 ð31aÞ

b ¼ −
iτωn;pz

ð0Þ
2

þ iτωn;pz
ð1Þ

2
− ieEτ2 ð31bÞ

c ¼ 1 − iτωn;pz
ð0Þ; ð31cÞ

where

ω2
n;pz

ðuÞ ¼ ðpz þ 2eEτuÞ2 þ 2jeBjnþm2 ð32Þ

uðtÞ ¼ 1

2
ðtanhðt=τÞ þ 1Þ: ð33Þ

We find a simple relation,

jϕ̃ðþÞ
n;pzðtÞj2 þ jϕ̃ð−Þ

n;pzðtÞj2 ¼ 1; ð34Þ

which holds independent of t, and is useful for further
calculations.

D. Classical solutions of Dirac equation

We then obtain solutions of the squared Dirac equation,
Φn;py;pz

ðxÞ, as follows:

Φn;py;pz
¼ expðipyyþ ipzzÞ

×

0
BBBBB@

gn−1;py
ðxÞfNðþÞ

1 ϕ̃�ð−Þ
n;pz ðtÞþNð−Þ

1 ϕ̃�ðþÞ
n;pz ðtÞg

gn;py
ðxÞfNð−Þ

2 ϕ̃ð−Þ
n;pzðtÞþNðþÞ

2 ϕ̃ðþÞ
n;pzðtÞg

gn−1;py
ðxÞfNð−Þ

3 ϕ̃ð−Þ
n;pzðtÞþNðþÞ

3 ϕ̃ðþÞ
n;pzðtÞg

gn;py
ðxÞfNðþÞ

4 ϕ̃�ð−Þ
n;pz ðtÞþNð−Þ

4 ϕ̃�ðþÞ
n;pz ðtÞg

1
CCCCCA;

ð35Þ

where Nð�Þ
i are normalization constants. To construct

the solutions of the Dirac equation, we properly choose
solutions in Eq. (35), and extract the right-handed/left-
handed solutions by performing the suitable projection.
Here, we choose four-independent solutions proportional to

Nð�Þ
1 , Nð�Þ

4 in Eq. (35), which satisfy the orthogonal and
completeness relations, as we will show later.
First, we obtain the “right-handed” solutions, operating

iγμDμ þm to the first row in Eq. (35):

ψ ðþ;R̃Þ
p ¼ NðþÞ

1 expðipyyþ ipzzÞ

×

0
BBBBB@

cos θn · gn−1;py
ðxÞ · ϕ̃�ð−Þ

n;pz ðtÞ
0

gn−1;py
ðxÞ · ϕ̃ðþÞ

n;pzðtÞ
i sin θn · gn;py

ðxÞ · ϕ̃�ð−Þ
n;pz ðtÞ

1
CCCCCA ð36Þ

ψ ð−;R̃Þ
p ¼ Nð−Þ

1 expðipyyþ ipzzÞ

×

0
BBBBB@

cos θn · gn−1;py
ðxÞ · ϕ̃�ðþÞ

n;pz ðtÞ
0

−gn−1;py
ðxÞ · ϕ̃ð−Þ

n;pzðtÞ
i sin θn · gn;py

ðxÞ · ϕ̃�ðþÞ
n;pz ðtÞ

1
CCCCCA; ð37Þ
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where θn is defined by

θn ¼ arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeBjnp
m

�
: ð38Þ

Hereafter, we use the shorthand notation p ¼ ðn; py; pzÞ for
simplicity.
Similarly, we obtain the “left-handed” solutions operat-

ing iγμDμ þm to the fourth row in Eq. (35):

ψ ðþ;L̃Þ
p ¼ NðþÞ

4 expðipyyþ ipzzÞ

×

0
BBBBB@

i sin θn · gn−1;py
ðxÞ · ϕ̃�ð−Þ

n;pz ðtÞ
gn;py

ðxÞ · ϕ̃ðþÞ
n;pzðtÞ

0

cos θn · gn;py
ðxÞ · ϕ̃�ð−Þ

n;pz ðtÞ

1
CCCCCA ð39Þ

ψ ð−;L̃Þ
p ¼ Nð−Þ

4 expðipyyþ ipzzÞ

×

0
BBBBB@

i sin θn × gn−1;py
ðxÞ · ϕ̃�ðþÞ

n;pz ðtÞ
−gn;py

ðxÞ · ϕ̃ð−Þ
n;pzðtÞ

0

cos θn · gn;py
ðxÞ · ϕ̃�ðþÞ

n;pz ðtÞ

1
CCCCCA: ð40Þ

In the massless limit, m → 0, the solutions of Eq. (36) are
exact eigenspinors of the chirality operator γ5 with the
eigenvalue þ1, while Eq. (39) is the chirality eigenstate

with the eigenvalue −1. Note that ψ ð�;R̃Þ
0;py;pz

¼ 0 because of

g−1;py
¼ 0 and sin θ0 ¼ 0.

