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Models with gauge symmetry SUð3Þc ⊗ SUð3ÞL ⊗ Uð1ÞN have different candidates for dark matter, for
example, a heavy neutral fermion interacting with standard model particles through different mediators,
scalar and vector portals. At the same time, these portals can produce signals in the anomalous magnetic
moment of the muon that violate the present bounds on this quantity. Combining the requirement to have a
dark matter candidate in the SUð3Þc ⊗ SUð3ÞL ⊗ Uð1ÞN model with heavy neutral leptons and to explain
the anomalous magnetic moment of the muon we set constraints on the highest symmetry breaking scale of
the model. These bounds are competitive with the constraints from LHC and set a favored region that can
also be tested in future direct detection experiments, such as the LUX-ZEPLIN (LZ) experiment.
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I. INTRODUCTION

Different experimental results point to the incomplete-
ness of the standard model (SM) of particle physics as a
theory describing the constituents of nature. The observa-
tion of neutrino oscillations, explained only in the frame-
work of massive neutrinos [1], the discrepancy between the
SM prediction with the measured value of the anomalous
magnetic moment of the muon [2], the baryon asymmetry
of the Universe [3], and the conclusion that only 5% of the
energy content of the Universe is constituted by particles in
the SM [4], are some strong indications that physics beyond
the SM is needed.
The inclusion of matter with no interaction with light,

explaining the reason to be called dark matter (DM), as a
fundamental component of the theoretical model of particle
physics, has been considered mandatory in the last years
due to different observations, both at galactic and cosmo-
logical scales [5,6]. Several results have led to the con-
clusion that 27% of the energy in the Universe corresponds
to matter in a form not included in the SM [7].
Due to the unknown nature of DM, it is important to

construct theoretical frameworks to describe its interactions

with SM particles, and this could have different degrees of
refinement.
In the first place, the description of DM interactions in

terms of effective field theories (EFT) constitutes a natural
tool to perform model-independent analyses in terms of
four-field operators for the interactions of DM with
nucleons [8], in the nonrelativistic limit. One advantage
of this treatment is the possibility to obtain stringent bounds
on the physics scale suppressing higher dimensional
operators [9].
The second possibility for a theory of DM-SM inter-

actions includes the most important mediator states, leading
to a better description of the kinematics of the interaction.
This step forward is done in the so-called simplified models
[10,11], where the interactions can be described in scalar or
vector channels for DM particles of any spin. This treat-
ment has been proved useful in the search for new physics,
where the interactions of a small number of new particles
give predictions for collider physics observables at the
Large Hadron Collider (LHC) [12].
Finally, complete models not only include DM particles

and the mediators of their interactions in their particle
contents, but (sometimes) a plethora of new particles. These
models could be considered extensions of the SM, and are
inspired by the most diverse ideas [13,14]. Usually, these
models are set to solve or explain issues of the SM, what
leads to the appearance of particles with the required
characteristics to be identified with DM.
In this work, we analyze a SUð3Þc ⊗ SUð3ÞL ⊗ Uð1ÞN

framework (3 − 3 − 1 model, for short) with heavy neutral
fermions, in order to find constraints on the scale of SUð3ÞL
symmetry breaking, which determines the mass scale of
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new particles in the model, using the measured values of the
anomalous magnetic moment of the muon [15], the DM
relic density [7] and the exclusion limits set by DM direct
detection experiments [16,17], when the candidate to DM
in the model is one of the heavy neutral fermions.
In order to do this, we analyze all possible contributions

to the anomalous magnetic moment of the muon, taking
into account the calculation of the physical scalar states that
appear in the model, as calculated in [18], and which gives
new contributions due to the exchange of scalar particles,
when compared with the previous analysis performed in
[19] (using the physical scalars found in [20] based on an
approximation for the eigenstates of 3 × 3 matrices),
considering the contribution of only one of the neutral
scalars in the physical spectrum of the model. Our method
for calculating the neutral eigenstates induces a different
phenomenology for the physical scalars as, for example,
new interactions with leptons. This produces, as we will
show later, two new contributions to the anomalous
magnetic moment of the muon, not considered in the
analysis performed in Ref. [19].
We also make a comparison of the complete 3 − 3 − 1

framework with simplified models, determining the dom-
inant channel for the interactions from the identification of
resonances leading to the relic abundance of the fermion
candidate to DM. This dominant channel turns out to be the
exchange of a heavy gauge boson in the model. After this,
we analyze the constraints on a simplified 3 − 3 − 1 model
with the fermion candidate to DM and the new gauge boson
as the mediator of its interactions with SM particles,
coming from direct detection experiments [16,17]. The
analysis of minimal models for DM-SM interactions has
been performed, for example, in [21], with fermions and
scalars as additional fields, with no additional gauge boson
in the models. On the other hand, the analysis of [22,23]
includes different collider and DM direct detection con-
straints in the framework of simplified models for DM, and
the calculation of contributions of new particles to the
muon anomalous magnetic moment, introducing new
scalars or fermions that can be in different representations
of the SM gauge group. Our approach is different from this,
in the sense that we determine first the dominant portal for
the interactions in the 3 − 3 − 1 model, and then analyze
the results in the framework of a simplified model with a
gauge boson as the mediator of DM-SM interactions,
without including new scalar or fermion fields besides
the DM candidate.
This paper is organized as follows. In Sec. II we will

discuss briefly some motivations and characteristics of
models beyond the SM, emphasizing on simplified models
for the description of DM-SM interactions. In Sec. III we
present a summary of the 3 − 3 − 1 model considered in
this work, in order to find, in Sec. IV, the contribution of
new particles to the anomalous magnetic moment of the
muon and, in Sec. V, the dominant portal for DM-SM

interactions. Furthermore, in Sec. VI we find constraints on
the mass of the mediator of DM-SM interactions, which can
be translated in lower bounds for the SUð3ÞL symmetry
breaking scale, and compare these results with the favored
window coming from the contributions to the anomalous
magnetic moment of the muon. Finally, in Sec. VII, we
make a comparison of our results with previous constraints
found on the 3 − 3 − 1 model, mainly based on LHC data,
and present our conclusions in Sec. VIII.

II. SIMPLIFIEDMODELS FOR THEDESCRIPTION
OF DM-SM INTERACTIONS

Models going beyond the SM try to solve some of its
problems or inconsistencies leading to different frame-
works with its own structure [24]. For example, in order to
solve the gauge symmetry problem, associated with the
chirality of electroweak interactions and the quantization of
electric charge, a unification of interactions or a grand
unified theory have been proposed [25,26]; for the solution
of the fermion problem, related to the existence of at least
three lepton families with hierarchical masses, superstring
theories [27] or braneworld scenarios [28] can give an
explanation; the hierarchy problem, associated with diver-
gent corrections to the Higgs boson mass, can be solved,
for example, in the framework of supersymmetry [29],
extended models [30,31], dynamical mechanisms for sym-
metry breaking [32] or large extra dimensions [33,34].
Disregarding the details of any of these models, it is very

desirable to have the possibility of embedding DM in their
particle contents, which will interact with SM particles
depending on the Lagrangian of the model. These inter-
actions are completely unknown at the moment, and can be
described in terms of simplified models, where the media-
tor state is called “portal” [9,10].
For models with a single candidate to DM, where a

discrete symmetry protects the lightest odd particle of
decaying, its interactions will depend on the particle types
of the DM and the mediator. For example, in the case of
fermionic DM, different from its own antiparticle and
represented by a field ψ interacting with SM particles
through a scalar S or vector U portal, the interaction
Lagrangian can be written, respectively, as [11]

