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We analyze the distributions of energy, the opening angle, and the invariant mass in muonic neutrino
trident production processes, νμ → νμμμ̄, in a minimal gauged Uð1ÞLμ−Lτ

model, in which the discrepancy
of the anomalous magnetic moment of muon can be solved. It is known that the total cross section of
neutrino trident production has parameter degeneracy in the new gauge boson mass and gauge coupling
constant, and therefore other observables are needed to determine these parameters. From numerical
analyses, we find that the muon energy and invariant mass distributions show the differences among the
new physics parameter sets with which the total cross section has the same value, while the antimuon
energy and opening angle distributions are not sensitive to the parameters.
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I. INTRODUCTION

The anomalous magnetic moment of muon is a long-
standing discrepancy between experimental measurements
[1,2] and theoretical predictions [3–6]. The recent result
of the Standard Model (SM) prediction [4] shows that
the difference of the anomalous magnetic moment,
aμ ≡ ðgμ − 2Þ=2, from the measurements reaches to [6]

Δaμ ≡ aExpμ − aSMμ ¼ ð27.06� 7.26Þ × 10−10: ð1Þ

Thus the SM predictions are 3.7σ lower than the exper-
imental measurements. Extensive studies on the theoretical
side have been made, however the discrepancy cannot be
resolved within the SM of particle physics (for review, see
[7] for an example). The E989 experiments at Fermilab [8]
and the E34 experiment at J-PARC [9] are ongoing and will
reduce experimental uncertainties by a factor of four, which
could confirm the discrepancy at the 5σ level. Once the
discrepancy is confirmed, it will be a clear signature of new
physics (NP) beyond the SM.
Many new physics models have been proposed to

explain the discrepancy of aμ by extending the SM. One
of the simplest extensions in this regard is to impose an

extra Uð1Þ gauge symmetry on the SM, so that the
contribution of a new gauge boson accounts for the
deviation of the muon anomalous magnetic moment.
Among such extensions, theUð1Þ symmetry gauging muon
flavor number minus the tau flavor number, or Lμ − Lτ

[10–12], has been gaining attention in recent years. In [13],
it was shown that a gauge boson of theUð1ÞLμ−Lτ

symmetry
can explain the deviation without conflicting experimental
searches, provided that the mass and gauge coupling are
Oð100Þ MeV and Oð10−4Þ, respectively. Possibilities of
searches for this light and weakly interacting gauge boson
have been studied in [14–22]. Other studies based on the
Lμ − Lτ symmetry have also been done, such as the cosmic
neutrino spectrum observed at IceCube [23,24], neutrino
mass and mixing [25–28], dark matter [29–31], the baryon
asymmetry of the Universe [32], and meson decay [33–35],
for recent works. Light gauge bosons interacting with
muonic leptons can contribute to neutrino trident produc-
tion (NTP) processes such as νμ þ N → νμ þ μþ μ̄þ N
[36–43]. It was shown in [13,44] that the NTP processes
can set severe bounds on the gauge boson mass and the
gauge coupling. Utilizing the results of the CHARM-II
[45], CCFR [46], and NuTeV [47] experiments, one finds
that the region of the mass above Oð100Þ MeV and the
gauge coupling above Oð10−3Þ are excluded. The analyses
of the NTP processes in the SM or new physics models
have also been done for future planned experiments, DUNE
[48–53], SHiP [48,49], MINOS, NOνA, MINERvA [51],
and MicroBooNE [54], and ongoing experiments, T2K
[15,51] and IceCube [55–57], taking into account coherent
and diffractive processes. In particular, the liquid argon
detector at the near site in the DUNE experiment is
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expected to observe Oð100Þ events of muonic NTP
processes [51–53]. As presented in [13,52,53], the contours
of the total cross section of the NTP processes are obtained
as a function of new physics parameters, i.e., the mass and
coupling constant of the new gauge bosons. This results in
the fact that the new physics parameters cannot be uniquely
determined by using the single value of the total cross
section. In other words, the total cross section has param-
eter degeneracy in the new physics parameters. To deter-
mine or further constrain the new physics parameters, one
needs other observables in addition to the total cross
section. One of these observables will be the differential
cross sections that are generally measured simultaneously
in experiments. When the differential cross sections show
the differences of the new physics parameters for the fixed
values of the total cross section, we can determine or
constrain the parameters by combining the information
from the differential and total cross sections. As a first step
for this purpose, we analyze the parameter dependences of
the differential cross sections with respect to the energies,
the opening angles, and the invariant masses of the final
state muons in a minimal Lμ − Lτ model. Our results will
show which distributions should be used for detailed
analyses for the determination of the parameters.
This paper is organized as follows: In Sec. II, we briefly

review a minimal gauged Lμ − Lτ model and present
relevant interactions. The amplitudes and cross section
of NTP processes are given in Sec. III. Then, we show our
numerical results for the distributions with respect to the
energy, the opening angle, and the invariant mass of the
muon pair in Sec. IV. Section V is devoted to summary.

II. MINIMAL Lμ −Lτ MODEL

We start our discussion by reviewing a minimal gauged
Lμ − Lτ model. The gauge sector of the SM is extended by
adding theUð1ÞLμ−Lτ

gauge symmetry under which mu and
tau flavored leptons among the SM fermions are charged.
The charge assignment for leptons under this symmetry is
shown in Table I. In the table, e, μ, and τ represent charged
leptons, and νe, νμ, and ντ are corresponding left-handed
neutrinos, respectively. Up-type and down-type quarks as
well as the Higgs boson are singlets under the Uð1ÞLμ−Lτ

gauge symmetry.
The relevant interaction Lagrangian for the NTP proc-

esses is given by

Lint ¼ eAρJ
ρ
em −

4GFffiffiffi
2

p ½ ¯νl4γρνl3 �½l̄2γ
ρðgLPL þ gRPRÞl1�

þ g0Z0
ρJ

ρ
Z0 ; ð2Þ

where e, Aρ, and Jρem are the elementary electric charge,
photon field, and electromagnetic current of the SM,
respectively. In the second term of Eq. (2), GF is the
Fermi coupling constant, and l1;2 represent charged leptons
(e, μ, τ) and νl3;4 represent neutrinos (νe, νμ, ντ). The left-
handed (right-handed) projection operator is denoted as
PLðRÞ. The constants gL and gR are given by

gL ¼
�
−
1

2
þ sin2 θW

�
δl1;l2δl3;l4 þ δl1;l4δl2;l3 ; ð3aÞ

gR ¼ sin2 θWδl1;l2
δl3;l4 ; ð3bÞ

where θW is the Weinberg angle and each li (i ¼ 1–4)
represents the flavor of the charged leptons or neutrinos.
From Eq. (3), gL for muonic (νμ → νμμμ̄) and tauonic
(νμ → νμττ̄) NTP processes is

gL ¼
(

1
2
þ sin2θW ðνμ → νμμμ̄Þ;