These solutions of the Dirac equation form the complete
orthonormal basis. By choosing the normalization con-
stants, NðþÞ

1 ¼ Nð−Þ
1 ¼ NðþÞ

4 ¼ Nð−Þ
4 ¼ 1, the orthonormal

relations are given by

Z
d3x½ψ ðu0;s0Þ

p0 ðxÞ�†½ψ ðu;sÞ
p ðxÞ

¼ ð2πÞ2δuu0δss0δnn0δðpy − p0
yÞδðpz − p0

zÞ;

which holds except for ψ ð�;R̃Þ
0;py;pz

. Moreover, one can show

the completeness relation for Eqs. (36), (37), (39), and (40):

X
p

X
s¼R̃;L̃

X
u¼�

½ψ ðu;sÞ
p ðt; xÞ�α½ψ†ðu;sÞ

p ðt; x0Þ�β

¼ ð2πÞ2δαβδð3Þðx − x0Þ;

which guarantees the validity of our construction from
Eq. (35).

III. QUANTIZATION AND VACUUM
EXPECTATION VALUES OF CURRENTS

To construct the quantum field theory with the external
EM field, we first introduce the fermionic field operators
from Eqs. (36), (37), (39), and (40):

ψ̂ðxÞ ¼
X∞
n¼0

Z
dpyffiffiffiffiffiffi
2π

p
Z

dpzffiffiffiffiffiffi
2π

p

×
X
s¼R̃;L̃

ðb̂s;pψ ðþÞ
s;p ðxÞ þ d̂†s;−pψ

ð−Þ
s;p ðxÞÞ; ð41Þ

where b̂†s;p, d̂†s;p (b̂s;p, d̂s;p) are interpreted as creation
(annihilation) operators of the particles and antiparticles.
These operators obey the anticommutation relations,

fb̂s;p; b̂†s0;p0 g ¼ fd̂s;p; d̂†s0;p0 g ¼ δss0δnn0δðpy−p0
yÞδðpz−p0

zÞ

which is equivalent to the anticommutation relations for the
field operators,

fψ̂αðt; xÞ; ψ̂†
βðt; x0Þg ¼ δð3Þðx − x0Þδαβ:

In order to describe the fermion field under the time-
dependent EM field, we adopt the Heisenberg picture in the
following calculations, and define the vacuum state j0i at
t → −∞:

b̂s;pj0i¼ 0; d̂s;pj0i¼ 0 ðfor all s;pÞ; h0j0i¼ 1: ð42Þ

We obtain asymptotic behavior of the eigenfunctions

ϕ̃ð�Þ
n;pzðtÞ at t → −∞ as

ϕ̃ðþÞ
n;pzðtÞ ∝ expð−iωn;pz

ð0ÞtÞ ðt → −∞Þ ð43aÞ

ϕ̃ð−Þ
n;pzðtÞ ∝ expðþiωn;pz

ð0ÞtÞ ðt → −∞Þ: ð43bÞ

Apparently, the eigenfunction ϕ̃ðþÞ
n;pzðtÞ [ϕ̃ð−Þ

n;pzðtÞ] at
t → −∞ coincides a positive (negative) energy solution
of the free Dirac fermion.
By using the quantized fields, the classical current,

jðΓ; xÞ ¼ ψ̄ðxÞΓψðxÞ, is replaced by the current operator

ĵðΓ; xÞ ¼ 1

2
½ ˆ̄ψðxÞ;Γψ̂ðxÞ�

¼ 1

2
½ ˆ̄ψαðxÞΓαβψ̂βðxÞ − Γαβψ̂βðxÞ ˆ̄ψαðxÞ�;

where Γ are products of γ matrices, i.e., Γ¼ð1;iγ5;γμ;γ5γμÞ.
We can calculate the vacuum expectation value (VEV) of
the corresponding current as follows:
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hψ̄ðxÞΓψðxÞi ¼ h0jĵðΓ; xÞj0i ð44aÞ

¼
X∞
n¼0

Z
dpy

2π

Z
dpz

2π
Spðx;ΓÞ; ð44bÞ

where we define Spðx;ΓÞ as

Spðx;ΓÞ≡ 1

2

X
s¼R̃;L̃

½ψ̄ ð−;sÞ
p ðxÞΓψ ð−;sÞ

p ðxÞ

− ψ̄ ðþ;sÞ
p ðxÞΓψ ðþ;sÞ

p ðxÞ�: ð45Þ

Using Eqs. (36), (37), (39), and (40), we find Spðx;ΓÞ for
various Γ as

Spðx; γ0γ5Þ ¼ ½g2n−1;py
− g2n;py

�½jϕ̃ðþÞ
n;pz j2 − jϕ̃ð−Þ

n;pz j2� ð46Þ

Spðx; γ3Þ ¼ ½g2n−1;py
þ g2n;py

�½jϕ̃ðþÞ
n;pz j2 − jϕ̃ð−Þ

n;pz j2� ð47Þ

Spðx; iγ5Þ ¼ 2½g2n−1;py
− g2n;py

� cos θnIm½ϕ̃ðþÞ
n;pzϕ

ð−Þ
n;pz � ð48Þ

Spðx; γ0γ3Þ ¼ 2½g2n−1;py
þ g2n;py

� cos θnIm½ϕ̃ðþÞ
n;pzϕ

ð−Þ
n;pz � ð49Þ

Spðx; iγ1γ2Þ ¼ 2½g2n−1;py
− g2n;py

� cos θnRe½ϕ̃ðþÞ
n;pzϕ

ð−Þ
n;pz � ð50Þ

Spðx; 1Þ ¼ 2½g2n−1;py
þ g2n;py

� cos θnRe½ϕ̃ðþÞ
n;pzϕ

ð−Þ
n;pz �: ð51Þ

For further calculations, we shall integrate the right-hand
side over py, paying attention to g−1;py

