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We investigate supersymmetric hybrid inflation in a realistic model based on the gauge symmetry
SUð4Þc × SUð2ÞL × SUð2ÞR. The minimal supersymmetric standard model (MSSM) μ term arises,
following Dvali, Lazarides, and Shafi, from the coupling of the MSSM electroweak doublets to a gauge
singlet superfield, which plays an essential role in inflation. The primordial monopoles are inflated away by
arranging that the SUð4Þc × SUð2ÞL × SUð2ÞR symmetry is broken along the inflationary trajectory. The
interplay between the (above) μ coupling, the gravitino mass, and the reheating following inflation is
discussed in detail. We explore regions of the parameter space that yield gravitino dark matter and
observable gravity waves with the tensor-to-scalar ratio r ∼ 10−4–10−3.
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I. INTRODUCTION

In its simplest form supersymmetric (SUSY) hybrid
inflation [1,2] is associated with a gauge symmetry break-
ing G → H, and it employs a minimal renormalizable
superpotential W and a canonical Kähler potential K.
Radiative corrections and soft SUSY breaking terms
together play an essential role [3–6] in the inflationary
potential that yields a scalar spectral index in full agreement
with the Planck data [7]. In this minimal model, the
symmetry breaking G → H occurs at the end of inflation,
and the symmetry breaking scale is predicted to be of the
order of ð2–3Þ × 1015 GeV [1,3–6]. One simple extension
of this minimal model retains a minimal W but invokes a
nonminimal K [8], such that the correct scalar spectral
index is obtained without invoking the soft SUSY breaking
terms. Nonminimal Kähler potentials are also used to
realize symmetry breaking scales comparable to the grand
unified symmetry (GUT) scaleMGUT (∼2 × 1016 GeV) [9],
and to predict possibly observable gravity waves [10,11].

If the symmetry breaking G → H produces topological
defects such as magnetic monopoles, a more careful
approach is required in order to circumvent the primordial
monopole problem. The first such example is provided by
the so-called shifted-hybrid inflation [12,13], in which the
monopole producing Higgs field actively participates in
inflation such that, during inflation, G is broken to H, and
the monopoles are inflated away.
In this paper, we explore inflation and reheating in the

framework of the gauge symmetry SUð4Þc × SUð2ÞL ×
SUð2ÞR (G4-2-2) [14]. A SUSY model based on this
symmetry including hybrid inflation was first explored
in Ref. [15]. However, the primordial monopole problem
was not resolved, but it was subsequently addressed and
successfully rectified in Ref. [12] based on shifted hybrid
inflation. In the model proposed here, we employ the
mechanism invented in Refs. [15,16] for generating the
minimal supersymmetric standard model (MSSM) μ term,
and we exploit shifted hybrid inflation to overcome the
monopole problem. We implement this scenario using both
minimal and nonminimal Kähler potentials and address in
both cases important issues related to the gravitino problem
[17]. For a discussion of leptogenesis via right-handed
neutrinos in models where the dominant inflaton decay
channel yields Higgsinos, see Ref. [18].
The plan of the paper is as follows: In Sec. II, we present

the SUSY G4-2-2 model including the superfields, their
charge assignments, and the superpotential which respects
a Uð1ÞR symmetry. In Sec. III, the inflationary setup is
described. This includes the scalar potential for global
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SUSYas well as the one including supergravity (SUGRA).
The shifted μ-hybrid inflation (μHI) scenario with minimal
Kähler potential and its compatibility with the gravitino
constraint [19] is studied in Sec. IV. The analysis is
extended by employing a nonminimal Kähler potential
in Sec. V, discussing again the gravitino problem and the
bounds it imposes on reheat temperature, and focusing on
solutions with observable gravity waves. Our conclusions
are summarized in Sec. VI.

II. THE SUPERSYMMETRIC
SUð4Þc × SUð2ÞL × SUð2ÞR MODEL

The matter and Higgs superfields of the SUSY G4-2-2
model with their representations, transformations under
G4-2-2, decompositions under GSM, and charge assignments
are shown in Table I. The matter superfields Fi and Fc

i
belong in the following representations of G4-2-2:

Fi ¼ ð4; 2; 1Þ≡
�
uir uig uib νil

dir dig dib eil

�
;

Fc
i ¼ ð4̄; 1; 2Þ≡

�ucir ucig ucib νcil
dcir dcig dcib ecil

�
; ð1Þ

where the index ið¼ 1 ; 2; 3Þ denotes the three families of
quarks and leptons, and the subscripts r, g, b, l are the
four colors in the model, namely red, green, blue, and lilac.

The GUT Higgs superfields Hc and Hc are represented as
follows:

Hc ¼ ð4̄; 1; 2Þ≡
� ucHr ucHg ucHb νcHl

dcHr dcHg dcHb ecHl

�
;

Hc ¼ ð4; 1; 2Þ≡
� ucHr ucHg ucHb νcHl

dcHr dcHg dcHb ecHl

�
; ð2Þ

and acquire nonzero vacuum expectation values (vevs)
along the right-handed sneutrino directions, that is
jhνcHlij ¼ jhνcHlij ¼ v ≠ 0, to break the G4-2-2 gauge sym-
metry to the standard model (SM) gauge symmetry
[GSM ¼ SUð3Þc × SUð2ÞL ×Uð1ÞY], around the GUT
scale (∼2 × 1016 GeV), while preserving low scale SUSY
[20]. The electroweak breaking is triggered by the electro-
weak Higgs doublets, hu and hd, which reside in the
bidoublet Higgs superfield h represented as follows:

h ¼ ð1; 2; 2Þ≡ ð hu hd Þ ¼
�
hþu h0d
h0u h−d

�
: ð3Þ

Note that such doublets can remain light because of
appropriate discrete symmetries [21]. A gauge singlet chiral
superfield S ¼ ð1; 1; 1Þ is introduced, which triggers the
breaking of G4-2-2 and whose scalar component plays the
role of the inflaton. A sextet Higgs superfieldG ¼ ð6; 1; 1Þ,
which under the SM splits into the color-triplet Higgs
superfields g ¼ ð3; 1;−1=3Þ and gc ¼ ð3̄; 1; 1=3Þ, is intro-
duced to provide superheavy masses to the color-triplet pair
dcH and dcH [15].
The main part of the superpotential of our model that is

