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The ABCDmethod is one of the most widely used data-driven background estimation techniques in high
energy physics. Cuts on two statistically independent classifiers separate signal and background into four
regions, so that background in the signal region can be estimated simply using the other three control
regions. Typically, the independent classifiers are chosen “by hand” to be intuitive and physically motivated
variables. Here, we explore the possibility of automating the design of one or both of these classifiers using
machine learning. We show how to use state-of-the-art decorrelation methods to construct powerful yet
independent discriminators. Along the way, we uncover a previously unappreciated aspect of the ABCD
method: its accuracy hinges on having low signal contamination in control regions not just overall, but
relative to the signal fraction in the signal region. We demonstrate the method with three examples: a
simple model consisting of three-dimensional Gaussians; boosted hadronic top jet tagging; and a recasted
search for paired dijet resonances. In all cases, automating the ABCD method with machine learning
significantly improves performance in terms of ABCD closure, background rejection, and signal
contamination.
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I. INTRODUCTION

A key component of high energy physics data analysis,
whether for Standard Model (SM) measurements or
searches beyond the SM, is background estimation.
While powerful simulations and first-principles calcula-
tions exist and are constantly improving, they still remain
inadequate for the task of precisely estimating backgrounds
in many situations. For example, the cross section of the
SM background for events with a large number of hadronic
jets is difficult to estimate. Therefore methods for data-
driven background estimation remain a crucial part of the
experimental toolkit. The idea behind all data-driven back-
ground estimation strategies is to extrapolate or interpolate
from some control regions which are background domi-
nated into a signal region of interest.

One classic (see e.g., Ref. [1]) data-driven background
method which is used in a multitude1 of physics analyses at
the Large Hadron Collider (LHC) and elsewhere is the
ABCD method. The idea of the ABCD method is to pick
two observables f and g (for example, the invariant mass of
a dijet system and the rapidity of that system) which are
approximately statistically independent for the background,
and which are effective discriminators of signal versus
background. Simple thresholds on these observables par-
tition events into four regions. Three of these regions,
called B, C, and D, are background dominated. The fourth,
A, is the signal region. If the observables are independent,
then the background in the signal region can be predicted
from the other three regions via

NA ¼ NBNC

ND
; ð1:1Þ

where Ni is the number of events in region i. This setup
is depicted schematically for signal and background dis-
tributions in Fig. 1.
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1See Refs. [2,3] for recent examples and many more in the
ATLAS and CMS search group webpages [4–8].
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Typically, the observables f and g for the ABCD method
are chosen to be simple, physically well-motivated features
such as mass, HT , and missing ET . Their independence is
always ensured manually, e.g., by choosing features that
are known physically to have little correlation or by trial
and error.2 In some cases, independence can be guaranteed
by using completely orthogonal sources of information,
such as measurements from different subdetectors or
properties of independently produced particles. However,
more often than not, the features are not 100% independent
and one has to apply a residual correction derived from
simulations. Ideally, this simulation correction has small
uncertainties—either because the effect itself is small, or
because the correction is robust. But such corrections,
together with the fact that simple kinematic features are
typically not optimal discriminants of signal versus back-
ground, generally limit the effectiveness of the ABCD
method and the sensitivity of the analysis in question. (See
[10], however, for a proposal for extending the ABCD
method using higher-order information when the features
are not independent.)
In this paper, we will explore the systematic application

of deep learning to the ABCD method. Deep learning has
already demonstrated impressive success in finding observ-
ables that are effective at discrimination [11–65] and that
are uncorrelated with other observables [66–81]. Building
on previous success, we will aim to use deep learning to
automate the selection of features used in the ABCD
method, simultaneously optimizing their discrimination
power while ensuring their independence.
The main tool we will use in automating the ABCD

method will be a recently proposed method for training

decorrelated deep neural networks [73]. This method uses a
well-known statistical measure of nonlinear dependence
known as distance correlation (DisCo) [82–85]. DisCo is a
function of two random variables (or samples thereof) and
is zero if and only if the variables are statistically inde-
pendent; otherwise it is positive. Therefore it can be added
as a regularization term in the loss function of a neural
network to encourage the neural network output to be
decorrelated against any other feature. In [73] it was shown
that DisCo decorrelation achieves state-of-the-art decorre-
lation performance while being easier and more stable to
train than approaches based on adversarial methods.
Therefore it is ideally suited to automating the ABCD
method.
We will propose two new ideas for automating the

ABCD method, which we will call single DisCo and
double DisCo, respectively. In single DisCo, we will train
a single neural network classifier on signal and background
and use DisCo regularization to force it to be independent
in the background of a second, fixed feature (such as
invariant mass). In double DisCo, we will train two neural
network classifiers and use DisCo regularization to force
them to be independent of one another.
We will study three examples to illustrate the effective-

ness of these methods. The first example is a simple
model where signal and background are drawn from
three-dimensional Gaussian distributions. Here the aim is
to understand many of the features of single and double
DisCo in a fully controlled environment. The second
example is boosted hadronic top tagging, where often
sideband interpolation in mass is employed. For the
ABCD method we treat a window selection on the mass
as a classifier variable. Thus we use the invariant mass as
the single DisCo fixed feature, and we then show how
double DisCo can improve on this by combining mass with
other information to produce more effective classification.
Finally, we examine a search that currently uses the
conventional ABCD method: the ATLAS paired dijet

FIG. 1. The ABCD method is used to estimate the background in region A as NA ¼ NBNC
ND

. It requires the signal to be relatively
localized in region A and the observables to be independent on background. The shaded planes (left) or lines (right) denote thresholds
which isolate the signal in region A.

2There are examples where f or g are chosen automatically, as
is the case when one of them is a neural network (see e.g.,
Ref. [9]). However, such analyses do not have an automated
procedure for ensuring that f and g are independent and the
departure from Eq. (1.1) can be significant.

