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We consider a texture for the neutrino mass matrix characterized by one vanishing 2 x 2 subtrace.
We analyze phenomenologically and analytically all the six possible patterns, and show that all nonsingular
ones are able to accommodate the experimental bounds, whereas singular patterns allow for only four
inverted-hierarchy type textures. We then present some possible realizations of this texture, within seesaw
scenarios, either directly or indirectly by relating it to zero textures.
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I. INTRODUCTION

The fact that neutrinos are massive was the first firm sign
of physics beyond standard model [1]. Many flavor models
for neutrino mass matrix were conceived, motivated by
phenomenological data on neutrino oscillations [2]. Zero
textures were studied extensively [3—5], but other forms of
textures were equally studied, such as zero minors [6] and
partial y — = symmetry textures [7].

The objective of this work is to study the texture
characterized by one vanishing subtrace, motivated by
many factors. First, a particular texture of vanishing two
subtraces was studied in [8], where analytical expressions
for the measurable neutrino observables were derived, and
numerical analysis was done to show that 8 patterns, out of
the 15 independent ones, can accommodate data. Second,
the so-called u — v antisymmetry texture was studied in,
say, Ref. [9]. This texture, in addition to the condition
(M., = —M,,;) which can also be implemented in y —7
symmetry textures [7], included also a certain vanishing
subtrace condition (M, + M., = 0). Third, the one van-
ishing 2 x 2 subtrace texture can actually be seen as a
generalization of the zero texture when the latter is regarded
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as a vanishing 1 x 1 subtrace texture. Fourth, since the
equal entries texture has been of interest recently, either in
hybrid texture (e.g., Ref. [10]) or simply in assuming two
such equalities (e.g., Ref. [11]), and since such an equality
condition is closely related to a condition of the vanishing
sum of the corresponding two entries, so studying textures
of vanishing subtrace adds further analysis into these
studies. We implement the new experimental bounds of
[12], with the new updates on the nonvanishing value of the
smallest mixing matrix [13], and carry out a complete
numerical analysis, where all the free parameters are
scanned within their experimentally accepted ranges. We
discuss nonsingular patterns having all the neutrino masses
nonvanishing and singular patterns where one of the masses
is zero. We find all six nonsingular textures able to
accommodate the experimental data. As to singular tex-
tures, only four textures can accommodate data of the
inverted hierarchy type. We then address the question of
how to realize such a vanishing subtrace texture. First, we
relate the symmetry imposing the vanishing subtrace
pattern to another symmetry which forces zeros at specific
locations. The former pattern arises upon rotating the zero-
texture form. Although the texture form is imposed at high
scale, however, many arguments [14] were presented in
favor of keeping the form when running into low scale. The
method we suggest for realizing the vanishing subtrace
texture applies only to four out of six possible patterns.
However, it is generic enough to be applicable to any
specific texture related by unitary transformation to zero
textures, and we apply it successfully within type I and
type II seesaw scenarios. Second, we present direct
realizations of the textures within type I and type II seesaw
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scenarios, without relating them to zero textures, based on
discrete symmetries.

The plan of the paper is as follows. In Sec. II, we present
the notation and adopted conventions. In Sec. III, we
explain the method to follow for the phenomenology. In
Sec. IV, we present the analysis of all the nonsingular six
patterns of one vanishing subtrace supplemented with one
single table summarizing all the predictions of the various
patterns. Subsections therein correspond to these different
patterns where for each one we report the relevant defining
quantities, correlation plots, and one representative point
for each type of hierarchy. We repeat the analysis in Sec. V
for the singular patterns. Section VI outlines the problem of
how to build models implementing the vanishing subtrace
texture whether it be directly or indirectly. In Sec. VII, we
develop the generic method relating the symmetry of
vanishing subtraces to that of zero textures and use it as

|

an indirect method for getting the vanishing subtrace
texture. In Sec. VIII, we clarify the notion of flavor basis
which is of paramount relevance in our discussion. The
aforementioned indirect method is applied within type I
seesaw scenarios in order to realize invertible (singular)
vanishing subtrace textures in Sec. IX (10). We reapply this
indirect method in Sec. XI but within the type II seesaw
scenario. In Secs. XII and XIII, we present, respectively, a
direct way to impose the textures within type I and type II
seesaw scenarios. The summary and conclusion are pre-
sented in Sec. 14.

II. NOTATION

In the “flavor” basis, where the charged lepton mass
matrix is diagonal and thus the observed neutrino mixing
matrix comes solely from the neutrino sector, we have

my 0 0
M,=Vpuns| O my O (VPMNS)T» (1)
O 0 ms

P = diag(e™, €', 1),
i
cpcize”’

Vemns = U P = —0)e

(—C12S23S13 — §12€23€

(—c12€23513 + S12523€70) e

where R;;(0;;) is the rotation matrix in the (i, j) plane by
angle 0;; and s;, =sinf),.... Note that in this adopted
parametrization, the third column of Vpyg is real.

The mass spectrum is classified into two categories:

(1) Normal hierarchy: characterized by m; < m, < mjy

and is denoted by N.
(ii) Inverted hierarchy: characterized by m; < m; < m,
and is denoted by I.

The neutrino mass-squared differences, characterizing,
respectively, solar and atmospheric neutrino mass-
squared differences together with their ratio R,, are
defined as

1
om* =m3 —m3, Am? = m%—i(m%+m%) ,
R, = ém?/Am?. (3)

Two parameters that put bounds on the neutrino
mass scales, through studying beta-decay kinematics and
neutrinoless double-beta decay, are the effective electron-
neutrino mass,

U = Ry3(653) Ri3(63) diag(1,e72, 1) R5(612),

i
Sipc13€" 513 2)
(_ + —i5) ic ’
§12823813 T C12€23€ e $23€C13 |
isn i
(=S1223813 — C12803¢7)e  cx3c13

and the effective Majorana mass term m,,,

m,, = |m]V§1 + szgz + m3V33| = ‘My]||.

(5)

13 ’

Cosmological observations put bounds on the “sum

parameter X:

(6)

The last measurable quantity we shall consider is the
Jarlskog rephasing invariant defined by

(7)

_ 2
J = §12€12823C23813C73 Sin 6.

The experimental bounds for the oscillation parameters
are summarized in Table 1.
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TABLE I. Allowed 1-2-30 ranges for the neutrino oscillation parameters: mixing angles, Dirac phase §, mass-
square differences together with the R, parameter, taken from the global fit to neutrino oscillation data [12]. The
quantities 5m?, Am?, and R, are, respectively, defined as m3 — m3, |m3 — (m? 4+ m3)/2|, and Sm*/Am?. Normal
and inverted hierarchies are, respectively, denoted by NH and IH.

Parameter Hierarchy Best fit lo 20 30
sm?* (107 eV?) NH, IH 7.37 [7.21, 7.54] [7.07, 7.73] [6.93, 7.96]
Am? (1073 eV?) NH 2.53 [2.50, 2.57] [2.45, 2.61] [2.41, 2.65]
IH 2.51 [2.47, 2.54] [2.43, 2.58] [2.39, 2.62]
R, NH 0.029 [0.028, 0.030] [0.027, 0.031] [0.026, 0.033]
IH 0.029 [0.028, 0.030] [0.027, 0.032] [0.026, 0.033]
01, NH, IH 33.02 [32.02, 34.09] [30.98, 35.30] [30.00, 36.51]
013 (°) NH 8.43 [8.30, 8.55] [8.11, 8.74] [7.92, 8.90]]
IH 8.45 [8.27, 8.59] [8.08, 8.78] [7.92, 8.94]]
03 (°) NH 40.69 [39.82, 41.89] [38.93, 43.29] [38.10, 51.66]]
H 42.42 [40.23,42.02] U [39.18,44.02] U [38.29, 52.90]
[48.86, 51.006] [46.89, 52.01]
5 NH 248.40 [212.40, 289.80] [180.00, 342.00] [0.00,30.60] U
[136.80, 360]
IH 235.80 [201.60, 291.60] [165.60, 338.40] [0,27.00] U
[124.20,360]

For the nonoscillation parameters X, m,,, and m,, we Re(A;)Im(A,e%7) — Re(A,e??)Im(A3)
adopt th§ ranges reported in the repent Ref. [15] for th§ first m_3 = Im(4, eZip)Re( A, eZia) —Re(A, e2ip>Im( A, eZia)
two, while for m, we use more stringent values found in the )y iy .
earlier Ref. [16]: n _ Im(A_3)Re(A1€ _p> - Re(A3)Im(A1e ?)

my  Im(A;e*?)Re(A,e%°) — Re(A,e*”)Im(A,e?7)
> <07 CV, (11)
m,, < 0.3 eV, (8)
m, < 1.8 eV. where A, is defined as

III. TEXTURE OF ONE-VANISHING
SUBTRACE

We denote by C;; the texture where the subtrace
corresponding to the ijth element (i.e., the trace of the
submatrix obtained by deleting the ith row and the jth
column of M) is equal to zero. We have six possibilities of
having one subtrace vanishing. Let the diagonal elements
of the trace-free submatrix corresponding to C;; be the
elements at the (a, b) and (c, d) entries of M,, then the
vanishing subtrace condition is written as

Muab +Mucd =0, (9)
and then we have
3
Z(Uanbf+Uchdf)/11 =0 (10)
/=1

with A; = m,e*?, ), = m,e*, and A3 = m5. This leads to

Aa = (Uaana =+ UcaUda)’ a = 1’ 2’ 3. (12)

We see that knowing the mixing and phase angles we can
get mass ratios. Considering now

2

om Xml sz
Mmy=|—s5—7, M| =HM3X—, NH=Hn3X—
2 -(Gmr ms’ my’
(13)

we see that knowing 6m? will allow us now to
compute the mass spectrum and all the neutrino observ-
ables. Thus our input parameters will be the seven
parameters  (three mixing angles + three phase angles +
solar mass squared difference) which for the texture
imposing one complex condition (two real conditions)
allows us to determine the 9 degrees of freedom of the
neutrino mass matrix. We then can compute all the
observable quantities, test the experimental bounds in
Table I of Am?> and in Egs. (8) of the remaining
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mass bounds, and draw correlation plots of the accepted
points.

Also, one should investigate the possibility, for each
pattern, to have a singular (noninvertible) mass matrix.
The viable singular mass matrix is characterized by one of
the two masses (m; for the N hierarchy, and mj for the I
hierarchy) being equal to zero, as compatibility with
the data prevents the simultaneous vanishing of two
masses:

(i) The vanishing of m together with Egs. (3), (10), and

(12) imply that the mass spectrum of m, and m;

takes the values Vém? and \/Am?> + ém?/2, re-
spectively, and we get

2 _ s o2f]A]% 1
Am*~ = ém ( l — 2),
‘ (14)
plioc — _ Asms
Aymy °

(i) The vanishing of m; together with Eqgs. (3), (10),
and (12) imply that the mass spectrum of

m, and m; takes the values \/Am?> 4 6m?>/2 and
/ Am?* — 5m?/2, respectively, and we get

AL2

A2

2 1 o lmlt

Am _25m (j\iz—l ,
2

€2i(p_o-) e

(15)
_Aymy
Aymy®

IV. PHENOMENOLOGICAL ANALYSIS FOR
NONSINGULAR TEXTURES

The parameter space is seven-dimensional representing
the parameters (0,5, 0,3, 03, 6, p, 6, dSm?) within their
allowed experimental ranges, where we throw N points
uniformly in the corresponding parameter space and test
using Eqgs. (11) and (13) first to check the hierarchy
type, and then to see whether the bounds of Am? with
those of Eq. (8) are satisfied. Since the experimental
bounds stated in Table I are not identical for the two types
of hierarchy, then the parameter spaces in both cases are
different, and one is obliged to repeat the sampling
in the two cases, imposing the desired type of hierarchy
with the other experimental bounds on the accepted
points. The number of points N needed for a statistically
significant sampling is found to be at least of the order
107-10'°.

