
 

Parameter estimation using neural networks
in the presence of detector effects

Anders Andreassen ,1,* Shih-Chieh Hsu,2,† Benjamin Nachman ,3,4,‡ Natchanon Suaysom,2,§ and Adi Suresh 3,5,∥
1Google, Mountain View, California 94043, USA

2Department of Physics, University of Washington, Seattle, Washington 98195, USA
3Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

4Berkeley Institute for Data Science, University of California, Berkeley, California 94720, USA
5Department of Physics, University of California, Berkeley, California 94720, USA

(Received 20 October 2020; accepted 9 December 2020; published 1 February 2021; corrected 11March 2021 and 30March 2021)

Histogram-based template fits are the main technique used for estimating parameters of high energy
physics Monte Carlo generators. Parametrized neural network reweighting can be used to extend this
fitting procedure to many dimensions and does not require binning. If the fit is to be performed using
reconstructed data, then expensive detector simulations must be used for training the neural networks.
We introduce a new two-level fitting approach that only requires one dataset with detector simulation and
then a set of additional generation-level datasets without detector effects included. This simulation-level fit
based on reweighting generator-level events with neural networks (SRGN) is demonstrated using simulated
datasets for a variety of examples including a simple Gaussian random variable, parton shower tuning, and
the top quark mass extraction.

DOI: 10.1103/PhysRevD.103.036001

I. INTRODUCTION

Synthetic data produced from Monte Carlo (MC) gen-
erators are a key tool for statistical analysis in high energy
particle physics. These MC generators have a number of
parameters that can be measured by producing multiple
synthetic datasets and finding the one that agrees best with
data. This procedure can be computationally expensive,
especially when detector simulations are involved. In some
cases, one can avoid detector simulations by using unfolded
data for parameter estimation. Until recently [1,2], unfolding
methods were only available for low-dimensional or binned
data. Even with the advent of new methods, one can achieve
a higher precision with folding instead of unfolding. For
example, template-based fitting is the standard approach for
extracting the top quark mass [3], one of the most precisely
measured quantities at hadron colliders.1

Machine learning may provide a solution to the simu-
lation challenge. One possibility is to replace or augment
synthetic data from slow physics-based generators with
synthetic data generated from neural generative models
[2,6–36]. This requires neural networks to learn
pðdatajparametersÞ accurately, which is a difficult task.
An alternative solution is to instead learn the ratio
pðdatajparametersÞ=pðdatajreferenceÞ, where the reference
may be from a particular synthetic dataset generated with
a fixed set of parameters. It is well known [37,38] (also in
high energy physics [1,39–49]) that a suitably structured
and trained neural network-based classifier learns to
approximate this likelihood ratio, so one can turn the
difficult problem of probability density estimation into
the relatively easier task of classification. Applying this
idea to full phase space reweighting and parameter esti-
mation was recently proposed with the deep neural net-
works using classification for tuning and reweighting
(DCTR) protocol [39]. When used to perform an unbinned
fit, the original DCTR algorithm first learns a parametrized
reweighting function and then continuously (and differ-
entially) modifies the MC generator parameters until the
classifier loss used to define the reweighting function is
minimized.
The DCTR fitting protocol is effective because it

factorizes the reweighting and fitting steps. Furthermore,
the fit can be performed with gradient-based methods due
to the differentiability of neural networks. However, a key
challenge with this approach is that one must train the

*ajandreassen@google.com
†schsu@uw.edu
‡bpnachman@lbl.gov
§nsuaysom@uw.edu∥adisurtya@berkeley.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Even with ∼1 GeV theoretical ambiguity [4,5], the uncer-
tainty is still at the 0.5% level.

PHYSICAL REVIEW D 103, 036001 (2021)

2470-0010=2021=103(3)=036001(14) 036001-1 Published by the American Physical Society

https://orcid.org/0000-0003-3504-3919
https://orcid.org/0000-0003-1024-0932
https://orcid.org/0000-0002-8085-2021
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.036001&domain=pdf&date_stamp=2021-03-11
https://doi.org/10.1103/PhysRevD.103.036001
https://doi.org/10.1103/PhysRevD.103.036001
https://doi.org/10.1103/PhysRevD.103.036001
https://doi.org/10.1103/PhysRevD.103.036001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


reweighting function using data of the same type as the
data that are used in the fit. In other words, if the fit is
performed with data at detector level, the reweighting
function must be trained with a large number of synthetic
data examples that include detector effects. As detector
simulations can be computationally expensive, this can be a
significant challenge.
We propose a new approach whereby only one synthetic

dataset with detector effects (“simulation”) is required,
and all of the reweighting is performed at particle level
(“generation”) (following the nomenclature from Ref. [1]).
This new simulation-level fit based on reweighting gen-
erator-level events with neural networks (SRGN) approach
still factorizes the problem into a reweighting step and a
fitting step, except that now each step includes training
classifiers: one at generator level and one at simulation
level, respectively. This approach is the same as DCTR in
the reweighting step but differs in the fitting step. In the
form proposed in this paper, the fitting step is not
differentiable, but it is amenable to nongradient-based
optimization procedures. Given the computational effi-
ciency of particle-level generation compared with
detector-level simulation, this approach will enable new
fitting strategies for analyses like the top quark mass
measurement, related tasks at the Large Hadron Collider
(LHC), and beyond.
Computationally, this new approach requires an up-front

cost to train a continuous reweighting function and then a
per-evaluation cost to train a classifier to determine a
goodness-of-fit. The fitting step could use a computation-
ally cheaper and more standard goodness-of-fit metric at
the cost of precision. This is more computationally effective
than the traditional approach, which requires many simu-
lated samples at detector level.
This paper is organized as follows. Section II reviews

neutral network reweighting and introduces the new two-
level approach for incorporating detector effects. A variety
of numerical results are presented in Sec. III. In particular,
(1) a simple Gaussian example is used to first demonstrate
the salient features of the new approach, then (2) parton
shower tuning provides a high-dimensional example with-
out detector effects, and finally (3) the top quark mass
measurement is deployed for a multidimensional use case
including detector effects. The paper ends with conclusions
and outlook in Sec. IV.