¼ 0, namely,

Z
dpy½g2n−1;py

ðxÞ − g2n;py
ðxÞ� ¼ −jeBjδn0 ð52Þ

Z
dpy½g2n−1;py

ðxÞ þ g2n;py
ðxÞ� ¼ jeBjαn; ð53Þ

where αn are defined by

αn ¼
�
1 if n ¼ 0

2 if n ¼ 1; 2; 3;…:
ð54Þ

IV. REGULARIZED VEV AND
CHIRAL ANOMALY

A. Regularization and VEVs of currents

The VEVs of the current derived in the previous section
diverge when we integrate over pz, thus we need some sort
of regularization. Because we could obtain these VEVs as a
result of the subtle cancellation of the divergent integrals,
use of the gauge invariant regularization is certainly

important. Here, we use the point-split regularization
[21,22], which is known as the gauge invariant regulari-
zation scheme.
The regularization method in the pz integral essentially

introduces the nonlocality in the z space. We replace the
local current operator, ψ̄ðxÞΓψðxÞ, by the integral of the
nonlocal current as follows:

ψ̄ðzÞΓψðzÞ ¼
Z

dz0ψ̄ðz0Þδðz − z0ÞΓψðzÞ ð55Þ

¼ lim
ε→0

Z
dz0ψ̄ðz0Þhεðz − z0ÞΓψðzÞ; ð56Þ

where

hεðz − z0Þ≡ 1

2
ffiffiffiffiffi
πε

p exp

�
−
ðz − z0Þ2

4ε

�
ð57Þ

which is reduced to the delta function δðz − z0Þ as ε → 0.
This nonlocality clearly breaks the local gauge invari-

ance of the matrix elements. To recover the gauge invari-
ance, we insert the Wilson line into the nonlocal current,

Uðz0; zÞ ¼ P exp

�
ie
Z

z

z0
dx̃μAμðx̃Þ

�
; ð58Þ

where the choice of the integral path P is arbitrary. We may
choose a straight line which connects z0 and z for the path
function Uðz0; zÞ:

ψ̄ðxÞΓψðxÞ →
Z

∞

−∞
dz0ψ̄ðz0Þhεðz − z0ÞUðz0; zÞΓψðzÞ: ð59Þ

Carrying out the z0 integration, we obtain the regularized
VEV of the current,

hψ̄ðxÞΓψðxÞi ¼
X∞
n¼0

Z
dpy

2π

Z
dpz

2π

×
X
s¼R̃;L̃

expð−ε½pz þ eAzðtÞ�2ÞSpðx;ΓÞ:

ð60Þ

The regularization factor, expð−ε½pz þ eAzðtÞ�2Þ, is now
inserted into the integrand for the VEVs. Because the
parameter ε has the dimension of ðmassÞ−2, we introduce
the cutoff parameter Λ2 ≡ 1=ε with the dimension of Λ
being ðmassÞ1.
We arrive at final expressions for the regularized VEVs

of the currents:
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hψ̄γ0γ5ψi ¼ eB
2π

Z
dpz

2π
fΛðpzÞ½jϕ̃ðþÞ

0;pz
ðtÞj2 − jϕ̃ð−Þ

0;pz
ðtÞj2�

ð61Þ

hψ̄iγ1γ2ψi ¼ 2
eB
2π

Z
dpz

2π
fΛðpzÞ · Re½ϕ̃ðþÞ

0;pz
ðtÞϕð−Þ

0;pz
ðtÞ�

ð62Þ

hψ̄iγ5ψi ¼ −2
eB
2π

Z
dpz

2π
fΛðpzÞ · Im½ϕ̃ðþÞ

0;pz
ðtÞϕð−Þ

0;pz
ðtÞ�

ð63Þ

hψ̄γ3ψi¼ jeBj
2π

Z
dpz

2π

X∞
n¼0

αnfΛðpzÞ½jϕ̃ðþÞ
n;pzðtÞj2− jϕ̃ð−Þ

n;pzðtÞj2�

ð64Þ

hψ̄ψi ¼ −2
jeBj
2π

Z
dpz

2π

X∞
n¼0

αnfΛðpzÞ cos θn

× Re½ϕ̃ðþÞ
n;pzðtÞϕ̃ð−Þ

n;pzðtÞ� ð65Þ

hψ̄iγ0γ3ψi ¼ 2
jeBj
2π

Z
dpz

2π

X∞
n¼0

αnfΛðpzÞ cos θn

× Im½ϕ̃ðþÞ
n;pzðtÞϕ̃ð−Þ

n;pzðtÞ�; ð66Þ

where fΛðpzÞ ¼ expð−½pz þ eAzðtÞ�2=Λ2Þ.
It is clear that only the lowest Landau level (LLL), n ¼ 0,

contributes to the chirality imbalance Eq. (61), pseudosca-
lar density Eq. (63), and the tensor density Eq. (62). On the
other hand, we need sum up contributions from all possible
Landau levels for the vector current Eq. (64) as well as the
scalar density (65). This is different from calculations with
the chiral chemical potential [26,27], where the vector
current is given by the contribution from only the lowest
Landau level. In our case, when there is no electric field