In each of the following subsections, labeled by the
textures C;;, and for each corresponding pattern we
provide the analytic expressions of the quantities A,,
defined in Eq. (12), which characterize the pattern. We
find that all the textures accommodate data for all types of
hierarchy and at all statistical levels. All various predic-
tions concerning the ranges spanned by mixing angles,

phase angles, neutrino masses, m,, m,,, and J are
summarized in Table II. No signature is apparent in the
case of normal ordering for the spanned ranges of neutrino
masses presented in Table II. However, in the case of
inverted ordering of the neutrino masses, we see that m;
can reach a vanishing value for the textures C;,, C;5 at all
o levels, and only at 2-3—o-levels for the textures C,, and
Cs;. In contrast, m5 is never vanishing for the textures Cy
and C,;. Thus, the textures Cj,, Cy3, C,,, and C;; are
predicted to allow for singular mass matrix, as will be
shown later to be the case. The ranges spanned by the
parameter J, in Table II, show that J at the 1-2—c-levels for
normal ordering and l-o-level for inverted ordering is
negative in all textures, which puts the Dirac phase § in the
third and fourth quarters. Also from Table II, the ranges
spanned by the phase angles (p, o) indicate that for the
texture C;, in the case of normal hierarchy and at the 2¢
level there are gaps (¢ & [90°, 150°] and p & [34°,1017)),
and a similar gap (p & [0°, 18°)) for the texture C,3 which
becomes (p & [0°,5%) at the 3o level. However, in the
case of inverted ordering, we see at all levels that the
phase p for the texture C,3 is bound to be in the interval
([60°, 120°)).

We present for each texture with either hierarchy type the
neutrino mass matrix obtained at one representative point
chosen from the points accepted out of those generated
randomly in the corresponding parameter space at the 3 — ¢
level. The choice of the representative point is made in such
a way to be as close as possible to the best fit values for
mixing and Dirac phase angles.

Finally, we plot all the possible correlations at the 2 — o
level. We show for each texture with either ordering 20
correlations. All correlations for each texture are organized
in a single figure divided into left and right panels. The left
panel of the figure consists of two columns where the first
(second) column is devoted for a normal (inverted) hier-
archy and shows three correlations amidst the mixing
angles, three correlations amidst the phase angles, and
three correlations of ¢ with [/, m,,, lowest neutrino mass
(LNM)] and finally the correlation (ms, my; = Z—i). On the

other hand, we follow for the right panel of the figure
the same division strategy as in the left one, but each
column includes all the nine intercorrelations between
the phase angles and the mixing angles, and the correlation
(ms, my, E:’%). For the sake of convenience and easy

referencing, each subfigure is labeled by three letters
which indicate the vertical positioning (a,b,c,...), the
type of ordering (N = normal, / = inverted) and the
paneling (L = left, R = right). The last row in the figure
thus gives information on the severity of the mass
hierarchy.

Irrespective of the ordering (normal or inverted), we find
in all the textures a sinusoidal correlation between (8, J)
which is a direct consequence of Eq. (7) where J depends
on mixing angles and Dirac phase 6. The variations due to
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TABLE II. (Continued)

My +Mp =0

Model Cy;

J (1071
~0.36-—0.02 U

me, (1071 eV)

m, (107! eV)

N m; (1071 eV) m, (107" eV) mjy (107! eV) &
7.92-8.94

05

01z

Quantity

0.14-1.78

0.51-2.24

58.70-121.76  0.00-78.15U

3.85-26.92u
124.3-174.2U
184.5-355.95

0.52-2.24 0.14-2.18

0.51-2.24

30.00-36.50  38.29-52.89

30

0.02-0.30

102.9-179.88

My +Mp»n=0

Model Cs;

J (107

me, (1071 eV)

m, (1071 eV)

5

eV)

0.53-1.98

0 i, my (107" eV)  m, (107" eV)  my (107!

012

Normal hierarchy

Quantity

—0.33--0.17

0.13-1.40
0.11-2.09

0.01-1.02

0.18-1.92
0.15-2.19

0.05-179.89

0.82-179.18
0.47-177.96

63.95-126.18
55.80-128.67
51.70-129.52

212.41-289.68

180.00-341.94
0.12-30.38u
137.7-359.89

0.18-1.92
0.15-2.19

8.30-8.55 0.16-1.92

39.82-41.89
38.93-43.29

38.10-51.64

32.02-34.09
30.98-35.30
30.00-36.50

lo

—0.34-0.00
—-0.33-0.23

0.52-2.25

0.12-2.19
0.12-1.97

8.11-8.74
7.92-8.90

20

0.14-1.97

0.51-2.03

0.15-1.97

30

Inverted hierarchy

-0.33--0.12

0.49-2.16 0.19-1.93

0.007-94.1u

0.50-2.16 0.027-2.10 201.61-291.1  56.68-131.75

32.01-34.09 40.23-42.02u  8.27-8.59 0.50-2.16

lo

141.7-179.73
0.01-86.3U

48.86-51.06
30.98-35.30 39.18-44.02u  8.08-8.78

0.16-1.51 —0.34-0.08

0.49-2.20

14.89-169.88

165.60-267.5U
286.3-338.21
1.18-26.53u

0.50-2.20 0.00-2.14
124.20-359.84

0.50-2.20

20

106.4-179.75
0.01-83.32u
99.9-179.98

46.92-52.01

0.14-1.51 —0.33-0.29

0.48-2.13

1.46-173.20

0.49-2.13 0.00-2.07

7.92-8.94 0.49-2.13

38.29-52.90

30.00-36.51

30

the mixing angles in this relation are tiny because of the
tight range allowed for the mixing angles, and thus
J «sind. The appearing sinusoidal curve is not a full
sine curve which would have covered a complete cycle;
rather it is a portion depending on the admissible range for
0. Another generic feature that we find is the quasidege-
neracy of the first two neutrino masses characterized
by m; = m,.

In the case of normal ordering, we see, for the textures
Ci, and Cy3, sizable forbidden bands for both ¢ and p that
tend to diminish as the statistical level increases, and a
quasidegenerate spectrum for all neutrino masses with
(0.7 < my; < 1). As to the textures C;; and C,,, we see
that there remain persistent forbidden bands for (o, p) at all
statistical levels, and that we can have a mild or moderate
mass hierarchy characterized by (0.4 < m,3; < 1) in texture
C,,, whereas we have a quasidegenerate spectrum for
all masses with m,; &~ 1 in texture C;;. Moreover, for the
latter texture C,;, we find two ribbons for the correlation
(6, o). Regarding the texture C,3, we see that there are
forbidden bands for p, and that the mass hierarchy can
be mild or moderate (0.4 < my; <0.9). This situation
repeats itself for the texture Cz; where we have

In the case of inverted ordering, we find for the texture
C,, two ribbons for the correlation (6, ¢) and a mild or
moderate mass hierarchy characterized by (1 < my; < 3).
For the textures C;,, C;3, and C,,, we may get an acute
hierarchy reaching a strength my; =~ 10* for C,, and my; ~
103 for both C,5 and C,,. We get for the mass spectrum a
mild hierarchy characterized by (1.2 < my3; <3) in the
texture (C,3), where, in addition, we find forbidden bands
for (o,p). Finally for the texture Cj3, we have again
forbidden bands for (o, p), but the hierarchy can be severe
reaching a strength m,; ~ 10*.

A. Pattern C,;: Vanishing of M, ,, + M, 3;

The relevant expressions for A;, A,, and A3, as defined in
Eq. (12) for this pattern, are

_ —i5\2 —i5\2
A= (012S23S13 + $12023€ ) + (012023S13 — §12823€ ) >
_ —i5\2 —i5\2
Ay = <S12S23513—C12€23€ ! ) + (S12C23S13+012523€ ' ) >

A3 = C%3. (16)

For a representative point with normal ordering, we
take 6, = 33.2327°, 0,3 = 41.7746°, 6,3 = 8.5625°, 6 =
189.5139°, p=91.0971°, 6=102.9376°, m; = 0.2162 eV,
my = 0.21642 eV, my = 0.22212 eV, m, = 0.21642 eV,
and m,, = 0.20292 eV with the corresponding mass
matrix (in eV):

035020-7
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—0.2001-0.0334i 0.04004-0.0333; 0.0495-0.0230:

M, =
0.0495-0.0230:

0.0400+0.0333i —0.0234-0.00597 0.2112-0.0014i |. (17)
0.2112-0.0014i 0.0234+0.0059i

For an inverted hierarchy representative point we take 01, = 33.8335°, 6,3 = 42.3044°, 0,53 = 8.7834°, § = 246.8983°,
p =51.0968°, ¢ =150.5728°, m; = 0.0553 eV, m, = 0.0560 eV, m3 = 0.0236 eV, m, = 0.0550 eV, and m,, =

0.0220 eV with the corresponding mass matrix (in eV):

0.0014 + 0.0219i
M, = | 0.0286 + 0.0239i
—0.0214 — 0.0263i

We see, from Table II, that m; does not approach
a vanishing value in inverted type which indicates that no
corresponding singular matrix exists. We see also that J at
1 — 20 levels for normal ordering and 1o for inverted
ordering is negative so the corresponding ¢ is at third or
fourth quarters. For normal ordering, the allowed ranges
for p and o tend to increase as the statistical level
increases reaching [46.41°,131.49° ([47.41° 135.33°))
for p (o) at the 30 level.

For the plots of Fig. 1, two ribbons for the correlation
(6, o) exist for both types of hierarchy. The mass spectrum
has a moderate mass hierarchy characterized by (1 <
my3 < 3) in the inverted ordering. In contrast, the mass
spectrum is quasidegenerate in the case of normal ordering
where m; & m, & ms.

0.0102 — 0.0146i
M, =] —0.0255 + 0.0052i
0.0343 — 0.0017i

0.0286 + 0.0239i
—0.0076 — 0.0055i
0.0225 + 0.0000i

—0.0255 4 0.0052i
0.0288 — 0.00811
0.0404 + 0.0062i

—0.0214 — 0.0263i
0.0225 + 0.0000; |. (18)
0.0076 + 0.0055i

B. Pattern C;,: Vanishing of M ,; + M 33

The relevant expressions for A;, A,, and A3, as defined in
Eq. (12) for this pattern, are
Ay = —(c12523813 + s12623¢ ) paC13

—is\2
+ (c12€23513 = S12823€7"°)

9

_ —i5
Ay = —(S12523S13 — C1pC3€ )S12€13

_is\2
+ (512023813 + C12523€7"°)

s

A3 = s13803€13 + €35¢15 (19)

For a representative point with normal ordering, we take
912 - 3373670, 623 - 4174680, 613 - 8.41340, 5 -
312.5765°, p=151.9557°, 6=63.7910°, m; = 0.0458 eV,
my = 0.0466 eV, m; = 0.0684 eV, m, = 0.0466 eV, and
m,,=0.0178eV, with the corresponding mass matrix (ineV):

0.0343 — 0.0017i
0.0404 + 0.0062i |. (20)
0.0255 — 0.0052i

For an inverted hierarchy representative point we take 01, = 33.2436°, 6,3 = 41.4914°, 0,53 = 8.6242°, 5 = 236.7486°,
p = 149.9638°, ¢ = 123.9278°, m; = 0.0507 eV, m, = 0.0515 eV, m3 = 0.0115 eV, m, = 0.0504 eV, and m,, =

0.0456 eV with the corresponding mass matrix (in eV):

0.0118 — 0.0440i
M, =1 0.0093 —0.0076i
—0.0083 + 0.0156i

We see, from Table II, that m5 can reach zero in inverted
type, so we expect a possible singular texture existing.
Again J at 1 — 20 levels for normal ordering and 1o for
inverted ordering is negative so the corresponding ¢ is at
third or fourth quarters. For normal ordering, at 1 — o level
there is a gap [6°,103°] ([56°,157°]) for p (o) which
becomes at 2 — o level [342,102°] ([91°, 1527]).