II. NEURAL NETWORK REWEIGHTING AND
DETECTOR EFFECTS

Suppose that features X ∈ RN follow a probability
density pðxjθÞ, where θ are parameters of the model. A
reweighting function wθ0ðx; θÞ is designed so that a sample
drawn from pðxjθ0Þ weighted by w is statistically identical
to a sample drawn from pðxjθÞ. The ideal reweighting
function is wθ0ðx; θÞ ¼ pðxjθÞ=pðxjθ0Þ. One strategy for
constructing w is to model the probability density pðxjθÞ

and then take the ratio.2 Density estimation is a significant
challenge, especially in the case of collision events where X
is a variable and high-dimensional object and pðxÞ has
significant symmetry. One solution is to turn the challenge
of density estimation into the relatively easier task of
classification. Suppose that f is a neural network trained
to distinguish between a sample of events θ drawn from
pðxjθÞ and a sample of events θ0 drawn from pðxjθ0Þ. If f
is trained using the binary cross entropy loss function:

LossðfðxÞÞ ¼ −
X
xi∈θ

logðfðxiÞÞ −
X
xi∈θ0

logð1 − fðxiÞÞ; ð1Þ

then with a flexible enough architecture, an effective
training protocol, and sufficient training data,

fðxÞ
1 − fðxÞ ∝

pðxjθÞ
pðxjθ0Þ

: ð2Þ

Therefore, one can construct w using f. Furthermore, if the
training of f includes a variety of values of θ, then it will
naturally learn to interpolate and become fðx; θÞ; conse-
quently, w becomes a parametrized reweighting function.
The original DCTR fitting protocol is expressed sym-

bolically as

θ�DCTR ¼ argmax
θ0

X
xi∈θ?

logðfðxi; θ0ÞÞ

þ
X
xi∈θ0

logð1 − fðxi; θ0ÞÞ; ð3Þ

where θ? is not known. If f is the optimal classifier,
then θ�DCTR ¼ θ?.
Detector effects distort the feature space. Let XSjXG ∈

RM represent simulation-level features given generator-
level features XG. In synthetic samples, we have the
corresponding pairs of XG and XS for every collision
event. However, XG is not known for real data.
Therefore, it would be ideal to do the fit using XS, but
perform the reweighting using XG, as reweighting only
requires events from generation.
The SRGN protocol is a two-step procedure as illustrated

in Fig. 1. First, a reweighting function is trained. Then,
a classifier is trained to distinguish the target data from
the reweighted simulation. As this classifier is trained, the
parameters θ are also modified. When the classifier is
unable to distinguish the target data from the reweighted
simulation, then the current parameters are the fitted
parameters.
Symbolically, suppose that wθ0ðxG; θÞ is a reweighting

function learned at generator level, where θ0 represents the

2This was used in a recently proposed parametric unfolding
method in Ref. [50].

ANDERS ANDREASSEN et al. PHYS. REV. D 103, 036001 (2021)

036001-2



nominal parameters for the synthetic sample. Furthermore,
suppose that g is a neural network defined as follows:

gθ0 ðxSÞ ¼ argmax
g

X
xS;i∈θ?

logðgθ0 ðxS;iÞÞ

þ
X

ðxG;i;xS;iÞ∈θ0
wθ0ðxG;i; θ0Þ logð1 − gθ0 ðxS;iÞÞ: ð4Þ

Then,

θ�SRGN ≡ argmin
θ0

½Prðgθ?ðxSÞ > gθ0 ðxSÞÞ�; ð5Þ

where the quantity in ½·� is typically called the area under
the receiver operating characteristic curve or AUC. We
calculate the AUC between g’s predictions on events from
the unknown sample and g’s predictions on reweighted
events from the synthetic sample; effectively, if we
reweight events from the synthetic sample θ0 to events
from θ0, then we calculate the AUC between g’s predictions
on θ0 and g’s predictions on θ?.
In analogy to Eq. (3), one might think to define θ�SRGN as

the value of θ0 that maximizes the loss in Eq. (4). This
would make the SRGN procedure differentiable in contrast
to Eq. (5) (the AUC is not generically differentiable).
However, one can show that (see the Appendix A)

gθ0 ðxSÞ ≈
p

E½wθ0ðxG; θ0ÞjxS�ð1 − pÞ þ p
; ð6Þ

where p ¼ Prðθ ¼ θ?jxSÞ. When w ¼ 1, Eq. (6) is the usual
result that the classifier is simply the probability of the
target class given the features. Plugging Eq. (6) into Eq. (4)
and optimizing with respect to θ0 does not generally result
in θ� ¼ θ? (see Appendix B).
The SRGN result defined by Eq. (5) achieves θ�SRGN ¼

θ? when the features xG include the full phase space,
defined below.
The probability density of the features xS weighted by

wθ0ðxG; θÞ is given by

pweightedðxSjθ; θ0Þ≡
Z

pðxS; xGjθ0Þwθ0ðxG; θÞdxG ð7Þ

≈
Z

pðxS; xGjθ0Þ
pðxGjθÞ
pðxGjθ0Þ

dxG ð8Þ

¼
Z

pðxSjxG; θ0ÞpðxGjθÞdxG; ð9Þ

where the approximation in Eq. (8) depends on the
fidelity of the neural network optimization. Equation (9)
is equal to pðxSjθÞ if pðxSjxG; θ0Þ ¼ pðxSjxG; θÞ. In this
case θ�SRGN ¼ θ?. The equality pðxSjxG; θ0Þ ¼ pðxSjxG; θÞ
holds if xG contains all of the relevant information about the
detector response so that changing θ has no impact on the
resolution. In this case, the feature space is said to contain
the full phase space (later denoted Ω). Note that it is
common in experimental analyses to perform generator-
level reweighting for estimating theoretical modeling
uncertainties. These reweighting schemes typically use
histograms and, therefore, are constrained to one or two-
dimensional feature spaces. The above calculation sug-
gests3 that this is likely insufficient for an unbiased estimate
of the impact on simulation-level quantities.
The various properties of the SRGN method will be

illustrated in the next section with a variety of examples.

III. RESULTS

Three sets of examples are used to illustrate various
aspects of the SRGN method. First, simple Gaussian
examples are used, where the probability density is
known, and thus the reweighting function can be computed
analytically. The features of SRGN described in the previous
section are explored with these examples. The parton shower
examples from Ref. [39] are used as a second example.
These examples show how the new method can be effective

FIG. 1. An illustration of SRGN, applied to a set of synthetic
and natural data. There is one synthetic dataset where the
particle-level data (generation) is passed through a detector
emulation (simulation). SRGN is a two-step process. First, a
parametrized reweighting function is learnt using the gener-
ation dataset and a set of additional synthetic generator-level
datasets. Second, the synthetic simulation is reweighted and
compared with real data, iterated to converge on the parameters
θ?. Illustration is inspired by Ref. [1].

3We have only shown that if xG is full phase space, then the
procedure is unbiased. However, it could happen that xG could
be less than full phase space, but pðxSjxG; θÞ ¼ pðxSjxG; θ0Þ still
holds.

PARAMETER ESTIMATION USING NEURAL NETWORKS IN THE … PHYS. REV. D 103, 036001 (2021)

036001-3



with high-dimensional features but do not incorporate
detector effects. A measurement of the top quark mass is
used as a third example to demonstrate both multivariate
fitting and detector effects.
The SRGN protocol calls for two neural networks: one

called f that is used to construct the reweighting function w
and another called g that is used to perform the fit. These
neural networks are implemented using KERAS [51] with
the TENSORFLOW backend [52] and optimized with ADAM

[53]. Networks are trained using the binary cross entropy
loss function. The network architectures vary by example
and are described below.