(t ¼ −∞), jϕ̃ðþÞ
n;pz j2 and jϕ̃ð−Þ

n;pz j2 in (64) show the same
momentum distribution for each n, and a cancellation gives
null vector current. After the electric field is turned on

(t ≥ 0), however, momentum distributions of jϕ̃ðþÞ
n;pz j2 and

jϕ̃ð−Þ
n;pz j2 with the regularization function become different in

Eqs. (29) and (30), and the resulting vector current is finite
for each n, although contributions from higher Landau
levels are small. Our results are consistent with Ref. [22].
We also find that the VEVs for all other Γs vanish. In

particular, the spin expectation value of the z component
vanishes, hψ̄γ3γ5ψi ∼ hSzi ¼ 0. Thus, there is no magneti-
zation of the vacuum due to the chiral anomaly. This is in
contrast with the result for the tensor matrix element,
hψ̄σ12ψi ≠ 0, in Eq. (62), which is nonzero. This difference
may come from roles of antifermions for these matrix
elements, i.e., hψ̄γ3γ5ψi expresses a sum of fermion and

antifermion contributions, while the tensor matrix element
describes their differences.
We are particularly interested in the z-component of the

electric current, Jz ¼ ehψ̄γ3ψi, in view of the chiral
magnetic effect. From Eqs. (61) and (64), we find a simple
relation between Jz and the chirality imbalance n5 in the
LLL approximation (n ¼ 0) as

Jz ≃ e
jeBj
2π

Z
dpz

2π
fΛðpzÞ½jϕ̃ðþÞ

0;pz
ðtÞj2 − jϕ̃ð−Þ

0;pz
ðtÞj2�

¼ e
jeBj
eB

n5

¼ sgnðeBÞen5: ð67Þ

Equation (67) tells us that Jz is essentially proportional to
n5 in the limit of the strong magnetic field, where the use of
the LLL approximation can be justified. The result agrees
with one obtained in the previous work [8], although the
existence of the chiral chemical potential is assumed in
Ref. [8]. Here, we recover Eq. (67) by considering the
massive fermion under the external EM fields, without
assuming the chirality asymmetric source.

B. Chiral anomaly with the regularization

We are also interested in the modification of the con-
servation law for the axial-vector current [1]. Neglecting
the surface term from the current divergence, the chiral
anomaly relation is given by

∂t

Z
d3xhψ̄γ0γ5ψi ¼ 2im

Z
d3xhψ̄γ5ψi þ 2α

π

Z
d3xE · B:

ð68Þ

Here, the second term of the rhs is just an input of the model
calculation in our case. On the other hand, we have already
calculated the lhs and the first term of the rhs individually.
Thus, we can check a consistency of our calculations with
the point-split regularization.
For the lhs of the chiral anomaly, we simply calculate the

time derivative of the chirality imbalance. If we used
Eq. (46) for the chirality imbalance without invoking
the momentum regularization, the time derivative would
yield

∂thψ̄γ0γ5ψi
¼ 2im · 2½g2n−1;py

ðxÞ− g2n;py
ðxÞ�cosθnIm½ϕ̃ðþÞ

n;pzðtÞϕð−Þ
n;pzðtÞ�

¼ 2imhψ̄γ5ψi: ð69Þ

This is just a classical conservation law for the axial-vector
current.
However, the gauge invariant regularization provides

an additional time-dependent factor coming from
expð−½pz þ eAzðtÞ�2=Λ2Þ, in the integrand of the chirality
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imbalance. Using the regularized result, Eq. (61), we obtain
a modified conservation law as

∂thψ̄γ0γ5ψi ¼ 2imhψ̄γ5ψi þ 2α

π
EzðtÞBFΛðtÞ; ð70Þ

where

FΛðtÞ ¼
Z

∞

−∞
dpz

pz þ eAzðtÞ
Λ2
z

× fΛðpzÞ½jϕ̃ðþÞ
0;pz

ðtÞj2 − jϕ̃�ð−Þ
0;pz

ðtÞj2�:

This is the axial-vector current conservation law in our
framework. If the momentum cutoff is large enough,
Λ ≫ m, we obtain a simple relation limΛ→∞FΛðtÞ ¼ 1,
which is explicitly shown in the Appendix, and thus
reproduce the correct anomaly relation Eq. (68).