− 1
2
þ sin2θW ðνμ → νμττ̄Þ;

ð4aÞ

respectively, while from Eq. (3b), gR is sin2 θW for both
processes. The third term of Eq. (2) is the interaction of the
Lμ − Lτ gauge boson Z0 with the gauge coupling constant
g0. The Lμ − Lτ gauge current, JρZ0 , is given by

JρZ0 ¼ μ̄γρμ − τ̄γρτ þ νμγ
ρνμ − ντγ

ρντ: ð5Þ

In this work, we consider a minimal Lμ − Lτ model in
which the gauge kinetic mixing term between the Uð1ÞY
hypercharge and the Uð1ÞLμ−Lτ

symmetries is absent at
tree-level, even though the gauge kinetic mixing can be
generated radiatively via loop diagrams in which muon,
tau, and neutrinos propagate. The loop-induced kinetic
mixing parameter between the photon γ and Z0 can be
obtained at the one-loop level by evaluating Fig. 1 as

ϵðq2Þ ¼ 8eg0

ð4πÞ2
Z

1

0

dxxð1 − xÞ log
�
m2

τ − xð1 − xÞq2
m2

μ − xð1 − xÞq2
�
; ð6Þ

where q is the four momentum carried by γ and Z0, and mμ

and mτ are the masses of muon and tau, respectively. The
approximate expression of Eq. (6) is given by

TABLE I. The charge assignment of the gauged Uð1ÞLμ−Lτ

model.

e μ τ νe νμ ντ

Uð1ÞLμ−Lτ
0 1 −1 0 1 −1
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ϵðq2Þ≃
8<
:

8eg0
3ð4πÞ2 log

mτ
mμ
; ðq2 ≪ 4m2

μÞ;

− 6eg0
ð4πÞ2

n�
m2

τ

q2 −
m2

μ

q2

�
þ iπ

�
m4

τ

q4 −
m4

μ

q4

�o
; ðq2 ≫ 4m2

τÞ:
ð7Þ

This loop-induced kinetic mixing parameter is about two
orders of magnitude smaller than g0 for q2 ≪ 4m2

μ. It is
further suppressed by a power of m2

τ;μ=q2 for q2 ≫ 4m2
τ.

For the intermediate q2 ð4m2
μ < q2 < 4m2

τÞ, the real and
imaginary parts are also two orders of magnitude smaller
than g0. Therefore, it is negligible compared with g0. We
drop the loop-induced kinetic mixing parameter in our
analyses. There also exists the loop-induced kinetic mixing
between Z0 and the neutral weak boson Z. However, since
the energy of the incident neutrinos we consider is smaller
than the Z boson mass mZ, such a mixing is practically
negligible because it is suppressed by mZ.
We also assume that the Lμ − Lτ symmetry and the

electroweak symmetry are appropriately broken without
conflicting with all existing experimental data so that Z0 can
acquire a mass mZ0 of order 0.01–10 GeV. We do not
specify the scalar sector of the model and treatmZ0 as a free
parameter in the following analyses. Thus only two
parameters, mZ0 and g0, are newly introduced to the SM
in our setup.

III. NEUTRINO TRIDENT
PRODUCTION PROCESSES

In this section, the amplitudes and cross sections of
the NTP processes in the SM and the minimal gauged

Uð1ÞLμ−Lτ
model are presented, as well as a brief summary

of the experimental results. Depending on the virtuality of
the photon q2, the appropriate picture of a hadronic target is
different. Based on the appropriate hadronic picture, the
NTP can be classified by three processes: coherent,
diffractive, and deep inelastic, where the incoming neutrino
scatters off the nuclei, nucleons, and quarks, respectively.
According to Ref. [48], the deep inelastic contribution
accounts for at most 1% of the total NTP cross section, and
therefore we do not consider this contribution. For relevant
energies of the initial neutrino, the coherent and diffractive
processes give comparable contributions. As the first step,
we focus on the coherent process in this work.
In the following subsections, the four momenta of the

incident neutrino ðνlÞ and nucleus (N) are assigned to k and
Q while those of outgoing ones are assigned to k0 and Q0,
respectively. For the lepton ðl−Þ and antilepton ðlþÞ, the
four momenta are assigned to p and p̄, and for the virtual
photon, the momentum is denoted as q. The Feynman
diagrams of the NTP processes in the SM are shown
in Fig. 2.

A. Experimental results

The muonic NTP, νμ → νμμμ̄, has been measured by the
CHARM-II [45], CCFR [46], and NuTeV [47] experiments.
The results are given as the ratio of the observed cross section
to the SM prediction, σSM,

σCHARM−II

σSM
¼ 1.58� 0.57; ð8aÞ

σCCFR
σSM

¼ 0.82� 0.28; ð8bÞ

σNuTeV
σSM

¼ 0.72þ1.73
−0.72 : ð8cÞ

The CHARM-II and CCFR results are consistent with the
SM prediction within the error. The NuTeV result has
relatively large uncertainty and includes a null result.
Therefore we use the CHARM-II and CCFR results as
constraints for our analyses.

FIG. 1. Loop-induced kinetic mixing between the photon γ and
the Z0 boson.