A. Gaussian example

The generator-level feature space is one dimensional and
follows a Gaussian distribution: XG ∼N ðμ; σ2Þ. Detector
effects are modeled as independent Gaussian noise: XS ¼
XG þ Z where Z ∼N ð0; ϵ2Þ. The detector smearing ϵ and
the generator width σ ¼ 1 are known, but μ is not known.
In this case, the reweighting function can be computed
analytically:

wμ0ðxG; μÞ ¼ exp

�ðxG − μ0Þ2 − ðxG − μÞ2
2

�
: ð10Þ

The parametrized reweighting is trained with μ values
sampled uniformly at random in the range ½−2; 2�. One
million examples are used for both data and the nominal
synthetic dataset, and ϵ ¼ 0.5. These data for μ ¼ 0 are
presented in Fig. 2.
A reweighting function is derived using a neural network

with three hidden layers using 50 nodes each. Rectified
linear units (ReLU) connect the intermediate layers and the
output is Softmax. The training/validation split is 50=50.
The network is trained for 200 epochs with early stopping
using a patience of 10, and the training time is about
5 seconds per epoch on an NVIDIA Tesla V100 (“Volta”)
Graphics Processing Unit (GPU). The batch size is 105. A

comparison of the analytical [Eq. (10)] and learned
reweighting is shown in Fig. 3 using weights based on
generator level in both cases. The reweighting effectively
morphs the μ ¼ 0 distribution to one that has μ ¼ 1.5.
The goal of SRGN is to use simulated features with

reweighting based on generator level. This is explored in
Fig. 4. In order to show that the features need not be the
same at generator level and simulation level, XG is two-
dimensional. Then, we construct the detector response
such that the simulation-level observable XS depends
explicitly on the primary generator-level feature, but its
detector smearing depends on the secondary generator-
level feature. That is, detector effects are nonuniform and
are dependent on the generator-level parameter(s). In
particular, we choose the primary generator-level feature
XG;0 ∼N ðμ; 1Þ and the secondary generator-level feature
XG;1 ∼N ð0; ν2Þ, where ν ¼ ðω0 þ ω1μÞ2 for two constants
ω0 and ω1. (Specifically, we choose ω0 ¼ 0.7 and ω1 ¼ 0.2
for this example.) Then, on a per-event basis, detector
effects are emulated by XS ¼ XG;0 þ Z, where
Z ∼N ð4jxG;1j; ðxG;1Þ4Þ, with 4jxG;1j representing a net
shift bias and ðxG;1Þ2 representing a smearing bias.
Importantly, the resolution depends on the secondary
generator-level feature.

FIG. 2. A histogram of the Gaussian random variable x for
μ ¼ 0 at geneator level and simulation level.

FIG. 3. A demonstration of reweighting for generation (top)
and simulation (bottom).

ANDERS ANDREASSEN et al. PHYS. REV. D 103, 036001 (2021)

036001-4



Figure 4 shows the result of a reweighting derived on
generatator level for ten million events, using the same
architecture and training procedure as the previous exam-
ple. By construction, both the smearing and the shifting are
more intense for the μ ¼ 1.5 simulation-level distribution.
When using both generator-level features (constituting the
full phase space Ω), reweighting is successful. However, if

only the primary generator-level feature is used for w, then
the reweighting fails to reproduce the simulated-level
probability density.
So far, the results have only illustrated the efficacy of

reweighting–the rest of the plots in this section demonstrate
how the reweighting can be used for fitting. To begin, the
one-dimensional generator-level setup is used for the fit.
The fitting data consist of one million events with ϵ ¼ 0.5
for detector effects. Then, a classifier is trained with
different values of μ to distinguish the unknown dataset
from the reweighted synthetic dataset, and the AUC from
Eq. (5) is plotted as a function of μ for a fit at both generator
level and simulation level. The architecture of this neural
network consists of two hidden layers using 128 nodes
each. Rectified linear units (ReLU) connect the intermedi-
ate layers, and the output is a sigmoid. The training/
validation split is 50=50. The network is trained for 200
epochs with early stopping using a patience of 5 and the
training time is about 5 seconds per epoch on an NVIDIA
Tesla V100 GPU. The batch size is 1000. In both cases, the
reweighting is performed at generator level. Figure 5
illustrates several aspects of the proposed fitting method
with SRGN. First, the minimum of the AUC is 0.5 and
occurs at μ ¼ 1 in both cases, which is the correct value.
Second, the rise in the AUC function away from the
minimum is steeper at generator level than simulation level,
as expected given the loss of statistical power from detector
smearing. In addition to showing the AUC function, the
values of fits using a nondifferentiable optimizer are also
presented as markers in Fig. 5. At both generator level and
simulation level, the fit correctly identified μ? ¼ 1. The
numerical results of the one-dimensional Gaussian fit are

FIG. 4. A demonstration of reweighting derived at generator
level for the primary generator-level feature (top), the secondary
generator-level feature (middle), and simulation level (bottom). In
the top and bottom plots, a reweighting using only the primary
generator feature is also shown (labeled DCTR=Ω wgt., where
“wgt.” stands for “reweighted distribution”.)

FIG. 5. For an individual run, the AUC versus μ for generator-
level and simulation-level features. Also shown are the fitted
values at both levels using SCIPY 1.5.2’s POWELL nondifferen-
tiable optimizer fitting with 0.0001 as the relative error in both the
solution μSRGN and the function value AUCðμSRGNÞ acceptable
for convergence, within the bounds [-2, 2] (the same range that
the reweighting function is parametrized in), and optimizing for a
maximum of 100 iterations.

PARAMETER ESTIMATION USING NEURAL NETWORKS IN THE … PHYS. REV. D 103, 036001 (2021)

036001-5



presented in Table I, and the reported measurements are the
averages and standard deviations over 40 runs using a
nondifferentiable optimizer. A small number of runs resulted
in defective optimization terminating at the fitting bounds;
these were identified and removed by examining values
outside a 2σ window around the mean, as well as all values
within 5% of the range of the bounds.
As a next illustration, a fit is performed for both μ and σ.

A two-dimensional reweighting function is parametrized in
the one-dimensional Gaussian mean and standard deviation
within the ranges [-2, 2] and [0.25, 4], respectively. The
reweighting function can still be computed analytically and
is given by

wðμ0;σ0ÞðxG; ðμ; σÞÞ

¼ σ0
σ
exp

�
1

2

��
xG − μ0

σ0

�
2

−
�
xG − μ

σ

�
2
��

; ð11Þ

where μ0 and σ0 denote the nominal values for the Gaussian
distribution. As before, one million events are used for
the fit, and detector effects are modeled with ϵ ¼ 0.5. The
efficacy of a two-dimensional reweighting function is
presented in Fig. 6 for a case with μ0 ¼ 0 and σ0 ¼ 1.
The neural network weights are just as effective as the
analytic weights to morph the default distribution into a
distribution with μ ¼ 1 and σ ¼ 1.25.
A two-dimensional fit to μ and σ is demonstrated in

Fig. 7. The AUC function is minimized at the correct values
of μ ¼ −1 and σ ¼ 0.75 for both generator level and
simulation level for a reweighting function derived at
generator level in both cases. The contours in Fig. 7
indicate that the AUC function rises more steeply away
from the minimum at generator level, as would be expected
of the enhanced statistical power of the dataset without

TABLE I. Numerical results for the one-dimensional Gaussian
fit. The reported values and errors represent the mean and
standard deviation over the 40 runs (with outliers removed),
employing the same nondifferentiable optimization scheme
described in Fig 5.