V. TIME EVOLUTION OF THE VEVs
OF THE CURRENTS

In this section, we show numerical results for the time
evolution of the chirality imbalance and CME in the
vacuum. Here, we have three independent parameters of
the model, magnitudes of the electric and magnetic fields,
and the fermion mass, which are expressed in units of the
electron mass me ¼ 0.5 MeV. We also need the parameter
Λ in the regularization function, and take Λ ¼ 30me, which
is much larger than the fermion mass scale.
In our study, we calculate the VEVs of the vacuum under

parallel constant magnetic and the time-dependent Sauter
electric fields, whose magnitudes can be fixed independ-
ently. However, as far as we understand, the chirality
imbalance is well studied by considering the magnetic
helicity density h defined in Eq. (9). As we have discussed
in the previous section, our calculation is fully consistent
to the chiral anomaly relation. In the massless limit, it is
simplified as

∂t

Z
d3xhψ̄γ0γ5ψi ≃ 2α

π

Z
E · B

¼ −∂t

�
2α

π

Z
d3xA · B

�
ð71Þ

since we consider the time-independent magnetic field. The
integrand of the rhs is just magnetic helicity hðtÞ. Hence,
with our EM field, the chirality imbalance becomes

n5ðt ¼ ∞Þ ¼ −
2α

π
hðt ¼ ∞Þ ¼ e2BEτ=π2; ð72Þ

which is true only for massless fermions. Nevertheless, it is
convenient to express the chirality imbalance (and CME) in
the unit of the magnetic helicity, e2BEτ=π2.

In Fig. 1, we first show the chirality imbalance n5 as a
function t with a shape of the Sauter electric field by the
dash-dotted curve. In the massless case (solid curve), n5
increases by the electric field, and approaches a finite value,
e2BEτ=π2, at t → ∞ even after the E field diminished. On
the other hand, in the case of the finite fermion mass, the
chirality imbalance consists of both a constant part and an
oscillating part at t → ∞. When the mass is comparable
with the magnitude of the electric field, m2 ∼ ðeEÞ, the
chirality imbalance is largely suppressed as depicted by the
dotted curve. Thus, we find that the average chirality
imbalance is almost zero, if m2 > ðeEÞ. We will relate
these results with the fermion pair production from the
vacuum in view of the Schwinger mechanism [24].
We also examine effects of the magnetic field on the

chirality imbalance. If we increase the strength of the
magnetic field, the magnitude of the chirality imbalance is
also increased which is just proportional to the magnetic
helicity. However, the time dependence of n5 is never
changed as expected.
We then show the vector current along the z-direction in

Fig. 2 which could be understood as the chiral magnetic
effect. Again, the vector current is shown in units of the
magnetic helicity density. In the case of the massless limit,
the vector current depicted by the solid curve consists of a
dominant constant part and a tiny oscillating part, which is
somewhat different from the behavior of the chirality
imbalance n5. This is because n5 is solely determined by
the lowest Landau level contribution, while the vector

FIG. 1. The time evolution of chirality imbalance n5.
eE=m2

e ¼ 4.0, τme ¼ 0.5, eB=m2
e ¼ 8.0.

FIG. 2. The time evolution of vector current density jz
τme ¼ 0.5, eB=m2

e ¼ 8.0.
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current gets contributions from higher Landau levels in
Eq. (64). The average CME current almost vanishes for the
small electric field m2 > ðeEÞ, which is similar with the
chirality imbalance.
From Fig. 2, for t=τ ≫ 1 where there is no electric

field, the CME current for the massless fermion is
expressed as

jz ≃
e2BEτ
π2

¼ α

2π
Bð8EτÞ: ð73Þ

The form of Eq. (73) is the same as Eq. (1) if we substitute
8Eτ for μ5. This crude identification is justified only if t is
large enough compared with the timescale τ of the electric
field in Eq. (7).
For completeness, we also show the pseudoscalar density

in Fig. 3 calculated with Eq. (63). As expected from the
chiral anomaly relation Eq. (70), the pseudoscalar density is
significant only at t ∼ 0.

VI. RELATION TO THE FERMION
PAIR PRODUCTION

In order to understand appearance of the chirality
imbalance from the vacuum, we relate it with the fermion
pair production [24,30]. To do so, we try to find a relation
between the “in-state” vacuum at t → −∞ and the “out-
state” vacuum at t → ∞. As discussed in Eqs. (74) and
(75), our original in-state vacuum at t → −∞, j0i, coin-
cides with the free particle vacuum (although B ≠ 0).
However, due to the Sauter electric field, the vacuum at
t → ∞, j0iout is not the same as the original vacuum j0i.