For the plots of Fig. 2 in normal ordering, we find large
forbidden gaps for p and ¢ and a quasidegenerate mass

0.0093 — 0.0076i
—0.0194 4- 0.0154i
0.0255 - 0.0121:

—0.0083 + 0.0156i
0.0255—0.0121i |. (1)
—0.0093 + 0.0076i

I

spectrum where (0.6 < my; <0.95). As to the plots of
Fig. 2 in inverted type, we see that we may get an acute
hierarchy with m,; reaching up to 10* which reveals the
possibility of vanishing m;.

C. Pattern C,3: Vanishing of M,,; + M 3

The relevant expressions for A;, A,, and A3, as defined in
Eq. (12) for this pattern, are
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FIG. 1. Pattern C;; = M,,, + M, 33 = 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of é with J, m,,, lowest neutrino mass
(LNM), and finally the correlation (m5, my; = %) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns)

shows all the nine intercorrelations between phase angles and mixing angles, and the correlation (m3, my; = :’Tf) for normal (N) and
inverted (I) hierarchies. Angles (masses) are evaluated in degrees (eV).
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FIG. 2. Pattern C, = M,,; + M, 33 = 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of § with J, m,,, LNM, and finally the
correlation (ms, my; = :Z—i) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns) shows all the nine
intercorrelations between phase angles and mixing angles, and the correlation (5, m,; = Z—?) for normal (N) and inverted (I) hierarchies.
Angles (masses) are evaluated in degrees (eV).
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_ —i5 —is
A= (012523S13 + s12023€ )(012023313 — C12€13 — S12823¢€ )

_ —i5 —i5
Ay = (512S23513 —cpepe )(512C23513 —812€13 + Cp803€”! )

Az = ciasp(eazcrs +513).

(22)

For a representative point with normal ordering, we take 0;, =33.8222° 6,5 =40.4289°, 6,3 =8.7721°,
0 = 243.7429°, p = 148.0834°, ¢ = 34.0333°, m; = 0.1821 eV, m, = 0.1823 eV, m; = 0.1888 eV, m, = 0.1823 eV,
and m,, = 0.0987 eV with the corresponding mass matrix (in eV):

0.0791 — 0.0590i
—0.0909 — 0.0491:
0.0997 + 0.0538i

M, =

—0.0909 — 0.0491:
0.1037 — 0.04591
0.0909 + 0.0491:

0.0997 + 0.0538i
0.0909 + 0.0491i |. (23)
0.0911 — 0.0527i

Equally, for an inverted hierarchy we can take a representative point as follows: 0;, = 33.8850°, 0,3 = 42.2823°,
0,3 = 8.5649°, 6 =244.3791°, p =48.7884°, ¢ = 57.5072°, m; = 0.0644 eV, m, = 0.0650 eV, m; = 0.0421 eV,
m, = 0.0642 eV, and m,, = 0.0623 eV with the corresponding mass matrix (in eV):

—0.0131 + 0.0609i
0.0099 —0.0112i
0.0023 - 0.0022i

M, =

We see, from Table 11, that m5 can reach zero in inverted
type, so we expect a possible singular texture existing.
Table II also reveals that J, at 1 — 2o levels for both normal
and inverted ordering, is negative so the corresponding & is
in third or fourth quarters. For normal ordering, the ranges
for p (o) are restricted to be [42°,155°] ([17°,102°)) at lo
level, whereas they tend to be wider at 3¢ level covering
[6°,175° ([0.01°, 180°)).

For the plots of Fig. 3 in normal ordering, we find a
quasidegenerate mass spectrum where (0.65 <my; <0.95).
As to the plots of Fig. 3 in inverted type, we may get an
acute hierarchy with m,3 reaching up to 10°, so a vanishing
my is possible.

|

0.0099 —0.0112i
0.0508 — 0.0098i
—0.0099 + 0.0112i

0.0023 — 0.0022i
—0.0099 4 0.0112i |. (24)
0.0507 — 0.0098i

D. Pattern C,,: Vanishing of M, ;; + M ;33

The relevant expressions for A, A,, and As, as defined in
Eq. (12) for this pattern, are

Ay = ety + (€1aeassi3 — s1523¢7°)?,
Ay = s1r¢13 + (512623813 + € 1a503e ™)’
Ay = sty + 53¢t (25)

For a representative point with normal ordering, we
take 01, = 33.8000°, 0,3 = 40.7648°, 6,3 = 8.4791°, 6 =
300.9481°, p=81.5950°, ¢ = 69.8454°, m; = 0.0398 eV,
my = 0.0407 eV, m3 = 0.0647 eV, m, = 0.0408 eV, and
m,, =0.0372 eV with the corresponding mass matrix (in eV):

9

—0.0337 +0.0157i  0.0064 + 0.0032i 0.0138 — 0.0059i
M, = 0.0064 +0.0032; 0.0252 —0.0235i 0.0327 4 0.0196i |. (26)
0.0138 —0.0059¢  0.0327 +0.0196i 0.0337 — 0.0157:

For an inverted hierarchy representative point, we take 0, = 33.5774°, 0,3 = 42.7607°, 0,3 = 8.7549°, 5§ = 281.0485°,
p =99.6048°, ¢ =167.4130°, m; = 0.0749 eV, m, = 0.0754 eV, m; = 0.0571 eV, m, = 0.0747 eV, and m,, =

0.0372 eV with the corresponding mass matrix (in eV):

—0.0263 — 0.0263i

0.0201 + 0.0479i

—0.0011 — 0.0388i

M, =1 0.0201 + 0.0479i
—0.0011 — 0.0388i

0.0162 + 0.0104i
0.0336 — 0.01961

0.0336 — 0.0196i |. (27)
0.0263 + 0.0263i

We see, from Table II, that m5 can reach zero in inverted type, so we expect a possible singular texture existing. Again,

from Table II, J at 1 — 2¢ levels for normal ordering and 1o for inverted ordering is negative so the corresponding § is in
third or fourth quarters. For normal ordering, values of p are restricted to fall in the range [52°, 128°] at the 3¢ level.
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FIG. 3. Pattern C;3 = M,,; + M,,3 = 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of 6 with J, m,,, LNM, and finally the
correlation (ms, my; = "mii) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns) shows all the nine

intercorrelations between phase angles and mixing angles, and the correlation (m5, m,; = Z—?) for normal (N) and inverted (I) hierarchies.
Angles (masses) are evaluated in degrees (eV).
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For the plots, Fig. 4, in normal ordering, we find forbidden bands for (o, p) and a moderate mass hierarchy where
(0.45 < my; < 1). As to the plots of Fig. 4 in inverted type, there are forbidden bands for (¢, p) and the mass hierarchy can
become acute with m,; reaching up to 10° making a vanishing m; possible.

E. Pattern C,3: Vanishing of M ;{ +M, 3

The relevant expressions for A;, A,, and As, as defined in Eq. (12) for this pattern, are

) _is _is
Ay = c1yci3 + (€12523813 + 8512003 770) (€12C23813 = S12523€7°),

_ 22 —i5 —is
Ay = sz + (S12323513 — C12Cx3€ )(S12023313 + Ci28p3€ )

) >
Az = s73 + 523¢23C73.

(28)

For a representative point with normal ordering, we take 0;, =33.4546° 6,3 =42.2981°, 6,3 = 8.4653°,
0 = 248.6157°, p =94.3533°, ¢ = 68.6630°, m; = 0.0203 eV, m, = 0.0221 eV, m3 = 0.0554 eV, m, = 0.0222 eV,
and m,, = 0.0175 eV with the corresponding mass matrix (in eV):

—0.0173 4+ 0.0024;i 0.0012 —0.0013; 0.0136 + 0.0007i
M,= ] 0.0012-0.0013i 0.0361 4 0.0029; 0.0173 —0.0024i |. (29)
0.0136 + 0.0007i  0.0173 —0.0024;i 0.0369 + 0.0020i

For an inverted hierarchy representative point we take 0, = 33.2679°, 6,3 = 42.8064°, 0,3 = 8.6838°, § = 236.7459°,
p =98.4416°, ¢ =22660°, m; =0.0573 eV, m, =0.0579 eV, m; =0.0288 eV, m, =0.0570 ¢V, and m,, =

0.0222 eV with the corresponding mass matrix (in eV):

—0.0198 — 0.0100:
—-0.0214 + 0.0285i
0.0299 — 0.0243i

M, =

We see, from Table II, that m5; cannot reach zero, so we
expect no viable corresponding singular pattern. Again,
from Table I, J at 1 — 20 levels for normal ordering and 1o
for inverted ordering is negative so the corresponding § is in
third or fourth quarters. For both normal and inverted
ordering, the phase p is bound at all ¢ levels to be nearly in
the interval ([60°, 120°]).

For the plots, Fig. 5, in both normal and inverted
ordering, we get an approximately degenerate spectrum
characterized, respectively, by (0.4 < my; <0.9) and
(1.2 < my3 < 3). The plots in Fig. 5 also reveal that the
phase p is bound to fall approximately in the interval
([60°, 120°]), while there are forbidden bands for the phase
o for both types of hierarchies.

—0.0170 + 0.0072i
0.0158 + 0.0354i
0.0047 — 0.0320i

M, =

—0.0214 + 0.0285i
0.0122 - 0.0172i
0.0198 + 0.0100:

0.0158 + 0.0354i
0.0170 — 0.0072i
0.0456 — 0.0010i

0.0299 — 0.0243i
0.0198 + 0.0100i |. (30)
0.0042 — 0.0042i

F. Pattern Cs3: Vanishing of M, ;; + M ,,,

The relevant expressions for A, A,, and A;, as defined in
Eq. (12) for this pattern, are

_ 22 _is\2
Ay = cfyct3 + (c12823813 + S12c03e77°)7,
_ 22 _is\2
Ay = 57,073 + (512523813 — C1ac23e ™),
_ 2 2 2
Az = 513 + 533013 (31)

As for a normal type representative point, we take
01, =33.5935°, 0,3 =40.7528°, 0,3 =8.7162°, 6=
252.1164°, p=77.1818° 6=164.3730°, m; =0.0530eV,
my = 0.0537 eV, m3 = 0.0736 eV, m, = 0.0537 eV, and
m,, =0.0184 eV with the corresponding mass matrix (in eV):

0.0047 — 0.0320:
0.0456 — 0.0010: |. (32)
0.0333 + 0.0073i

For an inverted type representative point, we can take 6;, = 33.0850°, 6,3 = 42.6054°, 0,5 = 8.7610°, 6 = 221.0642°,
p = 123.4419°, 6 = 60.2387°, m; = 0.0540 eV, m, = 0.0547 eV, m; = 0.0231 eV, m, = 0.0537 ¢V, and m,, =

0.0300 eV with the corresponding mass matrix (in eV):
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FIG. 4. Pattern Cy, = M,; + M, 33 = 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of § with J, m,,, LNM, and finally the

correlation (ms, my; = :Z—i) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns) shows all the nine
intercorrelations between phase angles and mixing angles, and the correlation (5, m,; = Z—?) for normal (N) and inverted (I) hierarchies.

Angles (masses) are evaluated in degrees (eV).
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Pattern C,3 = M,; + M,»; = 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations

amidst the mixing angles, three correlations amidst the phase angles, and three correlations of § with J, m,,, LNM, and finally the
correlation (ms, my; = :Z—i) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns) shows all the nine

intercorrelations between phase angles and mixing angles, and the correlation (5, m,; = Z—T) for normal (N) and inverted (I) hierarchies.