Parameter Target Level Fit value

μ 1.000 Generator 0.998� 0.013
Simulation 1.000� 0.017

FIG. 6. An illustration of two-dimensional reweighting on
generator level (top) and simulation level (bottom). For com-
parison, the results with analytical weights from Eq. (11) and the
results with neural network-based weights are both plotted.

FIG. 7. For an individual run, the AUC as a function of μ and σ.
The true values are μ ¼ −1.000 and σ ¼ 0.750. The values of the
nominal synthetic dataset are indicated by a green cross and the
nondifferentiable optimizer’s fitted values are represented by a
red cross.

ANDERS ANDREASSEN et al. PHYS. REV. D 103, 036001 (2021)

036001-6



detector effects. The numerical results of the two-dimen-
sional Gaussian fit are presented in Table II. The reported
measurements and uncertainties are again the averages and
standard deviations over 40 runs using a nondifferentiable
optimizer. The same procedure for identifying and remov-
ing outliers as the one-dimensional fit was employed.

B. Parton shower Monte Carlo tuning

The parton shower tuning examples from Ref. [39] are
presented in this section. There are no detector effects, but
we show that the new fitting methodology works with high-
dimensional features and in particular can be integrated with
particle flow networks [54], which are based on deep sets
[55]. The event generator details can be found in Ref. [39]
and are briefly reviewed here. In particular, eþe− → Z →
dijets are generated using PYTHIA 8.230 [56,57] and anti-kt
[58] R ¼ 0.8 jets are clustered using FastJet 3.03 [59,60]. The
jets are presented to the neural network for training, with
each jet constituent represented by (pT; η;ϕ, particle type,
θ), where θ are the generator parameters to be determined.
The neural network setup is the same as in Ref. [39], which
uses the default particle flow network parameters from
Ref. [54]. Training time was about 20 seconds per epoch
on an NVIDIA Tesla V100 GPU.
The default generator parameters follow the Monash

tune [61]. Three representative generator parameters are
used here to illustrate the SRGN fitting procedure. First,
TimeShower:alphaSvalue is varied to illustrate a
parameter that has a significant impact on the entire phase
space and is thus relatively easy to tune. Second,
StringZ:aLund is a parameter that also impacts the
entire phase space but to a lesser extent than the strong
coupling constant used in final state radiation. Finally,
StringFlav:probStoUD is a parameter that has a
large impact on a narrow region of phase space. The
Monash tune values of the three parameters are 0.1365,
0.68, and 0.217, respectively. For TimeShower:
alphaSvalue and StringFlav:probStoUD, two
nearly sufficient one-dimensional statistics are known:
the number of particles inside the jets and the number of
strange hadrons, respectively. Fits using these simple
observables will be compared with the full phase space
fit below.

Generator-level features illustrating variations in each of
the three parameters are shown in Figure 9. The full phase
space will be used in the fit, but these are representative
features to illustrate the effects of parameter variations.
These features are the same as used in Ref. [39] and are the
number of particles inside the jet (multiplicity), the number
of kaons inside the jet, an n-subjettiness ratio τ2=τ1 [62,63],
and a four-point energy correlation function using angular
exponent β ¼ 4 [64] ECFðN ¼ 3; β ¼ 4Þ. As advertised,
the final state shower αs and hadronization parameters
affect all four observables, with a bigger shift from αs. In

FIG. 8. One-dimensional fits for each of the three parton
shower parameters. The vertical axes show the increase of the
AUC for the classifier g from its minimum value. For comparison,
the αs and strangeness plots also show fits using SRGN with only
the inclusive or strange hadron multiplicity, respectively.

TABLE II. Numerical results for the two-dimensional Gaussian
fit. The reported values and errors represent the mean and
standard deviation over 40 runs (with outliers removed), employ-
ing the same nondifferentiable optimization scheme described in
Fig. 5 with the addition of fitting σ within the bounds [0.25, 4].

Parameter Target Level Fit value

μ −1.000 Generator −0.994� 0.014
σ 0.750 0.746� 0.013

μ −1.000 Simulation −0.997� 0.017
σ 0.750 0.747� 0.017

PARAMETER ESTIMATION USING NEURAL NETWORKS IN THE … PHYS. REV. D 103, 036001 (2021)

036001-7



contrast, the strangeness parameter only affects the number
of kaons and has no impact on the other observables.
To perform a given fit, we scan for the AUC as a function
of the parameter to search for the minimum; the step
sizes are 0.001, 0.01, and 0.005 for TimeShower:
alphaSvalue, StringZ:aLund, and StringFlav:
probStoUD, respectively.

One-dimensional fits to each of the three parton shower
parameters are shown in Fig. 8. Since TimeShower:
alphaSvalue has such a large effect on the phase space,
it is the most precisely measured parameter as indicated
by the steepness of the AUC curve near the minimum.
The steepness of the full phase space fit also shows that
there is slightly more information with respect to

FIG. 9. Features used to show the impact of generator parameter variations for the parton shower dataset. Variations in
TimeShower:alphaSvalue, StringZ:aLund, and StringFlav:probStoUD are presented in the first, second, and third
columns, respectively. Each row represents a different observable. Reweighted distributions are plotted over an average of 40
reweightings.

ANDERS ANDREASSEN et al. PHYS. REV. D 103, 036001 (2021)

036001-8



multiplicity alone. The StringZ:aLund parameter has
the smallest effect on the phase space of all three param-
eters and thus is the least precisely measured parameter.
StringFlav:probStoUD primarily has an effect on
the number of strange particles, and thus the full phase
space does not offer much more information than only the
number of strange hadrons, so the precision is comparable
for both approaches. The reported measurements and plots
are the averages and standard deviations over 40 runs, each
with a different reweighting function and classifier that
differed only in their random initialization. A small number
of the runs resulted in reweighting functions that were
defective and these were identified and removed by exam-
ining the runs with fitted values outside a 2σ window around
the mean. Across the 40 runs, most of the results clustered
around the mean, and so the outliers look systematically
different than the fits with effective reweighting functions.
The numerical results of the three fits are presented in

Table III. The fitted values are statistically consistent
with the target values and the uncertainties are generally
comparable to or smaller than the values from the original
DCTR protocol [39].