KASIECZKA, NACHMAN, SCHWARTZ, and SHIH PHYS. REV. D 103, 035021 (2021)

035021-2



resonance search, motivated by R-parity violation (RPV)
squark decays [86] (for a similar search by CMS, see [87]).
We show that significant performance gains are possible
using single and double DisCo.
In the course of our study of the ABCD method, we will

uncover a hitherto unappreciated limitation of the method,
which we call normalized signal contamination. Usually,
practitioners are concerned with the overall signal-to-back-
ground ratio in the control regions; if this is small, then they
are usually satisfied. We point out that in fact another
relevant quantity for the significance calculation is the
signal-to-background ratio in the control regions relative or
normalized to the signal-to-background ratio in the signal
region. In other words, the requirement of signal contami-
nation is actually

Ni;s

Ni;b
≪

NA;s

NA;b
ð1:2Þ

in addition to Ni;s

Ni;b
≪ 1 (where Ni;s and Ni;b are the numbers

of signal and background events in region i ¼ A, B, C, D).
In many analyses (e.g., [86]), the signal fraction in the
signal region is quite small, meaning that even a small
amount of signal contamination in the control regions can
bias the p values reported by the search. We will show that
single and double DisCo not only improve the discrimi-
nation power and background closure of the ABCDmethod
but can also significantly reduce the level of signal
contamination at the same time.
This paper is organized as follows. Section II reviews the

ABCD method, and Sec. III describes how the method can
be automated using deep learning. Numerical results for
examples described above are presented in Sec. IV. The
paper ends with conclusions and outlook in Sec. VI.

II. THE ABCD METHOD

The ABCD method starts with two features f and g.
Imposing thresholds fc and gc divides the feature space
into four rectangular regions, A, B, C, and D with
corresponding event counts:

NA;l ¼ Nl Prðf ≥ fc and g ≥ gcjlÞ;
NB;l ¼ Nl Prðf ≥ fc and g < gcjlÞ;
NC;l ¼ Nl Prðf < fc and g ≥ gcjlÞ;
ND;l ¼ Nl Prðf < fc and g < gcjlÞ; ð2:1Þ

where Nl ¼ NA;l þ NB;l þ NC;l þ ND;l is the total
number of events of type l and l ∈ fsignalðsÞ;
backgroundðbÞ; allðaÞg and Prð·Þ is the probability. The
regions B, C, and D can be used to predict NA:

Npredicted
A;b ≡ NB;aNC;a

ND;a
: ð2:2Þ

For the ABCD method to be valid, we would need
NA;b ¼ Npredicted

A;b .
There are two requirements for Npredicted

A;b to be accurate.
First, the Bernoulli random variables f < fc and g < gc
must be independent for the background in order to
guarantee that

NA;b ¼
NB;bNC;b

ND;b
: ð2:3Þ

To see this, note that (2.3) is equivalent to

Nb × NA;b ¼ ðNA;b þ NB;bÞ × ðNA;b þ NC;bÞ: ð2:4Þ

Then, substituting in Eq. (2.1) to Eq. (2.4) yields

Prðf ≥ fc and g ≥ gcjbÞ ¼ Prðf ≥ fcjbÞ×Prðg ≥ gcjbÞ;
ð2:5Þ

which is a definition of independence. While it is sufficient
to have one set of thresholds, having a range over which
independence holds adds robustness to the estimation
procedure. If the ABCD method holds for all values of
fc and gc, then f and g themselves must be independent.
Note that this condition is stronger than requiring zero
linear correlation. Two random variables can have zero
linear correlation yet be nonlinearly dependent. In general,
such a case would invalidate Eq. (2.3).
The second requirement for the ABCD method involves

the signal and the background:

NB;aNC;a

ND;a
¼ NB;bNC;b

ND;b
: ð2:6Þ

In particular, if the signal contamination in regions B, C,
and D is large, then Eq. (2.2) will not hold. But what does
large mean in this context? Typically, large signal con-
tamination is taken to be an overall statement, i.e.,

δi ≡ Ni;s

Ni;b
≪ 1; ð2:7Þ

for regions i ¼ B, C,D. However, we will now show that in
addition to this criterion, another relevant quantity is
normalized signal contamination

r≡ δ−1A ðδBþ δC − δDÞ ¼
�
NA;s

NA;b

�
−1
�
NB;s

NB;b
þNC;s

NC;b
−
ND;s

ND;b

�
;

ð2:8Þ

and for the ABCD method to be valid, it must satisfy

jrj ≪ 1: ð2:9Þ
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Note that this is often a much stronger requirement than
(2.7). It is not enough that the signal fractions in each
control region are small—they must be small compared to
the signal fraction in the signal region. In many searches
(e.g., the RPV stop search in Sec. IV C), signal to back-
ground can be quite small in the signal region, meaning that
this can be a significant (and underappreciated) constraint
on the ABCD method.
To see why (2.9) is required, suppose that the ABCD

method closes exactly, so that Eq. (2.3) holds, but there is
some signal contamination in all four regions. Then,

Npredicted
A;b ¼ NB;bð1þ δBÞ ×

NC;bð1þ δCÞ
ND;bð1þ δDÞ

¼ NB;b ×
NC;b

ND;b
½1þ δB þ δC − δD þOðδ2Þ�

¼ NA;b½1þ δB þ δC − δD þOðδ2Þ�; ð2:10Þ

This will be compared with the number of events in region
A, NA;a ¼ NA;bð1þ δAÞ, to decide whether there is an
excess or not. In order to detect the signal in A, one needs
Eq. (2.9) to be satisfied. Note that we are still assuming that
δB;C;D ≪ 1 in order for the subleading terms in Eq. (2.10) to
be negligible.
Another point is that generally δD can be neglected

compared to δB and δC (as it is diagonally opposite and
should therefore be doubly suppressed). So we expect
r > 0 and an overestimate of the background in the signal
region. This will make it much harder to discover new
physics.
Finally, let us make the connection between the nor-

malized signal contamination and classifier performance.
For the fixed thresholds fc and gc, the signal (ϵs) and
background (ϵb) efficiencies for each individual classifier
can be computed as

ϵf;b ¼
NA;b þ NB;b

Nb
¼independence NA;b

NA;b þ NC;b
;

ϵg;b ¼
NA;b þ NC;b

Nb
¼independence NA;b

NA;b þ NB;b
;