Angles (masses) are evaluated in degrees (eV).
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—0.0221 - 0.0204:
—0.0148 — 0.0236i
0.0231 + 0.0260:

M, =

We see, from Table II, that m5 can reach zero in inverted
type, so we expect a viable corresponding singular pattern.
Again, from Table II, J at 1 — 20 levels for normal ordering
and 1o for inverted ordering is negative so the correspond-
ing ¢ is in third or fourth quarters. For normal ordering, the
values of the phase p are restricted to fall in the range
[64°,126°] at the 1o level, in [56°, 129 at the 20 level, and
in [52°, 130°] at the 306 level, but, in contrast, there is almost
no restriction for o. For inverted ordering, there is a
restriction for the phase p range: [57°,132° at 1 — o level,
[15°,170°) at 2 — o level, and [1.5°,173°] at 3 — o level. In
contrast, there is a forbidden gap for ¢ which is [94°, 142°]
at 1 — o level, [86° 106°] at 2 — o level, and [83°, 100°] at
3 — o level.

For the plots, Fig. 6, in normal ordering, we find narrow
forbidden bands for (p) and a mild mass hierarchy
characterized by (0.35 <my; <0.9). As to the plots,
Fig. 6, in inverted type, we also find forbidden bands
for both p and o, but the hierarchy can be severe with 1,3
reaching up to 10* indicating the possibility of vanish-
ing ms.

V. PHENOMENOLOGICAL ANALYSIS FOR
SINGULAR TEXTURES

Experimental data allow for one neutrino mass to vanish.
Equations (11) are not valid when the neutrino mass matrix
is singular, where instead we should use Eqs. (14) and (15)
to calculate the mass spectrum given the mixing and phase
(Dirac and one Majorana) angles and the solar squared
mass splitting. The analytic formulas we get are simpler
than when the mass matrix is invertible, but still they are too
cumbersome to write them down, even if one restricts to
first order in powers of s..

The mass spectrum in the normal ordering is given by

m; =0, my, =\ om?, msy = \/ Am?* + m? /2,
A2 1

Am? =sm?( |22 —=). 34

nt=ont(|72'-5) 34

Numerically, no singular texture of normal type could
accommodate data.
In the inverted ordering the mass spectrum is given by

my=0, my=+/Am>—56m?/2,
A2
1 2P +1
my =/ Am? + 5m? /2, Am2—55m2<|j‘;]||2 1). (35)
A

—0.0148 — 0.02361
0.0221 + 0.0204i
0.0041 —0.0138:

0.0231 + 0.0260:
0.0041 —0.0138i |. (33)
0.0146 + 0.0072i

Four “acceptable” textures (C,, C;3, Cy,, Cs3) are found
able to accommodate data.

We follow the same methodology in generating numeri-
cal results (random sampling) and the same nomenclature
in presenting results as in the case of nonsingular mass
matrices. All various predictions concerning the ranges
spanned by mixing angles, phase angles, neutrino masses,
m,, M., and J are summarized in Table III. We note that
the textures C,, and Cs3 do not pass the experimental
constraints at 1o level. We present for each viable singular
texture the neutrino mass matrix obtained at one represen-
tative point chosen from the accepted points out of those
generated randomly in the corresponding parameter space
at the 3 — o level. The choice of the representative point is
made in such a way to be as close as possible to the best fit
values for mixing and Dirac phase angles.

Briefly, we see that J < 0 at all o levels for the texture
C3, putting 6 in the third and fourth quarters. The same
applies for the texture C;, at 1 — 20 levels, and for the
texture C,, at 20 level, specifying equally the & quarters for
these acceptable textures. Positive values for J can be
achieved at 3¢ level for the textures C;, and C,, and also at
1 — 20 levels for the texture Cs;.

Finally, we plot for each texture the possible correlations
at the 20 level showing 18 correlations grouped into two
panels. The left panel shows three correlations amidst the
mixing angles, three correlations amidst the phase angles,
and two correlations of § with (J,m,,), and finally the
correlation (m, = m;/m,, m,). The right panel includes
all the nine intercorrelations between phase angles and
mixing angles.

In all four acceptable textures, the mass spectrum is
almost degenerate (m; = m,), and there is a strong linear
correlation between (p, o) depicting two linear ribbons of
positive slope. Also, there is a linear correlation between
(J,8) in the four textures, and this is due to the small
allowed range for 6 which renders the sine curve (J « sin &)
looking like a linear one. In this respect, especially clear is
the positive (negative) slope in the texture C,, (Cs3).

A. Singular pattern of C,: Vanishing
of MVZI +My33 and ms

We see, from Table 111, that J is negative at 1 — 20 levels
and the corresponding ¢ is in the third quarter.

For a representative point we take with m; = 0:
01, = 33.8683°, 0,3 =40.9412°, 60,3 =8.7098°, 6=
255.0672°, p=26.7494°, 6=174.1569°, m; =0.0490¢eV,
m, = 0.0498 eV, m, = 0.0487 eV, and m,, = 0.0417 eV
with the corresponding mass matrix (in eV):
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FIG. 6. Pattern C33 = M,; + M,,, = 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of § with J, m,,, LNM, and finally the
correlation (ms, my; = :Z—i) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns) shows all the nine

intercorrelations phase angles and mixing angles, and the correlation (ms, m,; = %) for normal (N) and inverted (I) hierarchies. Angles
(masses) are evaluated in degrees (eV).
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0.0344 +0.0235i
0.0113 + 0.0086i
—0.0168 — 0.0122i

0.0113 + 0.0086i
—-0.0222 - 0.0167i
0.0170 + 0.0127i

—0.0168 — 0.0122;
0.0170 4 0.0127: |. (36)
—0.0113 — 0.0086i

M, =

For the plots, Fig. 7, when J increases ¢ tends to decrease in a linear manner. A strong positive linear correlation between
(p, o) exists with two ribbons. There is a forbidden gap for m,,: [0.0395, 0.0400] eV. The mass spectrum is almost
degenerate (m; =~ m,).

B. Singular pattern of C,3: Vanishing of M, , + M,,; and m;

We see, from Table III, that J is negative at all levels and the corresponding 6 is in the fourth quarter.

For a representative point we take with my = 0: 0y, = 33.8148°, 0,3 = 40.7781°, 6,3 = 8.4919°, § = 284.0999°,
p = 53.2226°, 0 =85.4376°, m; = 0.0496 eV, m, = 0.0504 eV, m, = 0.0493 eV, and m,, = 0.0424 eV with the
corresponding mass matrix (in eV):

—0.0246 + 0.0346i
M,=| 0.0127 -0.0187i
—0.0061 + 0.0093i

0.0127 - 0.0187i
0.0118 —0.0174i
—0.0127 4 0.0187i

—0.0061 + 0.0093i
—0.0127 4 0.0187i |. (37)
0.0122 — 0.0180i

For the plots in Fig. 8, a linear correlation between J and ¢ exists where J tends to increase as 6 increases. The plots in
Fig. 8 also reveal a strong linear correlation between (p, o) with two narrow ribbons exists. Also, there is a negative-slope
linear dependence between (8, 6;,). The neutrino masses are almost degenerate (m; ~ m,).

C. Singular pattern of C,,: Vanishing of M,;; + M 33 and m;

We see, from Table III, that at 16 level, the singular pattern is not viable. We also note that J is negative at 2¢ level and the
corresponding ¢ is in the fourth quarter.

For a representative point we take with my = 0: 01, = 34.5161°, 0,3 = 50.8655°, 6,5 = 8.5346°, § = 339.6445°,
p = 124.3227°, 6 = 26.7978°, m; = 0.0492 eV, m, = 0.0499 eV, m, = 0.0489 eV, and m,, = 0.0180 eV with the
corresponding mass matrix (in eV):

—0.0026 — 0.0178;  0.0046 + 0.0304i —0.0050 — 0.0331:
M, =] 0.0046 +0.0304; 0.0000 + 0.0007i —0.0011 —0.0081i |. (38)
—0.0050 — 0.0331; —0.0011 —0.0081; 0.0026 + 0.0178i

For the plots in Fig. 9, J and § are correlated quasilinearly
and positively. A strong linear correlation with two ribbons
between (p, o) exists. The mass spectrum is almost degen-
erate (m; & my).

D. Singular pattern of Cz3: Vanishing
of Myll +M,,22 and my

As in the previous case C,,, the singular pattern
C;; is not viable at 1o level as evident from Table III.

—0.0084 — 0.0135i
—0.0169 — 0.0275i
0.0170 + 0.0276i

M, =

—0.0169 — 0.0275i
0.0084 + 0.0135i
—0.0042 - 0.0067i

In contrast to the previous case C,,, J can assume
positive as well as negative values at 2¢ level and the
corresponding ¢ lies in the second and third quarters.

For a representative point we take with m; = 0:
01, =35.9702°, @,3 =42.1759°, 63 =8.4675°, 6=
204.6858°, p=127.4906°, 6=45.5467°, m; =0.0487¢eV,
my = 0.0495 eV, m, = 0.0485 eV, and m,, = 0.0159 eV
with the corresponding mass matrix (in eV):

0.0170 + 0.0276i
—0.0042 — 0.0067i |. (39)
0.0004 + 0.0005i

For the plots in Fig. 10, we see that (J, J) are strongly correlated linearly and negatively. A strong linear correlation
between (p, o) exists with two ribbons. The masses (m;, m,) are almost degenerate.
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FIG. 7. Pattern C,, for singular mass matrices with inverted ordering: The left panel shows three correlations amidst the mixing
angles, three correlations amidst the phase angles, and two correlations of § with J, m,,, and finally the correlation (m, = % m,). The

right panel shows all the nine correlations interphase angles and mixing angles. Angles (masses) are evaluated in degrees (eV).
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right panel shows all the nine correlations between phase angles and mixing angles. Angles (masses) are evaluated in degrees (eV).
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VI. THEORETICAL REALIZATION
OF THE TEXTURES

We present in this section theoretical realizations of some
of the one vanishing subtrace textures, where symmetry
assignments at high scale impose this texture in the “gauge”
basis. However, one way to find these assignments is to
start from another symmetry imposing zero texture and
relate these two symmetries by a rotation. As to the
symmetry responsible for imposing the zero elements at
high scale, we can just follow the analysis of [5]. We shall
find that four vanishing subtrace textures, out of six, are
able to be amended by “rotating” zero textures. In Sec. VII,
we explain the general strategy of relating the two sym-
metries, which would be of great help in this method of
indirect realization. In Sec. VIII, we discuss the notion of
flavor basis due to its paramount relevance into our study.
In Sec. IX, making use of rotating zero textures, we adopt a
type I seesaw scenario with discrete symmetry (Zg X Z,) in
order to generate nonsingular vanishing subtrace textures.
We repeat the work for singular vanishing subtrace textures
in Sec. X, but with discrete symmetry (Z;, X Z,). In
Sec. XI, we present an implementation of one vanishing
subtrace texture using the type II seesaw scenario supple-
mented with (Zs) discrete symmetry, and following the
same strategy of “rotation” from zero textures to vanishing
subtrace. In Sec. XII, we present a direct way of realization
for type I seesaw scenario implementation with (Z4 x Z,)
discrete symmetry not related to zero textures. In Sec. XIII,
we pursue the direct method of realization but now for type
IT seesaw scenario implementation with (Z) x Z,) discrete
symmetry. One can consider these outlined sections as an
exercise in model building aiming to show that the studied
texture of vanishing subtrace can be generated at the
Lagrangian level by symmetry considerations in which
the symmetry is exact but broken spontaneously. The two
“indirect” and “direct” methods are on equal footing, and
one should not discriminate one against the other. It is just
that the fields assignments in the indirect method turn out to
be more complex, so we sought a “mathematical” method
in order to find them. As a final remark, the presented
method of rotation is applicable to any specific pattern that
can be generated from the zero-texture pattern via a unitary
transformation.