L ¼ gψ ψ̄ψSþ
X
f

cSmfffiffiffi
2

p
vh

f̄fS; ð1Þ

L ¼ gψ̄γαðVU
ψ − AU

ψ γ5ÞψUα þ g
X
f

f̄ γαðVU
f − AU

f γ5ÞfUα;

ð2Þ

where gψ and g are couplings associated with the inter-
action of ψ with S and U, respectively, cS is a Yukawa-like
coupling associated with the mass mf of the SM fermions
f, vh is the vacuum expectation value of the Higgs boson,
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and VU
ψ , AU

ψ (VU
f , A

U
f ) are vector and axial couplings of

fermionic DM (SM) particles.
In order to identify DM particles, several direct and

indirect experiments have been performed, are in progress
or under construction. In the case of indirect searches, the
detection of the decay or annihilation products of DM
particles is used as a probe for DM particles [35,36]. On the
other hand, in direct detection experiments the scattering of
DM particles could leave a signal in the detectors, which
can be in the form of energy deposition, scintillation
light or ionization [37]. A fundamental quantity in direct
detection experiments is the spin-independent scattering
cross section of a DM candidate with nucleons, which is
usually obtained in these experiments and which gives the
strongest constraints on DM observables.
Using the interaction Lagrangian in Eqs. (1) and (2), this

spin-independent scattering cross section with protons, σSIp ,
for the cases of scalar and vector portals, is given by [38]

σSIp ¼
8<
:

μ2ψp
π g2ψc2S

m2
p

v2h

f2N
m4

S
scalar portal;

μ2ψp
π

g4

m4
U

�
ZfpþðA−ZÞfn

A

�
2

vector portal;
ð3Þ

where μψp is the reduced mass of the fermion DM-proton
system, with massesmψ andmp, respectively, fN (N¼n, p)
is the effective coupling of DM with nucleons, mS and mU
are the masses of the scalar and vector mediators, and the
atomic and mass numbers of the target in a direct detection
experiment are denoted by Z and A, respectively.

III. THE 3− 3− 1 MODEL WITH HEAVY
NEUTRAL LEPTONS

In this section we present a review of a complete model
beyond the SM, for which a fermion DM candidate is
contained in its particle spectrum, and for which we will
calculate the contribution of new particles to the anomalous
magnetic moment of the muon, and results on DM
observables will be compared in terms of the simplified
model predictions just discussed.
This extension corresponds to a model with gauge

symmetry SUð3Þc ⊗ SUð3ÞL ⊗ Uð1ÞN, initially proposed
in [39–41], and which has been widely studied in the
literature [42–44], due to its appealing characteristics. For
example, the anomaly cancellation occurs only if the
number of families is exactly three or one of its multiples
[45], the quantization of electric charge appears naturally
[46], neutrino masses can be included easily in the model,
either by effective operators invariant under the gauge
symmetry [47] or by a double see-saw mechanism [48], the
strong CP problem can be solved and a nonthermal
candidate for DM (an axion) can be included in its physical
spectrum [48–51], and the model is very interesting from
the phenomenological point of view [52].

In this 3 − 3 − 1 model, it is customary to define the
electric charge operator as a linear combination of the
diagonal generators (Ti; I) of the group SUð3ÞL ⊗ Uð1ÞN
as Q ¼ T3 þ βT8 þ NI, where β is an embedding para-
meter which determines the Uð1ÞN quantum numbers and
electric charges of new particles.
Despite the multiple versions of 3 − 3 − 1 models

existing in the literature, in this work we will analyze a
version which does not contain exotic quark charges,
characterized by a parameter β ¼ 1=

ffiffiffi
3

p
[53], and contain-

ing heavy neutral fermions in the lepton triplets. The reason
for choosing this model in comparison with other versions
lies on the fact that this model contains scalar, fermionic,
and vector DM candidates, but only the lightest of these
particles can be considered a DM candidate, since all
belong to the same discrete symmetry group used to
stabilize DM [20]. This discrete symmetry will be pre-
sented after the introduction of the expression for the
Yukawa Lagrangian, when all the field contents of the
model have been introduced.
In order to cancel gauge anomalies, we distribute the

matter content of the model in the following way [54]: the
first two generations of left-handed quarks transform as
triplets, while the third generation transforms as an anti-
triplet, in the same way as left-handed leptons:

qiL ¼ ðui; di; JiÞTL ∼ ð3; 3; 0Þ;
q3L ¼ ðd3;−u3; J3ÞTL ∼ ð3; 3̄; 1=3Þ;
FjL ¼ ðlj;−νj; EjÞTL ∼ ð1; 3̄;−1=3Þ; ð4Þ

with i ¼ 1, 2 corresponding to the first and second quark
generation, j ¼ e, μ, τ denoting the three lepton families,
and ∼ is used to indicate the transformation properties
under the symmetry group. Note that the model contains
one new up quark (J3) and two new down quarks (J1;2),
alongside with three heavy neutral leptons Ej.
Right-handed particles are singlets under SUð3ÞL, with

the following transformation rules:

ljR ∼ ð1; 1;−1Þ; EjR ∼ ð1; 1; 0Þ ðleptonsÞ;
uaR ∼ ð3; 1; 2=3Þ; a ¼ 1;…; 4 ðup quarksÞ;
dbR ∼ ð3; 1;−1=3Þ; b ¼ 1;…; 5 ðdown quarksÞ; ð5Þ

where the usual quark generations correspond to
a; b ¼ 1;…; 3.
Symmetry breaking in the model happens through three

scalar triplets η, ρ, and χ, with the following components
and transformation properties:
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η ¼

0
B@

η0

η−

η0−

1
CA ∼

�
1; 3;−

2

3

�
; ρ ¼

0
B@

ρþ

ρ0

ρ00

1
CA ∼

�
1; 3;

1

3

�
;

χ ¼

0
B@

χþ

χ00

χ0

1
CA ∼

�
1; 3;

1

3

�
ð6Þ

interacting through a scalar potential consistent with
renormalization and gauge invariance, on which a discrete
symmetry Z2 is imposed in order to bring simplicity to the
model and interpret the χ scalar triplet as the one respon-
sible for breaking the SUð3ÞL symmetry to the SM one,

Vðη;ρ; χÞ ¼ μ21η
†ηþ μ22ρ

†ρþ μ23χ
†χ

þ λ1ðη†ηÞ2 þ λ2ðρ†ρÞ2 þ λ3ðχ†χÞ2
þ λ4ðχ†χÞðη†ηÞ þ λ5ðχ†χÞðρ†ρÞ þ λ6ðη†ηÞðρ†ρÞ
þ λ7ðχ†ηÞðη†χÞ þ λ8ðχ†ρÞðρ†χÞ þ λ9ðη†ρÞðρ†ηÞ
−

ffiffiffi
2

p
fϵijkηiρjχk þH:c:; ð7Þ

where μi (i ¼ 1, 2, 3) are quadratic self-interactions that
can be determined from the vacuum properties, λi
(i ¼ 1;…; 9) are quartic couplings determining the spec-
trum of scalars in the theory, and f is a trilinear coupling
usually taken proportional to the highest energy breaking
scale in the model. The stability of this scalar potential was
recently analyzed in [55], where tree-level constraints on
the parameters of the model were obtained using coposi-
tivity conditions and current bounds on the masses of extra
particles.
The Yukawa Lagrangian, responsible to give mass to

quarks and leptons, is written as follows:

LY ¼ Lη
Y þ Lρ

Y þ Lχ
Y; ð8Þ

where Lϕ
Y (ϕ ¼ η, ρ, χ) are the Yukawa terms correspond-

ing to each of the scalar fields in Eq. (6), and given by [56]

−Lη
Y ¼ αijqiLηujR þ β3jq3Lη�djR þ γjkljLη�ekR þ H:c:

− Lρ
Y ¼ α3jq3Lρ�ujR þ βijqiLρdjR þ H:c:

− Lχ
Y ¼ βibqiLχdbR þ α34q3Lχ�u4R þ γ0jkljLχ

�EkR

þ H:c:; ð9Þ

where different indices run as follows: i ¼ 1, 2,
j; k ¼ 1;…; 3, b ¼ 4, 5.
The scalar triplets in Eq. (6) are responsible to give mass

to all particles in the model. For example, physical scalars
appear as the massive eigenstates of the mass matrices
obtained when the scalar triplets get the vacuum expect-
ation values (VEVs)

hηi¼ 1ffiffiffi
2

p

0
B@
vη
0

0

1
CA; hρi¼ 1ffiffiffi

2
p

0
B@

0

vρ
0

1
CA; hχi¼ 1ffiffiffi

2
p

0
B@

0

0

vχ

1
CA;

ð10Þ

and the components η0, ρ0, and χ0 are decomposed into
their real (Rη;ρ;χ) and imaginary (Iη;ρ;χ) parts,

η0 ¼ 1ffiffiffi
2

p ðRη þ iIηÞ; ρ0 ¼ 1ffiffiffi
2

p ðRρ þ iIρÞ;

χ0 ¼ 1ffiffiffi
2

p ðRχ þ iIχÞ; ð11Þ

leading to the mass matrices

M2
R ¼

0
BB@

2λ1v2η þ fvρvχ
vη

λ6vηvρ − fvχ λ4vηvχ − fvρ

λ6vηvρ − fvχ 2λ2v2ρ þ fvηvχ
vρ

λ5vρvχ − fvη

λ4vηvχ − fvρ λ5vρvχ − fvη 2λ3v2χ þ fvηvρ
vχ

1
CCA;

ð12Þ

M2
I ¼

0
BBB@

fvηvχ
vρ

fvχ fvη

fvχ
fvρvχ
vη

fvρ

fvη fvρ
fvηvρ
vχ

1
CCCA: ð13Þ

The calculation of eigenvectors and eigenvalues of the
first of these matrices leads to three physical states h, H2,
and H3 and their corresponding masses.1 Under special
assumptions on the entries of the mass matrix (12), trying to
reduce M2

R to a block-diagonal form, the physical states
have been calculated in [19,20]. Under these simplifying
assumptions, the scalarH3 is identified with the real part Rχ

of the third component of the χ scalar triplet, with no Rη or
Rρ components. In the same way, the physical scalars h and
H2 lack a component proportional to Rχ . In this way, the
substitution of the symmetry states in terms of the physical
states in the Lagrangian of the model lacks interactions
between the scalars h,H2, andH3 with other particles in the
model, appearing from the Yukawa terms in Eq. (9), and
which will give sizeable contributions to physical observ-
ables as, for example, the muon anomalous magnetic
moment, as will be seen in Sec. IV. So, it is important
to keep all entries in Eq. (12) for the calculation of the
physical states h, H2, and H3, which will depend on the
three real components Rη, Rρ, and Rχ , in such a way that all
interactions of the physical states are taken into account.

1We identify the lightest physical state h with the SM Higgs
boson.
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To get a more precise calculation of the physical
scalars and their interactions in the model, we have kept
the full matrix (12) and calculated its eigenvectors and
eigenvalues using the Rayleigh-Schrödinger perturbation
theory [57,58], in the same way as in Ref. [18], but
including the second-order correction to the eigenvectors.
To use this formalism, we write (12) as an analytic
perturbation [in the dimensionless parameter v

vχ
, where

v2 ¼ v2η þ v2ρ ¼ ð246 GeVÞ2] of a matrix for which
eigenvectors and eigenvalues are easily calculated. More
specifically, we write (12) as

M2
R ¼ v2χ

�
A0 þ

v
vχ

A1 þ
�
v
vχ

�
2

A2

�
; ð14Þ

where A0, A1, and A2 are the nonperturbed, first- and
second-order perturbations, respectively, given by the
following expressions:

A0 ¼

0
BB@

kvρ
vη

−k 0

−k kvη
vρ

0

0 0 2λ3

1
CCA; ð15Þ

A1 ¼

0
BB@

0 0
λ4vη
v − kvρ

v

0 0
λ5vρ
v − kvη

v
λ4vη
v − kvρ

v
λ5vρ
v − kvη

v 0

1
CCA; ð16Þ

A2 ¼

0
BBBBB@

2λ1
�
vη
v

�
2 λ6vηvρ

v2 0

λ6vηvρ
v2 2λ2

�
vρ
v

�
2

0

0 0
kvηvρ
2v2

1
CCCCCA
; ð17Þ

where we have made the substitution f ¼ kvχ for the
trilinear coupling in the scalar potential (7), in order to
avoid the introduction of a new energy scale.

The unperturbed masses of the physical fields h,H2, and
H3 are obtained as the product of the eigenvalues of the
matrix A0 and v2χ , and are given by

ðMð0Þ
h Þ2 ¼ 0;

ðMð0Þ
H2
Þ2 ¼ kv2

2vηvρ
v2χ ;

ðMð0Þ
H3
Þ2 ¼ 2λ3v2χ ; ð18Þ

and the physical fields, to the same order, are

hð0Þ ¼ vη
v
Rη þ

vρ
v
Rρ;

Hð0Þ
2 ¼ −

vρ
v
Rη þ

vη
v
Rρ;

Hð0Þ
3 ¼ Rχ : ð19Þ

The first-order perturbation A1 gives no correction to the
masses in Eq. (18), but induces the following correction to
the physical fields:

hð1Þ ¼−
λ4v2η − 2kvηvρþ λ5v2ρ

2λ3vvχ
Rχ ;

Hð1Þ
2 ¼ vηvρ½kðv2ρ−v2ηÞþ ðλ5 − λ4Þvηvρ�

vvχðkv2− 2λ3vηvρÞ
Rχ ;

Hð1Þ
3 ¼ vη½kðλ4v2η þð2λ3þ λ5Þv2ρÞ− 2vηvρðk2þ λ3λ4Þ�

2λ3vχðkv2− 2λ3vηvρÞ
Rη

þvρ½kðλ5v2ρþð2λ3þ λ4Þv2ηÞ−2vηvρðk2þ λ3λ5Þ�
2λ3vχðkv2− 2λ3vηvρÞ

Rρ:

ð20Þ

The matrix A2 induces the following correction to the
masses of the physical fields:

ðMð2Þ
h Þ2 ¼ ð4λ1λ3 − λ24Þv4η þ 4kðλ4v3ηvρ þ λ5vηv3ρÞ − 2ð2k2 þ λ4λ5 − 2λ3λ6Þv2ηv2ρ þ ð4λ2λ3 − λ25Þv4ρ

2λ3v2
;

ðMð2Þ
H2
Þ2 ¼ vηvρ½ðkðv2η − v2ρÞ þ ðλ4 − λ5ÞvηvρÞ2 þ 2vηvρðλ1 þ λ2 − λ6Þðkv2 − 2λ3vηvρÞ�

v2ðkv2 − 2λ3vηvρÞ
;

ðMð2Þ
H3
Þ2 ¼ kðλ4v2η þ λ5v2ρÞ½ðλ4v2η þ λ5v2ρÞ − 4kvηvρ� − 4kv2ηv2ρ½k2 þ λ3ðλ3 − λ4 − λ5Þ� − 2λ3vηvρðλ24v2η þ λ25v

2
ρÞ

2λ3ðkv2 − 2λ3vηvρÞ
; ð21Þ

and the second-order perturbation to the physical states given by
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hð2Þ ¼ F1ðλ; k; vη; vρ; vχÞðvρRη − vηRρÞ;
Hð2Þ

2 ¼ F2ðλ; k; vη; vρ; vχÞðvηRη þ vρRρÞ;
Hð2Þ

3 ¼ 0; ð22Þ

where the functions F1;2ðλ; k; vη; vρ; vχÞ are given by

F1ðλ; k; vη; vρ; vχÞ ¼
vηvρ

2kλ3v5v2χ
½v3ηvρðλ4ðλ4 − λ5Þ þ 2λ3ðλ6 − 2λ1ÞÞ þ 2k2vηvρðv2ρ − v2ηÞ

þ vηv3ρðλ5ðλ4 − λ5Þ þ 2λ3ð2λ2 − λ6ÞÞ þ kðλ4v4η þ 3v2ηv2ρðλ5 − λ4Þ − λ5v4ρÞ� ð23Þ
and

F2ðλ; k; vη; vρ; vχÞ ¼
v2ηv2ρ

kv5ðkv2 − 2λ3vηvρÞv2χ
½v3ηvρðλ4ðλ5 − λ4Þ þ 2λ3ð2λ1 − λ6ÞÞ − 2k2vηvρðv2ρ − v2ηÞ

þ vηv3ρðλ5ðλ5 − λ4Þ þ 2λ3ðλ6 − 2λ2ÞÞ þ kv4ηðλ6 − λ4 − 2λ1Þ þ kv2ηv2ρð2ðλ2 − λ1Þ þ 3ðλ4 − λ5ÞÞ
− kv4ρðλ6 − λ5 − 2λ2Þ�: ð24Þ

Using these results, we can write the transformation
between the physical states h, H2, and H3 and the
symmetry states Rη, Rρ, and Rχ as

0
B@

h

H2

H3

1
CA ¼

0
B@

UH
1;1 UH

1;2 UH
1;3

UH
2;1 UH

2;2 UH
2;3

UH
3;1 UH

3;2 UH
3;3

1
CA
0
B@

Rη

Rρ

Rχ

1
CA; ð25Þ

where the expressions for the components of the transforma-
tion matrix UH

i;j can be read from Eqs. (19), (20), and (22).
On the other hand, matrix (13) gives a pseudoscalar

particle H0, with a mass

M2
H0

¼ kðv2ηv2ρ þ v2v2χÞ
vηvρ

; ð26Þ

and two Goldstone bosonsGZ andGZ0 , eaten by the neutral
gauge bosons appearing in the physical spectrum, to be
discussed later. The transformation between these states
and the imaginary components Iη, Iρ, and Iχ is given by

0
B@

H0

GZ

GZ0

1
CA¼

0
B@
Uh

1;1 Uh
1;2 Uh

1;3

Uh
2;1 Uh

2;2 Uh
2;3

Uh
3;1 Uh

3;2 Uh
3;3

1
CA
0
B@
Iη
Iρ
Iχ

1
CA

¼

0
BBBBB@

− vρffiffiffiffiffiffiffiffiffi
v2ρþv2χ

p 0
vχffiffiffiffiffiffiffiffiffi
v2ρþv2χ

p

− vρffiffiffiffiffiffiffiffiffi
v2ηþv2ρ

p vηffiffiffiffiffiffiffiffiffi
v2ηþv2ρ

p 0

1

vρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2η
þ 1

v2ρ
þ 1

v2χ

q 1

vη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2η
þ 1

v2ρ
þ 1

v2χ

q 1

vχ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2η
þ 1

v2ρ
þ 1

v2χ

q

1
CCCCCA

0
B@
Iη
Iρ
Iχ

1
CA:

ð27Þ

To complete the spectrum of scalar states in the theory,
the mass mixing matrices resulting from the charged
symmetry states in (6) give two bosons, labeled H�

W and
H�

Y , and the neutral states without a VEV in the same
equation give an additional neutral scalar HV which can be
another possible candidate to DM in the model, stabilized
by the same discrete symmetry than the heavy neutral
fermion Ee.
The gauge sector of the model consists, besides the SM

photon A and the mediators of weak interactionsW� and Z,
on a new charged gauge boson Y� and two additional
neutral fields V0 and Z0. The first of these neutral fields can
also be made a DM candidate in the model (under the same
symmetry used to stabilize the heavy neutral fermion Ee
and the neutral gauge boson HV), and the second of these
gauge fields appears from the 3 × 3 mixing matrix of
neutral gauge bosons, from which A and Z correspond to
the other two eigenstates.
For paramount importance for this work, the lightest of

the heavy neutral fermions in Eq. (4) can be made a DM
candidate in the model using a residual global symmetry
Uð1ÞG [20] appearing after the electroweak symmetry
breaking, with the following charge assignments

GðEj; J3; J̄1;2; Y−; V0; η−; ρ00; χ00; χ−Þ ¼ −1; ð28Þ

which implies the existence of five neutral odd particles: the
three heavy neutral leptons Ej (j ¼ e, μ, τ), the scalar HV,
and the gauge boson V0. The lightest of these particles can
be identified as a DM particle stabilized by this symmetry,
and we will analyze the DM observables associated with
the heavy neutral lepton of the electron flavor in Secs. V
and VI.
In the following section we will find the contribution of

new particles in this 3 − 3 − 1 model to the anomalous
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magnetic moment of the muon, in order to determine if the
physical spectrum can give a sizeable deviation of the SM
prediction of this precisely measured quantity, which can
be used as a sensitive probe for models beyond SM.