C. Top quark mass

Top quark pair production is generated using PYTHIA 8.230

[56,57] and detector effects are modeled using DELPHES 3.4.1

[65–67] using the default compact muon solenoid (CMS)
run card. One of the W bosons is forced to decay to μþ νμ
while the other W boson decays hadronically. Each event is
recorded as a variable-length set of objects, consisting of jets,
muons, and neutrinos. At simulation level, the neutrino is
replaced with missing transverse momentum. Generator-
level and simulation-level jets are clustered with the anti-kt
algorithm using R ¼ 0.4 and are labeled as b tagged if the
highest energy parton inside the jet cone (ΔR < 0.5) is a b
quark. Jets are required to have pT > 20 GeV, and they can
only be b tagged if jηj < 2.5. Furthermore, jets overlapping
with the muon are removed.
Events are only saved if they have at least two b-tagged

jets and at least two additional non-b-tagged jets. Four
observables are formed for performing the top quark mass
extraction. First, the b jet closest to the muon is labeled b1.

Of the remaining b-tagged jets, the highest pT one is
labeled b2. The highest two4 pT non-b-tagged jets are
labeled j1 and j2. The four observables are given by:mb1μν,
mb2μν, mb1j1j2 , and mb2j1j2 , where the four-momentum of
the detector-level neutrino is determined by solving the
quadratic equation for the W boson mass.5

Histograms of the four observables for generator level
and simulation level are presented in Fig. 11. On both

TABLE III. Numerical results for the parton shower parameter
fits. The errors represent the standard deviation over 40 runs (with
outliers removed). Note that Ω denotes the full phase space.

Parameter Target Input Fit value

TimeShower: 0.1600 Ω 0.1596� 0.0010
alphaSvalue Multiplicity 0.1601� 0.0014

StringZ:aLund 0.8000 Ω 0.7884� 0.0277

StringFlav: 0.2750 Ω 0.2726� 0.0070
probStoUD NStrange Had. 0.2779� 0.0045

FIG. 10. One-dimensional fits to the top quark mass. The
vertical axes show the increase of the AUC for the classifier g
from its minimum value. The top plot uses all four observables
and compares the fit at generator level to the fit at simulation
level. The middle (bottom) is at generator level (simulation
level) and compares the fit with all four observables to the fit
with only mb1μν.

4This has a higher efficiency than imposing a W mass
constraint, but there is no significant impact on the results.

5If there is no solution, then the mass is set to zero. If there are
two real solutions, then the one with the smaller jpzj is selected.

PARAMETER ESTIMATION USING NEURAL NETWORKS IN THE … PHYS. REV. D 103, 036001 (2021)

036001-9



particle and detector levels, one can see that varying the top
quark massMt has the greatest effect onmb1μν andmb2μν, as
opposed to mb2j1j2 and mb1j1j2 . However, the latter two still
have some visible dependence on Mt. Therefore, it is
expected that fitting on all four observables (denoted
O4 ¼ fmb1μν; mb2μν; mb2j1j2 ; mb1j1j2g) should yield a more
precise fit than fitting on any single one.

The application of the SRGN technique to the top quark
mass fit is presented in Fig. 10. Both neural networks used
for reweighting and classifying are implemented identically
to the Gaussian example, with the exception of increasing
early stopping patience to 20; the training time is again
about 5 seconds per epoch on an NVIDIATesla V100 GPU.
The parametrized reweighting is trained with 5.5 × 106

FIG. 11. Histograms for the four observables for (left column) generator level for two different top quark masses, (middle column) a
comparison of generator level and simulation level for a fixed top quark mass (Mt ¼ 172.5 GeV), and (right column) simulation level
for two different top quark masses. Reweighted distributions are plotted over an average of 40 reweightings.

ANDERS ANDREASSEN et al. PHYS. REV. D 103, 036001 (2021)

036001-10



events with Mt values sampled uniformly at random in
the range [170 GeV, 180 GeV] against 1.4 × 106 events
sampled with Mt ¼ 172.5 GeV. To perform a given fit,
we scan for the AUC as a function of the top quark mass
with a step size of 0.1 GeV to search for the minimum.
There are 1.4 × 106 events in the nominal synthetic
sample and 1.5 × 106 events in the fitting data. In all
cases, the fitted value agrees with the correct mass,
Mt ¼ 175 GeV. The top plot in Fig. 10 shows that the
generator-level fit is much more precise than the simu-
lation-level fit, based on the curvature of the AUC near
the minimum. The other two plots in the figure demon-
strate a superior precision for the four-dimensional fit
compared with the one-dimensional fit. The same ensem-
bling and outlier removal procedure is applied here as
in the previous section. Horizontal error bars are the
standard deviation across 40 runs (outliers removed) with
different random initializations.
Numerical values for the top quark mass fit are presented

in Table IV.

IV. CONCLUSIONS AND OUTLOOK

This paper addresses a key challenge with simulation-
based inference in the presence of detector effects. In
particular, detector simulations are computationally expen-
sive, so it is desirable to construct a method that uses as
little detector simulation as possible. We have introduced
the SRGN approach that only requires one synthetic event
sample with a detector simulation, and all other synthetic
event samples need only be known at the generator level.
A variety of similar methods have been proposed in
Ref. [39,43–46], but they typically require many synthetic
event samples with detector simulation.
The SRGN protocol is unbinned and can process

multidimensional feature spaces and parameter spaces. In
its current form, there is a nondifferentiable step required to
optimize the area under the receiver operating characteristic
curve. Future refinements of this method may result in a
fully differentiable pipeline.

The code for this paper can be found at [68]. The
synthetic data used for the numerical examples can be
found at [69] for the parton shower fits and at [70] for the
top quark mass fits.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy, Office of Science under Contract No. DE-AC02-
05CH11231. In particular, this work made use of the Cori
supercomputer at the National Energy Research Scientific
Computing Center (NERSC). We are grateful to Wahid
Bhimji for help with Cori-GPU. This work was also
supported by the NERSC Exascale Science Applications
Program and the High Energy Physics Center for
Computational Excellence. S.-C. H. is supported by the
U.S. Department of Energy, Office of Science, Office of
Early Career Research Program under Award No. DE-
SC0015971. We would like to thank Hannah R. Joo for
suggesting the name of the algorithm and Anjali Chary for
input on the schematic diagram. We also thank Gregor
Kasieczka, Roman Kogler, Bryan Ostdiek, Reinhard
Schwienhorst, and Jesse Thaler for feedback on the
manuscript.

APPENDIX A: WEIGHTED LOSS
OPTIMIZATION

This section derives Eq. (6), which is the optimal
classifier function g, if using the weighted binary cross
entropy loss function. Given features ðXG; XSÞ, labels
Y ∈ f0; 1g, weighting function w, and function g, a
common loss functional to determine g is the binary cross
entropy:

L½g� ¼ −Y logðgðXSÞÞ
− ð1 − YÞwθ0ðXG; θ0Þ logð1 − gðXSÞÞ: ðA1Þ

Conditioned on XS ¼ xS, the expected loss is given by

E½LjXS ¼ xs� ¼ −E½YjXS ¼ xS� logðgðxSÞÞ
− E½ð1 − YÞwθ0ðxG; θ0ÞjXS ¼ xS�
× logð1 − gðxSÞÞ: ðA2Þ

In general, Y and wðXGÞ are not independent given XS.
However, we are assuming that pðXSjXGÞ is the same in
data and in simulation, so these two quantities should be
approximately independent so long as the XG probability
density is similar in data and in simulation. With this
approximation,

E½LjXS ¼ xS� ≈ −E½YjXS ¼ xS� logðgðxSÞÞ
− E½1 − YjXS ¼ xs�
× E½wθ0ðxG; θ0ÞjXS ¼ xS� logð1 − gðxSÞÞ:

ðA3Þ

TABLE IV. Numerical results for the top quark mass fit. The
reported values and errors represent the mean and standard
deviation over the 40 runs (with outliers removed).