VII. ROTATING STRATEGY: FROM
ZERO-TEXTURE TO VANISHING
SUBTRACE TEXTURE

We need to find a unitary matrix S which when acted on
the symmetric neutrino matrix,

A
M, =

v

B C
B D E|, (40)
C E F

gives the combination that defines the subtrace
patterns [(Cy;):D + F], [(Cpp):B+F], [(Ci3):B+ E],
[(Cxn):A+F], [(Cy):A+E], and [(C33):A+D] in
one of the elements of the transformed matrix
(M = S"™M,S), where M, is the effective Majorana neu-
trino mass matrix. More specifically, for the texture Cs3, if
we take the unitary matrix

| i -1 0
Sy=—|i 1 0 |, 41
33 \/E ( )
0 0 V2
then we find that
S33MDS3T3
A+2iB-D A+D —V2(iC—E)
1
== A+D A=2iB—-D —2(iC+E) |,
—V2(iC—-E) —V2(iC+E) —2F
(42)

and so the combination (A + D) appears in the element (12)
of the transformed matrix

Ml/() = S33MUS§3' (43)

Thus, if by some symmetry Sy applied on the transformed
matrix M,y one can impose a zero element,

StoMy0Syo =M,y = M1, =0, (44)
then we see that we have
SIM,Sy =M, = M, + My, =0, (45)

where the new symmetry implementing the vanishing
subtrace of the texture Cs; is

Sy = S§3Sv0S33- (46)

Let us define u/ as the matrix resulting by swapping the
ith and the jth columns of the identity matrix (/). Then we
have the properties

ull =yt = it uly'it =1, (47)

Then, for any matrix M, we see that (Mu'/) swaps the ith
and the jth columns of (M), whereas (u"/M) swaps the ith
and the jth rows of (M). Note that u"/ Mu'/ has the effect of
swapping first the (ith and the jth) columns, followed by
the (ith and the jth) rows, or the other way round. We note

now that the six vanishing one subtrace textures can be
divided into three classes:
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(i) Class of textures {C,;, C,y, C33}: In the sense that if I find a unitary transformation S giving me one of them, then I
directly get the unitary transformation giving me the other two textures. This comes because

(UPMu)yy = My, (uPMu)y = M3; =
(Mu'?)53 = Mz, W*Mu'?) =My, =

uBS5ul? =8,
33 1 } (48)

12 12 _ T
u Szzl/l _Sllv

where S; ; 1s a unitary matrix which, provided its action on M, keeps the latter invariant, imposes the texture defined
by the subtrace (C; ;) [see Eq. (45) where Sy plays the role of S33l.

(i) Class of textures {C3}: Actually, we can take

| 1 0 1
13 \/E ( )

-1 0 1

because the (B + E) combination appears in the (1,2) element of
1 A+2C+F V2(B+E) F-A
Si3M,ST; = 3 V2(B+E) 2D V2(E-B) |. (50)
F-A V2(E-B) A-2C+F
(iii) Class of textures {C,,Cz,}:

(U Mu®)3 = My, (uBMu'3)y) = Myy = w38 ,u" = 55, (51)

However, one can algebraically show that the transformation SM,S” cannot bring in the sole combination A + E,

corresponding to the texture Cs,, at any entry.

Our strategy for the realization of the vanishing subtrace
texture is that one imposes a starting symmetry, with
corresponding transformations on the Higgs and the lepton
fields at the Lagrangian level (“gauge” basis), known to
impose some zero elements for the neutrino mass matrix
M 5. We then transform this symmetry by applying some
rotation so that to get a new second symmetry, with new
transformations on the fields (also at the gauge basis),
which would imply the vanishing subtrace texture for M,.
We stress here that M, and M, are not mass matrices for
the same system at different bases related by rotation.
Rather, they are mass matrices of two systems, satisfying
two different symmetries, where the matrices are defined in
the same Lagrangian gauge—or “symmetry”—bases. The
two symmetries are related by rotation. By following the
previous discussion, we may find the rotation which, when
applied on the neutrino mass matrix, allows going from
zero texture to vanishing subtrace, so now this rotation
would help to define, by Eq. (46), how to move from the
first symmetry field transformations to the second sym-
metry ones by the following “adjoint action” rule:

T, = STT9S™", (52)

where Tf(T?) defines the transformation on the field f

satisfying the new (old) symmetry and S is the unitary
transformation relating the two symmetries. We remind the
reader here that this rotation method is just to find some
“complex” field assignments by relating them to other more
“trivial” ones, and had we been able to “guess” the
complicated assignments, then we would have dispensed
with the whole idea of rotation.

However, one should be sure that the new symmetry
transformations assure that we are at the flavor basis,
or approximately so. The point is that we should get a
generic charged lepton mass matrix by the first symmetry,
so that we can also get a generic one by the second
symmetry. Then, by adopting some natural assumptions
on the fields’ vacuum expectation values (VEVs),
without the need of unnatural constraints on the Yukawa
couplings, one can diagonalize the “generic” charged
lepton mass matrix by an infinitesimal rotation, and so
one can, with a good approximation, assume that the new
symmetry puts us in the flavor basis. We shall give some
examples for this strategy within both type I and II
seesaw scenarios, where the symbol 0 will be consigned
for quantities corresponding to the first “unrotated”
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symmetry.] The method based on rotated symmetry can be
considered as an indirect method for realizing the texture of
the vanishing subtrace.

VIII. FLAVOR BASIS

The notion of basis is intricate and needs to be clarified
since a variety of bases could arise in our discussion such as
gauge, flavor, and mass basis. In order to delve into the
notion of different types of basis, we take for simplicity the
following Lagrangian piece responsible for the mass terms
in the leptonic sector expressed in the gauge basis as

EM D Yi}ijDLiHeRj + YgijDLiHURj
+ Y‘gijy,TeiC‘l)(ij, (53)

where Dy is the left-handed lepton doublet (v, e;;)7, ex;
is the right-handed charged lepton, vg; is the right-handed
neutrino, y is a scalar singlet, H is the Higgs doublet, and
H = io,H*. The relevant Yukawa coupling matrices are
denoted by (YY, Y3, Y9) which are defined in this “gauge"
basis, whence the superscript (g). The indices i, j are the
family ones while C is the charge conjugation.

When the Higgs doublet H and the singlet y take a VEV,
then we get the mass term which can be cast into the form

eriMyijer; + eriMyijer

0 M ii 125
(40 8) (o)) 00
MDji Mp;; URj

which, via the seesaw mechanism, gives approximately,
after decoupling the right-handed neutrinos,

[’M D éL,»MfijeRj + Z/Z;-C_]Mw'jl/lj, (55)

with M, = MpMz'M?T, and v, are approximately left-
handed (~vy;).

By diagonalizing, we get the “mass” basis which is
denoted by the superscript m:

Ly DerUiMUged +uUVIM, VU,
S ErMY ey + UMy, (56)

ef =Uep, ep = Ukep, v =Viy,
where U;M ¢Ug and VTM,V are diagonal.

'Concretely, a discrete symmetry of the form Z% x Z9 is
imposed on one system leading to zero textures in the neutrino
mass matrix M, in the “symmetry-gauge” basis, whereas another
system has a symmetry Z, x Z,, leading to a vanishing subtrace
in the corresponding M, defined again in the symmetry-gauge
basis. The unitary transformation S helps to relate the field
assignments of both systems under the two symmetries.

In the gauge basis, the interaction (say, e; W™v,) between
the charged lepton sector and the neutrino sector, when

expressed in terms of the mass bases (27U} VW~u]") would

involve the experimentally measurable Vpyng = U ZV
expressing the mismatch between the rotations of the
left-handed charged leptons and of the left-handed neu-
trinos. The “flavor basis,” by definition, occurs when by
convention we assume, without loss of generality, the left-
handed charged leptons to be pure states, i.e., U; = 1 and
e}’ = e;. This can always be taken, since one can use the
freedom in defining the fields in a way to attribute the
whole rotation, appearing when expressing the interaction
term in terms of mass states, entirely to the left-handed
neutrinos. The situation is exactly the same for the quark
sectors when one can take by convention the up sector as
pure states and the flavor mixing is described in terms of the
rotation Cabibbo-Kobayashi-Maskawa matrix operating on
the down sector only [17].

In the realization models we shall construct in the next
sections, the field assignments are given in the symmetry-
gauge basis at the level of the Lagrangian, and thus we get a
charged lepton field mass matrix which is not necessarily
diagonal. We shall examine at which conditions one can
have diagonal, or almost diagonal to a very good approxi-
mation, mass matrix for the charged leptons, in a way to say
that the symmetry leading to the sought for texture in the
neutrino sector puts us also, nearly, in the flavor basis for
the charged leptons.

The question arises as to whether one should update the
phenomenological analysis upon carrying out the infini-
tesimally small, under these conditions, rotation R, of the
charged leptons from the symmetry-gauge into the “flavor
(mass)” basis. Actually, the phenomenology study was
carried out in the flavor basis, which means it is valid up to
small corrections of the order of the small rotation R€.2
With this in mind, this small correction should be added to
the already anticipated one stemming from the renormal-
ization group loop effects upon running from the high
scale, when the symmetry was imposed, to the low scale of
the experimental data.

IX. INDIRECT REALIZATION OF TYPE I
SEESAW WITH Zg x Z, SYMMETRY
FOR NONSINGULAR TEXTURES

We implement here a discrete symmetry within a type [
seesaw scenario in order to generate one vanishing subtrace
texture following the rotating strategy.

One should be aware not to mix the two rotations. The
“mathematical rotation” § relating two systems with two different
discrete symmetries, which is “large (finite)” normally, and the
“physical rotation” R,, which is “small (infinitesimal),” and is
applied on the charged leptons to go from the symmetry-gauge
basis into the flavor-mass basis.
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A. Indirect realization of C3; (type I nonsingular):
Vanishing of MI/ll +My22

We saw that the matrix S33 conjures, when acted on M,
the combination M5, + M 33 in the element (1,2) of the
transformed M,,. Thus we follow [5] and impose Zg x Z,
symmetry to have a zero in the (1,2) entry of the unrotated
M, and check that the rotated mass matrix M, = S"M,,S
has a texture C3;3 with S = S33,

| i -1 0 A 0 C
S=—1|i 1 0 |=s8|10 D E|S
V2
0 0 V2 C E F
—3(A+D) 3(D-A) H(E+C)
=| 50-4) ;(A+D)) H(E-C) (57)
%(E—FC) %(E—C) F

First, we show how one can impose the zero texture.
We introduce five Standard Model (SM) Higgs doublets
®,(a =1,...,5), use three real scalar singlets y; (i = 1, 2,
3), and denote the left-handed lepton doublet of the first
(second, third) family by D (D5, D;3). The right-handed
charged lepton and neutrino singlets are denoted by (¢,
vg). We assume the transformations shown in Table IV
under Z9 x Z9 for the fields.

By forming bilinear terms of Dj;/g; and Djug;,
relevant for Dirac mass matrices of neutrino and charged
leptons, and of vg,vg;, relevant for the Majorana neutrino
mass matrix My in the Lagrangian [Y7; are the Yaukawa
coupling constants, the indices (i, j) are flavor ones, the
indices (a, b) run, respectively, over the Higgs doublet and
scalar singlet fields, C is the charge conjugation matrix, and
® = io,®],

3 5 3

b T n-1 2 4
LD Y D> YouusrhiC vry + Yip,Dii®uvy
ij=1a=1 b=1

+ YSfi_/'DLi(I)aijﬂ (58)

TABLE IV. The Z) x Z9 symmetry realization of the one zero
texture at the (1,2) entry corresponding upon rotation to vanishing
subtrace Cs3. The index D;; indicates the left-handed lepton
doublet first family and so on. The y; denotes a scalar singlet that
produces an entry in the right-handed Majorana mass matrix
when acquiring a VEV at the seesaw scale.  denotes e/”/4.