(a) (b)

FIG. 2. Feynman diagrams of the NTP processes in the SM and four momentum assignment.
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B. Amplitudes

From Eq. (2), the SM amplitude of the NTP processes in
Fig. 2 is given by

MSM ¼ 4e2GFffiffiffi
2

p ½uνðk0ÞγαPLuνðkÞ�½ulðpÞOμ
αvlðp̄Þ�

×
1

q2
hQ0jJμð−q2ÞjQi; ð9Þ

where ulðvlÞ and uν are the spinor of the charged (anti)
lepton and neutrino, respectively. The operator Oμ

α repre-
sents the charged lepton current part which is defined by

Oμ
α ¼ γμ

pþ qþml

ðpþ qÞ2 −m2
l
γαðgLPL þ gRPRÞ

þ γαðgLPL þ gRPRÞ
−=̄p − qþml

ðp̄þ qÞ2 −m2
l
γμ; ð10Þ

whereml is the mass of the charged lepton. Throughout this
paper, neutrinos are assumed to be massless. Note that Oμ

α

satisfies the current conservation condition, qμO
μ
α ¼ 0 [38].

The operator Jμ in the bracket product is the electromag-
netic current for the nucleus.
From Eqs. (9) and (10), the squared amplitude with

summing over spins is obtained as

X
spins

jMSMj2 ¼
e4G2

F

2q4
jαβLμν

αβJμν; ð11Þ

where jαβ, Lμν
αβ, and Jμν represent neutrino, charged lepton,

and nucleus contributions, respectively. These tensors are
defined as

jαβ ¼ 8ðkαk0β þ kβk0α − k · k0gαβ − iϵρασβkρk0σÞ; ð12aÞ

Lμν
αβ ¼ 4Tr½ðpþmlÞWμ

αðgLPL þ gRPRÞð=̄p −mlÞ
× Vν

βðg�LPL þ g�RPRÞ�; ð12bÞ

Jμν ¼ hQ0jJμðtÞjQihQjJ†νðtÞjQ0i; ð12cÞ

where t is defined by t ¼ −q2 ¼ −ðQ0 −QÞ2. For conven-
ience, we express the contraction of three tensors as

jαβLμν
αβJμν ¼ jgLj2ML þ jgRj2MR − ðgLg�R þ g�LgRÞMLR;

ð13Þ
where the concrete forms ofML,MR, andMLR are given in
Appendix A. Since the cross term of gL and gR, MLR, is
proportional to m2

l, it is subleading when the lepton mass
ml is small compared to the energy scale of the NTP
process. Each term in Eq. (13) is invariant under the
exchange of the lepton momenta, ðp; kÞ ↔ ðp̄; k0Þ.
Furthermore, under the exchange of either p ↔ p̄ or
k ↔ k0, ML and MR are exchanged with each other,

Mμν
L ↔ Mμν

R ; ð14Þ

whileMLR remains the same. The nucleus tensor, Eq. (12c),
can be expressed in terms of a nuclear form factor. For the
spin-0 nucleus,

Jμν ¼ Z2ðQþQ0ÞμðQþQ0ÞνjFðtÞj2; ð15Þ

where Z is the atomic number of nucleus, FðtÞ is the
nuclear form factor given by

FðtÞ ¼ 4π

Z
∞

0

drr2ρðrÞ sin
ffiffi
t

p
rffiffi

t
p

r
; ð16Þ

and ρðrÞ is the nuclear density. The normalization condition
for ρðrÞ is

4π

Z
∞

0

drr2ρðrÞ ¼ 1; ð17Þ

and the integral variable r is a distance from the center of
the nucleus.
According to Refs. [51–53], the DUNE experiment will

provide us with a large number of NTP events, where liquid
argon is used at the near detector. In our numerical analysis,
we consider argon to be the target nucleus. Following
Ref. [58], we parametrize ρ as

ρðrÞ ¼ ρ0
1þ w r2

c2

1þ expðr−cz Þ ; ð18Þ

where ρ0 is a normalization factor. The parameters are
given as c ¼ 3.73 fm, z ¼ 0.62 fm, w ¼ −0.19 for 40Ar.
The Z0 contribution to the NTP processes is shown in
Fig. 3. The amplitude has the same spinor structure as
Eq. (9). The only difference between the SM amplitude and
the Z0 amplitude is the propagation of Z0 instead of GF.
Thus, the total amplitude squared of the NTP processes in

FIG. 3. The Z0 contribution of the Feynman diagrams of NTP.
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our model, jMtotalj2, is obtained by simply replacing gL and
gR in Eq. (12b) as

gLðRÞ → gLðRÞ ∓
ffiffiffi
2

p

4GF

g02

q2Z0 −m2
Z0
; ð19Þ

for νμ → νμμμ̄ (−) and νμ → νμττ̄ (þ). From Eq. (19), the
NP parameter dependence disappears when

jq2Z0 jþm2
Z0 ≫

ffiffiffi
2

p

4GF
g02≃ ð157MeVÞ2

�
g0

9×10−4

�
2

: ð20Þ

As we will see in the next section, the Z0 contribution is
negligible in the tauonic NTP process. This fact suggests
that jq2Z0 j will become larger as the final state leptons
become heavier. Then, the cross section is almost the same
as that of the SM for the tauonic NTP process. In the next
subsection, we show the dependence of the total cross
section on the new physics parameters g0 and mZ0 .

C. Trident production cross section

The total cross section of the NTP is given by

σ ¼ 1

2ðs −M2Þ
Z

dΠ
X
spins

jMtotalj2; ð21Þ

FIG. 4. Left: Incident neutrino beam energy dependence of the total cross section of νμ → νμμμ̄ in the Lμ − Lτ model. The mass and
gauge coupling constants to each curve are indicated in the figure. The blue curve represents the total cross section of the SM. Right:
Contour plots of the total cross section in the mZ0 -g0 plane. The values of the total cross section for ðm0

Z; g
0Þ ¼ ð0.1 GeV; 9 × 10−4Þ are

given in Table II. The pink band represents the favored region of muon g − 2within 2σ, and the gray areas are the exclusion region by the
Borexino, CHARM-II, CCFR, and BABAR experiments.