Parameter Target [GeV] Input Level Fit value [GeV]

Mt 175.00 O4 Generator 175.07� 0.19
Simulation 174.96� 0.31

mblν Generator 175.13� 0.42
Simulation 175.06� 0.54

PARAMETER ESTIMATION USING NEURAL NETWORKS IN THE … PHYS. REV. D 103, 036001 (2021)

036001-11



By taking the derivative of Eq. (A3) with respect to gðxÞ
and setting it equal to zero, one finds that

g�ðxSÞ ≈
p

E½wθ0ðXG; θ0ÞjXS ¼ xS�ð1 − pÞ þ p
; ðA4Þ

where since Y is binary, p≡ E½YjXS ¼ xS� ¼ PrðY ¼ 1j
XS ¼ xSÞ.
Furthermore, note that if XS ¼ XG (no detector effects),

it is still the case that using g�ðxÞ will generally not result
in θ� ¼ θ?. However, if there is a loss function for g such
that when g� is inserted into the total loss, the result is
Eq. (3), then θ� ¼ θ? (proven in Ref. [39]). We do not
know if such a function exists, in general, but when
XS ≠ XG, this is irrelevant because g� cannot depend on
XG as we do not have access to this information for
the data.

APPENDIX B: LOSS VS AUC

As noted earlier, one may want to define

θ�SRGN ¼ argminθ0 max
g

�X
i∈θ0

log gðxS;iÞ

þ
X
i∈θ?

fðxG;i; θ0Þ
ð1 − fðxG;i; θ0ÞÞ

logð1 − gðxG;iÞÞ
�
: ðB1Þ

However, this generally does not reduce to θ� ¼ θ?. AUC
still appears to be a more precise metric for parameter
estimation even in the case where loss is employable, as
illustrated in Fig. 12. Furthermore, AUC is robust,
whereas loss is unpredictable and unreliable for other
parameters, as seen in Fig. 13.

[1] A. Andreassen, P. T. Komiske, E.M. Metodiev, B. Nachman,
and J. Thaler, OmniFold: A Method to Simultaneously
Unfold All Observables, Phys. Rev. Lett. 124, 182001
(2020).

[2] M. Bellagente, A. Butter, G. Kasieczka, T. Plehn, and R.
Winterhalder, How to GAN away detector effects, SciPost
Phys. 8, 070 (2020).

[3] First combination of Tevatron and LHC measurements of
the top-quark mass, arXiv:1403.4427.

[4] A. H. Hoang, What is the top quark mass?, Annu. Rev. Nucl.
Part. Sci. 70, 225 (2020).

[5] G. Corcella, The top-quark mass: Challenges in definition
and determination, Front. Phys. 7, 54 (2019).

[6] M. Paganini, L. de Oliveira, and B. Nachman, Accelerating
Science with Generative Adversarial Networks: An
Application to 3D Particle Showers in Multilayer
Calorimeters, Phys. Rev. Lett. 120, 042003 (2018).

[7] M. Paganini, L. de Oliveira, and B. Nachman, CaloGAN:
Simulating 3D high energy particle showers in multilayer
electromagnetic calorimeters with generative adversarial
networks, Phys. Rev. D 97, 014021 (2018).

[8] S. Vallecorsa, F. Carminati, and G. Khattak, 3D convolutional
GAN for fast simulation, EPJ Web Conf. 214, 02010 (2019).

[9] V. Chekalina, E. Orlova, F. Ratnikov, D. Ulyanov, A.
Ustyuzhanin, and E. Zakharov, Generative models for fast
calorimeter simulation, EPJ Web Conf. 214, 02034 (2019).

FIG. 12. The distribution of fitted values μSRGN for the simple
one-dimensional Gaussian case over 120 runs, comparing the
methods of maximizing loss and minimizing AUC.

FIG. 13. Plotted here are the fully trained loss values of the
classifying step for various values ofStringZ:aLund, ensembled
over 40 runs. It is clear that the loss is not maximized for the correct
value of StringZ:aLund, 0.8000; conversely, AUC is (in
comparison) smoothly minimized at the correct value (Fig. 8).

ANDERS ANDREASSEN et al. PHYS. REV. D 103, 036001 (2021)

036001-12

https://doi.org/10.1103/PhysRevLett.124.182001
https://doi.org/10.1103/PhysRevLett.124.182001
https://doi.org/10.21468/SciPostPhys.8.4.070
https://doi.org/10.21468/SciPostPhys.8.4.070
https://arXiv.org/abs/1403.4427
https://doi.org/10.1146/annurev-nucl-101918-023530
https://doi.org/10.1146/annurev-nucl-101918-023530
https://doi.org/10.3389/fphy.2019.00054
https://doi.org/10.1103/PhysRevLett.120.042003
https://doi.org/10.1103/PhysRevD.97.014021
https://doi.org/10.1051/epjconf/201921402010
https://doi.org/10.1051/epjconf/201921402034


[10] ATLAS Collaboration, Deep generative models for fast
shower simulation in ATLAS, CERN Report No. ATL-
SOFT-PUB-2018-001, 2018.

[11] F. Carminati, A. Gheata, G. Khattak, P. Mendez Lorenzo, S.
Sharan, and S. Vallecorsa, Three dimensional generative
adversarial networks for fast simulation, J. Phys. Conf. Ser.
1085, 032016 (2018).

[12] S. Vallecorsa, Generative models for fast simulation,
J. Phys. Conf. Ser. 1085, 022005 (2018).

[13] P. Musella and F. Pandolfi, Fast and accurate simulation of
particle detectors using generative adversarial networks,
Comput. Software Big Sci. 2, 8 (2018).

[14] M. Erdmann, L. Geiger, J. Glombitza, and D. Schmidt,
Generating and refining particle detector simulations using
the Wasserstein distance in adversarial networks, Comput.
Software Big Sci. 2, 4 (2018).

[15] M. Erdmann, J. Glombitza, and T. Quast, Precise simulation
of electromagnetic calorimeter showers using a Wasserstein
generative adversarial network, Comput. Software Big Sci.
3, 4 (2019).

[16] L. de Oliveira, M. Paganini, and B. Nachman, Tips and
tricks for training GANs with physics constraints (2017).