ϵf;s ¼
NA;s þ NB;s

Ns
;

ϵg;s ¼
NA;s þ NC;s

Ns
: ð2:11Þ

With these definitions and neglecting ND;s, Eq. (2.8) can be
re-written as

r¼ ð1− ϵf;sÞ
ð1− ϵf;s þ ϵg;sÞ

ϵf;b
ð1− ϵf;bÞ

þ ð1− ϵg;sÞ
ð1− ϵg;s þ ϵf;sÞ

ϵg;b
ð1− ϵg;bÞ

:

ð2:12Þ

The two terms in Eq. (2.12) are nearly the diagnostic odds
ratio and importantly are minimized for a given signal
efficiency when the background efficiency is as small as
possible. This demonstrates that “classification perfor-
mance” and “signal contamination” are synonymous in
this context—the better a classifier is, the more likely it will
be that there is a threshold which ensures a small relative
signal contamination.
To illustrate these points, we show in Fig. 2 the effect of

signal contamination on the p-value. The left plot shows
the interplay between the relative signal contamination r
and the number of events NA in the signal region as a
function of δA. For example, if the signal fraction in the
signal region is δA ¼ 10% andNA ¼ 1000, the true p-value
is 0.0015 while the reported value assuming negligible
signal contamination would be 0.03 or 0.1 with an
unaccounted for signal contamination (δB) of 4% and
6% in region B, respectively.

FIG. 2. The p-value (CLSþB) for the ABCD method as a function of δA (NA), and the signal fraction in region A (the number of
background events in region A) for the left (right) plot. It is assumed that there is no uncertainty from regions C and D. The systematic
uncertainty σsyst is absolute (applied to the number of events in the signal region) and not relative to the signal fraction.
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Correctly accounting for this signal contamination would
require having a signal-model-dependent ABCD estima-
tion. This could be done (see e.g., [88]), but would be much
more complicated than most applications of the ABCD
method. Adding an uncertainty to account for potential
signal contamination is also not ideal—this is shown in the
right plot of Fig. 2. Once again, for NA ¼ 1000 and
δA ¼ 10%, the true p-value is 0.0015 and a signal con-
tamination of 4% in region B (δB) results in a p-value of
0.03. Adding an uncertainty (σsyst;A) of 5% increases this
to 0.16 and an uncertainty of 10% further increases the
p-value to 0.29. So while this would result in a conservative
p-value, it means that potential discoveries would be
masked.

III. AUTOMATING THE ABCD METHOD

Having described the requirements for the ABCD
method (two strong classifiers that are independent for
background), we now turn to the main idea of the paper:
automating the ABCD method with machine learning.
Typically, when the ABCD method is used in exper-

imental analyses, the two features are chosen by hand,
based on physical intuition. Usually the features are simple
quantities, such as mass, HT , pT , or missing ET . In the
remainder of the paper, we will investigate the benefits of
allowing the ABCD features to be more complicated
functions of the inputs. These functions will be obtained
by training neural networks with suitable loss functions that
ensure the ABCD objectives. We will see that machine
learning has the potential to greatly improve the perfor-
mance of the ABCD method.
The basic idea is that we want to train a classifier fðXÞ

where X are the input features (either low level inputs, such
as four vectors or images, or high level inputs, such as pT
and mass) that is forced to be decorrelated against another
classifier gðXÞ. This will achieve the first ABCD require-
ment of independent features. If the two classifiers are both
good discriminants, this will satisfy the second ABCD
requirement.
One can imagine two versions of this idea, both of

them new:
(1) The second classifier is a simple, existing high-level

variable (e.g., mass). In this case the problem is
basically identical to the one that has been solved in
the literature on decorrelation. We then just have to
apply these approaches to the ABCD method.

(2) The second classifier is also a neural network. In this
case we need to train two neural networks simulta-
neously while keeping them decorrelated from one
another. This requires us to go beyond the usual
literature on decorrelation against a fixed feature.

Regardless of whether gðXÞ is fixed or learned, decor-
relation can be achieved by any of the numerous methods
that have been proposed [66–81]. In this paper we will use
the DisCo method [73]. DisCo decorrelation proceeds

through a positive-definite regularization term that penal-
izes statistical dependence. It achieves state-of-the-art
performance while being significantly easier to train than
adversarial decorrelation methods which rely on saddle-
point extremization.
For the single DisCo ABCD method, we take the loss

function to be the same as in [73]:

L½fðXÞ� ¼Lclassifier½fðXÞ;y�þλdCorr2y¼0½fðXÞ;X0�; ð3:1Þ

where X are the features used for classification, y ∈ f0; 1g
are the labels, X0 is the feature that one wants to be
decorrelated from fðXÞ (X0 could be part of X), and
Lclassifier is the classifier loss such as the commonly used
binary cross entropy. The subscript y ¼ 0 in the second term
of Eq. (3.1) ensures that the decorrelation is only applied to
the background (class 0). Furthermore, λ ≥ 0 is a hyper-
parameter that determines the decorrelation strength. The
function dCorr2½f; g� is the squared distance correlation
defined in [82–85] (see Appendix A). It has the property
that 0 ≤ dCorr½f; g� ≤ 1 and dCorr½f; g� ¼ 0 if and only if f
and g are independent. For Single DisCo, gðXÞ ¼ X0.
In practice, f is parametrized as a neural network and

Eq. (3.1) is minimized using gradient-based methods.
The distance correlation is computed for batches of data
used to stochastically estimate the gradient. In the limit of
small numbers of events, the naive distance covariance
computed by replacing expectation values with sample
averages is a biased estimator of the true distance corre-
lation. Analogously to the case of sample variance (in
which a factor of 1

N−1 instead of 1
N—where N denotes the

minibatch size—is inserted to remove bias), there is an
analytic low-N correction to the distance covariance that is
unbiased [83,85]. Numerical results suggest that this
correction is useful when N is low, but for sufficiently
large training datasets with large enough batches, the
correlation has little impact on the results.
For the double disco ABCD method, we use the loss

function

L½f; g� ¼ Lclassifier½fðXÞ; y� þ Lclassifier½gðXÞ; y�
þ λdCorr2y¼0½fðXÞ; gðXÞ�; ð3:2Þ

where now f and g are two neural networks that are trained
simultaneously. When λ ¼ 0, the loss will be minimized
when f ¼ g is the optimal classifier (up to degeneracies).
When λ → ∞, f and g will be forced to be independent
even if one or both of them does not classify well at all. In
practice, if λ is taken too large, the DisCo term will tend to
overwhelm the training and poor classification performance
will result. Thus there should be an optimal λ at some finite
value which can be determined by scanning over λ.
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IV. APPLICATIONS

This section explores the efficacy of single and double
DisCo in some applications of the ABCD method.