TABLE II. Parameters for the same value of the cross sections
for νμ → νμμμ̄. The units of Eν and mZ0 are GeV, and that of σ is
10−41 cm2, respectively. The first row for each Eν is the cross
section in the SM.

Eν mZ0 g0 σ

1 � � � ��� 1.33×10−3

0.020 5.869×10−4 5.54×10−3

0.10 9.000×10−4 5.54×10−3

0.20 1.299×10−3 5.54×10−3

1.0 4.972×10−3 5.54×10−3

5 � � � ��� 1.38×10−1

0.020 6.584×10−4 0.328
0.10 9.000×10−4 0.328
0.20 1.177×10−3 0.328
1.0 3.632×10−3 0.328

20 ��� ��� 1.8945
0.020 7.009×10−4 3.097
0.10 9.000×10−4 3.097
0.20 1.111×10−3 3.097
1.0 2.824×10−3 3.097

40 ��� ��� 5.61
0.020 7.18×10−4 8.08
0.10 9.000×10−4 8.08
0.20 1.084×10−3 8.08
1.0 2.513×10−3 8.08

TABLE III. Parameters for the same value of the cross section
for νμ → νμττ̄. The units of Eν and mZ0 are GeV, and that of σ is
10−47 cm2, respectively. The first row for each Eν is the cross
section in the SM.

Eν mZ0 g0 σ

10 � � � � � � 1.94 × 10−8

0.020 9.53 × 10−4 1.98 × 10−8

0.10 9.00 × 10−4 1.96 × 10−8

0.20 9.29 × 10−4 1.95 × 10−8

1.0 1.47 × 10−3 1.94 × 10−8

40 � � � � � � 1.87
0.020 9.09 × 10−4 1.87
0.10 9.00 × 10−4 1.87
0.20 9.13 × 10−4 1.87
1.0 1.20 × 10−3 1.87
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where s ¼ ðkþQÞ2 is the center of mass energy and dΠ is
the phase space integral measure given by

dΠ ¼ d3k0

ð2πÞ32Ek0

d3p
ð2πÞ32Ep

d3p̄
ð2πÞ32Ep̄

d3Q0

ð2πÞ32EQ0
ð2πÞ4

× δð4Þðk0 þ pþ p̄þQ0 − k −QÞ: ð22Þ

By the energy-momentum conservations and rotational
symmetry, the number of integrals can be reduced from
twelve to seven. Then, we perform the phase space
integrations numerically using the changes of the integral
variables shown in Appendix B.
The cross sections of the muonic NTP in the minimal

Lμ − Lτ model are shown in Fig. 4. The left panel shows the
cross sections with mZ0 ¼ 50, 100 MeVand g0 ¼ 5 × 10−4;
9 × 10−4 as a function of the incident neutrino energy Eν.
The right panel shows the contours of themuonic NTP cross
section in our model. In the left panel, the parameters
ðmZ0 ; g0Þ are taken from the right panel as illustrating
examples. The red curves correspond to mZ0 ¼ 100 MeV
and the green ones to 50MeV, respectively. For comparison,
we also show the cross section in the SM with a blue solid
curve. Our results of the total cross section in the SM are in
good agreementwith previous studies [41,42] and [48,51]. It
can be seen that the NP contributions become smaller when

compared with the SM cross section as Eν becomes higher.
This behavior generally holds even for Z0 with a much
lighter mass than Eν. As we explained in the previous
subsection, this is because jq2Z0 j can take larger values than
m2

Z0 for higher Eν; the NP contribution or the propagator of
Z0 decreases as g02=ðGFq2Z0 Þ. Thus, the cross section is less
sensitive to the NP parameters for higher Eν, which has
been shown in Ref. [15]. Higher resolutions on momentum
and/or energy measurements are required to solve the
degeneracy in higher beam experiments like DUNE. On
the other hand, for smaller Eν, the NP contributions to the
cross section become larger, but the cross section itself
becomes smaller. For example, for Eν ¼ 1 GeV, the cross
section is Oð10−44Þ cm2.
In the right panel of Fig. 4, the red, blue, green, and

orange curves correspond to the same cross sections
for Eν ¼ 40, 20, 5, and 1 GeV, respectively. We chose
ðm0

Z; g
0Þ ¼ ð0.1 GeV; 9 × 10−4Þ as a reference parameter

set to determine the values of the cross section. Thus all
curves intersect at this point. The pink band represents the
muon g − 2 favored region within 2σ and the gray shaded
regions are excluded by Borexino [15],1 CHARM-II [45],

FIG. 5. Contour plots of the distribution in the Eμ − Eμ̄ plane for νμ → νμμμ̄ in the SM. The color bar and contours are in the unit of
10−44 cm2=GeV2. The solid (white), dashed (black), and dotted (black) curves are the contours of 8,5, and 2 for Eν ¼ 1 GeV, and 20,10,
and 5 for Eν ¼ 5, 20, 40 GeV, respectively.

1The constraints from Borexino are discussed in [59–61] in
various different scenarios of new force. The constraint is
translated from a B − L gauge symmetric model in [15].
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CCFR [46],2 and BABAR [62]. This plot clearly shows that
the cross section is degenerate in mZ0 and g0 over a wide
range. As we mentioned in the Introduction, for the
determination of the parameters, one needs additional
information besides the cross section value.
For this purpose, we analyze the distributions in the

energies, opening angle, and invariant mass of the final
state charged leptons in the next section. The analyses are
performed on the parameter sets shown in Table II for the
muonic trident. The first row for each Eν in Table II is the
trident cross section in the SM. We chose ðmZ0 ; g0Þ ¼
ð0.1 GeV; 9 × 10−4Þ as a reference parameter, which can
explain ðg − 2Þμ within 2σ. Other parameter sets are chosen
so that the cross sections have the same values with that of
the reference set for each Eν. Note that some parameter sets
are outside the 2σ region of ðg − 2Þμ or in the gray region.
However, we include those parameter sets to see the
behavior of the distributions for comparison.
We also show the cross sections of tauonic NTP,

νμ → νμττ̄, in Table III for Eν ¼ 10 and 40 GeV. One
finds that the cross sections for the reference point are

almost the same as those in the SM. This suggests that the
new physics contributions are very small. For a tauonic
trident to occur, the momentum transfer jq2Z0 j will be of
order m2

τ and hence the new physics contribution is much
suppressed, as shown in Eq. (20). In fact, we have
performed the same analyses for the tauonic NTP as for
the muonic one in the next section, and found that the
distributions show tiny differences among the NP param-
eter sets in Table III. Therefore, we show our numerical
results only for the muonic NTP in the next section.