To proceed calculations, we need asymptotic forms of
the eigenfunction ϕ̃ðþÞ

n;pzðtÞ at t → −∞ and at t → ∞. For the
in-state, the eigenfunctions reduce to

ϕ̃ðþÞ
n;pzðtÞ ∝ expð−iωn;pz

ð0ÞtÞ ðt → −∞Þ ð74Þ

ϕ̃ð−Þ
n;pzðtÞ ∝ expðþiωn;pz

ð0ÞtÞ ðt → −∞Þ ð75Þ
which agree with positive/negative energy plane wave
solutions with the energy �ωð0Þ defined [Eq. (32)]. On
the other hand, with the help of the connection formula for
the Gauss hypergeometric function, out-state eigenfunc-
tions are rewritten as

ϕ̃ðþÞ
n;pzðtÞ ¼ αn;pz

ϕ̃ðþÞ
out;n;pz

ðtÞ − β�n;pz
ϕ̃ð−Þ
out;n;pz

ðtÞ ð76Þ

ϕ̃ð−Þ
n;pzðtÞ ¼ α�n;pz

ϕ̃ð−Þ
out;n;pz

ðtÞ þ βn;pz
ϕ̃ðþÞ
out;n;pz

ðtÞ; ð77Þ

where

ϕ̃ðþÞ
out;n;pz

ðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð1Þ þ ½pz þ 2eEτ�

2ωð1Þ

s
u−

iτωð0Þ
2 ð1 − uÞiτωð1Þ2

× F

�
a; b

1þ aþ b − c
; 1 − u

�
ð78Þ

ϕ̃ð−Þ
out;n;pz

ðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð1Þ − ½pz þ 2eEτ�

2ωð1Þ

s
u

iτωð0Þ
2 ð1 − uÞ−iτωð1Þ

2

× F

�
1 − a; 1 − b

1þ c − a − b
; 1 − u

�
; ð79Þ

and

αn;pz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð0Þ þ pz

ωð0Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð1Þ

ωð1Þ þ ½pz þ 2eEτ�

s
2i

τ½ωð0Þ þ ωð1Þ − 2eEτ�

×
Γð1 − iτωð0ÞÞΓð−iτωð1ÞÞ

Γð− iτωð0Þ
2

− iτωð1Þ
2

− ieEτ2ÞΓð− iτωð0Þ
2

− iτωð1Þ
2

þ ieEτ2Þ
ð80Þ

βn;pz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð0Þ þ pz

ωð0Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωð1Þ

ωð1Þ − ½pz þ 2eEτ�

s
2i

τ½ωð0Þ − ωð1Þ − 2eEτ�

×
Γð1þ iτωð0ÞÞΓð−iτωð1ÞÞ

Γðiτωð0Þ
2

− iτωð1Þ
2

þ ieEτ2ÞΓðiτωð0Þ
2

− iτωð1Þ
2

− ieEτ2Þ
: ð81Þ

ϕ̃ðþÞ
out;n;pz

ðtÞ and ϕ̃ð−Þ
out;n;pz

ðtÞ are further simplified as

ϕ̃ðþÞ
out;n;pz

ðtÞ ∝ expð−iωð1ÞtÞ ðt → ∞Þ ð82Þ

ϕ̃ð−Þ
out;n;pz

ðtÞ ∝ expðiωð1ÞtÞ ðt → ∞Þ; ð83Þ

which are the free fermion wave functions with the energy
ωð1Þ. From these functions, we can construct the
Bogoliubov transformation between in-state and out-state
[24,30]. We already introduced the annihilation operators
and the vacuum for the in-state:

b̂s;pj0i¼ 0; d̂s;pj0i¼ 0 ðfor all s;pÞ; h0j0i¼ 1: ð84Þ
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Similarly, we define the out-state vacuum with operators

b̂ðoutÞs;p , d̂ðoutÞs;p ,

b̂ðoutÞs;p j0iout¼ 0; d̂ðoutÞs;p j0iout¼ 0 ðfor all s;pÞ; h0j0i¼1;

ð85Þ

where operators b̂ðoutÞs;p , d̂ðoutÞs;p are introduced as coefficients

of ϕ̃ðþÞ
out;n;pz

ðtÞ and ϕ̃ð−Þ
out;n;pz

ðtÞ in the standard way. Thus,
these operators are subject to the transformation,

�
b̂ðoutÞp;s

d̂ðoutÞ†p;s

�
¼

�
αn;pz

βn;pz

−β�n;pz
α�n;pz

��
b̂p;s

d̂†p;s

�
; ð86Þ

where the Bogoliubov coefficients satisfy the unitary
condition jαn;pz

j2 þ jβn;pz
j2 ¼ 1. The expectation value

of the number operator at t ¼ ∞ between the original
vacuum becomes

h0jb̂ðoutÞ†p;s b̂ðoutÞp;s j0i ¼ jβn;pz
j2 ð87Þ

which is understood as the probability to find a fermion
produced by the electric field with the momentum n; pz at
t ¼ ∞ [24,30,31]. It is well known that jβn;pz

j2 is signifi-
cant only if the electric field is larger than the fermion mass
square, eE > m2, which means spontaneous creation of
fermion pairs from the vacuum under the strong electric
field. Thus, we naively expect the chirality imbalance may
emerge for eE ≫ m2.
Using these results, one can express the VEVs of the

vacuum at t ¼ ∞ in terms of the Bogoliubov coefficients.
For example, the chirality imbalance n5 at t ¼ ∞ is
calculated as