A. Simple example: Three-dimensional Gaussian
random variables

We begin with a simple example to build some intuition
and validate our methods. Consider a three-dimensional
space ðX0; X1; X2Þ, where the signal and background are
both multivariate Gaussian distributions. We choose the
means μ⃗ and a covariance matrix Σ for background and
signal as

μ⃗b ¼ ð0; 0; 0Þ; Σb ¼ σ2b

0
B@

1 ρb 0

ρb 1 0

0 0 1

1
CA;

σb ¼ 1.5; ρb ¼ −0.8; ð4:1Þ

and

μ⃗s ¼ ð2.5; 2.5;2Þ; Σs ¼ σ2s

0
B@

1 0 0

0 1 0

0 0 1

1
CA; σs ¼ 1.5:

ð4:2Þ

So for the background, all three features are centered at the
origin and features X0 and X1 are correlated with each other
but independent of X2. For the signal, all three features are
independent but are centered away from the origin. The
first feature X0 will play the role of the known feature for
single DisCo in Sec. III.
All of the neural networks presented in this section use

three hidden layers with 128 nodes per layer. The rectified
linear unit (ReLU) activation function is used for the
intermediate layers and the output is a sigmoid function.
A hyperparameter of λ ¼ 1000 is used for both single and
double DisCo to ensure total decorrelation. The single
DisCo training converged after 100 epochs while the
double DisCo training required 200 epochs. Other net-
works only needed ten epochs. The double DisCo networks

FIG. 3. Scatter plots showing the relationship (or lack thereof) between the three random variables X0, X1, and X2 and (1) a baseline
classifier fBLðX1; X2Þ trained on X1 and X2 with no regularization, and (2) a classifier fSDðX1; X2Þ trained with the single DisCo loss
function that penalizes correlations with X0. Only the background events are shown in these plots. The solid lines are the averages of the
classifiers over events with the same value of X0, X1, or X2. In the third panel, the scatter of the single DisCo classifier is already a line,
so no average is needed.
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FIG. 4. Scatter plots showing the relationship between the three random variablesX0, X1, X2 and the two double DisCo neural networks
fDD and gDD using only the background. The distance correlation between the two plotted observables is indicated in the legend.

FIG. 5. Performance metrics for the Gaussian random variable model. Left: a receiver operating characteristic (ROC) curve. The lines
marked ABCD DisCo are derived by scanning over rectangular thresholds on the two classifiers for points with ABCD closure within
10%. In the single DisCo case, one of the two classifiers is simply a NN trained with only X0 (marked “X0” only in the legend). Right: a
scatter plot between background rejection and the normalized signal contamination for ABCD closure within 20%. For comparison, the
left plot also shows the performance of the two double DisCo functions separately, the single DisCo function on its own, as well as a
fully supervised classifier using all the available information all at once.
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were trained using a single neural network with a two-
dimensional output. All models were trained using
Tensorflow [89] through Keras [90] with Adam [91] for
optimization. Two million examples were generated with
15% used for testing. A batch size of 1% of the total was
used for all networks to ensure an accurate calculation of
the DisCo term in the relevant loss functions.
We first consider two classifiers: a baseline classifier

fBLðX1; X2Þ trained only on X1 and X2 and a single DisCo
classifier fSDðX1; X2Þ which includes a penalty for corre-
lations between fSD and X0. The values of these classifiers
for events drawn from the distributions are plotted in Fig. 3
against the X0, X1, or X2 values of these events. We see that
even though X0 was not used in the training of the baseline,
the classifier output is still correlated with X0 because of the

correlations between X0 and X1. In contrast to the baseline
classifier, the single DisCo classifier is independent of both
X0 and X1 and is simply a function of X2. Intuitively, it
makes sense that a classifier that must be independent of X0

must also be independent of X1. This is justified rigorously
in Appendix B.
For double DisCo, we train two classifiers fDDðX; Y; ZÞ

and gDDðX; Y; ZÞ according to the double DisCo loss
function. The results are illustrated in Fig. 4. The first
classifier depends mostly on Z and the second classifier
depends mostly on X and Y. However, the residual
dependence on all three observables is not a deficit of
the training procedure: even though the three random
variables are separable into two independent subsets
ðX; YÞ and Z, the two classifiers learned by double DisCo

FIG. 6. The 13 features used for the boosted top analysis.
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are nontrivial functions of all three variables. There is a large
freedom in choosing the two functions fDD and gDD with a
very small distance correlation and also excellent classifi-
cation performance. Evidently, double DisCo prefers to
partition the information differently than the naive partition-
ing in order to achieve better classification performance.
Figure 5 shows the performance of the single and double

DisCo classifiers. The curve for the ABCD method is
constructed by scanning 100 values of independent thresh-
olds on the two features, evenly spaced in percentile of one
classifier or the other to ensure a fixed signal efficiency.
Above 50% signal efficiency, the ABCD double DisCo has
nearly the same performance as the fully supervised
classifier using all of the available information. The single
DisCo performance is much lower than the double DisCo
performance and is comparable to the best of the two
double DisCo classifiers. The right plot of Fig. 5 demon-
strates that double DisCo is not only more effective at a
rejection background, but it also has a lower signal
contamination.