IV. NUMERICAL RESULTS

We show the distributions of the energies Eμ and Eμ̄,
invariant mass m2

μμ̄ and opening angle θμμ̄ of the muon and
antimuon in the SM and our model for the parameters given
in Table II. To obtain the total cross section of the NTP
processes, we have to perform the phase space integral over
seven variables. For such high-dimensional integrals, the
Monte Carlo integration is known to be useful due to its
quick convergence compared to quadratures by parts.
To investigate the NP effect in the charged lepton

distributions, we calculate the differential cross section
with respect to some observables. In general, it is

FIG. 6. Contour plots of the deviation from the SM in the Eμ − Eμ̄ distribution of νμ → νμμμ̄. The red, blue, green, and orange curves
correspond to the parameter sets in Table II. The solid, dashed, and dotted curves are the contours of RðEμ; Eμ̄Þ with their values
indicated near each curve. The background gray color is the SM distribution shown in Fig. 5.

2The exclusion regions by CHARM-II and CCFR are taken
from [13].
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complicated to select an arbitrary observable as one of
integral variables. However, when we use the Monte Carlo
integration, we do not need to make the complicated
variable transformation to obtain the differential cross
section with respect to the favored observable.
Let fðyÞ be a function of variables y, which satisfies

σ ¼ R dyfðyÞ. Here, treating y as integral variables, we
consider performing the Monte Carlo integration. To obtain
dσ=dx, we prepare discretized bins of a variable x, which are
labeled by a and have an intervalΔxa. In this integration, we
sample the variables y from the uniform probability distri-
bution N times. At the i-th step of the sampling, xi is
calculated aswell as fðyiÞ for the generated yi. Then, one can
approximate the distribution in the variable x by

dσ
dx

ðxaÞ ≃
D

NΔxa

XN
i¼1

fðyiÞθ
�
xi − xa þ

Δxa
2

�

× θ

�
xa þ

Δxa
2

− xi

�
; ð23Þ

whereD is the total width of the x bins andN is the number of
samples. The function θðzÞ is a step function,which is a unity
for z ≥ 0 and zero for z < 0. The total cross section can be
obtained by summing Eq. (23) over x as

σ ≃
X
a

Δxa
dσ
dx

ðxaÞ: ð24Þ

A. Energy distributions

First, we show the SM distributions of Eμ and Eμ̄ for the
process of νμ → νμμμ̄ in Fig. 5. The energy of the incoming
neutrino is taken to be Eν ¼ 1, 5, 20, and 40 GeV,
respectively. The color bar on the right indicates the
value of the double differential cross section in unit of
10−44 cm2=GeV2. The solid (white), dashed (black), and
dotted (black) curves are the contours of 8,5, and 2 in
10−44 cm2=GeV2 for Eν ¼ 1 GeV, and 20,10, and 5 in
10−44 cm2=GeV2 for Eν ¼ 5, 20, 40 GeV, respectively.
In each panel, one can see that the distribution has a peak

near the kinematical edge for Eν ¼ 1 GeV. As Eν becomes

FIG. 7. The Eμ distribution (upper panel) and the shape of the distribution in the Lμ − Lτ model. The color of the curves are the same
as in Fig. 6. The black, dashed curve represents the SM distribution.
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higher, the peak moves to the lower Eμ region. For
Eν > 5 GeV, Eμ is more uniformly distributed than Eμ̄

is. We can understand this asymmetry of the distribution
in the Eμ − Eμ̄ plane as follows: As we explained in
Eq. (14), the terms ML and MR in the lepton tensor
are exchanged under p ↔ p̄. Thus, the double differential
cross section differs under the exchange of Eμ ↔ Eμ̄

if the coupling constants gL and gR are different as in
the SM. It should be noticed that the distribution becomes
symmetric in the Eμ-Eμ̄ plane for the case of gL ¼ gR, such
that the Lμ − Lτ contributions dominate over the SM
couplings.
To see the parameter dependence of the NP model, we

show the deviation of the differential cross section in our
model from the SM, which is defined by

RðEμ; Eμ̄Þ≡ d2σ
dEμdEμ̄

−
d2σSM
dEμdEμ̄

: ð25Þ

In Fig. 6, the solid, dashed, and dotted curves are the
contours of RðEμ; Eμ̄Þ while the red, blue, green, and
orange colors represent the parameter sets in Table II. In

each panel, the values of RðEμ; Eμ̄Þ are indicated near each
curve, and only the Z0 mass is shown to specify the
parameter sets. The gray background represents the SM
distribution shown in Fig. 5.
In Fig. 6, the parameter dependence can be seen clearly

in the contours of RðEμ; Eμ̄Þ in the high Eμ or Eμ̄ region.
The contours extend to larger values of Eμ or Eμ̄ as the Z0

mass becomes heavier. It is also shown that Eμ is more
uniformly distributed than Eμ̄, due to the interference
between the NP and SM contributions. We note that
RðEμ; Eμ̄Þ is positive for all (Eμ; Eμ̄) in νμ → νμμμ̄ in
our calculation. The Lμ − Lτ contribution enhances νμ →
νμμμ̄ because both gL and gR are effectively enlarged by the
propagator of the Z0 boson as seen in Eq. (19).
Figures 7 and 8 show that the distributions (upper panel)

and difference of shape of the distribution from the SM
(lower panel) in Eμ and Eμ̄, respectively. The colors of the
solid curves are the same as in Fig. 6 and the black dashed
curve is the SM distribution. In the upper panels of Fig. 7,
the parameter dependence of the distributions can be seen
in two regions: around the peaks in the lower Eμ and at the
tails in the higher Eμ. The parameter dependence is clearer