compatible with G4-2-2 and the R symmetry Uð1ÞR is
given by

W ¼ κSðHcHc −M2Þ þ λSh2

− S

�
β1

ðHcHcÞ2
Λ2

þ β2
ðHcÞ4
Λ2

þ β3
ðHcÞ4
Λ2

�

þ λijFc
i Fjhþ γij

Hc Hc

Λ
Fc
i F

c
j

þ aGHcHc þ bGHc Hc; ð4Þ

where κ; λ; β1;2;3; λij; γij; a, and b are real and positive
dimensionless couplings and M is a mass parameter of the
order of MGUT. We assume the superheavy scale Λ to be in
the range 1016 GeV≲ Λ≲mP, where mP denotes the
reduced Planck scale (2.4 × 1018 GeV). The first three
terms in the superpotential are of the standard μHI case as
discussed in Refs. [19,22]. The first two and the fourth term
characterize the “shifted case” by providing additional
inflationary tracks to avoid the monopole problem. The
third term λShuhd yields the effective μ term. Indeed

TABLE I. Superfields together with their decomposition under
the SM and their R charge.

Superfields 4c × 2L × 2R 3c × 2L × 1Y qðRÞ
Fi (4, 2, 1) Qiað3; 2; 1=6Þ 1

Lið1; 2;−1=2Þ
Fc
i ð4̄; 1; 2Þ uciað3̄; 1;−2=3Þ 1

dciað3̄; 1; 1=3Þ
νci ð1; 1; 0Þ
eci ð1; 1; 1Þ

Hc ð4̄; 1; 2Þ ucHað3̄; 1;−2=3Þ 0
dcHað3̄; 1; 1=3Þ
νcHð1; 1; 0Þ
ecHð1; 1; 1Þ

Hc (4, 1, 2) ucHað3; 1; 2=3Þ 0

dcHað3; 1;−1=3Þ
νcHð1; 1; 0Þ
ecHð1; 1;−1Þ

S (1, 1, 1) Sð1; 1; 0Þ 2

G (6, 1, 1) gað3; 1;−1=3Þ 2
gcað3̄; 1; 1=3Þ

h (1, 2, 2) huð1; 2; 1=2Þ 0
hdð1; 2;−1=2Þ
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assuming gravity-mediated SUSY breaking [23,24], the
scalar component of S acquires a nonzero vev proportional
to the gravitino mass m3=2 and generates a μ term with
μ ¼ −λm3=2=κ, thereby resolving the MSSM μ problem
[16]. The λij terms contain the Yukawa couplings and
hence, provides masses for fermions. The γij terms yield
large right-handed neutrino masses, needed for the seesaw
mechanism. The other possible couplings similar to γij
terms, which are allowed by the symmetries, are FFHcHc,
FFHc Hc, and FcFcHcHc. The last two terms in the
superpotential involving the sextuplet superfield G are
included to provide superheavy masses to dcH and dcH.
This model can be embedded in a realistic supersym-

metric SOð10Þ GUT model along the same lines as in
Ref. [25], where the matter superfields F and Fc are
combined in a 16, the Higgs superfield Hc together with
a (4,2,1) in a 16H, and the Hc together with a (4̄; 2; 1) in a
16H. The bidoublet h together with a sextet will reside in a
10h. An additional Higgs superfield such as 210 or 54 will
be needed to break SOð10Þ to G4-2-2.
It is important to mention here that the matter-parity

symmetry Zmp
2 , which is usually invoked to forbid rapid

proton decay operators at renormalizable level, is contained
in Uð1ÞR as a subgroup. The superpotential W is invariant
under Zmp

2 , and this symmetry remains unbroken. There is
no domain wall problem and the lightest SUSY particle
(LSP) is stable and consequently, a plausible candidate for
dark matter (DM).

III. μ-HYBRID INFLATION IN
SUð4Þc × SUð2ÞL × SUð2ÞR

The relevant part of the superpotential for shifted μHI
contains the terms,

δW¼ κSðHcHc−M2ÞþλSh2−ξ
κSðHcHcÞ2

M2
; ð5Þ

where ξ ¼ β1M2=κΛ2 is a dimensionless parameter. We
ignore the β2;3 terms in our future discussions as they
become irrelevant in the D-flat direction, that is the
direction where the D-term contributions vanish (i.e., with
jνcHj ¼ jνcHj and all other components zero). For simplicity,
the superfields and their scalar components will be denoted
by the same notation.
The global SUSY minimum obtained from Eq. (5) is

given as

hSi¼0; hhi¼0; v2¼hHcHci¼M2

2ξ
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4ξ

p
Þ; ð6Þ

which requires that ξ ≤ 1=4 for real values of v. Note that,
for ξ > 1=4, the global SUSY vacuum lies at complex
values of the fields Hc, Hc, but we will not consider this
case in this paper.

The global SUSY scalar potential obtained from the
superpotential in Eq. (5) is

V ¼
����κ
�
HcHc −M2 − ξ

ðHcHcÞ2
M2

�
þ λh2

����2 þ λ2h2jSj2

þ κ2jSj2ðjHcj2 þ jHcj2Þ
����1 − 2ξ

HcHc

M2

����2 þD terms;

ð7Þ
where jhj2 ¼ jhuj2 þ jhdj2. The D-flatness requirement
implies that Hc ¼ eiθHc� and hiu ¼ eiφϵijh

j�
d , where θ

and φ are invariant angles, and ϵij is the 2 × 2 antisym-
metric matrix with ϵ12 ¼ 1. We have proved that, for h ¼ 0
and ξ ≤ 1=4, the potential in Eq. (7) is minimized for θ ¼ 0
in all cases including the shifted inflationary valley—see
below. Therefore, for our purposes here, we can fix θ ¼ 0.
Moreover, one can show that, on the shifted path, the
potential for h ≠ 0 is minimized at φ ¼ π. Under these
circumstances, the scalar potential along the D-flat direc-
tion takes the form,