B. Boosted tops

Next we turn to a physical example: boosted, hadroni-
cally decaying, tops. When top quarks are highly boosted,
their hadronic decay products can be collimated into a
single large jet and jet substructure methods are often
necessary to distinguish them from QCD jet backgrounds
[92]. One can estimate these backgrounds using sidebands
in the jet mass around the top mass mt. For the application
of single and double DisCo, we will first reframe this
estimation as an ABCD method and map mass to a variable
where the signal peaks at 1 and the background peaks at a
lower value:

m̂≡ 1 −
jmjet −mtj

mt
: ð4:3Þ

For our studies we will use the community top tagging
comparison sample [13,46]. There are 2 million jets total,
1 million each of signal (top jets) and background (light
quark and gluon QCD jets). Of these, half are used for
training and the other half for validation.
We compute the following set of high level features

suggested by [43]

m̂; pT; τ
1=2
1 ; τ1=22 ; τ1=23 ; τ11; τ

1
2; τ

1
3; τ

1
4; τ

2
1; τ

2
2; τ

2
3; τ

2
4: ð4:4Þ

Here, τaN are the subjettiness variables introduced in [93,94]
and are computed using FastJet [95]. This set of 13 variables
is a complete basis for five-body phase space, and therefore
it provides a complete description of the physics at the
parton level at leading order [43,44,49,96]. It also offers a
useful [96] feature space for modeling the top quark jets
and inclusive jets after hadronization. Histograms of these
features for signal and background are presented in Fig. 6.

These features are not unique, but they offer a useful set for
studying the performance of neural network-based taggers.
All the features are rescaled to be between 0 and 1. The

neural network specification is three hidden layers of 64
nodes each, ReLU activations, and batch normalization
after the first hidden layer. We train for 200 epochs with a
fixed learning rate of 10−3 and the default Adam optimizer.
We use a large batch size of 10k to ensure an accurate
DisCo sampling estimate.
For single DisCo, we train a single neural network on

just the subjettiness variables (we could have included m̂
and pT too with little change). For double DisCo, we train
two neural networks on all the features (m̂, pT , and the
subjettiness variables). The neural networks specifications,
feature preprocessing, and training details are all the same
for single and double DisCo. However, for double DisCo,
in addition to the usual DisCo loss term described in
Eq. (3.2), we include a secondDisCo term which only takes
the tail of the neural network outputs (again for background
only) as inputs. This was found to help with the stability of
the ABCD prediction for lower signal efficiencies, which
can be sensitive to the extreme tails of the background. For
the tail we required the simultaneous cuts of y1 > ðy1Þbg;50
and y2 > ðy2Þbg;50, where y1;2 are the outputs of the two
neural networks and “bg,50” refers to the 50th percentile
cut on the background distributions.
For both single and double DisCo we have scanned over

the following values of the DisCo parameter:

λ ¼ 25; 50; 75; 100; 150; 200: ð4:5Þ

Values of λ larger than 200 tended to destabilize the
training. We show in Fig. 7 the background rejection at

FIG. 7. A scatter plot of background rejection and normalized
signal contamination (r) across DisCo parameters, epochs, and
thresholds on the two features, for ϵsignal ¼ 30% and background
ABCD closure better than 10%. High density regions are
depicted with individual data points while low density regions
are drawn as shaded regions.
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30% signal efficiency vs the normalized signal contami-
nation r defined in Eq. (2.8), for every epoch, DisCo
parameter, and value of rectangular cuts on the two
classifiers that achieves the required signal efficiency (same
method as Sec. IVA), subject only to the requirement that
the ABCD closure for the background is accurate to within
10%: jNA;b − Npredicted

A;b j < 0.1 [see Eq. (2.2)]. We see that
double DisCo is able to achieve both higher background
rejection and significantly lower signal contamination than
single DisCo.
Figure 8 shows the “best” models for single DisCo and

double DisCo, where best corresponds to an epoch and λ
robustly reaches the upper left corner of Fig. 7. Here each
point in the plot represents a choice of the rectangular cut
that achieves 30% signal efficiency. We see that both single

DisCo and double DisCo are able to achieve accurate
ABCD closure and low signal contamination across a wide
range of rectangular cuts.
Next we turn to the question of what did single and

double DisCo learn—specifically how the available infor-
mation was used by the individual NNs. Shown in Fig. 9
are a number of ROC curves. This includes ROC curves for
mass, the individual classifiers in single and double DisCo,
as well as additional NN classifiers obtained from training
simple DNNs on various combinations of mass and NN1,
NN2 from double DisCo.
A first observation is that one of the double DisCo

classifiers (g) outperforms all the other individual classi-
fiers without explicitly added mass information for all
values of the signal efficiency. The next best performance is
achieved by the single DisCo classifier, followed by the
second one of the double DisCo classifiers (f).3

Jet mass by itself is very effective for loose selections
(corresponding to a high signal efficiency). This can be
understood from the good separation observed in Fig. 6
(top left). However, for tighter selections additional sub-
structure information is needed.
Combining mass with one of the double DisCo classi-

fiers (g) does not strongly alter its performance. This
implies that the information contained in mass is learned
by this NN. However, it clearly outperforms mass, meaning
that g contains more features than just mass. On the other
hand, combining mass with the weaker double DisCo
classifier (f) dramatically improves it—it becomes almost,
but not quite, optimal. This is to be expected as f is forced
to be independent from g for background examples. If g
contains mass completely, then f should be mostly

FIG. 8. Performance metrics for the boosted top analysis. Left: a scatter plot of the ABCD closure for the background versus the
background rejection for ϵsignal ¼ 30% in the boosted top analysis. Right: for the points in the left plot with ABCD closure within 10% of
unity, this is a scatter plot of the normalized signal contamination (r) versus the background rejection. In both scatter plots, each point
corresponds to a different rectangular cut on f and g, which we scan over keeping fixed the signal efficiency. The two branches in the
plots correspond to tight cuts on either f or g, which is a feature of the rectangular nature of the cuts.

FIG. 9. ROC curve for the boosted top analysis. The back-
ground rejection is shown as a function of the signal efficiency for
various combinations of single and double DisCo classifiers with
or without mass.