FIG. 8. Eμ̄ distributions in the Lμ − Lτ model.
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around the peaks than at the tails. In each panel, one can see
that the peaks become higher as the Z0 mass becomes
lighter. It is also seen that the Eμ corresponding to the peak
slightly differs among the parameter sets in each energy. On
the other hand, in the upper panels of Fig. 8, the Eμ̄

distribution is less dependent on the parameters compared
to the Eμ distributions. These results imply that the Eμ

distribution is more useful to determine the new physics
parameters.
To see how the NP contributions modify the shape of the

distributions, we define

δX ≡ 1

σ

dσ
dX

−
1

σSM

dσSM
dX

; ð26Þ

for an arbitrary kinematical variable X. In the lower panels
of Figs. 7 and 8, we plotted δEμ

and δEμ̄
, respectively. These

are the difference of the normalized distributions, and
become zero when the shape of the distributions are the
same between our model and the SM, even if overall
magnitudes are different. One can see in Fig. 7 that δEμ

is
positive in the lower Eμ and negative in the higher Eμ for all

parameter sets. On the other hand, in Fig. 8, δEμ̄
shows the

opposite behavior. Thus, the distributions are shifted to the
lower Eμ and the higher Eμ̄ by the NP contribution. The
shape of the distribution also depends on the NP parameter
set. In the Eμ distribution, jδEμ

j is larger for the lighter Z0

mass. Such information can be used to determine the
parameters.

B. Invariant mass distributions

The invariant mass of the outgoing muon and antimuon
is defined by

m2
μμ̄ ≡ ðpþ p̄Þ2: ð27Þ

In Fig. 9, we show the invariant mass distribution (upper
panel) and the shape difference of this distribution from the
SM (lower panel).
We can see from each panel that the distribution clearly

depends on the parameters in the lower value of the m2
μμ̄

region. The peaks of the distributions become sharper as the
Z0 mass is lighter and the dependence becomes more

FIG. 9. m2
μμ̄ distributions in the Lμ − Lτ model.
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significant as Eν is higher. It is shown that the m2
μμ̄

corresponds to the peak changes for the parameter sets.
From the lower panels, one can also see that δm2

μμ̄
, defined

by Eq. (26), can take positive and negative values in the
lower value of m2

μμ̄ depending on the parameters, which
shows different behaviors from the energy distributions.

C. Opening angle distributions

The opening angle of the outgoing muon and antimuon
can be defined by

cos θμμ̄ ≡ p · p̄
jpjjp̄j ; ð28Þ

where p and p̄ are the momenta of the muon and antimuon,
respectively. Figure 10 shows the distributions of θμμ̄
(upper panel) and the shape (lower panel). From this
figure, one finds that the opening angle distributions show
the parameter dependences around the peaks for the higher
Eν. It is also seen that the angle for the peaks becomes
smaller as Eν becomes higher. Similar behavior can be seen
in the shape of the distributions.

In this analysis, we have considered only the coherent
NTP processes assuming argon as a target material. Since
the kinematical distributions depend on the form factor, the
nuclear dependence is worth investigating for finding the
best target material to identify the NP parameters.
We also understand that the diffractive NTP processes can

be relevant for the available neutrino energy in experiments.
We should check whether the diffractive contribution causes
positive or negative effects for the measurement of NP
parameters. We will study these topics in our future works.
Before closing this section, we comment about the SM

background events to the muonic NTP process. The main
background for the muonic NTP consists of charged-
current, single-pion production events, νμN → μπN0, in
which the muon and pion tracks can be misidentified. Such
backgrounds were studied for DUNE in [51–53]. It was
shown that the number of the total background events are
comparable to or larger than those of the signal events,
which can be reduced by applying kinematical cuts for the
invariant mass and angle of the muons. These backgrounds
would affect the resolution for the determination of the
new physics parameters and therefore should be taken into
account.

FIG. 10. Muon opening angle distributions of the cross section in the Lμ − Lτ model.
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V. SUMMARY

We have considered the minimal gauged Lμ − Lτ model,
and studied the dependences of the distributions of the
neutrino trident production process on the new physics
parameters, mZ0 and g0. We analyzed the distributions of
energies, opening angle, and invariant mass of muons and
their shapes in νμ → νμμμ̄.
We have found that the distributions can be different

among the NP parameter sets for which the total cross
section is the same. In Eμ-Eμ̄ distributions, the differences
can be seen in larger Eμ or Eμ̄ regions. We also found that
the parameter dependences in the Eμ and m2

μμ̄ distributions
are clearer compared with those in the Eμ̄ and θμμ̄
distributions. Therefore the Eμ and m2

μμ̄ distributions will
be useful to determine the NP parameters. The shapes of the
distributions were also presented, which shows the param-
eter dependence.
The determination of the new physics parameters by

combining the information of the total cross section and
distributions will be the next step of our work. Such a study
will need more detailed information including a resolution,
efficiencies, and SM backgrounds in experiments. We leave
such analyses for the next work.
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APPENDIX A: LEPTON TENSOR

In this Appendix, we present the analytic formula of the
amplitude squared for νμ → νμll̄. The lepton and nucleus
parts are written as a neutrino tensor jαβ, charged lepton
tensor Lμν

αβ, and nucleus tensor Jμν. Then, the amplitude

squared is given by jαβLμν
αβJμν up to overall factors.