IV. CONSTRAINTS FROM THE MUON
ANOMALOUS MAGNETIC MOMENT

In order to set constraints on the scale of symmetry
breaking of the SUð3ÞL group, we have used the compu-
tation of the contribution of new particles in the 3 − 3 − 1
model to the anomalous magnetic moment of the muon,
defined as

aμ ¼
gμ − 2

2
; ð29Þ

where gμ is the gyromagnetic ratio (or g-factor), in terms of
which the orbital magnetic moment of the muon is written
in terms of its spin S⃗ as

μ⃗ ¼ −gμμ0S⃗; ð30Þ

where μ0 is the Bohr magneton. The usefulness of this
comparison lies on the fact that Δaμ ≡ aexpμ − aSMμ , where
aexpμ is the experimentally measured value and aSMμ the SM
prediction, is a quantity measured very precisely in particle
physics [15], and which can be used in order to set
constraints on models beyond the SM [59].
In order to calculate the contribution of new particles in

the spectrum of the 3 − 3 − 1 model considered in this
work, we need to identify the possible one-loop lowest
order type diagrams taking into account the exchange of
both neutral and charged bosons. The contributing dia-
grams are shown in Fig. 1, and the general expressions for
Δaμ associated with diagrams of this kind can be found in
[2]. A very complete calculation which also includes a
numerical code is available in Ref. [60].
The contribution of the exchange of neutral scalar

particles H2, H3, and H0 [Fig. 1(a)] has the form

ΔaSμ ¼
f2S
8π2

λ2S

Z
1

0

dx
x2ð2 − xÞ

1 − xþ λ2Sx
2
; ð31Þ

with S ¼ H2; H3; H0 a label indicating the particle
exchanged (with mass MS), and λS ¼ mμ=MS, with mμ

the muon mass.
In Eq. (31), fS (S ¼ H2; H3; H0) represents the vertex

factor associated with the fμ−; μþ; Sg interaction given by

fH2
¼ UH

2;2yμffiffiffi
2

p ; fH3
¼UH

2;3yμffiffiffi
2

p ; fH0
¼ Uh

2;1yμffiffiffi
2

p ; ð32Þ

where yμ ¼ mμ

ffiffi
2

p
vη

is the diagonal Yukawa coupling of

the muon, and UH
i;j and Uh

i;j are the i, j elements of the
transformation matrices (25) and (27), respectively. It is
important to note here that the nonvanishing components
UH

2;3 and Uh
2;1 of the transformation matrices in Eqs. (25)

and (27) induce two new contributions to the anomalous
magnetic moment of the muon when compared with the
previous calculation performed in Ref. [19], namely,
the ones coming from the interchange of the real scalar
H3 and the pseudoscalar H0. The numerical calculation
of the contribution of the exchange of neutral scalar
particles (which can be seen in Fig. 2) has shown that
the one due to the scalar H3 is the most important one, as
this contribution lies in the experimentally measured
interval for Δaμ.
The contribution of the diagram where a Z0 boson is

exchanged [see Fig. 1(b)] has two contributions, due to the
vector and axial couplings of this boson to the muon [62],
and is given by

ΔaZ0
μ ¼ λ2Z0

4π2

�
ðVZ0

μ Þ2
Z

1

0

dx
x2ð1 − xÞ

1 − xþ λ2Z0x2

þ ðAZ0
μ Þ2

Z
1

0

dx
xð1 − xÞðx − 4Þ − 2λ2Z0x3

1 − xþ λ2Z0x2

�
; ð33Þ

where VZ0
μ and AZ0

μ are the vector and axial couplings of the
Z0 vector boson to the muon [using the same notation in
Eq. (2)], and λZ0 is the ratio of the muon mass to the Z0
mass. These quantities are defined as follows:

(a) (b) (c) (d) (e)

FIG. 1. Contributions to the anomalous magnetic moment of the muon in the 3 − 3 − 1 model considered in this work, for different
exchanged particles (a) H2, H3, or H0 neutral bosons, (b) Z0 gauge boson, (c) H�

W , and (d) H
�
Y charged scalar bosons, respectively, and

(e) Y� charged vector boson.
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VZ0
μ ¼ eð1 − 4s2WÞ

cWsW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p ; AZ0
μ ¼ −

1

1 − 4s2W
fVZ0 ;

λZ0 ¼ mμ

MZ0
ð34Þ

where e is the electron charge, and sW and cW are the sine
and cosine of the Weinberg angle, respectively.
Contributions from the exchange of the charged scalar

H�
W , shown in Fig. 1(c), are simpler than the others, due to

the presence of the muon neutrino in the loop. In the limit
mνμ ≪ mμ, the contribution is reduced to

ΔaHW
μ ¼ −

f2HW
λ2HW

24π2
; ð35Þ

where fHW
is the fμ−; Hþ

W; νμg vertex factor, given by

fHW
¼ −

mμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðv2η þ v2ρÞ

q and λHW
¼ mμ

MHW

: ð36Þ

The exchange of charged scalars H�
Y in Fig. 1(d) gives

the following contribution to the anomalous magnetic
moment of the muon

ΔaHY
μ ¼−

λ2HY

8π2

�
ðfSHY

Þ2
Z

1

0

dx
xð1−xÞðxþϵHY

Þ
ðϵHY

λHY
Þ2ð1−xÞð1−ϵ−2HY

xÞþx

þðfPHY
Þ2
Z

1

0

dx
xð1−xÞðx−ϵHY

Þ
ðϵHY

λHY
Þ2ð1−xÞð1−ϵ−2HY

xÞþx

�

ð37Þ

where the λ and ϵ parameters are

λHY
¼ mμ

MHY

and ϵHY
¼ MEμ

mμ
;

withMHY
andMEμ

theH�
Y and Eμ masses, respectively, and

fS;PHY
are the scalar (S) and pseudoscalar (P) couplings of the

fμ−; Hþ
Y ; Eμg vertex, given by

fSHY
¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðv2ρ þ v2χÞ

q
�
mEμ

vρ
vχ

þmμ
vχ
vρ

�
;

fPHY
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðv2ρ þ v2χÞ
q

�
mEμ

vρ
vχ

−mμ
vχ
vρ

�
: ð38Þ

Finally, as the charged gauge boson Y�
μ has vector and

axial couplings (with the same strength) with μ and Eμ, its
contribution to the anomalous magnetic moment of the
muon, calculated from the diagram in Fig. 1(e), can be
written as

ΔaYμ ¼
f2Yλ

2
Y

4π2

Z
1

0

dx
2x2ð1þxÞþλ2Yxð1−xÞðxð1þϵ2YÞ−2ϵ2YÞ

ðϵYλYÞ2ð1−xÞð1−ϵ−2Y xÞþx
;

ð39Þ

with

fY ¼ e

2
ffiffiffi
2

p
sW

; λY ¼ mμ

MY
; and ϵY ¼ MEμ

mμ
; ð40Þ

where MY is the mass of the Y�
μ boson.