n5jt¼∞ ¼ eB
2π

Z
dpz

2π
fΛðpzÞ

�
−2jβ0;pz

j2 pz þ 2eEτ
ωð1Þ

−2
m

ωð1ÞRe½α0;pz
β0;pz

e−2iωð1Þt�
�
; ð88Þ

where the regularization function at t ¼ ∞ is

fΛðpzÞ ¼ exp½−εðpz þ 2eEτÞ2=Λ2�: ð89Þ

The first term is independent of time, and simply propor-
tional to jβ0;pz

j2 which is the probability to find a produced
particle in the lowest Landau level with pz. On the other
hand, the second term is proportional to the mass, and is
somehow interpreted as the “interference” term.
At first sight, n5 is simply determined by the magnitude

of jβ0;pz
j2. However, existence of the chirality imbalance

strongly depends on details of the integration over pz in
Eq. (88), which is sensitive to a parameter τ, the timescale
of the electric field in Eq. (7). We will discuss how the
nonzero n5 appears in some detail. In the massless limit, the

first term of Eq. (88), which we call nð0Þ5 , becomes

nð0Þ5 ¼ eB
2π

Z
dpz

2π
fΛðpzÞ

�
−2jβ0;pz

j2 pzþ 2eEτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpzþ 2eEτÞp
2þm2

�

→
eB
2π

Z
dpz

2π
fΛðpzÞ½−2sgn½pzþ 2eEτ�jβ0;pz

j2�: ð90Þ

In the presence of the uniform magnetic field, all the
fermions move along the z-direction, and the spin of the
fermions in the lowest Landau level, which can contribute
to jβ0;pz

j, is parallel to the z-direction. Hence, the fermions
with positive canonical momenta, pz þ 2eEτ > 0, carry the
right-handed chirality, while those with pz þ 2eEτ < 0 are
left handed. If the electric field were zero, the imbalance

nð0Þ5 would vanish, because of a cancellation between
contributions from pz > 0 and pz < 0 fermions by virtue
of the symmetrical pz distribution of the pair-production
probability β0;pz

. However, the nonzero electric field
induces an asymmetry between momentum distributions
of right- and left-handed fermions in both the sign function
sgn½pz þ 2eEτ� and the regularization function fΛ, which
indeed generates the chirality imbalance in this model.
To study nð0Þ5 in the case of the finite mass, we show

jβ0;pz
j2 and ðpz þ 2eEτÞ=ωð1Þ in Fig. 4, where ðpz þ

2eEτÞ=ωð1Þ is no longer the sign function. The pair-
creation probability jβ0;pz

j2 peaked at pz ¼ −eEτ, whereas

FIG. 3. The time evolution of pseudoscalar density.
me ¼ 0.5 MeV, eE=m2

e ¼ 4.0, τme ¼ 0.5, eB=m2
e ¼ 8.0.

FIG. 4. pz distribution of the pair-production probability jβj2
and the sign function of pz þ 2eEτ=ωð1Þ.
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ðpz þ 2eEτÞ=ωð1Þ changes its sign at pz ¼ −2eEτ. Hence,
if τ is very small (∼0), the integration over pz is negligible
due to a cancellation, and thus the resulting chirality
imbalance almost vanishes.
For completeness, we show explicit τ dependence of the

results. We first show the chirality imbalance as a function
of τme in Fig. 5 for several values of eE. If eE < m2, the
chirality imbalance is almost zero, because the production
of the fermion pairs is forbidden. The large electric field
simply gives the larger chirality imbalance. However, if the
timescale τ is quite small, τ ≪ 1=me, the situation becomes

different. In Fig. 6, we show nð0Þ5 for several values of τme.
We find that, even if the magnitude of the electric field is

large enough, nð0Þ5 is very small for τme < 0.01. This is
because the small τ cannot provide enough asymmetry in
the integrand of Eq. (90).
A similar argument holds for the chiral magnetic effect,

the z-component of vector current at t ¼ ∞. We can write
the CME current in terms of Bogoliubov coefficients as

hψ̄γ3ψijt¼∞ ¼ −
jeBj
2π

Z
dpz

2π
fΛðpzÞ

×
X∞
n¼0

αn

�
−2jβn;pz

j2 pz þ 2eEτ
ωð1Þ

− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2eBn

p

ωð1Þ Re½αn;pz
βn;pz

e−2iωð1Þt�
�
;

ð91Þ

which is similar with one of the chirality imbalance. The
first term is independent of time and essentially given by a
product of jβ0;pz

j2 and ðpz þ 2eEτÞ=ωð1Þ, which is inter-
preted as the z-component of relativistic velocity of
particles. Hence, this term is understood as a classical
analog of the electric current of the z-component carried by
the produced fermions. Note that the second oscillating
term is nonzero even in the massless limit.