V ¼
����κ
�
jHcj2 −M2 − ξ

jHcj4
M2

�
− λjhdj2

����2

þ 2λ2jhdj2jSj2 þ 2κ2jSj2jHcj2
����1 − 2ξ

jHcj2
M2

����2; ð8Þ

which on the shifted path is minimized for h ¼ 0 provided
that λ ≥ 2κ. This inequality guarantees the stability of the
shifted path at h ¼ 0, and we can safely set h equal to zero
from now on. Rotating the complex field S to the real axis
by suitable transformations, we can identify the normalized
real scalar field σ ¼ ffiffiffi

2
p

S with the inflaton. Introducing the
dimensionless fields,

w ¼ jSj
M

; u ¼ jHcj
M

; ð9Þ

the normalized potential Ṽ ≡ V=κ2M4 takes the form,

Ṽ ¼ ðu2 − 1 − ξu4Þ2 þ 2w2u2ð1 − 2ξu2Þ2: ð10Þ
The extrema of the above potential with respect to u are
given as

u1 ¼ 0; ð11aÞ

u2 ¼ � 1ffiffiffiffiffi
2ξ

p ; ð11bÞ

u�3 ¼
1ffiffiffiffiffi
2ξ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−6w2ξ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4ξþ36ξ2w4−8ξw2þ1

pq
: ð11cÞ

These extrema can be visualized with the help of the
potential Ṽðu; wÞ, plotted in Fig. 1, for various values of the
parameter ξ.
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FIG. 1. The normalized scalar potential Ṽðw; u; z ¼ 0Þ ¼ V=κ2M4, where w ¼ jSj=M, u ¼ jHcj=M. The standard μHI case is
reproduced in plot (a). Here u ¼ 0, w > 1 is the only inflationary valley available in this case and evolves at w ¼ 0 into a single pair of
global SUSY minima with vev v ¼ �M. For ξ ≠ 0, in addition to the standard track at u ¼ u1, there are two shifted trajectories at
u ¼ u2 ¼ �1=

ffiffiffiffiffi
2ξ

p
, for w >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8ξ − 1=2

p
. Plot (b) shows the undesirable situation where the shifted tracks lie higher than the standard

track for ξ < 1=8. Plots (c)–(e) are for ξ ¼ 1=8, ξ ¼ 1=6, and ξ ¼ 1=4, respectively. The case ξ > 1=4 is shown in plot (f), where the
minimal Ṽ is nonzero suggesting that the SUSY vacuum corresponds to complex values of the fields. So any feasible choice for ξ lies in
the region ½1=8; 1=4�.
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In Fig. 1, the standard μHI case with ξ ¼ 0 is reproduced
in plot (a). In this case, u ¼ 0,w > 1 is the only inflationary
valley available. It evolves at w ¼ 0 into a single pair of
global SUSY minima with vev v ¼ �M. For ξ ≠ 0, in
addition to the standard track at u ¼ u1, two shifted local
minima appear at u ¼ u2 for w >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8ξ − 1=2

p
. In plot

(b) for ξ < 1=8, the shifted tracks lie higher than the
standard track. Following Ref. [12], in order to have
suitable initial conditions for realizing inflation along the
shifted tracks, we assume ξ ≥ 1=8. The normalized scalar
potential Ṽ is shown in plots (c)–(e) for some realistic
values of ξ, namely for ξ ¼ 1=8, ξ ¼ 1=6, and ξ ¼ 1=4. In
the last plot (f) with ξ > 1=4, we obtain Vmin ≠ 0, since the
SUSY minimum requires complex values ofHc,Hc. So for
our analysis, it is appropriate to keep ξ within the
interval ½1=8; 1=4�.
As the inflaton slowly rolls down the inflationary valley

and enters the waterfall regime at w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8ξ − 1=2

p
,

inflation ends due to fast rolling and the system starts
oscillating about a vacuum at w ¼ 0. Note that in the Hc

direction, there are actually two pairs of vacua at [see
Eq. (11c)]

ðu�3 Þ2 !
w¼0

v2� ¼ 1

2ξ
½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ξ

p
�: ð12Þ

However, the path leading to v− appears before the one
leading to vþ, as explained in Ref. [12]. The necessary
slope for realizing inflation in the valley with w >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8ξ − 1=2

p
, u ¼ u2, z ¼ 0 is generated by the inclusion

of the one-loop radiative corrections, the SUGRA correc-
tions, and the soft SUSY breaking terms. The one-loop
radiative corrections V loop, arising as a result of SUSY
breaking on the inflationary path, are calculated using the
Coleman-Weinberg formula [26],

V loop ¼
1

64π2
X
i

ð−1ÞFiM4
i ln

�
M2

i ðSÞ
Q2

−
3

2

�

¼ κ2m4

�
κ2

4π2
FðxÞ þ λ2

4π2
FðyÞ

	
; ð13Þ

where Fi andM2
i are the fermion number and squared mass

of the ith state. The function FðxÞ is given by

FðxÞ ¼ 1

4

�
ðx4 þ 1Þ ln

�
x4 − 1

x4

�
þ 2x2 ln

�
x2 þ 1

x2 − 1

�

þ 2 ln

�
2κ2m2x2

Q2

�
− 3

	
; ð14Þ

y ¼ ffiffiffiffiffiffiffi
γ=2

p
x with γ ¼ λ=κ, and x is defined in terms of the

canonically normalized real inflaton field σ as x ¼ σ=m

with m2 ¼ M2ð1=4ξ − 1Þ. The function FðyÞ exhibits the
contribution of the μ term in the superpotential W, and for
γ ≳ 1, is expected to play an important role in the
predictions of inflationary observables. The renormaliza-
tion scale Q is set equal to σ0, the field value at the pivot
scale k0 ¼ 0.05 Mpc−1 [7].
The soft SUSY breaking terms are added in the infla-

tionary potential as

Vsoft ¼ m3=2

�
zi
∂W
∂zi þ ðA − 3ÞW þ H:c:

	
; ð15Þ

where A is the complex coefficient of the trilinear soft-
SUSY-breaking terms.
Trying to reconcile supergravity and cosmic inflation,

one runs into the so-called η problem, which arises as the
effective inflationary potential is quite steep. This leads to
large inflaton masses on the order of the Hubble parameter
H, and thus, the slow-roll conditions are violated. In hybrid
inflationary scenarios, the supergravity corrections can
easily be brought under control [16,27–30]. Another
potential problem is the appearance of anti–de Sitter vacua.
However, in hybrid inflation models, these vacua may be
lifted—for examples, see Refs. [31,32].
The F-term SUGRA scalar potential is evaluated using

VSUGRA ¼ eK=m
2
PðK−1

ij̄ DziWDz�
j̄
W� − 3m−2

P jWj2Þ; ð16Þ

where zi ∈ fS;Hc;Hc; h;…g and

Kij ≡ ∂2K
∂zi∂z�j ;

DziW ≡ ∂W
∂zi þm−2

P
∂K
∂zi W;

Dz�i
W� ¼ ðDziWÞ�: ð17Þ

The Kähler potential K is expanded in inverse powers of
mP,

K ¼ Kc þ κS
jSj4
4m2

P
þ κH

jHcj4
4m2

P
þ κH̄

jHcj4
4m2

P
þ κh

jhj4
4m2

P

þ κSHc
jSj2jHcj2

m2
P

þ κSHc

jSj2jHcj2
m2

P
þ κSh

jSj2jhj2
m2

P

þ κHcHc

jHcj2jHcj2
m2

P
þ κHch

jHcj2jhj2
m2

P
þ κHch

jHcj2jhj2
m2

P

þ κSS
jSj6
6m4

P
þ � � � ; ð18Þ

where the minimal canonical Kähler potential Kc is
given by
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Kc ¼ jSj2 þ jHcj2 þ jHcj2 þ jh2j: ð19Þ

The inflationary potential along the D-flat direction with
jHcj ¼ jHcj, stabilized along the h ¼ 0 direction, and
incorporating the SUGRA corrections [24], the radiative
corrections [1], and the soft-SUSY-breaking terms [3,4], is
given by

VðxÞ ≃ VSUGRA þ V loop þ Vsoft

≃ κ2m4

�
Aþ 1

2
B
�
m
mP

�
2

x2 þ 1

4
C
�
m
mP

�
4

x4

þ κ2

4π2
FðxÞ þ λ2

4π2
FðyÞ

þ a
m3=2ffiffiffi
2

p
κm

xþ m2
3=2

2κ2m2
x2 þm2

3=2M
2

κ2m4ξ

�
: ð20Þ

Here A, B, and C are the coefficients of the constant,
quadratic, and quartic SUGRA terms, respectively, and are
defined in terms of HP ¼ ðM=mPÞ=

ffiffiffiffiffi
2ξ

p
as

A¼1þ2c0H2
Pþ2c1H4

P; B¼−κSþ2c2H2
P; C¼

γS
2
; ð21Þ

where γS ¼ 1þ 2κ2S − 3κSS − 7κS=2 [33]. For the infla-
tionary potential along the D-flat and h ¼ 0 direction, the
independently varying parameters c0, c1, and c2 for the
nonminimal case are the same as the ones given in
Ref. [33]. Our choice for these parameters will be shown
in the relevant sections. The parameter a depends on arg S
as follows:

a ¼ 2

����2 − Aþ A
2ξ

���� cos
�
arg Sþ arg

�
2 − Aþ A

2ξ

�	
: ð22Þ

Assuming negligible variation in arg S, with a ¼ −1, the
scalar spectral index ns is expected to lie within the
experimental range [4,33]. This could also be achieved
by taking an intermediate-scale, negative soft mass-squared
term for the inflaton [34]. But with the nonminimal terms in
the Kähler potential, one can also obtain the central value of
ns with TeV-scale soft masses even for a ¼ 1 [8,9]. The
variation in arg S with general initial condition has been
studied in Refs. [3,6,9].
The slow-roll parameters are defined by

ϵ¼ m2
p

2m2

�
V 0

V

�
2

; η¼m2
p

m2

�
V 00

V

�
; ζ2¼m4

p

m4

�
V 0V 000

V2

�
; ð23Þ

where the primes denote derivatives with respect to x. The
scalar spectral index ns, the tensor-to-scalar ratio r, the
running of the scalar spectral index dns=d ln k, and
the scalar power spectrum amplitude As, to leading order
in the slow-roll approximation, are as follows:

ns ≃ 1 − 6ϵþ 2η; ð24aÞ

r ≃ 16ϵ; ð24bÞ

dns
d ln k

≃ 16ϵη − 24ϵ2 − 2ζ2; ð24cÞ

Asðk0Þ ¼
1

12π2

�
m
mP

�
2
����V3=V 02

m4
P

����
x0

; ð24dÞ

where Asðk0Þ ¼ 2.196 × 10−9 and x0 denotes the value of x
at the pivot scale k0 ¼ 0.05 Mpc−1 [7]. For the numerical
estimation of the inflationary predictions, these relations
are used up to second order in the slow-roll parameters.
Assuming a standard thermal history, the number of e-

folds N0 between the horizon exit of the pivot scale and the
end of inflation is

N0 ¼
�
m
mP

�
2
Z

x0

1

�
V
V 0

�
dx

¼ 53þ 1

3
ln

�
Tr

109 GeV

�
þ 2

3
ln

� ffiffiffi
κ

p
m

1015 GeV

�
: ð25Þ

The reheat temperature Tr is approximated by

Tr ≈

ffiffiffiffiffiffiffiffiffi
90

π2g�
4

s ffiffiffiffiffiffiffiffiffiffiffi
ΓSmP

p
; ð26Þ

where g� ¼ 228.75 for MSSM and ΓS is the inflaton decay
width. From the μ-term coupling λSh2 in Eq. (5), we see
that the inflaton can decay into a pair of Higgsinos h̃u, h̃d
with a decay width,

ΓSðS → h̃uh̃dÞ ¼
λ2

8π
minfl; ð27Þ

where

minfl ¼
ffiffiffi
2

p
κv

�
1 −

2ξv2

M2

�
¼ 2κm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ξ

pq
ð28Þ

is the inflaton mass [12]. The reheat temperature, the
inflaton decay width, and the inflaton mass defined above
in Eqs. (26)–(28) are used together with Eq. (25) in order to
derive the numerical predictions for the present inflationary
scenario.