We have numerically calculated the contributions of all
these new particles in the 3 − 3 − 1 model [Eqs. (31) for
H2, H3 and H0, (33) for Z0

μ, (35) for H�
W, (37) for H

�
Y , and

(39) for Y�
μ ] to the anomalous magnetic moment of the

muon, and obtained the results shown in Fig. 2, where the
contribution of each particle to Δaμ is shown as a function
of the SUð3ÞL symmetry breaking scale vχ , on which the
mass of each of these particles is strongly dependent. For
the calculation of these contributions, we have kept all free
parameters in the scalar potential (7) of order one, and
assumed vη ≈ vρ.
It is important to note here that the contributions of the

CP-even scalars H2 and H3, and of the charged gauge
boson Y�

μ , are positive, but the contributions of the CP-odd
scalar H0, the neutral gauge boson Z0

μ, and the charged
scalars H�

W and H�
Y are negative. Additionally, note the

presence of two additional contributions to the anomalous
magnetic moment of the muon, not considered in the
previous calculation performed in [19], due to the exchange
of the scalars H3 and H0, and appearing from the

FIG. 2. Contributions to Δaμ of new particles in the 3 − 3 − 1
model considered in this work. The contributions of H2, H3, and
Y�
μ are positive, and the contribution of all other particles is

negative. The horizontal black lines represent the current value of
Δaμ (95% C.L.) [61].
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determination of the mass eigenstates of the matrices (12)
and (13) taking into account all their entries.
In order to make a comparison with the reported value of

Δaμ [61], we have included in Fig. 2 the boundaries for this
quantity (at 95% C.L.), represented by horizontal black
lines. It is clear from this graph that the dominant
contribution comes from the CP-even scalar H3, which
is at least 2 orders of magnitude greater than other
contributions. From this graph it is possible to see that
the H3 contribution lies in the interval experimentally
measured for values of the SUð3ÞL symmetry breaking
scale such that

7.2 TeV≲ vχ ≲ 12.2 TeV ð95% C:L:Þ; ð41Þ

determining a favored window to look for the masses of the
new particles present in the spectrum, as we will do in
Sec. VI with the Z0 boson.
An important remark before ending this section concerns

the possible modification of the results in Fig. 2 and the
constraint given by Eq. (41) when we take different values
for the λ parameters in the scalar potential, which were
initially taken of order one, as was said before. We have
tested our results against the choice of parameters, and
found that random values of the λ parameters in the scalar
potential in Eq. (7) give results with deviations not greater
than 5% from the ones presented here, when the ρ − χ
coupling λ5 in the scalar potential is of order one, which
maximizes the μ −H3 coupling.
In the following section, we will discuss the results for

DM observables in the 3 − 3 − 1 model when we take the
heavy neutral lepton of the electron flavor, Ee, as our DM
candidate, identifying the dominant channel describing its
interactions leading to a relic dark matter abundance
consistent with the measurements performed by the
Planck Collaboration [4], and making a comparison of
the results found in the complete 3 − 3 − 1 model with the
predictions of the simplified models presented in Sec. II.

V. IDENTIFICATION OF THE DOMINANT
PORTAL OF DM-SM INTERACTIONS

In order to make a comparison of DM observables in
the 3 − 3 − 1 framework with the predictions of minimal
DM models, we need to find the terms in the Lagrangian
with the structure presented in Eqs. (1) and (2). Taking a
look at the full Lagrangian in the FeynRules [63,64]

implementation of the β ¼ 1=
ffiffiffi
3

p
version of the model

[56] and using the CalcHEP [65] package, we have found
that, in the case where the lightest odd particle under the
discrete symmetry corresponds to the heavy neutral fer-
mion of the electron flavor, Ee, this particle interacts with
four scalars in the physical spectrum of the model, and with
four gauge bosons, leading to a relic Ee abundance in both
the s and t channels.
The physical scalars interacting with the heavy neutral

fermion Ee are the eigenstates h, H2, and H3 of the real
mass matrix (12), and the CP-odd state H0 corresponding
to the massive eigenstate of the imaginary mass matrix (13).
The interactions of these scalars with Ee give a sizeable
relic abundance in the s channel, as will be seen later.
On the other hand, the heavy neutral fermion Ee interacts

with four vector particles in the model, the SM Z boson, its
heavier partner Z0, the charged gauge boson Y�, and the
neutral V0. The processes leading to an Ee relic abundance
due to interactions with Y� and V0 are performed in the t
channel, with vertex factors inversely proportional to the vχ
vacuum expectation value, leading to a contribution less
than 1% of the total DM abundance, and for these reasons
are disregarded in the relic abundance computation. So, the
contribution from interactions with vector channels comes
from the s-channel interactions with the Z and Z0 gauge
bosons. This new gauge boson has a mass depending
directly on the SUð3ÞL symmetry breaking scale vχ ,

M2
Z0 ¼ g2W

3 − 4s2W

�
v2ρðc2W − s2WÞ2

4c2W
þ v2η
4c2W

þ c2Wv
2
χ

�
; ð42Þ

where gW is the SUð3ÞL coupling constant.
In this way, we have seen that our DM candidate has the

possibility to interact with SM particles both through scalar
(h, H2, H3, and H0) and vector (Z and Z0) channels,
allowing us to identify the dominant portal describing
the interactions of the heavy neutral fermion Ee, through
the determination of resonances in the cross section
for processes leading to the candidate abundance,
EeEe ↔ XY, as the ones shown in Fig. 3. It has been
shown [66] that interactions of DM particles through SM
portals, mediated by the Higgs particle h or the Z gauge
boson are almost completely ruled out by current con-
straints, and, even though these interactions are present in
the 3 − 3 − 1 model with heavy neutral leptons, the
couplings of Ee to these particles are strongly suppressed

FIG. 3. s-channel diagrams for pair processes contributing to the relic abundance of Ee. The contribution of the t-channel processes
involving Y� and V0 is less than 1%.
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by the highest energy scale vχ , and for this reason are not
included in our analysis.
Consequently, we have constructed the plots presented in

Fig. 4, where we show a color map of the relic abundance of

the heavy neutral fermion Ee in the plane MEe
versus

MMediator, where the color of each point indicates how
the relic density Ω331 compares with the reported by the
Planck Collaboration ΩPlanck [4]: blue points correspond to
Ω331 > ΩPlanck, red points correspond to Ω331 ∼ ΩPlanck,
and the white dots in the middle of the two red lines in each
diagram correspond to points where the relic density is
below ΩPlanck. These graphs have been produced using the
micrOMEGAs package [67], using a modified version of the
FeynRules [63,64] implementation of the 3 − 3 − 1 model in
Ref. [56], including the calculation of the physical states h,
H2, and H3 presented in Sec. III.
All plots in Fig. 4 were obtained when the coupling

parameters in the scalar potential (7) are of order 1, vη ≈ vρ,
and we guarantee that particles belonging to the same
symmetry group that makes Ee stable have greater mass.
Nevertheless, this is not always possible, as can be seen
from the white region in the lower right corner of each
panel in Fig. 4, which corresponds to points in the
parameter space where Ee is no longer the lightest odd
particle under the discrete symmetry, which is now sub-
stituted by the charged gauge boson Y�. This degenerate
scenario is reached when the heavy neutral fermion mass,
MEe

, is very close to the charged gauge boson mass,
MY , and is observed in Fig. 4 as the boundary separating
the blue region (with DM abundance greater than ΩPlanck)
and the white region, where the lightest odd particle is
now Y�.
It is important to note here that, as the masses of Ee and

Y� become closer, annihilation involving this particle can
change drastically the heavy neutral lepton Ee relic
abundance [68]. This degenerate regime is different to
the general scenario depicted in Fig. 4, and its quantitative
characteristics are not going to be described here, but our
simulations for the scattering cross section with protons
will give constraints for this regime. Another point that is
worth mentioning is the appearance of some points with a
relic abundance consistent with the measured cosmological
parameterΩPlanck on the left part of the graphs. These points
correspond to the Higgs resonance on the scattering cross
section, and are always present in the model. Again, as
Higgs mediated interactions are almost completely ruled
out and Ee interactions with the Higgs boson are strongly
suppressed, we are not interested in their analysis in
this work.
So, from Fig. 4, we can see that the dominant portal for

the interactions of Ee is the Z0 portal, as the red bands
giving the relic abundance consistent with Planck results
[4] are placed symmetrically about the black line with
equation MEe

¼ MZ0=2, indicating a resonance for every
value of MZ0 shown in the figure. This conclusion is
consistent with the analysis of Ref. [69], which found
constraints on the Z0 boson mass using bounds obtained
from direct detection experiments, and requires no fine-
tuning on the parameters of the model.