[17] L. de Oliveira, M. Paganini, and B. Nachman, Controlling
physical attributes in GAN-accelerated simulation of
electromagnetic calorimeters, J. Phys. Conf. Ser. 1085,
042017 (2018).

[18] B. Hooberman, A. Farbin, G. Khattak, V. Pacela, M. Pierini,
J.-R. Vlimant, M. Spiropulu, W. Wei, M. Zhang, and S.
Vallecorsa, Calorimetry with deep learning: Particle classi-
fication, energy regression, and simulation for high-energy
physics (2017).

[19] D. Belayneh et al., Calorimetry with deep learning: Particle
simulation and reconstruction for collider physics, Eur.
Phys. J. C 80, 688 (2020).

[20] E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G.
Kasieczka, A. Korol, and K. Krger, Getting high: High
fidelity simulation of high granularity calorimeters with
high speed, arXiv:2005.05334.

[21] L. de Oliveira, M. Paganini, and B. Nachman, Learning
particle physics by example: Location-aware generative
adversarial networks for physics synthesis, Comput. Soft-
ware Big Sci. 1, 4 (2017).

[22] A. Butter, T. Plehn, and R. Winterhalder, How to GAN event
subtraction, SciPost Phys. Core 3, 009 (2020).

[23] J. A. Martinez, T. Q. Nguyen, M. Pierini, M. Spiropulu, and
J.-R. Vlimant, Particle generative adversarial networks for
full-event simulation at the LHC and their application to
pileup description, J. Phys. Conf. Ser. 1525, 012081 (2020).

[24] C. Ahdida et al. (SHiP Collaboration), Fast simulation of
muons produced at the SHiP experiment using generative
adversarial networks, J. Instrum. 14, P11028 (2019).

[25] S. Carrazza and F. A. Dreyer, Lund jet images from
generative and cycle-consistent adversarial networks, Eur.
Phys. J. C 79, 979 (2019).

[26] A. Butter, T. Plehn, and R. Winterhalder, How to GAN LHC
events, SciPost Phys. 7, 075 (2019).

[27] J. Lin, W. Bhimji, and B. Nachman, Machine learning
templates for QCD factorization in the search for physics
beyond the standard model, J. High Energy Phys. 05
(2019) 181.

[28] R. Di Sipio, M. F. Giannelli, S. Ketabchi Haghighat, and S.
Palazzo, DijetGAN: A generative-adversarial network ap-
proach for the simulation of QCD Dijet events at the LHC,
J. High Energy Phys. 08 (2019) 110.

[29] B. Hashemi, N. Amin, K. Datta, D. Olivito, and M. Pierini,
LHC analysis-specific datasets with generative adversarial
networks, arXiv:1901.05282.

[30] K. Zhou, G. Endrodi, L.-G. Pang, and H. Stocker, Regres-
sive and generative neural networks for scalar field theory,
Phys. Rev. D 100, 011501 (2019).

[31] K. Datta, D. Kar, and D. Roy, Unfolding with generative
adversarial networks, arXiv:1806.00433.

[32] K. Deja, T. Trzcinski, and U. Graczykowski, Generative
models for fast cluster simulations in the TPC for the
ALICE experiment, EPJ Web Conf. 214, 06003 (2019).

[33] D. Derkach, N. Kazeev, F. Ratnikov, A. Ustyuzhanin, and
A. Volokhova, Cherenkov detectors fast simulation using
neural networks, Nucl. Instrum. Methods Phys. Res., Sect.
A 952, 161804 (2020).

[34] H. Erbin and S. Krippendorf, GANs for generating EFT
models, Phys. Lett. B 810, 135798 (2020).

[35] J. M. Urban and J. M. Pawlowski, Reducing autocorrelation
times in lattice simulations with generative adversarial
networks, Mach. Learn. Sci. Technol. 1, 045011 (2020).

[36] S. Farrell, W. Bhimji, T. Kurth, M. Mustafa, D. Bard, Z.
Lukic, B. Nachman, and H. Patton, Next generation gen-
erative neural networks for HEP, EPJ Web Conf. 214, 09005
(2019).

[37] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer Series in Statistics (Springer,
New York, 2001).

[38] M. Sugiyama, T. Suzuki, and T. Kanamori, Density Ratio
Estimation in Machine Learning (Cambridge University
Press, Cambridge, England, 2012).

[39] A. Andreassen and B. Nachman, Neural networks for full
phase-space reweighting and parameter tuning, Phys. Rev.
D 101, 091901 (2020).

[40] C. Badiali, F. Di Bello, G. Frattari, E. Gross, V. Ippolito, M.
Kado, and J. Shlomi, Efficiency parameterization with
neural networks, arXiv:2004.02665.

[41] M. Stoye, J. Brehmer, G. Louppe, J. Pavez, and K. Cranmer,
Likelihood-free inference with an improved cross-entropy
estimator, arXiv:1808.00973.

[42] J. Hollingsworth and D. Whiteson, Resonance searches with
machine learned likelihood ratios, arXiv:2002.04699.

[43] J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez, Con-
straining Effective Field Theories with Machine Learning,
Phys. Rev. Lett. 121, 111801 (2018).

[44] J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez, A guide
to constraining effective field theories with machine learn-
ing, Phys. Rev. D 98, 052004 (2018).

[45] J. Brehmer, F. Kling, I. Espejo, and K. Cranmer, MadMiner:
Machine learning-based inference for particle physics,
Comput. Software Big Sci. 4, 3 (2020).

[46] J. Brehmer, G. Louppe, J. Pavez, and K. Cranmer, Mining
gold from implicit models to improve likelihood-free
inference, Proc. Natl. Acad. Sci. U.S.A. 117, 5242 (2020).

[47] K. Cranmer, J. Pavez, and G. Louppe, Approximating
likelihood ratios with calibrated discriminative classifiers,
arXiv:1506.02169.

PARAMETER ESTIMATION USING NEURAL NETWORKS IN THE … PHYS. REV. D 103, 036001 (2021)