Using the expression of the charged lepton tensor, (12b),
it can be classified by the chirality of outgoing charged
leptons as

jαβLμν
αβJμν ¼ jgLj2ML þ jgRj2MR − gLg�RMLR − g�LgRMRL;

ðA1Þ

where

ML ¼ 4JμνjαβTr½pWμ
αp̄Vν

βPL�; ðA2Þ

MR ¼ 4JμνjαβTr½pWμ
αp̄Vν

βPR�; ðA3Þ

MLR ¼ 4m2
lJμνj

αβTr½Wμ
αVν

βPR�; ðA4Þ

MRL ¼ 4m2
lJμνj

αβTr½Wμ
αVν

βPL�: ðA5Þ

Here, Wμ
α and Vν

β are the propagators of leptons given by

Wμ
α ¼ 2pμ þ γμ=q

q2 þ 2p · q
γα − γα

2p̄μ þ =qγμ

q2 þ 2p̄ · q
; ðA6Þ

and

Vν
β ¼ γ0W

†ν
β γ0 ¼ γβ

2pν þ =qγν

q2 þ 2p · q
−

2p̄ν þ γν=q
q2 þ 2p̄ · q

γβ: ðA7Þ

Due to the parity conservation of the electromagnetic
interaction, Jμν must be symmetric with respect to μ and
ν, regardless of the detail of the nucleus. Thus, it is enough
to calculate the symmetric part of jαβLμν

αβ under μ ↔ ν. The
concrete form of the nucleus tensor Jμν is determined by the
target nucleus, as given in Eq. (15) with (18).
By straightforward calculation, we obtain the

explicit formula for ML in terms of lepton momenta as
follows:

ML ¼ ð−256JμνÞ
�

Mμν
L1

ðq2 þ 2p · qÞ2 þ
Mμν

L2

ðq2 þ 2p̄ · qÞ2 þ
Mμν

L3

ðq2 þ 2p · qÞðq2 þ 2p̄ · qÞ
�
; ðA8Þ

Mμν
L1 ¼ k · p̄½gμνð2q · k0q · p − q2k0 · pÞ þ ðpμk0ν þ pνk0μÞðq2 þ 2p · qÞ

− 2ðpμqν þ pνqμ þ 2pμpνÞfk0 · ðpþ qÞg�; ðA9Þ

Mμν
L2 ¼ ðfp; kg ↔ fp̄; k0g exchange ofMμν

L1Þ; ðA10Þ
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Mμν
L3 ¼ 2gμνfp · qðk0 · p̄q · k − q · p̄k · k0Þþq · k0ðq · p̄k · p − p · p̄q · kÞ þ q2ðp · p̄k · k0 − p · kp̄ · k0Þg

þ ðpμp̄ν þ pνp̄μÞð4k · p̄k0 · pþ 2k · qk0 · q − q2k · k0 þ 2k · p̄q · k0 þ 2k0 · pq · kÞ
þ ðpμqν þ pνqμÞðk · p̄q · k0 þ q · p̄k · k0 − q · kk0 · p̄þ 2k0 · pk · p̄Þ
þ ðp̄μqν þ p̄νqμÞðk0 · pq · kþ q · pk · k0 − q · k0k · pþ 2k · p̄k0 · pÞ
− ðpμkν þ pνkμÞð2k0 · pq · p̄þ 2q · p̄q · k0 − q2k0 · p̄Þ − ðp̄μk0ν þ p̄νk0μÞð2k · p̄q · pþ 2q · pq · k − q2k · pÞ
þ ðqμkν þ qνkμÞðp · p̄q · k0 − k0 · pq · p̄ − k0 · p̄q · pÞ þ ðqμk0ν þ qνk0μÞðp · p̄q · k − k · p̄q · p − k · pq · p̄Þ
þ ðkμk0ν þ kνk0μÞð2q · pq · p̄ − q2p · p̄Þ þ ðqμqν þ qνqμÞðk0 · p̄k · p − k · k0p · p̄þ k0 · pk · p̄Þ: ðA11Þ

In the case of V − A interaction, the amplitude squared is
only ML which was given in [38].
Next, moving on to the explicit form of MR, one can

easily derive it by taking the charge conjugate of materials
in the trace

MR ¼ 4JμνjαβTr½pWν
βp̄V

μ
αPL�

¼ 4JμνjβαTr½pWμ
αp̄Vν

βPL�: ðA12Þ

One notices that the form in the last line is the same as that
ofML except for the superscripts of the neutrino tensor jαβ.
According to Eq. (12), the exchange of μ and ν in jμν

clearly corresponds to the exchange of k and k0. Therefore,
MR is obtained as

MR ¼ ðk ↔ k0 exchange ofMLÞ: ðA13Þ

At last, we present MLR and MRL. By using the explicit
forms of Wμ

α and Vν
β, one obtains JμνTr½Wμ

αVν
βγ5� ¼ 0,

which means MLR ¼ MRL. Then, the terms are given by

MLR ¼ MRL

¼ ð−256JμνÞ
	

Mμν
LR1

ðq2 þ 2p · qÞ2 þ
Mμν

LR2

ðq2 þ 2p̄ · qÞ2

þ Mμν
LR3

ðq2 þ 2p · qÞðq2 þ 2p̄ · qÞ


; ðA14Þ

Mμν
LR1 ¼

m2
l

2
k · k0fq2gμν þ 2½pμqν þ pνqμ� þ 4pμpνg;

ðA15Þ

Mμν
LR2 ¼ ðp ↔ p̄ exchange ofMμν

LR1Þ; ðA16Þ

Mμν
LR3 ¼m2

l½gμνð2k ·qk0 ·q−q2k ·k0Þ−2k ·k0ðpμp̄νþpνp̄μÞ
−k ·k0ðpμqνþpνqμþ p̄μqνþ p̄νqμÞ
þq2ðkμk0νþkνk0μÞ−k0 ·qðkμqνþkνqμÞ
−k ·qðk0μqνþk0νqμÞ�: ðA17Þ

When the incident neutrino is an antineutrino, the result
can be obtained by replacing k ↔ k0 in the above formulas.
Note that the obtained transition density is invariant under
the simultaneous replacement of k ↔ k0 and p ↔ p̄. These
facts imply that the roles of emitted charged leptons are
completely exchanged in the antineutrino case.