FIG. 4. Identification of the dominant portal for the interactions of
a fermionEe as candidate toDM in the 3 − 3 − 1modelwith heavy
neutral leptons. Resonances on the relic abundance are determined
by the position of the two red lines present in the figures: if the solid
black line, described byMEe

¼ MMediator=2, goes through thewhite
stripe in the middle of the red lines giving a relic abundance
consistent with Planck results [4], the dominant portal is charac-
terized by the exchange of the corresponding mediator. The white
regions in the lower right corners of each panel correspond to points
on the parameter spacewhere the lightest odd particle in themodel is
a charged gauge boson Y�. The boundary between this region and
the blue one corresponds to a degenerate regimewhere annihilations
involving this boson enhance the heavy neutral lepton abundance.
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VI. CONSTRAINTS ON THE MASS OF THE
Z0 BOSON AND THE vχ VEV USING DM
DIRECT DETECTION EXPERIMENTS

Now that we have identified the dominant portal, we
proceed to the determination of constraints on the proper-
ties of our DM candidate coming from the XENON1T
direct detection experiment [16], and the future sensitivity
of the LZ experiment [17]. In order to do so, we need to
identify the parameters of the 3 − 3 − 1 model correspond-
ing to quantities entering in Eq. (3), calculated in terms of
the simplified models described by the Lagrangian in (2). It
is worth mentioning here the difference of this work, where
the DM candidate is a fermion with interactions mediated
by a gauge boson, with previous analyses in terms of
simplified models, as for example the ones in [21–23],
where the DM particle is a scalar, with interactions through
the Higgs portal or the exchange of fermions or scalars not
included in the SM.
The terms in the Lagrangian of the 3 − 3 − 1 model

which correspond to interactions of Ee with the vector
mediator Z0, in the form given in Eq. (2), can be written as

L331 ⊃ c1Eeγ
μð1 − γ5ÞEeZ0

μ þ c2ūγμðc3 þ γ5ÞuZ0
μ

þ c4d̄γμðc5 þ c6γ5ÞdZ0
μ; ð43Þ

where the constants ci, i ¼ 1;…; 6, are coefficients
depending on the specific parameters of the model, and
are given by

c1 ¼
eð1 − s2WÞ

2cWsW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 4s2W

p ;

c2 ¼
1

2ð1 − s2WÞ
c1;

c3 ¼ −1þ 8

3
s2W;

c4 ¼ −
1

3
c2;

c5 ¼ 2s2W þ ½ðVCKM
1;1 Þ2 þ ðVCKM

2;1 Þ2�ð3 − 4s2WÞ
− ðVCKM

3;1 Þ2ð3 − 2s2WÞ;
c6 ¼ 4s2W − c5; ð44Þ

where e, sW , and cW were defined in Sec. IV, and VCKM
i;j are

the i, j components of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix of the quark fields.
Taking these considerations into account, we can make

the following identification of the parameters in (2):

g ¼ c1; ð45Þ

VZ0
Ee

¼ 1; AZ0
Ee

¼ 1; ð46Þ

VZ0
u ¼ c2c3

c1
; AZ0

u ¼ −
c2
c1

; ð47Þ

VZ0
d ¼ c4c5

c1
; AZ0

d ¼ −
c4c6
c1

; ð48Þ

where we have replaced the indices for the DM candidate
(ψ ), the mediator (Uμ), and the SM fermion (f) in Eq. (2)
for the corresponding particle names in the 3 − 3 − 1
model, Ee, Z0

μ and u, d, respectively.
With this identification, we can proceed to the calcu-

lation of the spin-independent scattering cross section with
protons, in order to set constraints on the masses of the DM
candidate Ee and the vector mediator Z0. In order to do this,
we have calculated σSIp in two different situations: as given
by Eq. (3) (which we will call σZ

0
p from now on), which

assumes that Ee interactions are mediated only by Z0 and
there are no other particles in the physical spectrum
(besides SM particles), and considering the full particle
content of the 3 − 3 − 1 model (henceforth called σ331p ),
with all its possible portals, as done by the micrOMEGAs

package [67].
When performing this calculation, we have found that

the value of σZ
0

p is always greater than σ331p by a fixed factor
of approximately 1.339. This factor comes from neglecting
the other contributing diagrams in the scattering cross
section of Ee with quarks, which produce a destructive
interference with the diagram mediated by Z0, in all the
parameter space scanned in this work. So, in order to take
into account this difference and be able to compare the
results of the full 3 − 3 − 1 model with the predictions of
simplified models, we have included a normalization factor
in Eq. (3).2

In Fig. 5 we show the constraints on the Ee and Z0
masses set by an extrapolation of the data from the
XENON1T direct detection experiment [16] (orange
region), and the future weakly interacting massive particle
sensitivity of the LZ experiment [17] (green), where the red
points have a relic density consistent with that measured by
Planck [4], and the vertical dashed blue lines correspond to
the favored region obtained from the contributions of new
particles in the 3 − 3 − 1 model to the anomalous magnetic
moment of the muon, as shown in Fig. 2, with MZ0

calculated using Eq. (42).
From Fig. 5, we can see that the measured value of DM

relic abundance can be accomplished in two different
regimes: the one dominated by the Z0

μ resonance, charac-
terized by the red lines labeled (I) and (II) in the figure
and placed symmetrically about the resonant condition
MEe

¼ MZ0=2, and the degenerate regime, when the mass of
the DM candidate is very close to the mass of the Y� gauge
boson in the same discrete group which makes Ee stable,

2In our numerical calculations, we have found the ratio
σ331p =σZ

0
p ¼ 0.746846, with a standard deviation 1.5 × 10−5,

calculated over a sample with approximately 106 data of σ331p

and σZ
0

p , calculated simultaneously.
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labeled as (III) in Fig. 5. It is important to note here that this
last regime requires some fine-tuning in the parameters of
the model, in order to reach a degenerate mass sce-
nario, MEe

≈MY .
Also from this figurewe observe that, in order to make the

3 − 3 − 1 model a suitable framework including fermion
DM, there will be minimum values of MEe

and MZ0 which
satisfy the constraints on the DM relic density and spin-
independent scattering cross sectionwith protons. Due to the
direct dependence of theZ0 mass on vχ given by Eq. (42), the
minimum values of the boson mass can be translated to
constraints on the SUð3ÞL symmetry breaking scale, on
which all masses of new particles are strongly dependent.
The minimum values of the masses and the symmetry
breaking scale, for each of the bands in Fig. 5, are shown
in Table I, which shows the exclusion limits set by the two
different direct detection experiments considered.