3Both f and g started with equivalent initial conditions, and their
symmetry was spontaneously broken during network training.
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independent of mass, and adding it to f should result in a
major performance boost.
Finally, there is no real difference between a combination

of the two double DisCo classifiers (f þ g), a further
combination also including the mass (massþ f þ g), and
a direct training on all input features. This further confirms
that the mass information has been fully absorbed by
f þ g—specifically g via the argument above. The max-
imally inclusive massþ f þ g classifier of course should
not be used as input to the ABCD method. However, we
can compare its performance to results on the same dataset
in Ref. [13]. A classifier based on multibody N-subjettiness
trained following the procedure suggested in Ref. [96]
achieved a background rejection of up to around 1=900 for
a signal efficiency of 30%. We observe a slightly weaker
1=700 which is to be expected as a lower number of
N-subjettiness observables is used as inputs here.
In the scatter plots of the double DisCo discriminators in

Fig. 10, we again observe the larger discrimination power
of g compared to f. Looking at the top left distribution, we
indeed see no dependence of f on the mass while in the top
right a clear correlation is there for g. On the other hand, in
the bottom left, we see a trend between f and τ32 which
encodes to which amount the jet is compatible with a three-
prong substructure. This information is largely not learned
by g.

We conclude that double DisCo can do better than single
DisCo because it is partitioning the information differently
than just mass versus everything else.

C. RPV SUSY

For our third example, we consider an actual “real-life”
application of the ABCD method on LHC data: the

ffiffiffi
s

p ¼
13 TeV ATLAS search for paired dijet resonances [86].
Similar searches were conducted by CMS [87] and by both
experiments at

ffiffiffi
s

p ¼ 8 TeV [97,98]. These searches were
motivated by pair production of identical squarks which
each decay promptly to two jets via RPV couplings. For
background estimation, these searches all used the standard
ABCD method. In this section we will describe our recast
of this search and the performance gains derived from
training single and double DisCo on it.
The ATLAS search consisted of the following steps:
(i) Preselection: Events are required to have at least

four jets with pT > 120 GeV and jηj < 2.4. The
leading four such jets are used to form two squark
candidates based on nearest proximity in ΔR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔϕÞ2 þ ðΔηÞ2

p
. The minimum ΔR from the

resulting pairings is defined as ΔRmin and
the two dijet masses are used to form the average
massmavg ¼ 1

2
ðmdijet 1 þmdijet 2Þ and fractional mass

FIG. 10. Scatter plots of ymass (top) and τ32 (bottom) with the double DisCo classifiers f (left) and g (right) in the boosted top analysis.
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asymmetry Amass ¼ 1
mavg

jmdijet 1 −mdijet 2j. Events

with mavg < 255 GeV must have ΔRmin < 0.72 −
0.002ðmavg=GeV − 255Þ and events with mavg ≥
255 GeV must have ΔRmin < 0.72 − 0.0013ðmavg=
GeV − 255Þ.

(ii) Final selection: For the final selection, the ATLAS
search performs counting experiments in successive
windows ofmavg, and for background estimation uses
the ABCD method in j cos θ�j and Amass, where θ� is
the polar angle of one of the squarks in the squark-
squark center-of-mass frame. The signal region is
defined as Amass < 0.05 and j cos θ�j < 0.3.

ATLAS ended up setting a limit at approximately
msquark ¼ 500 GeV, so we will also focus our analysis
on this value of the squark mass. We repeat the preselection

cuts but instead of the final selection on mavg, Amass, and
cos θ�, we instead feed a list of inputs to single and double
DisCo to learn the optimal features. The inputs are

ΔRmin; mavg; cos θ�; Amass; z12; z34;ΔR12;ΔR34; m12;

m34;Δη;Δϕ; pT;12; pT;34; ð4:6Þ

where z12 (z34), ΔR12 (ΔR34), m12 (m34), pT;12 (pT;34) are
the pT of the subleading jet divided by the sum of the
transverse momenta of both jets, the opening angle between
the two jets, the invariant mass of the two jets, and the pT of
the two jets for the stop dijet pair with the leading small-
radius jet (and the other stop dijet pair), respectively.
Histograms of these features are shown in Fig. 11. All
features are rescaled to the range [0, 1] before feeding to the

FIG. 11. The features used to train the RPV classification model.
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NNs. For single DisCo we use cos θ� rather than Amass as
the fixed variable X0 (cos θ� is the stronger of these two
features from the ATLAS RPV squark analysis) and feed
everything else to the NN classifier. For double DisCo we
feed everything to the two NN classifiers.
Squark pair events and multijet events are generated with

PYTHIA 8.230 [99,100] at a center-of-mass-energy of
ffiffiffi
s

p ¼
13 TeV interfaced with DELPHES 3.4.1 [101] using the
default CMS run card. Jets are clustered using the anti-
kt algorithm [102] with radius parameter R ¼ 0.4 imple-
mented in FastJet 3.2.1 [95,103]. The 1M signal events and
10M background events were generated, of which about
100k signal events and 60k background events pass the
preselection. In order to ensure a high event selection
efficiency for the background, events are generated using
2 → 3 matrix elements with a minimum separation of R ¼
0.8 and minimum p̂T of 100 GeV for the softest parton and
200 GeV for the hardest parton. Signal events are produced
using the SLHA [104,105] card from the recent ATLAS
search [86,106] in which the squark mass is 500 GeV and
all other super partners are decoupled.
The validation of the recasting of the ATLAS analysis is

shown in Tables I and II. In the former we show the relative
signal efficiencies after successive cuts. In the latter we show
the relative fractions fi (since we do not attempt to get the
overall normalizations of our simulations correct) of data in
ATLAS regions i ¼ D, A, F, C (for ATLAS D is the signal
region (SR)); and the signal-to-background ratio δi in each
region. Following ATLAS, for the data fractions, the counts
are taken after the inclusive selection with no mass window
cut, while for the signal-to-background ratios they are taken
after the mass window cut. Overall, we see excellent agree-
ment between theATLAS numbers and our recasted numbers.
For training the NNs, we use 100k signal and 360k

background events, while the validation sample consists of

25k signal and 250k background events. In the classifier
loss, we rebalance the signal and background contributions
as if they were 50=50.
We used the same hyperparameters as the top tagging

example. (We also explored using 128 nodes per hidden layer
but found that it did not help.) For DisCo parameters we
chose