IV. μ-HYBRID INFLATION WITH MINIMAL
KÄHLER POTENTIAL

The inflationary potential corresponding to the minimal
Kähler potential Kc in Eq. (19) is easily transcribed from
Eq. (20) as follows:
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VðxÞ ≃ κ2m4

�
1þ 2

�
Mffiffiffiffiffi
2ξ

p
mP

�
2

þ 2

�
Mffiffiffiffiffi
2ξ

p
mP

�
4

þ
�

Mffiffiffiffiffi
2ξ

p
mP

�
2
�
m
mP

�
2

x2 þ 1

8

�
m
mP

�
4

x4

þ κ2

4π2
FðxÞ þ λ2

4π2
FðyÞ

þ a
m3=2ffiffiffi
2

p
κm

xþ m2
3=2

2k2m2
x2 þm2

3=2M
2

k2m4ξ

�
; ð29Þ

since, in this case, C ¼ 1=2, c0 ¼ c1 ¼ c2 ¼ 1 and, thus,
the coefficients A ¼ 1þ 2ðH2

P þH4
PÞ, B ¼ 2H2

P.
In Fig. 2, we plot the gravitino mass m3=2 versus the

reheat temperature Tr as constrained by inflation. The
solid-magenta, dashed-blue, dot-dashed-green curves cor-
respond to ξ ¼ 0.125, 0.167, 0.245, respectively, for the
minimal Kähler potential with the conditions ns ≃ 0.964,
Asðk0Þ ¼ 2.196 × 10−9, γ ¼ 2, and a ¼ −1. The lower
bound on the reheat temperature Tr ≳ 109 GeV is obtained
for a gravitino mass m3=2 ≳ 3.5 GeV with a 0.1% fine-
tuning of the difference x0 − 1.
Following the same line of argument as in Refs. [19,22],

the shifted μHI with minimal K is analyzed for the
following three cases:

(1) stable gravitino LSP;
(2) unstable long-lived gravitino with m3=2 < 25 TeV;
(3) unstable short-lived gravitino with m3=2 > 25 TeV.
The relic gravitino abundance, in the case of a stable

gravitino LSP, is given [35] by

Ω3=2h2 ¼ 0.08

�
Tr

1010 GeV

��
m3=2

1 TeV

��
1þ m2

g̃

3m2
3=2

�
; ð30Þ

wheremg̃ is the gluinomass.We require thatΩ3=2h2 does not
exceed the observed DM relic abundance, that is Ω3=2h2 ≲
0.12 [7]. Using Eq. (30), we then plot in Fig. 2 the resulting
upper limit on the gluinomassmg̃. The point wherem3=2 and
the upper bound on mg̃ coincide, for the central value of ξ
(i.e., ξ ¼ 0.167), lies at Tr ≃ 1.2 × 1010 GeV and m3=2 ≃
325 GeV as shown by the intersection of the correspon-
ding curves. Our assumption for a gravitino LSP holds
for Tr values below this intersection point, that is for
Tr ≲ 1.2 × 1010 GeV, m3=2 ≲ 325 GeV. However, the
maximum value of the gluino mass in this region is
mg̃ ∼ 500 GeV, which is lower than the lower bound on
the gluino massmg̃ ≳ 1 TeV from the search for supersym-
metry at the LHC [36]. Consequently, we run into incon-
sistency and the case of a stable gravitino LSP with a
minimal Kähler potential is ruled out.
In the second case, the long-lived unstable gravitino will

decay after big bang nucleosynthesis (BBN), and so one
has to take into account the BBN bounds on the reheat
temperature which are the following [37–39]:

Tr ≲ 3 × ð105–106Þ GeV; m3=2 ∼ 1 TeV;

Tr ≲ 2 × 109 GeV; m3=2 ∼ 10 TeV: ð31Þ

The bounds on the reheat temperature from the inflationary
constraints for gravitino masses 1 and 10 TeV are Tr ≳
2.2 × 1010 GeV and 7.5 × 1010 GeV, respectively (see
Fig. 2). These are clearly inconsistent with the above
mentioned BBN bounds, and so the unstable long-lived
gravitino scenario is not viable.
Lastly, for the unstable short-lived gravitino case, we

compute the LSP lightest neutralino (χ̃01) density produced
by the gravitino decay and constrain it to be smaller
than the observed DM relic density. For reheat temperature
Tr ≳ 1011 GeV with m3=2 > 25 TeV (see Fig. 2), the
resulting bound on the neutralino mass mχ̃0

1
comes out to

be inconsistent with the lower limit set on this mass mχ̃0
1
≳

18 GeV in Ref. [40]. To circumvent this, the LSP neu-
tralino is assumed to be in thermal equilibrium during
gravitino decay, whereby the neutralino abundance is
independent of the gravitino yield. For an unstable grav-
itino, the lifetime is (see Fig. 1 of Ref. [41])

FIG. 2. Plot of the gravitino mass m3=2 versus the reheat
temperature Tr for successful inflation, and of the upper limit
on the gluino mass mg̃ assuming a stable gravitino LSP. The
solid-magenta, dashed-blue, dot-dashed-green curves correspond
to ξ ¼ 0.125, 0.167, 0.245, respectively, for the minimal Kähler
potential with the conditions ns ≃ 0.964, Asðk0Þ ¼ 2.196 × 10−9,
γ ¼ 2, and a ¼ −1. The intersection point where m3=2 coincides
with the upper limit on mg̃, for the central value of ξ, is at Tr ≃
1.2 × 1010 GeV and m3=2 ≃ 325 GeV. The maximum value of
the gluino mass in the region wherem3=2 is smaller than the upper
limit onmg̃ ismg̃ ∼ 500 GeV, which is lower than the lower LHC
bound on the gluino mass (mg̃ ≳ 1 TeV). Hence, the gravitino
LSP scenario is inconsistent. For the unstable gravitino scenario,
m3=2 ≃ 25 TeV corresponds to Tr ∼ 1011 GeV as shown by the
vertical dashed-gray line.
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τ3=2 ≃ 1.6 × 104
�
1 TeV
m3=2