VII. SUMMARY AND DISCUSSIONS

We have studied the chirality imbalance of the vacuum
under the time-independent magnetic field and the Sauter-
type pulsed electric field. In particular, we have focused on
the time evolution of the chirality imbalance and the chiral
magnetic effect from t ¼ −∞ to t ¼ ∞. Solving the
squared Dirac equation with the EM field, we have
constructed the quantized fermion field and the vacuum
at t ¼ −∞. Then, we have calculated the vacuum expect-
ation values of various fermion current operators including
n5 and CME in terms of the point-split regularization. Use
of the gauge invariant regularization method is important in
our study, because the VEVs diverge by the momentum
integration. Subtle cancellation between positive and
negative energy states provides nonzero contribution to
CME. We note that calculated VEVs are finite at t ¼ ∞,
and differ from the case with the constant electric and
magnetic fields, where the several VEVs become infinite at
t → ∞ [22]. In addition, we have found expressions for
the VEVs of other bilinear operators, e.g., hψ̄γ3γ5ψi ¼ 0,
whereas hψ̄σ12ψi ≠ 0.
We have shown the time evolution of the chirality

imbalance and CME current. The resulting chirality imbal-
ance is finite at t ¼ ∞ where the Sauter electric field is
already turned off. We have also demonstrated that a part of
the chirality imbalance consists of the time-oscillating
contribution, which is proportional to the fermion mass.
The CME current also consists of the dominant time-
independent part and the oscillating part, which is similar
with the chirality imbalance. We have also discussed a
connection between the fermion pair creation by the
electric field and the chirality imbalance. As we have
obtained in Eqs. (90) and (91), there are simple physical
interpretations for the generation of n5 and CME.
The magnitudes of n5 and CME in this model are

essentially determined by the following conditions:
1. enough magnitude of the electric field which is

much larger than the fermion mass scale;
2. enough asymmetric pz distribution of the produced

fermions (in the integrand of the chirality imbalance).
Asymmetries of the pair-production rate between pz > 0
and pz < 0 particles are important to produce the chirality
imbalance, and may depend on details of the external
electromagnetic fields. In fact, magnitudes of the chirality
imbalance for the massive fermion change largely if weFIG. 6. eE dependence of nð0Þ5 .

FIG. 5. τ dependence of nð0Þ5 for several values of eE.
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change the time dependence of the electric field by using
the Gaussian packet formalism [32].
Although we consider the external electromagnetic fields

in this work, it may be important to include “backreaction”
of the external field. It is possible to include backreaction
effects on the electric field within this framework [24].
Work along this line is under consideration.
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APPENDIX: ANOMALY RELATION

We will provide a proof of the anomaly equation,
Eq. (70),

∂thψ̄γ0γ5ψi ¼ 2imhψ̄γ5ψi þ 2α

π
EzðtÞBFΛðtÞ; ðA1Þ

where

FΛðtÞ ¼
Z

∞

−∞
dpz

pz þ eAzðtÞ
Λ2
z

exp

�
−
ðpz þ eAðtÞÞ2

Λ2

�

× ½jϕ̃ðþÞ
0;pz

ðtÞj2 − jϕ̃�ð−Þ
0;pz

ðtÞj2� → 1 ðΛ → ∞Þ:

Using the solutions of the Dirac equation for the lowest
Landau level, ϕ̃0;pz

, we first rewrite the integrand of
FΛðtÞ as

jϕ̃ðþÞ
0;pz

ðtÞj2 − jϕ̃�ð−Þ
0;pz

ðtÞj2 ¼ pz þ eAðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðpz − eAðtÞÞ2

p
þ Gðpz; tÞ; ðA2Þ

where the first term gives a finite contribution as pz → ∞,
while the second term, Gðpz; tÞ, is a rapidly decreasing

function, limjpzj→∞jGðpz; tÞj → 0. We decompose the inte-
grand of the first term using

p2
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
z

p ¼ jpzj þ jpzjH
�
p2
z

m2

�
; ðA3Þ

where a functionHðpz; tÞ satisfies limpz→∞Hðpz=m;tÞ→0.
Thus, we rewrite the first term asZ

∞

−∞
dpz

pz þ eAzðtÞ
Λ2

× exp

�
−
ðpz þ eAðtÞÞ2

Λ2

�
pz þ eAðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ðpz − eAðtÞÞ2
p

¼ 2

Λ2

Z
∞

0

dpzjpzj exp
�
−
p2
z

Λ2

�

þ 2

Λ2

Z
∞

0

dpzjpzjH
�
p2
z

m2

�
exp

�
−
p2
z

Λ2

�

¼ 1þ 2m2

Λ2

Z
∞

0

duHðuÞ exp
�
−
m2

Λ2
u

�
→ 1

as Λ → ∞, because of the fact Hðp2
z

m2Þ → 0 (pz → ∞).
On the other hand, the second term of Eq. (A2) can be

shown to vanish in the similar way. In our model with
the Sauter electric field, Gðpz; tÞ decreases rapidly for
jpzj ≫ eEτ independent of time t, as shown in Fig. 4.
Hence, in the limit Λ → ∞, i.e., Λ ≫ eEτ, the integral of
the second term is independent of Λ, and proportional to
ðeEτÞ2 by the dimensional analysis. [If the fermion mass is
comparable with ðeEÞ1=2, the argument should be modified.
However, the essential result is not changed forΛ≫ðeEÞ1=2
or m.] It leads toZ

∞

−∞
dpz

pz þ eAzðtÞ
Λ2
z

exp

�
−
ðpz þ eAðtÞÞ2

Λ2

�
Gðpz; tÞ

¼ ðeEτÞ
Λ2

× ðΛ-independent constantÞ → 0:

Thus, we recover the correct anomaly relation in Eq. (70).
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