λ ¼ 10; 20; 30; 40; 60; 100: ð4:7Þ

Unlike the top tagging example we do not add the additional
DisCo term sensitive to the tails of the background distri-
butions when training double DisCo; because the back-
ground rejections in this case were not as high as for top
tagging, the additional term was found not to help.
The comparison of single and double DisCo is shown in

Fig. 12. As in the top tagging section, we have plotted every
epoch and every rectangular cut and every value of the
disco parameter satisfying the 10% accuracy condition on
the ABCD prediction. This shows the performance of the
models in the plane of R10 (background rejection factor at
10% signal efficiency) vs total fractional signal contami-
nation. We see that while double DisCo cannot surpass
single DisCo in terms of raw performance (as measured by
R10), it can achieve dramatically lower signal contamina-
tion for roughly the same R10.
We have also included scans over the features used in the

ABCD method as used in the ATLAS RPV search, these
are the green points in Fig. 12.4 We note that ATLAS had
significant normalized signal contamination with their

TABLE I. Relative efficiencies for each cut on the signal in the
ATLAS RPV supersymmetry (SUSY) search and our recast.

Cut ATLAS Our recast

ΔRmin 13.0% 11.9%
Inclusive SR 10.2% 9.5%
Mass window 25% 23.3%

TABLE II. Relative fractions fi of data in the regions i ¼ D, A,
F, and C used in the ATLAS RPV SUSYanalysis and our recast,
and signal-to-background ratios δi in each region.

ATLAS Our recast

Region i fi δi fi δi

D (SR) 6.8% 6.3% 6.4% 6.3%
A 11.4% 3.1% 10.5% 3.4%
F 30.7% 0.2% 31.6% 0.3%
C 51.1% 0.07% 51.6% 0.2%

FIG. 12. A scatter plot of background rejection versus normal-
ized signal contamination (r) in theRPVSUSYanalysis for various
epochs with single and double DisCo as well as a scan of three-
dimensional thresholds on the features used by the ATLAS
analysis.

4The actual ATLAS analysis used a working point that
corresponds to about 2.5% signal efficiency. We found this to
be suboptimal to a 10% value, which is why it is used in Fig. 12.
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selection (40%–80%), which may result in a significant
bias in the p-value (see Fig. 2).
Both single and double DisCo offer a marked improve-

ment in both signal contamination and background rejec-
tion compared to the standard ABCD method with
manually chosen high-level features. To gauge the impact
of the improvements, we offer the following quantitative
arguments:

(i) Improved background rejection: For the RPV stop
example presented in Sec. IV C, the systematic
uncertainty reported in Ref. [86] is about 3%. Our
recasted p-value is 0.067, consistent with the fact
that the 500 GeV stop is almost excluded in
Ref. [86]. The enhanced signal rejection from Fig. 12
from double DisCo is about 20% at an r-value of
0.1. This would reduce the p-value to 0.041 when
accounting for the same 3% uncertainty. Achieving
this p-value without Double DisCo would require
2.5 times more data, and therefore the potential gain
is significant.

(ii) Reduced signal contamination: If we use the num-
bers from the RPV stop search, we find that
accounting for r ∼ 0.5 would result in a p-value
that is ≈0.2. We find that no amount of data would
allow this 500 GeV point to be excluded with this
value, accounting for the 3% systematic uncertainty
(see Fig. 2). However, if r ∼ 0.1, as with double
DisCo, and the rejection is about 20% better, then
the point would eventually be excluded with 25%
more collisions.

V. DISCUSSION

The examples from the previous section have shown that
single DisCo and double DisCo are able to effectively
increase the discrimination power over traditional methods
while also maintaining a low relative signal contamination.
This section briefly discusses two interrelated features of
these approaches connected to residual model dependence
and systematic uncertainties.
One of themain goals of theABCDmethod is to provide a

data-driven background estimation strategy with minimal
dependence on the background and signalmodel. By training
classifiers with background and signal simulations, we are
explicitly introducing model dependence. Mismodeled fea-
tures will not result in a bias as long as the correlations are
properly modeled.5 Furthermore, this is exactly the same
challenge that faces the classical ABCD method. An uncer-
tainty is often determined by using an alternative background

simulation and/or a nearby region in data. The same
strategies could be applied for the automatedABCDmethods
using machine learning. Larger relative uncertainties may be
tolerable for the automated methods if there is little absolute
nonclosure.
For the signal model, there is a dependence in two ways.

First, the automated decorrelation needs to be trained per
signal model. It is likely that there is sensitivity for similar
signals, but an analysis that scans over signal model
parameters would likely need to train multiple models.
Each of these models could correspond to a signal region.
One may be able to extend this with parametrized networks
[109,110]. The second aspect that relies on signal modeling
is correcting for signal in the nonsignal regions. In many
analyses, this is assumed small and is not modified. As we
have shown, this is only valid when the relative signal
contamination is negligible. Both of the automated
approaches significantly improve the relative signal con-
tamination, and so the size of this effect is significantly
reduced for these methods compared with the traditional
ABCD approach.

VI. CONCLUSIONS

Estimating backgrounds is essential for every experi-
mental analysis in particle physics. One of the most
well-established data-driven techniques for background
estimation is the ABCD method. In this paper we have
reexamined the criteria for the ABCD method to be
effective and proposed a way to find the variables used
to establish the ABCD regions using machine learning.
A general observation we make in this paper is that the

signal contamination in the background region normalized
to the signal fraction in the signal region drives the quality
of the ABCD background estimate. This observation is
independent of any machine-learning approaches to deter-
mining the features. We argue that controlling this nor-
malized signal contamination should become a default
procedure in applying the ABCD method, since neglecting
it can lead to incorrect, and typically overly conservative,
p-values.
Regardless of how one estimates contamination of the

background samples, a necessary condition for the ABCD
method to work is the availability of two independent
classifiers. These classifiers are usually found by guessing
observables that, on physical grounds, seem like they
would be independent, and then verifying their independ-
ence with simulations or validation regions. Such a pro-
cedure is by no means guaranteed to yield optimal results.
Indeed, observables either designed for classification by
hand or learned by machine easily have better discrimina-
tion power than observables chosen to be independent.
However, optimal observables aim to make maximum use
of available information and will in general exhibit com-
plex dependencies with all other observables.