Symmetry under ZJ factor

D O, &3 Oy Os Dy Dy Diz vgy Vgy VRs X1 X2 X3 TR

1 o* o 1 & 1 o o 1 o* o 1 & o 1

Symmetry under Z) factor
I 1 1 o* o* 1 1 1 o o* o* 1 1 1 1

and examining how they transform under Z9 x Z9, we see
that the invariance under the symmetry implies the follow-
ing forms:

x 0 0 x 0 0
Mpy=10 x 0], Mpo=1]10 x x
x 0 x 0 x x
x 0 x
= M,y = MpoMpiMT, = 0 x x |. (59)
X X X

Note that, in contrast to [5] where we introduced only three
Higgs doublets, we introduce here five Higgs doublets;
otherwise, we would have got as in [5] a diagonal charged
lepton mass matrix before proceeding to the rotation
defined by S of Eq. (57). Had we done this then, we
should have gotten field transformations corresponding to
the rotated symmetry by adjoint acting on the unrotated
transformations by the rotation S, which will produce a
nondiagonal matrix for the charged leptons, which means
that upon rotating and getting the vanishing subtrace
texture we would have left the flavor basis. Actually, we
added the extra Higgs fields exactly in order to get a generic
charged lepton mass matrix in the unrotated basis while
keeping the form of the Dirac neutrino mass matrix. The
fields @, 5 are responsible for the desired form of M p,
whereas the fields (®; ;) produce generic M .

In order to find the new rotated symmetry, we need to
find then how all the fields would transform. Thus, we
should explicitly write down the form of the mass matrices
in terms of the Yukawa couplings when the Higgs and
singlet scalar fields get VEVs. Actually the invariance of
the Majorana term under Z2 x Z9 implies the following
constraint:

(Y5,) = Tya (TR (Y5, )(T0F). (60)
where (a, b =1, 2, 3), (Ygx) is a matrix in flavor space with
element Y{,,; at its (i, j)th entry, and T% (f = y, vg) is a
matrix (diagonal by construction) defining the transforma-
tion of the field f under the considered symmetry factor Z
(Z = Z3 or Z9). This constraint [Eq. (60)] can be solved for
both symmetry factors and leads to the following form,
when y, gets a VEV vy, :

1
YO)(I 1 Uoﬂm O O
_ 1 2
Mpgy = 0 Yo,0v0,  Yoosv0, |- (61)
2 3
0 Yi0300,  You3300,

The invariance of the Dirac neutrino mass term under
Z9 x 7Y implies the following constraint:
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(Yop) = (T&) (T (Vi) (T0),

where (a,b=1,...,5), (YSD) is a matrix in flavor space
with element Y§,,; at its (i, j)th entry, and (T%)(f = @,
D;,vg) is a diagonal—by construction—matrix defining
the transformation of the field f under the considered
symmetry factor Z (Z = Z2 or Z3) which leads when
solved for both Z9 and Z9 to the following form, when @,
gets a VEV vyq !

(62)

Y (4)1)1 10, 0 0
Mpy = 0 Y3022 V0o, 0 (63)
Y 8/)31 Voo, 0 Y 3033 Voo,

And we get M,y = MpoMziMY, of the desired form with
vanishing element at the (2,1)th entry. As to the charged
lepton mass matrix, the invariance of the corresponding
mass term gives

(Y5r) = Taa (T ) (Y5, ) (T75) (64)
where (a,b =1,...,5), (Y§,) is a matrix in flavor space
with element Y, at its (i, j)th entry, and T9*(f = @,
Dy, ¢k) is a matrix defining the transformation of the field
|

_Y;1(22(”)m + iv,,) —in{lz(v)ﬂ + iv,,)

Y)l(zz(v)(1 +iv,,)

MR:

where — denotes an element deduced by symmetry property
of the matrix (M = M7), and this convention will be used
from now on,

4 4
Ypnve, —Ypive, 0
_ 4 4
MD = YD21 Uq)4 YD22UCD4 0 (68)
. \/5 5 4
—Yppve, Yo, Yoo,

One can check that the resulting M, satisfies the texture
Cs3. Note also that all the Yukawa couplings and the VEVss
in Eqs (67) and (68) are different from those in Eqs (61) and
(63) since each set of Yukawa couplings and VEVs
|

) 1
Yoo, =Yg 00,

_ 1 2

My = | Yy 00, + Y 00,

3
Y5 v,

2 1
Yive, =Y imve,

1 2
Y Vo, + Y v,

f under the considered symmetry factor Z (Z = Z3 or Z9)
which leads to a generic form for the charged lepton matrix:

1 1 1
Yoriivoo, Yornvoo, Yor13200,
_ 2 2 2
Mey = | Yom1V00, Yorntoo, Yorsvoo, (65)
3 3 3
Yor1000, YormUoo, Yors3000,

In order to find the field transformations corresponding
to the new rotated symmetry defined by S [Eq. (57)], we
apply the same rule as in Eq. (46) or Eq. (52), with caution,
for all the fields f,

T7 = S'TY'S, (66)

and extending in the case of the five-dimensional @ the
matrix S to be S,, = diag(S, 1,,,). We state in Table V the
resulting assignments for the fields under Zg x Z,.

Note that we do not get generally diagonal matrices T%
because of the rotation S. Thus one can write down similar
constraints to those of Egs. (60), (62), and (64) correspond-
ing to the rotated symmetry, albeit with Yukawa couplings
and VEVs without the subscript O, and by solving
them we get

Y)2(23(_1])(1 + iv)(z)
—iY 755 (=v,, +iv,,) |,

3
Y330y,

(67)

|
correspond to the Lagrangian under a specific symmetry.
However, they are related through the transformation
M = S"M,S, (69)
which should be valid for (M,, M, Mp), and one can
check that the form of M, pg) is the same as that of
S"M (4,0,00.r0)S-
We need to show now that the symmetry-gauge basis for
the charged leptons, in which the symmetry was given, can
under natural assumptions be taken to a very good

approximation, to be the flavor basis. Actually, we get a
generic mass matrix M,:

2 |
Yivo, = YisVo,

Y}23”®| + YL%23U‘D2 ) (70)

3 3
Y00, Y300,
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TABLE V. The Zg x Z, symmetry realization of the vanishing subtrace Cs3. The D;; indicates the left-handed
lepton doublet first family and so on. The y; denotes a scalar singlet that produces an entry in the right-handed
Majorana mass matrix when acquiring a VEV at the seesaw scale. The right-handed charged leptons ¢ are assumed

singlets under the discrete symmetry. @ denotes e”/*.

Symmetry under Zg factor

D = (O, D), P3, Dy, D5)" Dy = (Dypy.Dypy.Dy3)"
0O ¢ 0 0 O 0
—-i 0 0 0 O (—i
0 0 w 0 O 0
0O 0 O 1 O

0 0 0 0 o

Symmetry under Z, factor

diag(1,1,1,-1,-1) diag(1,1,1)

i
0
0

Vr = (VRIJ/RZ’VR3)T X = ()(1,)(2,)(3)T
0 (1+a?) i(1-0%) 0
2 2
0 i(-1+0%) (14+0%) 0
@ 2 2
0 0 ®
diag(—1,-1,-1) diag(1,1,1)

so if assume the related VEVs are comparable, vg, & v¢,~
Ve, & v, then we get

Yoo =Yoo Yo=Yy Y5y =Yiy
Mymv| Yoo + Y0 Yo+ Y, Yy +Y5,
Y3y, Y2s Vi
al
=v| bl |, (71)
o

where a, b, and ¢ stand for column vectors extracted from
the corresponding rows, formed of Yukawa couplings, in
the matrix M, and this abbreviation will be used from now
on. The dot product refers to the usual Hermitian inner
product defined as a-b =33 | a;b. Thus

a-a a-b a-c
b-b b-c ]|,
c-b

MM, ~ 12

=y

(72)

so taking only the following natural assumption on the
norms of the vectors:

lall/llell = m./m ~3 x 107,

b/ llell = m,/m, ~6x 1072, (73)
one can diagonalize M, M ; by an infinitesimal rotation as
was done in [5], which proves that we are to a good
approximation in the flavor basis.

Some remarks are in order here. First, one would
naturally assume Yukawa couplings of the same order,
and the assumption ||a| < ||b|| < ||¢|| cannot be met
unless there is fine-tuning in the Yukawas. We find nothing
wrong with the needed fine-tuning, especially that an
analogous fine-tuning, to enforce the charged lepton mass
hierarchies, is needed in many similar models, and even in

the SM [18]. Second, as said earlier and in line with [19],
the subtrace texture is zero by construction in the sym-
metry-gauge basis of the neutrino fields, whereas the
gauge-symmetry basis of the charged leptons is deviated
infinitesimally from the flavor basis, and this deviation is of
the order of the “acute” charged lepton masses’ hierarchies,
which means we are to a very good approximation in the
flavor basis.

B. Indirect realization of C,; (type I nonsingular):
Vanishing of M, ,, + M, 33

Following the same procedure as for the case Cs;, we
just state briefly the results. The rotation matrix which
moves a zero texture at (2,3) to the texture C,; is given by

X V2 0 0 A B C
S=—7=| 0 i -1|=>S"(B D 0[S
7 i
0 i 1 c 0 F
A 5(B+0) 5 (B-C)
—|- ey —io-F | (74)
- - 2 (D +F)
TABLE VI. The Z x Z9 symmetry realization of the one zero

texture at the (2,3) entry corresponding upon rotation to vanishing
subtrace Cy;. The D;; indicates the left-handed lepton doublet
first family and so on. The y; denotes a scalar singlet which
produces an entry in the right-handed Majorana mass matrix
when acquiring a VEV at the seesaw scale. The right-handed
charged leptons ¢, are assumed singlets under the discrete
symmetry. @ denotes e/4,

Symmetry under Z{ factor

D ©, &3 Oy O5s Dy Dyy Dis vgy Vpy Vgs X1 X2 X3 Cr

4

W 4

1 o o 1 o 1 o 1 o o 1 o* o® 1

Symmetry under Z3 factor
1 1 1 eo*e* 1 1 1 o o o* 1 1 1 1
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TABLE VIIL

The Zg x Z, symmetry realization of the vanishing subtrace C,;. The D, indicates the left-handed lepton doublet first

family and so on. The y; denotes a scalar singlet which produces an entry in the right-handed Majorana mass matrix when acquiring a

VEV at the seesaw scale. The right-handed charged leptons are assumed to be singlets under the discrete symmetry. @ denotes e

in/4

Symmetry under Zg factor

D = (O, Dy, D3, D, D5)”

1 0 0 0 0 1
0 _1;{1} _i(l;r!ﬂ) 0 0 0
0 il ;Fw> = 12+w 0 0 0
0 0 0 1 0
0 0 0 0 w

Symmetry under Z, factor

diag(1,1,1,-1,-1) diag(1,1,1)

Dy = (Dyy.Dy.Dy3)"

VR = (URlﬂVRZaVRB»)T X = (){1,}(2,}(3)T

0 0 1 0

to —i(ltw) 0 —140® —i(1+0°)

2 2 2 2
i(1+w) —ltw 0 i(1+0°) —1+a®

2 2 2 2

diag(—1,-1,-1) diag(1,1,1)

and we check that the sum of elements at (2,2) and (3,3)
vanishes. At the Lagrangian level, the symmetry trans-
formations for the fields which impose a zero texture
neutrino mass matrix with a generic charged lepton mass
matrix are given in Table VL

By forming bilinear terms of the fields we see that the
above transformations force a neutrino mass matrix with
zero texture at the (2,3) entry. Again we define the new

transformations for the fields corresponding to the new
symmetry imposing the vanishing subtrace by the rule in
Eq. (66), but with § as given in Eq. (74). We state in
Table VII the resulting assignments for the fields under
Zg X Zz.