The minimum values of MZ0 are higher than the ones
presented in Ref. [70], where the authors extended the
analysis of decays of a new gauge boson to dilepton final
states performed in [71] to impose constraints on models
with an additional particle of this type, in order to find
lower bounds on the mass of the Z0 boson of the 3 − 3 − 1
model. On the other hand, our bounds onMZ0 are consistent
with the results of Ref. [72], which analyze LHC data on
flavor changing neutral currents and dilepton resonance
searches.
Finally, the favored window for the contribution of new

particles in the model to Δaμ, giving the boundaries on vχ
shown in Eq. (41), sets the following minimum and
maximum values for the mass of the Z0 gauge boson when
we use Eq. (42):

2.9 TeV≲MZ0 ≲ 4.9 TeV ð95% C:L:Þ; ð49Þ

which, when combined with the constraints found with the
results of the XENON1T [16] direct detection experiment
gives a narrower window for the mass of this new gauge
boson, with the same lower bounds shown in Table I and an
upper bound given by the maximum value in Eq. (49). It is
interesting to note that the minimum values of vχ obtained
here are consistent with the ones obtained through the
analysis of vacuum stability of the scalar potential and the
constraints on the mass of new particles developed in [55],
even though the fermion content of the models is different.
On the other hand, with the comparison of the favored
region represented by the vertical dashed blue lines in Fig. 5
and the constraint of the future sensitivity of the LZ
experiment [17], we can set constraints on the highest
energy scale of the 3 − 3 − 1 model with heavy neutral
leptons as a suitable framework with a fermion candidate to
DM, taking the additional constraint of the ðg − 2Þμ
anomaly into account.

VII. SUMMARY OF CONSTRAINTS

To summarize all constraints on the mass of the Z0 boson
or the highest VEV of the 3 − 3 − 1 model, we have
constructed Fig. 6, where the horizontal bars indicate the
excluded regions for MZ0 and vχ , related by the expression
given in Eq. (42), as obtained from different analyses. The

FIG. 5. Constraints on Ee and Z0 masses set by XENON1T
[16], and the future sensitivity of the LZ experiment [17]. All red
points have a relic abundance in the interval measured by the
Planck Collaboration [4], and the vertical dashed blue lines
correspond to the favored region by the contribution of new
particles to the anomalous magnetic moment of the muon. The
red lines labeled (I) and (II) correspond to the Z0 resonance on the
DM abundance, and the line (III) corresponds to an enhancement
on the relic abundance due to the degenerate mass regime,
where MEe

∼MY .

TABLE I. Minimum Z0 and lepton Ee masses required for the 3 − 3 − 1 model with heavy neutral leptons give a
relic Ee density consistent with Planck [4], and evading the limits set by XENON1T [16] and the future sensitivity of
LZ [17], for the scenarios denoted, respectively, as (I), (II), and (III) in Fig. 5.

Experiment Regime Mmin
Ee

(TeV) Mmin
Z0 (TeV) vmin

χ (TeV)

XENON1T Lower resonance (I) 1.6 3.6 8.8
Upper resonance (II) 1.9 3.4 8.4
Degenerate region (III) 2.6 3.2 7.9

LZ Lower resonance (I) 3.6 7.7 19
Upper resonance (II) 3.9 7.6 19
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shaded vertical region in Fig. 6 gives the favored values
(95% C.L.) of vχ calculated from the total contribution of
new physical states of the 3 − 3 − 1 model considered in
this work to the anomalous magnetic moment of the muon,
Δaμ. In this graph, the green and brown bars show the
analyses of the process pp → Z0 → lþl− using LHC data at
8 [70] and 13 TeV [72], the yellow bars show the
constraints set by the comparison of DM in the 3−3−1
model with the predictions of simplified models, as
performed in this work, the cyan bars, giving the current
strongest constraints, show the bounds obtained by the
decay of Z0 to heavy and light fermions in the 14 TeV LHC
[56] and, finally, the light green bars show the bounds
obtained from the future sensitivity of the LZ direct
detection experiment [17], obtained in this work.
It is important to remark here that the projected sensi-

tivity of the LZ experiment has the potential to rule out Z0
masses below 7.6 TeV, as shown in Table I, and this result,
combined with the favored window for Δaμ shown by the
vertical shaded region in Fig. 6, could rule out the 3 − 3 − 1
model with a neutral fermion candidate to DM as a suitable
extension of the SM.

VIII. CONCLUSIONS

In this work we have found constraints on a 3 − 3 − 1
model, with a heavy neutral fermion as a DM candidate,
coming from three different experimentally measured
quantities: the anomalous magnetic moment of the muon,

the DM relic density and the spin-independent scattering
cross section of DM with protons.
In order to do this, we have calculated the contribution of

new particles to the correction Δaμ to the anomalous
magnetic moment of the muon, finding a favored window
for the SUð3ÞL symmetry breaking scale of the model,
namely 7.2 TeV≲ vχ ≲ 12.2 TeV. The importance of this
symmetry breaking scale lies on the strong dependence
of all masses of new particles in the model with this
quantity.
On the other hand, considering a fermion DM candidate

in the model with a relic density consistent with cosmo-
logical observations, and from the analysis of the spin-
independent scattering cross section of this candidate with
protons (σp), we were able to find minimum values of this
symmetry breaking scale due to its relation with the mass of
the vector portal of DM-SM interaction, a neutral gauge
boson Z0

μ.
In order to identify this particle as the dominant portal,

we have made a comparison of the values of σ331p , the exact
value of σp considering all particles and interactions in the
3 − 3 − 1 model, and σZ

0
p , the DM-proton scattering cross

section calculated from a comparison of the 3 − 3 − 1
model with the predictions of simplified models for DM
interactions.
The comparison of the 3 − 3 − 1 model predictions for

the DM relic density and the spin-independent scattering
cross section with the measurements of the Planck [4] and
XENON1T [16] collaborations, and the combination with
the favored window coming from the measurement of the
anomalous magnetic moment of the muon [15] lead to the
bounds vmin

χ ≲ vχ ≲ 12.2 TeV and Mmin
Z0 ≲MZ0 ≲ 4.9 TeV

for the SUð3ÞL symmetry breaking scale and the Z0
μ boson

mass, respectively, where the values of vmin
χ and Mmin

Z0

depend on the regime associated with the production of
fermion DM in the model, and are of order 8–9 TeV and
3–4 TeV, respectively.
Finally, the comparison of the favored region for Δaμ

with the future sensitivity of the LZ direct detection
experiment [17], ruling out values of vχ less than
∼19 TeV and values of MZ0 lower than 7.5 TeV, leads
to the conclusion that the 3 − 3 − 1 model with heavy
neutral fermions can not be a suitable extension of the SM
when the DM candidate in the model corresponds to the
heavy neutral fermion of the electron flavor. In this case,
other neutral particles being odd under the same discrete
symmetry stabilizing DM, such as a scalar or a gauge boson
in the physical spectrum, could give different results.
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