�
3

sec : ð32Þ

Now for a typical value of the neutralino freeze-out
temperature, TF ≃ 0.05mχ̃0

1
, the gravitino lifetime is esti-

mated to be

τ3=2 ≲ 10−11
�
1 TeV
mχ̃0

1

�
2

sec : ð33Þ

Comparing Eq. (32) and Eq. (33), we obtain a bound on
m3=2,

m3=2 ≳ 108
� mχ̃0

1

2 TeV

�
2=3

GeV: ð34Þ

Thus, minimal shifted μHI conforms with the conclusion of
the standard case [19,22] by requiring split-SUSY with an
intermediate-scale gravitino mass and reheat temperature
Tr ≳ 1.8 × 1013 GeV (see Fig. 2). To check whether the
shifted μHI scenario is also compatible with low reheat
temperature (i.e., Tr ≲ 1012–108 GeV [42]) and TeV-scale
soft SUSY breaking, we employ nonminimal Kähler
potential in the next section.

V. μ-HYBRID INFLATION WITH NONMINIMAL
KÄHLER POTENTIAL

The nonminimal Kähler potential used in the following
analysis is

K ¼ Kc þ κS
jSj4
4m2

P
þ κSS

jSj6
6m4

P
; ð35Þ

which includes only the nonminimal couplings of interest
κS and κSS. (For a somewhat different approach to μ-hybrid
inflation with nonminimal K, see Ref. [43]). Thus, for the
nonminimal scenario, we take c0 ¼ c1 ¼ 1 and c2 ¼ 1 −
κS in Eq. (21) [33]. Using these values, the potential of the
system can easily be read off from Eq. (20).
It is worth noting that with the nonminimal Kähler

potential, we can realize the central value of ns with TeV-
scale soft masses even for a ¼ 1 [8,9]. Our study is
conducted in two parts, described separately in the follow-
ing subsections, first with κSS ¼ 0 and then by allowing
κSS to be nonzero. The appearance of a negative mass term
with a single nonminimal coupling κS in the potential in
Eq. (20) is expected to lead to red-tilted inflation with low
reheat temperature, as for standard μHI (see Ref. [22]).
Furthermore, for nonzero κSS, the possible larger r sol-
utions leading to observable gravity waves are also antici-
pated. These expectations along with the impact of an
additional parameter ξ on inflationary predictions are
discussed below.

A. Low reheat temperature and the gravitino problem

Incorporating the inflationary constraints and the non-
minimal K in Eq. (35) with κSS ¼ 0, we summarize some
of the results depicting the main features of nonminimal
shifted μHI in Figs. 3–5. From these figures, it is clear that
with low reheat temperature we can obtain a higher mass
scale M ranging from 5 × 1015 GeV to the string scale
5 × 1017 GeV. The reheat temperature is lowered by nearly
half an order of magnitude in the shifted μHI as compared to

FIG. 3. The mass scale M versus the reheat temperature Tr and
Tr versus κ, for gravitino mass equal to 1 TeV (thick-green
curves), 10 TeV (dot-dashed-red curve), and 100 TeV (thin-blue
curves). The scalar spectral index ns ¼ 0.9655, κS ¼ 0.02,
κSS ¼ 0, and γ ¼ 2. The solid, dashed, and dotted curves are
for ξ ¼ 0.125, 0.167, and 0.245, respectively.
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the standardμHI (see Fig. 2 of Ref. [22]), as can be seen from
Fig. 3. Also, it is not surprising that around κ ∼ 10−3 the
system is oblivious to the gravitino mass, since the con-
tribution of the linear termbecomes less important compared
with the SUGRAor radiative corrections [8]. The interesting
new feature is due to the presence of another parameter ξ,
whose effect is to increase the range of mass scaleM. For a
particular value of κ, say κ ∼ 10−6, and m3=2 ¼ 1 TeV, a
wider range of M ≃ 5 × ð1015–1016Þ GeV exists, corre-
sponding to ξ in the range 0.125 ≤ ξ ≤ 0.245 (see
Fig. 4). So there is an order of magnitude increase in the

spread of M, compared with standard μHI, where the
maximum value is M ∼ 8 × 1015 GeV corresponding to
the lowest reheat temperature Tr ∼ 6 × 106 GeV, with
gravitino of mass 1 TeV [22]. This maximum value has
now increased to M ≃ ð9 × 1015–7 × 1016Þ GeV with ξ in
the range 0.125 ≤ ξ ≤ 0.245. Also, the lower plot of Fig. 4
shows the variation ofM with respect to the tensor-to-scalar
ratio r with r≲ 10−9, which is experimentally inaccessible
in the foreseeable future [44–47].
As Fig. 5 shows, the running of the scalar spectral index

dns=d ln k also turns out to be small in the present scenario,

FIG. 4. The mass scaleM versus κ and the tensor-to-scalar ratio
r, for gravitino mass equal to 1 TeV (thick-green curves) and
100 TeV (thin-blue curves). We fix the scalar spectral index
ns ¼ 0.9655, κS ¼ 0.02, κSS ¼ 0, and γ ¼ 2. We consider three
values of ξ, namely ξ ¼ 0.125; 0.167, and 0.245 corresponding to
the solid, dashed, and dotted curves, respectively.

FIG. 5. The mass scale M versus the running of spectral index
−dns=d ln k and κS, for gravitino mass of 1 TeV (thick-green
curves) and 100 TeV (thin-blue curves). We fix the scalar spectral
index ns ¼ 0.9655, κS ¼ 0.02, κSS ¼ 0, and γ ¼ 2. The param-
eter ξ ¼ 0.125; 0.167, and 0.245 corresponding to the solid,
dashed, and dotted curves, respectively.