APPENDIX B: PHASE SPACE INTEGRALS

We perform the Monte Carlo method in calculating the
four-body phase space integral [36,37,41]. To achieve
enough convergence of the integration, we choose suitable
integral variables to flatten the integrand. The phase space
integrals for the four-body final state are

dΠ ¼ d3k0

ð2πÞ32Ek0

d3p
ð2πÞ32Ep

d3p̄
ð2πÞ32Ep̄

d3Q0

ð2πÞ32EQ0

× ð2πÞ4δð4Þðk0 þ pþ p̄þQ0 − k −QÞ: ðB1Þ

Although the number of the integration variables are
3 × 4 ¼ 12, the net number is only eight because of the
energy-momentum conservation.
In general, we can rewrite the phase space integral asZ

dΠ ¼
Z

x̄0

x0

dx0

Z
x̄1

x1

dx1

Z
x̄2

x2

dx2

Z
x̄3

x3

dx3

×
Z

x̄4

x4

dx4

Z
x̄5

x5

dx5

Z
x̄6

x6

dx6

Z
x̄7

x7

dx7

× Xðx0; x1; x2; x3; x4; x5; x6; x7Þ; ðB2Þ

where X is an overall factor depending on the integral
variables xi (i ¼ 0; 1;…; 7). The upper and lower limits of
xi are represented by x̄i and xi, respectively. Since it is
difficult to find the range of arbitrary integral variables,
we have to choose a useful set of integral variables. In
our analysis, we use the following set of the integral
variables xis:

x0 ¼ ϕðAÞ
Q0 ; ðB3Þ
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x1 ¼ τ≡
Z

∞

t
dufFðuÞg2; ðB4Þ

x2 ¼ spp̄k ≡ ðpþ p̄þ k0Þ2; ðB5Þ

x3 ¼ sp̄k ≡ ðp̄þ k0Þ2; ðB6Þ

x4 ¼ up ≡ log ð−q2 − 2p · qÞ; ðB7Þ

x5 ¼ ϕðBÞ
p ; ðB8Þ

x6 ¼ up̄ ≡ log ð−q2 − 2p̄ · qÞ; ðB9Þ

x7 ¼ ϕðCÞ
p̄ : ðB10Þ

ϕðAÞ
Q0 , ϕ

ðBÞ
p , and ϕðCÞ

p̄ are rotation angles defined as follows:

ϕðAÞ
Q0 is the rotation angle of Q0 around k in the center-of-

mass frame of k and Q, which we call frame A. ϕðBÞ
p is the

rotation angle of p around q in the frame where

pþ p̄þ k0 ¼ 0, which we call frame B. ϕðCÞ
p̄ is the rotation

angle of p̄ around q in the frame where p̄þ k0 ¼ 0, which
we call frame C. This choice of variables is useful because
all of the three angles trivially run from 0 to 2π. Here, we
obtain the overall factor,

X ¼ exp ðup þ up̄Þ
ð4πÞ8ðs −M2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spp̄k0sp̄k0 ðtþ jqðBÞ0 j2Þðtþ jqðCÞ0 j2Þ

q
fFðtÞg2

: ðB11Þ

For the NTP processes, the differential cross sections
have the rotational symmetry around the neutrino beam
axis. Then, the integral of

R
dϕðAÞ

Q0 can be simply replaced
by 2π, and practically the other seven integral variables are
relevant.
The variable τ, defined by Eq. (B4), runs over

Z
∞

tmax

dufFðuÞg2 < τ <
Z

∞

tmin

dufFðuÞg2; ðB12Þ

where tmax (tmin) is the maximum (minimum) value of
t ¼ −q2. tmax and tmin are given by

tmax ¼
s
2

�
1 −

M2

s

��
1 −

M2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ

�
1;
M2

s
;
4m2

l

s

�s �

− 2m2
l

�
1þM2

s

�
; ðB13Þ

tmin ¼
4m2

l

tmax

M2

s
: ðB14Þ

Since we do not have the analytic representation of t as a
function of τ, we prepare the numerical correspondence
table between t and τ for the phase space integration.
The ranges of the rest variables are as follows:

4m2
l<spp̄k0 <

ðs−M2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðt−4M2Þ

p
− ðsþM2Þt

2M2
; ðB15Þ

m2
l < sp̄k0 < ð ffiffiffiffiffiffiffiffiffiffi

spp̄k0
p −mlÞ2; ðB16Þ

up ¼ log

 
t −

spp̄k0 − sp̄k0 þm2
lffiffiffiffiffiffiffiffiffiffispp̄k0

p qðBÞ0

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spp̄k0λ

�
1;

m2
l

spp̄k0
;
sp̄k0

spp̄k0

�
ðtþ jqðBÞ0 j2Þ

s !
; ðB17Þ

ūp ¼ log

 
t −

spp̄k0 − sp̄k0 þm2
lffiffiffiffiffiffiffiffiffiffispp̄k0

p qðBÞ0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spp̄k0λ

�
1;

m2
l

spp̄k0
;
sp̄k0

spp̄k0

�
ðtþ jqðBÞ0 j2Þ

s !
; ðB18Þ

up̄ ¼ log
�
t −

sp̄k0 þm2
lffiffiffiffiffiffiffisp̄k0

p qðCÞ0 −
sp̄k0 −m2

lffiffiffiffiffiffiffisp̄k0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ jqðCÞ0 j2

q �
;

ðB19Þ

ūp̄ ¼ log

�
t −

sp̄k0 þm2
lffiffiffiffiffiffiffisp̄k0

p qðCÞ0 þ sp̄k0 −m2
lffiffiffiffiffiffiffisp̄k0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ jqðCÞ0 j2

q �
;

ðB20Þ

where qðBÞ0 and qðCÞ0 are the time components of q in frames
B and C, respectively. In principle, we can derive the

analytic formulas for qðBÞ0 and qðCÞ0 , which are a little
complicated. However, we do not need the analytic for-

mulas because we easily obtain the numerical values of qðBÞ0

and qðCÞ0 using the step-by-step Monte Carlo integration. At
each step, the upper and lower limits of up are determined
after τ, spp̄k0 , and sp̄k0 are fixed. Then, the upper and lower

limits of up̄ are determined after up and ϕðBÞ
p are fixed.
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