The rotated symmetry imposes some constraints on the
Yukawa couplings and the VEVs, which when solved give
the following results for M, and Mp:

l 2 . . 2 .
Y0y, Yxl2(vzz +ivy,) ZYJ(IZ(”J& +ivy,)
. 1 72 2 1 72 2
My = - 1(—Y)(2311;(1 + Y530, + Y;ﬁS”}m) Y 030y, + Y5330, + Yia30,, (75)
. 1 172 2
- - —i(=Y 030y, + Y330y, + Vy330y,)
and
4 175 5
Ypuve, 1Ypi3ve; Ypi3vo,
_ 4 4
Mp = 0 Ypnve, Ypivo, (76)
4 4
0 —Ypnve, Ypnve,
One can check that the resulting M, satisfies the texture C;.
As to M, we get
| | |
Y ve, Y00, Yy3v0,
_ 3 3 2 2 3 3
My = | Y300, + Yo Vo,  Yipte, = Yinte, Y300, +Yiste, |. (77)
3 3 2 2 3 3
Y00, T Y3100, Yinve, + Yipve, —Yisve, + Y300,
then we see that if we assume all the related VEVs are comparable vg ~ v, ~ v, ~ v, then we get
1 1 1 T
Y Yo Yo a
~ 3 3 2 2 3 3 _ T
Memvl Yo3+Ye  Yen =Yy Y+ Vs =v| b" |, (78)
3 3 2 2 3 3 T
=Yoo+ Yo Yo +Yi Yt Yy ¢

which can be diagonalized by an infinitesimal rotation under some natural assumptions on the amplitudes of the Yukawa
vectors as done for the case of Css.
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C. Indirect realization of C,, (type I nonsingular): TABLE VIII.  The Z9 x Z) symmetry realization of the one zero

Vanishing of M, {; + M, 3; texture at the (1,3) entry corresponding upon rotation to vanishing
subtrace C,,. The D;; indicates the left-handed lepton doublet
first family and so on. The y; denotes a scalar singlet which
produces an entry in the right-handed Majorana mass matrix

The rotation matrix which moves a zero texture at (1,3)
to the texture C,, is given by

when acquiring a VEV at the seesaw scale. @ denotes e*/*.
i 0 -1 A B 0
S = L 0 \/j 0 =SB D EI|S Symmetry under Zg factor
2 i 0 1 0 E F Q) ©; O3 ©y ©s Dyy Dy D3 vpy vpo Vrs X1 X2 X3 Cr
1 . 1w4w1a)5ww4lww411w6a)61
1 i i
2 (A+F) V2 (B+E) V2 (F=4) Symmetry under Z5 factor
— _ D \/LZ(E B) , (79) 1 1 1 o* o* 1 1 1 o o* o* 1 1 1 1
- - A+R

fields corresponding to the new symmetry imposing the
and we check that the sum of elements at (1,1) and (3,3)  yanishing subtrace by the rule in Eq. (66), but with S given
vanishes. by Eq. (79).
At the Lagrangian level, the symmetry transformations We state in Table IX the resulting assignments for the
for the fields which impose a zero texture M, with generic  fq1ds under Zs X Z».

Mo are given in Table VIIL

By forming bilinear terms of the fields we see that the
above transformations force the (1,3) entry in M,y to
vanish. Again we define the new transformations for the
|

The rotated symmetry imposes some constraints on the
Yukawa couplings and the VEVs, which when solved give
the following results:

"[Y;3533(”x1 +iv,,) - Y;%B”;(z] Yfm(_% +iv,,) Y;3(3%(”11 +iv,,) + Y 213V
My = - —iY2)) (v, +ivy,) —iY )3 (=v,, +iv,,) (80)

- - _i[Y;:‘B(’Ull + ”])(3) - Y)2(13v)(2]

and
4 4
Ypiive, 0 —Yp31v0,
_ | s 4 5
Mp = Ypve, Ypove, Yipsve, |. (81)
4 4
Y31 Ve, 0 Ypiive,

One can check that the resulting M, satisfies the texture C,,. As to M, one gets

TABLE IX. The Zg x Z, symmetry realization of the vanishing subtrace C,,. The D, indicates the left-handed
lepton doublet first family and so on. The y; denotes a scalar singlet which produces an entry in the right-handed
Majorana mass matrix when acquiring a VEV at the seesaw scale. The right-handed charged leptons are assumed to
be singlets under the discrete symmetry. @ denotes e'*/*.

Symmetry under Zg factor

D= (‘13174’2@)3; D4, @5)" Dy = (Dyy.Dy.Dy3)" VR = (Vi VRas VRs)T x=x0)"
HTw 0 l(l;a}) 0 0 % 0 —i(l-w) 0 0 i
. 0 -1 0 0O 0 0 -1 0 @ 0
—1(12—(1)) 0 HTw 0 0 i(l;m) O 1+w _l 0 0
0 0 0 1 0

@)

0 0 0 0 w

Symmetry under Z, factor
diag(1,1,1,-1,-1) diag(1,1,1) diag(—1,-1,-1) diag(1,1,1)
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1 3
Yo ve, + Yy Vo,

_ 2
M, = Y5 Vo,

3 1
Y00, = Yy Vo,

1 3
Yipve, + Yyn00,
2
Yo,

3 1
Y00, = Yo,

Y}m”tbl + Y?m”d)s
Y§23 U‘Dz ; (82)

3 1
Y1300, = Y1300,

then we see that if we assume all the related VEVs are comparable v, ~ v, ~ v, ~ v, then we get

3 3 1 3
Y;II + Yfll Yé’u + Yzf’lz Yf13 + Yf13 aT
M,~v Y2, Y%, Y%, =uo| bT |, (83)
3 3 3 T
Yfll - Ygﬂll sz - YLI’IZ Yf13 - Y1f13 ¢

which can be diagonalized by an infinitesimal rotation
under some natural assumptions on the amplitudes of the
Yukawa vectors as done for the previous two cases.

D. Indirect realization of Cj; (type I nonsingular):
Vanishing of M, + M, 53

The rotation matrix which moves a zero texture at (2,3)
to the texture C,3 is given by

| 1 0 -1 A B C
S=—|0 v2 0 |=5"|B D 0]S
V2
1 0 1 cC 0 F
SA+F)+C 5B 5(F-A)
= - D - 5B , (84)
- - lA+F)-C

and we check that the sum of elements at (1,2) and (2,3)
vanishes.
|

1 1
Y 330y, + Y130,

My = - -Y3

and

4 5
Ypive, + Yp1va,
MD: 0

5 4
—Yp1ve; + Y3 Ve,

[

At the Lagrangian level, the symmetry transformations
for the fields which impose a zero texture M, at the (2,3)
entry with generic M, are given in Table X.

Again we define the new transformations for the fields
corresponding to the new symmetry imposing the vanishing
subtrace by the adjoint action rule [Eq. (66)], but with S
given by Eq. (84). We state in Table XI the resulting
assignments for the fields under Zg x Z,.

We repeat that if we could guess the “nondiagonal”
transformations under Zg x Z, of Tables V, VII, IX, and XI,
then we would not have needed to resort to the rotation
method relating them to simpler ones under Z9 x Z9.
However, as is clear from the tables, the transformations
of the Higgs and scalar fields are in particular difficult to
guess directly.

The rotated symmetry imposes some constraints on the
Yukawa couplings and the VEVs, which when solved give
the following results:

2 1 1
—Y 30y, Y130y, + Y330,

X

(v, — ) Y;2(23 Uy, (85)

1 1
- Y 330y, + Y130,

0 YAL‘)BI Vo, + Y?)n”d)s
Y%zz”du 0 . (86)
0 Y‘EIIUC[M_Y%HU‘DS

One can check that the resulting M, satisfies the texture C3;. As to M,, we get

1 1
Yo ve, + Y3V,
_ 2
M, = Y vo,

1 1
Y v, + Yy Vo,

1 1
YoV, + Y300,
2
Yinve,

1 1
Yipve, + Yinv0,

YLL13U<I>1 + Y}33U<1>3
Y§23 Vo, ; (87)

| |
Y3300, + Y1300,
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TABLE X. The Z9 x Z3 symmetry realization of the one zero
texture at the (2,3) entry corresponding upon rotation to vanishing
subtrace Cs;. The D;; indicates the left-handed lepton doublet
first family and so on. The y; denotes a scalar singlet which
produces an entry in the right-handed Majorana mass matrix
when acquiring a VEV at the seesaw scale. @ denotes e'#/*.

Symmetry under Zg factor

D) ©, O3 Oy Ds Dy Dy Diy vgy Vgo Vg3 X1 X2 X3 Cr

1 o* o 1 o 1 o* o 1 o o 1 o* o 1

Symmetry under Z5 factor
1 I 1 o* o* 1 1 I o ot o* 1 1 1 1

then we see that if we assume v % vy, ~ Vg, > Vg, then
we get

1 1 1 T
Yoo Yoo Yo a
~ 2 2 2 _ T
My=v| Y2, Y2, Yia | =v| b" |, (88)
1 1 1 T
Yo Yp Yy ¢

which can be diagonalized by an infinitesimal rotation
under some natural assumptions on the amplitudes of the
vectors as done in the previous cases.

X. INDIRECT REALIZATION OF TYPE I
SEESAW WITH Z,, x Z, SYMMETRY
FOR SINGULAR TEXTURES

We shall adopt the same strategy of moving from the
symmetry imposing a zero texture where M, is singular to
the symmetry imposing a vanishing subtrace with again
M, singular, which gives via seesaw type I a singular
neutrino mass matrix. Again, we follow [5] to find the
symmetry transformations leading to zero elements at
singular M, but will add in new fields so that to get a
generic charged lepton mass matrix and not a diagonal one
as was the case in [5], in such a way that the new rotated
symmetry, as defined in Eq. (66), leads to vanishing
subtraces at singular M, and to another generic M,.

TABLE XI.

The latter under some reasonable assumptions can be
diagonalized via infinitesimal rotations, which put us to
a good approximation in the flavor basis.

A. Indirect realization of Cj; (type I singular):
Vanishing of M, { +M,,,

As in the nonsingular cases, we move from zero texture
at (1,2) to the texture Cs3 by S of Eq. (57).

At the Lagrangian level, the symmetry transformations
for the fields which impose a zero texture neutrino
mass matrix with generic charged lepton mass matrix
and singular Dirac neutrino mass matrix are given in
Table XII.

By forming bilinear terms of the fields we see that the
above transformations force a neutrino mass matrix with
zero texture at the (1,2) entry. Actually, we get

Y(l);m Doy, 0
Mpy = 0 Y3220, 0 ;
0 0 Y 3;(33”0;(3
Yo Voo, 0 0
Mpy = 0 0 Y3pa3Voo (89)

6 7
Yopsivoo, O Yopastoo,

We see that My is singular, and M, = MpoMziME, is
singular with the desired form of a vanishing element at the
(1,2)th entry. We can check that M is of generic form as
the one presented in Eq. (65).

Again, in order to find the field transformations corre-
sponding to the new rotated symmetry defined by S
[Eq. (57)], we apply the rule in Eq. (66) for all the fields
Jf and extending in the case of the seven-dimensional @ the
matrix S to be S,, = diag(S, 14,4), in such a way that we do
not get generally diagonal matrices T]Z» because of the
rotation S. As in nonsingular cases, one can write down
constraints involving the Yukawa couplings and VEVs
(now without the subscript 0), and by solving them we get

The Zg x Z, symmetry realization of the vanishing subtrace Cs;. The D;; indicates the left-handed

lepton doublet first family and so on. The y; denotes a scalar singlet which produces an entry in the right-handed
Majorana mass matrix when acquiring a VEV at the seesaw scale. The right-handed charged leptons are assumed to

be singlets under the discrete symmetry. @ denotes /4.