SHIFTED μ-HYBRID INFLATION, GRAVITINO DARK … PHYS. REV. D 103, 035033 (2021)

035033-9



namely 10−10 ≲ −dns=d ln k≲ 10−4, which is a common
feature of small field models. The nonminimal Kähler
coupling κS remains constant in the low reheat tempera-
ture range as can be seen from the lower plot of Fig. 5,
since the radiative and the quartic-SUGRA corrections
can be neglected in this regime. The scalar spectral index
ns in the low reheat temperature region is ns ≃ 1–2κS
[15], and so for the central value of the scalar spectral
index ns ¼ 0.9655, one obtains κS ¼ 0.0173, as exem-
plified by Fig. 5. To explore larger values of r, we will
make use of the freedom provided by the second non-
renormalizable coupling κSS in the next section. Note that
the number of e-folds N0 in Eq. (25) generally ranges
between about 47 and 56.
Proceeding next to the role of the gravitino in

cosmology, one can read off the lower bounds on the
reheat temperature Tr from Fig. 3. Since, at low reheat
temperatures, inflation occurs near the waterfall region
(with x0 close to 1), we devised a criterion by allowing
only 0.01% fine-tuning on the difference x0 − 1. This
yields

Tr≳2×106;7×105;2×105GeV form3=2¼1;10;100TeV:

ð36Þ

For the first scenario with the gravitino being the LSP in
shifted μHI with nonminimal Kähler potential, the upper
bounds on the reheat temperature obtained in Ref. [22]
[see Fig. 3 and Eq. (30) in this reference] are Tr≲2×
ð1010;109;108ÞGeVform3=2¼1;10;100TeV, respectively.
These upper bounds on Tr are consistent with the lower
bounds in Eq. (36), and so the scenario with the gravitino
as LSP can be consistently realized in the nonminimal
Kähler case.
For the second possibility, namely an unstable long-lived

gravitino (with m3=2 ≲ 25 TeV), comparison of Eqs. (31)
and Eq. (36) reveals that an 1 TeV gravitino is marginally
ruled out, but a 10 TeV gravitino lies comfortably within
the BBN bounds.
For the third scenario of a short-lived gravitino (for

instance, with massm3=2 ¼ 100 TeV), the gravitino decays
before BBN, and so the BBN bounds on the reheat
temperature no longer apply. The gravitino decays into
the LSP neutralino χ̃01. We find that the resulting neutralino
abundance is given by

Ωχ̃0
1
h2 ≃ 2.8 × 1011 × Y3=2

� mχ̃0
1

1 TeV

�
; ð37Þ

where the gravitino yield

Y3=2 ≃ 2.3 × 10−12
�

Tr

1010 GeV

�
ð38Þ

is acceptable over the range Tr ∼ 105 GeV–1012 GeV [41].
The LSP (lightest neutralino) density produced by the
gravitino decay should not exceed the observed DM relic
density Ωobs

DMh
2 ≃ 0.12 [7]. The resulting bound on the

lightest neutralino mass,

mχ̃0
1
≲ ð18–106Þ GeV for 1011 GeV≳ Tr ≳ 2 × 105 GeV

ð39Þ

turns out to be less restrictive than the corresponding bound
from the abundance of the lightest neutralino from the
gravitino decay in the case of standard μHI. Indeed, the
non-LSP gravitino with m3=2 ∼ 100 TeV is acceptable in a
larger domain, namely, 105 GeV≲ Tr ≲ 1011 GeV. There
is nearly an order of magnitude decrease in the acceptable
lower reheat temperature as compared with the standard
μHI. Note that the lower limit on the neutralino mass,
mχ̃0

1
≳ 18 GeV, is obtained in Ref. [40] by employing a

minimal set of theoretical assumptions. In conclusion, the
shifted μHI is successful with m3=2 ∼ 1–100 TeV and low
reheat temperatures.

B. Large r solutions or observable gravity waves

The canonical measure of primordial gravity waves is
the tensor-to-scalar ratio r and the next-generation
experiments are gearing up to measure it. One of the
highlights of PRISM [44] is to detect inflationary gravity
waves with r as low as 5 × 10−4, and a major goal of
LiteBIRD [45] is to attain a measurement of r within
an uncertainty of δr ¼ 0.001. Future missions include
PIXIE [46], which aims to measure r < 10−3 at 5
standard deviations, and CORE [47], which forecasts
to lower the detection limit for the tensor-to-scalar ratio
down to the 10−3 level.
As seen in previous sections, with κSS ¼ 0, the tensor-

to-scalar ratio remains in the undetectable range r≲ 10−6.
It is therefore instructive to explore our model further
to look for large-r solutions, which, as it turns out, yield
r’s in the 10−4–10−3 range. To achieve this, we employ
nonzero κSS in addition to a nonzero κS, and the results are
presented in Figs. 6–9, for a range of values of the field
S at horizon crossing of the pivot scale S0 ¼ ð0.1–1ÞmP.
In addition, the variation of the parameter ξ is also
depicted in these figures by plotting results with ξ ¼
0.125 and ξ ¼ 0.2.
The curves corresponding to field values S0 close to mP

are terminated since, at some point, either the nonminimal
coupling jκSSj takes unnatural values ≈10 (see Fig. 9) orM
reaches mP. Indeed, for ξ ¼ 0.125, the coupling jκSSj can
exceed the bound of 10 on curves with S0 ≥ 0.8mP and, for
ξ ¼ 0.2, the mass scale M can exceed mP on curves with
S0 ≥ 0.5mP. We see that the mass scale M is not indepen-
dent of ξ. In fact, as ξ increases from ξ ¼ 0.125 to ξ ¼ 0.2,
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the mass scale M also increases (this is observed in the
κSS ¼ 0 case as well). The curves are terminated at their left
end due to the fine-tuning bound that we used in the
numerical work. The solid-gray lines in Figs. 6–8 are the
constant reheat temperature lines, starting from the upper
cutoff at Tr ¼ 1012 GeV and going down to values as low
as 104–105 GeV.