036001-13

https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/10.1088/1742-6596/1085/3/032016
https://doi.org/10.1088/1742-6596/1085/2/022005
https://doi.org/10.1007/s41781-018-0015-y
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.1007/s41781-018-0008-x
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1007/s41781-018-0019-7
https://doi.org/10.1088/1742-6596/1085/4/042017
https://doi.org/10.1088/1742-6596/1085/4/042017
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://doi.org/10.1140/epjc/s10052-020-8251-9
https://arXiv.org/abs/2005.05334
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.1007/s41781-017-0004-6
https://doi.org/10.21468/SciPostPhysCore.3.2.009
https://doi.org/10.1088/1742-6596/1525/1/012081
https://doi.org/10.1088/1748-0221/14/11/P11028
https://doi.org/10.1140/epjc/s10052-019-7501-1
https://doi.org/10.1140/epjc/s10052-019-7501-1
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.1007/JHEP05(2019)181
https://doi.org/10.1007/JHEP05(2019)181
https://doi.org/10.1007/JHEP08(2019)110
https://arXiv.org/abs/1901.05282
https://doi.org/10.1103/PhysRevD.100.011501
https://arXiv.org/abs/1806.00433
https://doi.org/10.1007/978-3-030-18058-4_21
https://doi.org/10.1016/j.nima.2019.01.031
https://doi.org/10.1016/j.nima.2019.01.031
https://doi.org/10.1016/j.physletb.2020.135798
https://doi.org/10.1088/2632-2153/abae73
https://doi.org/10.1051/epjconf/201921409005
https://doi.org/10.1051/epjconf/201921409005
https://doi.org/10.1103/PhysRevD.101.091901
https://doi.org/10.1103/PhysRevD.101.091901
https://arXiv.org/abs/2004.02665
https://arXiv.org/abs/1808.00973
https://arXiv.org/abs/2002.04699
https://doi.org/10.1103/PhysRevLett.121.111801
https://doi.org/10.1103/PhysRevD.98.052004
https://doi.org/10.1007/s41781-020-0035-2
https://doi.org/10.1073/pnas.1915980117
https://arXiv.org/abs/1506.02169


[48] A. Andreassen, B. Nachman, and D. Shih, Simulation
assisted likelihood-free anomaly detection, Phys. Rev. D
101, 095004 (2020).

[49] M. Erdmann, B. Fischer, D. Noll, Y. Rath, M. Rieger, and D.
Schmidt, Adversarial neural network-based data-simulation
corrections for jet-tagging at CMS, in Proc. 19th Int.
Workshop on Adv. Comp., Anal. Techn. in Phys. Research,
ACAT2019 (2019), https://doi.org/10.1088/1742-6596/
1525/1/011001.

[50] N. D. Gagunashvili, Parametric unfolding: method and
restrictions, Eur. Phys. J. Plus 135, 540 (2020).

[51] F. Chollet, Keras, https://github.com/fchollet/keras (2017).
[52] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard et al., Tensor-
flow: A system for large-scale machine learning, in OSDI
(2016), Vol. 16, pp. 265–283, https://dl.acm.org/doi/
proceedings/10.5555/3026877.

[53] D. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980.

[54] P. T. Komiske, E. M. Metodiev, and J. Thaler, Energy flow
networks: Deep sets for particle jets, J. High Energy Phys.
01 (2019) 121.

[55] M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Póczos, R.
Salakhutdinov, and A. J. Smola, Deep sets, in Proceedings
of the 31st International Conference on Neural Information
Processing Systems, NIPS’17 (Curran Associates Inc.,
Red Hook, NY, 2017). p. 3394–3404.

[56] T. Sjöstrand, S. Mrenna, and P. Z. Skands, PYTHIA 6.4
physics and manual, J. High Energy Phys. 05 (2006) 026.

[57] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai,
P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z.
Skands, An introduction to PYTHIA 8.2, Comput. Phys.
Commun. 191, 159 (2015).

[58] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet
clustering algorithm, J. High Energy Phys. 04 (2008) 063.

[59] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual,
Eur. Phys. J. C 72, 1896 (2012).

[60] M. Cacciari and G. P. Salam, Dispelling the N3 myth for the
kt jet-finder, Phys. Lett. B 641, 57 (2006).

[61] P. Skands, S. Carrazza, and J. Rojo, Tuning PYTHIA 8.1: The
Monash 2013 Tune, Eur. Phys. J. C 74, 3024 (2014).

[62] J. Thaler and K. Van Tilburg, Identifying boosted
objects with N-subjettiness, J. High Energy Phys. 03
(2011) 015.

[63] J. Thaler and K. Van Tilburg, Maximizing boosted top
identification by minimizing N-subjettiness, J. High Energy
Phys. 02 (2012) 093.

[64] A. J. Larkoski, G. P. Salam, and J. Thaler, Energy correla-
tion functions for let substructure, J. High Energy Phys. 06
(2013) 108.

[65] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V.
Lematre, A. Mertens, and M. Selvaggi (DELPHES 3
Collaboration), DELPHES 3, A modular framework for fast
simulation of a generic collider experiment, J. High Energy
Phys. 02 (2014) 057.

[66] A. Mertens, New features in DELPHES 3, J. Phys. Conf. Ser.
608, 012045 (2015).

[67] M. Selvaggi, DELPHES 3: A modular framework for fast-
simulation of generic collider experiments, J. Phys. Conf.
Ser. 523, 012033 (2014).

[68] https://github.com/hep-lbdl/SRGN.
[69] A. J. Andreassen and B. Nachman, DCTR: Pythia eþe− →

Z → dijets datasets, Zenodo, https://doi.org/10.5281/zenodo
.3518708 (2019).

[70] A. Andreassen, S.-C. Hsu, B. Nachman, N. Suaysom, and
A. Suresh, SRGN: Pythia þDelphes × pp → tt − bar,
Zenodo, https://doi.org/10.5281/zenodo.4067673 (2020).

Correction: The penultimate sentence of the caption to Fig. 1, the
first complete sentence after Eq. (5), and the first sentence in
footnote 3 contained minor notation errors and have been fixed.

Second Correction: The originally requested change to the
sentence after Eq. (5) was improperly implemented by the
production staff and has been fixed (a prime was missing on
“θ” after “from”).

ANDERS ANDREASSEN et al. PHYS. REV. D 103, 036001 (2021)

036001-14

https://doi.org/10.1103/PhysRevD.101.095004
https://doi.org/10.1103/PhysRevD.101.095004
https://doi.org/10.1088/1742-6596/1525/1/011001
https://doi.org/10.1088/1742-6596/1525/1/011001
https://doi.org/10.1088/1742-6596/1525/1/011001
https://doi.org/10.1088/1742-6596/1525/1/011001
https://doi.org/10.1140/epjp/s13360-020-00556-9
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://dl.acm.org/doi/proceedings/10.5555/3026877
https://dl.acm.org/doi/proceedings/10.5555/3026877
https://dl.acm.org/doi/proceedings/10.5555/3026877
https://dl.acm.org/doi/proceedings/10.5555/3026877
https://dl.acm.org/doi/proceedings/10.5555/3026877
https://arXiv.org/abs/1412.6980
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1088/1126-6708/2006/05/026
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1016/j.physletb.2006.08.037
https://doi.org/10.1140/epjc/s10052-014-3024-y
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1007/JHEP02(2012)093
https://doi.org/10.1007/JHEP02(2012)093
https://doi.org/10.1007/JHEP06(2013)108
https://doi.org/10.1007/JHEP06(2013)108
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1088/1742-6596/608/1/012045
https://doi.org/10.1088/1742-6596/608/1/012045
https://doi.org/10.1088/1742-6596/523/1/012033
https://doi.org/10.1088/1742-6596/523/1/012033
https://github.com/hep-lbdl/SRGN
https://github.com/hep-lbdl/SRGN
https://doi.org/10.5281/zenodo.3518708
https://doi.org/10.5281/zenodo.3518708
https://doi.org/10.5281/zenodo.4067673