5For example, the correlation between pT and the number of
particles inside jets can be described in perturbation theory and
thus is known precisely [107,108] while the spectrum of the
number of particles itself is non-perturbative and cannot be
calculated from first principles.

KASIECZKA, NACHMAN, SCHWARTZ, and SHIH PHYS. REV. D 103, 035021 (2021)

035021-14



In this paper, we proposed to use machine learning
methodology to optimize the ABCD method. We consid-
ered two use cases: (1) single DisCo, where a first variable
(such as mass) is fixed and another is learned to be
decorrelated with it and optimize discrimination, and
(2) double DisCo, where both variables are learned. For
both methods, our machine learning approach builds upon
the DisCo loss term, a recently developed method for
automated decorrelation. This technique allows for the
autonomous construction of a robust data-driven back-
ground estimation assuming a specific signal model.
We considered three examples: (1) a simple model of

correlated random variables that demonstrates how single
and double DisCo work, (2) boosted top tagging, and (3) an
RPV squark search, based on an existing ATLAS analysis.
We found that while single DisCo offers competitive
performance in terms of pure background rejection, double
DisCo achieves lower signal contamination levels in both of
the physical examples considered. We note that while DisCo
was used to demonstrate decorrelation in this paper, the
general idea can be combinedwith any decorrelationmethod
[66–81] and the best approach may be application specific.
On the surface, one advantage of the traditional ABCD

method has over the proposed automated approaches is that
it is largely signal model independent. However, even there,
it is necessary to explicitly verify low signal contamination
for all considered models using simulations. On the other
hand, the training of single DisCo or double DisCo can be
extended to a cocktail of signal models or parametrized as a
function of the considered signal [109,110].
While the single and double DisCo approaches achieve

excellent performance, even better sensitivity might be
obtained by optimizing the necessary criteria of low signal
contamination and good ABCD closure more directly. We
argued in earlier sections that the single and double DisCo
loss qualitatively capture these requirements, but direct
optimization of the conditions is challenging as they cannot
be readily cast in a differentiable form. One might, for
example, try an iterated learning approach or one based on
reinforcement learning, where the final p-value for ABCD
searches is used as a score. Further studies in this direction
are left to future work.
Finally, it is important to consider the task of background

estimation in the broader context of analysis optimization.
A variety of methods have been proposed to directly
optimize analysis sensitivity including uncertainty
[111–114]. Background estimation is a key part of analysis
design and could be integrated into the ABCD method in
order to further optimize the overall discovery potential.
An orthogonal approach is to construct searches for new
physics in a model independent way [14,80,115–138]. Such
searches will also require robust and automated data-driven
background predictions and—at least partially—can be
trained with a single or double DisCo method.

In summary, we are able to increase the discovery
potential of physics analyses by enabling robust back-
ground estimates for more powerful classifiers. This
improvement is made possible by clearly defining the
objectives and then using automated tools to optimize a
parametric function to achieve them. The present work
shows that even time-tested and widely deployed analysis
methods can benefit from systematic optimization.
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APPENDIX A: DISTANCE CORRELATION

For two random variables f and g, the distance covari-
ance is defined as

dCov2½f; g� ¼ hjf − f0j × jg − g0ji
þ hjf − f0ji × hjg − g0ji
− 2hjf − f0j × jg − g00ji; ðA1Þ

where ðf; gÞ, ðf0; g0Þ, ðf00; g00Þ are all independent and
identically distributed from the same joint distribution. In
practice, we evaluate dCov2½f; g� by averaging jfi − fjj×
jgi − gjj, jfi − fjj, and jgi − gjj over all pairs of events i, j,
and jfi − fjj × jgi − gkj over all triplets of events i, j, k.
The distance correlation is then defined analogously to

the usual correlation:

dCorr2½f; g� ¼ dCov2½f; g�
dCov½f; f�dCov½g; g� : ðA2Þ

APPENDIX B: SINGLE DISCO IN THE
GAUSSIAN CASE

In Sec. IVA, we observed that for the simple Gaussian
model with three Gaussian random variables X0, X1, and
X2, the single DisCo classifier fðX1; X2Þ trained to be
independent of X0 (which is correlated with X1 but not X2)
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is only a function of X2 and does not depend on X1. The
purpose of this Appendix is to prove this.
We start by rotating from ðX0; X1; X2Þ into another set of

three Gaussian random variables that are mutually inde-
pendent: X0;W, and X2 with X1 ¼ αX0 þ βW, where α, β
depend on ρb and W is independent from ðX0; X2Þ. Then,
we can also write hðX0;W; X2Þ ¼ fðαX0 þ βW;X2Þ.
Let Q ¼ ðW;X2Þ. Suppose that hðX0; QÞ and X0 are
independent. Then for all sets A and B,

Pr½hðX0; QÞ ∈ A and X0 ∈ B� ¼ Pr½hðX0; QÞ ∈ A�
× Pr½X0 ∈ B�: ðB1Þ

For any B, define AB ¼ fhðx0; qÞ∶x0 ∈ B; ∀ qg. Then, the
probability that hðX0; QÞ ∈ AB given X0 ∈ B is unity,

Pr½hðX0; QÞ ∈ AB and X0 ∈ B�
¼ Pr½hðX0; QÞ ∈ ABjX0 ∈ B� × Pr½X0 ∈ B�
¼ Pr½X0 ∈ B�; ðB2Þ

and so Eq. (B1) simply reduces to Pr½hðX0; Q ∈ AB� ¼ 1.
This means that hðx0; qÞ cannot depend on x0. Therefore,
we conclude that if hðX0; QÞ and X0 are independent, then
h does not depend on X0. The only way for h to not depend
on X0 is for f to not depend on X1.
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