The upper bound on the tensor-to-scalar ratio r, as can be
read off from Fig. 6, is r≲ 0.001 for the choice of the field
S0 ¼ mP and r≲ 10−5 for S0 ∼ 0.1mP. Figure 6 also shows
that r≲ 10−6–10−3 from the requirement that the reheat
temperature Tr ≲ 1011 GeV for circumventing the grav-
itino problem. The running of the scalar spectral index

FIG. 7. The mass scale M versus the running of the scalar
spectral index dns=d ln k for ξ ¼ 0.125 and ξ ¼ 0.2 in the upper
and lower plot, respectively. The gravitino mass m3=2∼
1–100 TeV, ns ¼ 0.9655, γ ¼ 2, and S0 ¼ ð0.1 − 1ÞmP. The
solid-gray lines are the constant reheat temperature curves
ranging from 105–1012 GeV. The dashed-gray line shows the
fine-tuning bound, and the double-dot-dashed line shows either
the upper bound on κSS or the points where M ¼ mP.

FIG. 6. The mass scale M versus the tensor-to-scalar ratio r for
ξ ¼ 0.125 and ξ ¼ 0.2 in the upper and lower plot, respectively.
The gravitino mass m3=2 ∼ 1–100 TeV, ns ¼ 0.9655, γ ¼ 2, and
S0 ¼ ð0.1 − 1ÞmP. The solid-gray lines are the constant reheat
temperature curves ranging from 105–1012 GeV. The dashed-
gray line represents the fine-tuning bound, and the double-dot-
dashed line represents either the upper bound on κSS or the points
where M ¼ mP.
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dns=d ln k remains small namely 10−7 ≲ −dns=d ln k≲
4 × 10−3, as shown in Fig. 7. The variation of the mass
scale M with κ is shown in Fig. 8, where we find values of
the parameter κ up to 5 × 10−4 for large values of M
(∼1017–1018 GeV). The respective variation in the cou-
pling constants κS and κSS is shown in Fig. 9. They remain
acceptably small and well within the bound jκSj; jκSSj≲ 1,

for natural values of S0 ¼ 0.5mP or less. Although the
plots presented in Figs. 6–9 are for gravitino mass
m3=2 ¼ 1 TeV, the curves, for these larger r solutions,
are independent of the gravitino mass and are valid for a
gravitino mass range m3=2 ¼ 1–100 TeV.
Benchmark points for minimal and nonminimal Kähler

potential, for fixed values of ns ¼ 0.9655, Asðk0Þ ¼
2.196 × 10−9, and γ ¼ 2, are given in Table II along with
the corresponding values of the couplings κ, κS, κSS, ξ, and
the tensor-to-scalar ratio r, the running of the spectral
index jdns=d ln kj, the mass scale M, and the reheat
temperature Tr. A viable scenario for the minimal case
is shown in column 1 with an unstable gravitino being the
next-to-LSP (NLSP) and decaying into the neutralino LSP
before its freeze-out. Column 2 shows that the maximum
value of r for κSS ¼ 0 is ∼10−9, which is too small to be
observable. Column 3 shows that reheat temperatures
∼109 GeV can be easily obtained for mass scales M
around the GUT scale. At large field values S0, the results
are shown in columns 4–6 and are more or less indepen-
dent of the gravitino mass.

FIG. 8. The mass scaleM versus κ for ξ ¼ 0.125 and ξ ¼ 0.2 in
the upper and lower plot, respectively. The gravitino mass
m3=2 ∼ 1–100 TeV, ns ¼ 0.9655, γ ¼ 2 and S0 ¼ ð0.1–1ÞmP.
The solid-gray lines are the constant reheat temperature curves
ranging from 105–1012 GeV. The dashed-gray line represents the
fine-tuning bound, and the double-dot-dashed line represents
either the upper bound on κSS or the points where M ¼ mP.

FIG. 9. The variation of the couplings κS and κSS for ξ ¼ 0.125
and ξ ¼ 0.2 in the upper and lower plot, respectively. The
gravitino mass range m3=2 ∼ 1–100 TeV, ns ¼ 0.9655, γ ¼ 2,
and S0 ¼ ð0.1 − 1ÞmP.
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VI. CONCLUSION

We have implemented a version of SUSY hybrid
inflation in SUð4Þc × SUð2ÞL × SUð2ÞR, a well motivated
extension of the SM. This maximal subgroup of Spin(10)
contains electric charge quantization and arises in a variety
of string theory constructions. The MSSM μ term arises,
following Dvali, Lazarides, and Shafi, from the coupling
of the electroweak doublets to a gauge singlet superfield
playing an essential role in inflation, which takes place
along a shifted flat direction. The scheme with minimal
Kähler potential leads to an intermediate scale gravitino
mass m3=2 ≳ 108 GeV with the gravitino decaying before
the freeze-out of the LSP neutralinos and with reheat
temperature Tr ≳ 1013 GeV [19]. This points towards split
SUSY. In the nonminimal Kähler case, we have realized
successful inflation with reheat temperatures as low as
105 GeV. This is favorable for the resolution of the
gravitino problem and compatible with a stable LSP
and low-scale (∼TeV) SUSY. Compared with standard
μ hybrid inflation [22], the reheat temperature is lowered
by half an order of magnitude and, due to the additional

parameter ξ, an order of magnitude increase in the spread
of M is seen. We have discussed how primordial monop-
oles are inflated away and provided a framework
that predicts the presence of primordial gravity waves
with the tensor-to-scalar ratio r in the observable range
(∼10−4–10−3). This is realized with the mass scale M scale
approaching values that are comparable to the string scale
(∼5 × 1017 GeV) and a gravitino mass lying in the 1–
100 TeV range. It is worth noting that the inflaton field
values do not exceed the Planck scale, which may be an
additional desirable feature in view of the swampland
conjectures [48,49]. For a recent discussion and additional
references, see Ref. [50].
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