Symmetry under Zg factor

D= ((I)I,CDZ,(I)S,(I)“’(I)S)T

Lo 0 =42 0 0 Liw
2
0O -1 0 0 O 0
—l;—w 0 1—}2—(1} 0 0 “ltw
2
0 0 0 1 0
0 0 0 0 w
Symmetry under Z, factor
diag(1,1,1,-1,-1) diag(1,1,1)

Dy = (D11, Dyy.Dy3)"

Vg = (VR]aURZ’VR3)T X = ()(1,)(2,)(3)T

0 o
-1 0 0 -1 0
4w —1+a® 0
0 e 0 5
diag(=1,—1,-1) diag(1,1,1)
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TABLE XII.  The Z¥, x Z3 symmetry realization of the one zero
singular texture at the (1,2) entry corresponding upon rotation to
singular vanishing subtrace Cs3. The D;; indicates the left-
handed lepton doublet first family and so on. The y; denotes a
scalar singlet which produces an entry in the right-handed
Majorana mass matrix when acquiring a VEV at the seesaw
scale. 6 denotes e/,

Symmetry under Z, factor
D) ) O3 Oy O5s O D7 Dy Dy Dys gy gy Vrs X1 X2 X3 Cr
o' 6 6t 6> 62 0 P 9 9 0 & 0 00 e 1
Symmetry under Zg factor

1 1 1 66 0°¢5 1 1 1

0 0% 00 1 111

2 2
Yo ve, + Y00,

_ 2 2
M, = | =Y; 00, + Y500,

3
Y3V,

2 2
Yinve, + Y1500,

2 2
Y00, + Yive,

3
Y00,

_Y;1(22U - Y;2(221j){2 - ;(22 Uyt Y 0
My = —Yfzz Uyt Y, 122V Y;(zz Uyt Y;(zz Vs 0 )
0 0 Y)3(33v)(3
_iyﬁ)u”% Y%u”@ _iY%z3”fI>5
Mp=| =Yhive, —iYpive, Yinve, |- (90)
—i Y6032”<I>6 Yo Dy Yhs3 Vo,

One can check that the resulting M, is singular and satisfies
the texture Cs;.
As to M,, we get a generic mass matrix:

Y§23U<I>1 + YL2”130¢2
_Y§13”<1>1 + Y%Sfﬁ”‘bz . (91)

3
Y300,

If we assume the related VEVs are comparable vg, ~ v, ® ve, ~ v, then we get

Yo + Y0, Yf22 +Y, Y+ Y a’
Mmool Y3, + Y5 Yo, +Y —Yi3+Y | =v|b" |, (92)
3 3 3 T
Yy Yy, Yy ¢

whereas if we assume v & v, R Vg, > Vg,, We get

Yle Yfzz Y§23 al
Memv| =Yg Y3, =Yi5 | =v|b" ] (93)
Y3 Yin  Yig c’

In both cases, one can naturally diagonalize M, by an
infinitesimal rotation, which means that we are to a good
approximation in the flavor basis.

B. Indirect realization of C;; (type I singular):
Vanishing of M, ,, + M 33

We move from zero texture at (2,3) to the texture C;; by
S of Eq. (74).

The symmetry transformations for the fields which
impose a zero texture M, with generic M., and singular
M p, are given in Table XIII. By forming bilinear terms of
the fields we see that the above transformations force a
neutrino mass matrix with zero texture at the (2,3) entry.
Again we define the new transformations for the fields
corresponding to the new symmetry imposing the vanishing
subtrace by the rule in Eq. (66) with S given by Eq. (74) or
its extension S,, to the seven-dimensional space of ®’s.
The rotated symmetry imposes some constraints on the

Yukawa couplings and the VEVs, which when solved give
the following results:

Y )1{1 10, 0 0
Mg = 0 =Y)uv, +Y550, Yo, +Y)50, |,
0 Y3ty + Y030, Yio10, — Y0y,
Yhive, iYpive, Yhisve,
Mp= iY6D31 Ve, Y7333 Vo, _iY7333U<I>7 : (94)
Y3 Vo, Yp33ve, Yislo,
TABLE XII.  The Z9, x ZJ symmetry realization of the one zero

singular texture at the (2,3) entry corresponding upon rotation to
singular vanishing subtrace C;,. The D, | indicates the left-handed
lepton doublet first family and so on. The y, denotes a scalar singlet
which produces an entry in the right-handed Majorana mass matrix
when acquiring a VEV at the seesaw scale. 6 denotes ¢/,

Symmetry under Z%, factor
D) Oy D3 Oy D5 Dg D7 Dyy Dy Dy3 vy Vro Vrs X1 X2 X3 Cr
011 99 04 92 96 04 2] 011 99 04 2] 92 95 010 98 92 1
Symmetry under Z5 factor

1 1 1 6°6°6¢°0° 1 1 1

00 ¢ ¢ 1 11 1
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One can check that det(Mp) = 0, and that the resulting M, is singular and satisfies the texture Cy;.
As to M,, we get a generic mass matrix:

1 1 1
Y00, Y100, Y1300,
_ 3 3 3 3 3 3
My=| Ypve, + Y000,  Yipve, +Yonve,  Yisve, + Yesve, |. (95)
3 3 3 3 3 3
YV, + Y3100, —Yinve, + Yive, —Yisve, + Y300,
|

Assuming the related VEVs are comparable vy =~ vy, ~  Again, in both cases, one can naturally diagonalize M, by
v, & v, then we get an infinitesimal rotation, which means that we are to a good
approximation in the flavor basis.

Yo Yy, Y
Mymuv| Y, +Y, Y i, +Y, Yisi+Yi, C. Indirect real.izlil.tion ?f C,, (type I singular):
VoY Yo+ Yin —VistYiy Vanishing of My, + M,
T We move from zero texture at (1,3) to the texture C,, by
a S of Eq. (79). The symmetry transformations for the fields
=v| b" |, (96) which impose a zero texture M, at entry (1,3), with generic
c’ M 4y and singular M, are given in Table XIV.
Once more, we define the new transformations for the
whereas if we assume v % v, R Vg, > vVg,, We get fields 'corresponding to the'new symmetry imposing the
vanishing subtrace by applying the rule in Eq. (66) with S
Y, Yi, Yl al ﬁ%ven by lfq. (79) fo(;) itsT(lalxtensiond Sex to the seven-
- 3 3 3 _ T imensional space of ®’s. The rotated symmetry imposes
Memvl You Yon Yo v bT - (97) some constraints on the Yukawa couplings and the VEVs,
Y ;131 Yfm Y ;133 ¢ which when solved give the following results:

-Y; 13V +7, 2110 0 Y 1Y, +7, 213013

x X

My = 0 Y)%zzv)(2 0 ,
Y;(ll n T Y 213V 0 Y;3513”;(1 - Y;n’%
YD33”<I>7 + Y3 Vo, 0 _iYZ)33”d>7 + iyg33”®4

Mp = _iyim%s + iY%B”% 0 Y Vo, +Y D23 Vo, . (98)
Y33 Vo, = 1Y D33 v, 0 Y D33 Vo, +Y D33 Vo,

One can check that det(Mp) = 0, and that the resulting M, is singular and satisfies the texture C,,.
As to M,, we get a generic mass matrix:

3 3 3 3 3 3
Yogve, + Y00,  Yipve, + Y000, Yesve, + Y7500,
_ > > )
M, = Y, Vo, Y 22V, Yo, Vo, . (99)

_y3 3 _v3 3 _v3 3
Y00, + Y Vo, Y000, + Yinvo, Y3300, + Yisvo,

When v, ® vg, ® v, X v, then we get

Y%l + Y3f11 Y%z + Y%lz Y?ﬂ33 + Y?ﬂm al
My=v Yoo Yo Y3 =v| b [, (100)
=Y+ Y Yoo+ Yi, =Y+ Vi c’
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TABLE XIV. The Z9, x Z) symmetry realization of the one
zero singular texture at the (1,3) entry corresponding upon
rotation to singular vanishing subtrace C,,. The D;; indicates
the left-handed lepton doublet first family and so on. The y;
denotes a scalar singlet which produces an entry in the right-
handed Majorana mass matrix when acquiring a VEV at the
seesaw scale. @ denotes e'7/°,

TABLE XV. The Z9, x Z9 symmetry realization of the one zero
singular texture at the (2,3) entry corresponding upon rotation to
singular vanishing subtrace Cs;. The D;; indicates the left-
handed lepton doublet first family and so on. The y; denotes a
scalar singlet which produces an entry in the right-handed
Majorana mass matrix when acquiring a VEV at the seesaw
scale. @ denotes /.

Symmetry under Z, factor

Symmetry under Z%, factor

D) Dy D3 Dy Ds Dy D; Dyy Dyp Dy3 vy Upo Vr3 X1 X2 X3 Cr
LA A ¢ B L R s A L AN A |
Symmetry under Z9 factor

1 1 166 e 6 1 1 1 6 66 1 11 1

D) D) D3 Dy Ds D D; Dyy Dyp Dy3 vy Vo Vg3 X1 X2 X3 Cr
011 9 0 0% 0° 0 0 61 @ ¢ 0 6> ¢ 0008 ? 1
Symmetry under Z9 factor

1 1 1668 6 1 1 1 6 66 1 11 1

whereas when v &% vg, ® Vg, > vg,, We get

3 3 3
Yoo Yoo Y al
Mymv| Yoy Yiy Yo | =vfb” (101)
3 3 3 T
Yo Yo Y ¢

In both cases, one can naturally diagonalize M, by an
infinitesimal rotation, which means that we are approx-
imately in the flavor basis.

|

X

MR = 0 Y}%22/U)(2

X

4 5 7
Yis33ve, = Y31Ve; + Ypi3vo,

_ 6
Mp = - YD23 Vo,

Yy, +Y;1(13% 0 Y,

Y1|3U11+Y;1(11”m 0 Y,

D. Indirect realization of Cj; (type I singular):
Vanishing of MI/lZ + Ml/23

We move from zero texture at (2,3) to the texture Cs; by
S of Eq. (84). The symmetry transformations for the fields
which imposes a zero texture at entry (2,3) of M,y with
generic M, and singular M are given in Table XV.

In order to define the new transformations for the fields
corresponding to the new symmetry imposing the vanishing
subtrace, we apply the rule of Eq. (66) with S given by
Eq. (84) or its extension S, to the seven-dimensional space
of ®@’s. Solving the constraints on the Yukawa couplings
and the VEVs resulting from the rotated symmetry, we get

1
13V, T Y017,

0
1
U}([ + Y)(13v)(3

4 5 7
0 —Ypive, = Yis1Ve, + Yp33vo,

4 5 7 4 5 7
—Ypave, T Yp31Ve, + Ypssve, 0 Ypasve, + Y3 Ve, + Yissve,

One can check that det(Mp) = 0, and that the resulting M, is singular and satisfies the texture Cs;.

As to M,, we get a generic mass matrix:

3 3
Yy v, + Yy Vo,
_ 2
M, = Y vo,

3 3
Y00, + Y00,

When v % vg, ® vg, > vg,, then we get

Y 3,}31 Y3f32 Y%a a’
M,=v Y%m Y?’zz Y§23 =o| b7 |, (104)
T
Y2 Yin Yis ¢

3 3
Yove, + Ym0,

3 3
Y00, + Yinve,

0 Y%23 Vo, (102)
Y;33U¢’1 + Y;BU‘I%
Y%zz Vo, Y§23 Vo, (103)

3 3
Y1300, + Y0,

[
whereas if we assume v % vg, X Vg, > Vg, WE get

Y?m Y3f12 Y;m al
Mymo| ¥2, ¥4, Y2, | =uvf b7 (105)
3 3 3 T
Yo Y Y ¢
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In both cases, one can naturally diagonalize M, by an
infinitesimal rotation, which means that we are in the flavor
basis approximately.

XI. INDIRECT REALIZATION OF TYPE II
SEESAW WITH Z; SYMMETRY

To fix the ideas, we treat here in some details the case of
the Cs; vanishing subtrace which can be related to zero
texture, noting that the procedure can be generalized to all
other textures (C;;, C,,, and Cs;) that also can be related to
zero textures. We follow the same rotating strategy outlined
in Sec. VIL

As we saw in Eq. (57), the matrix S allows one to move
from one zero texture at the (1,2)th entry to the vanishing
subtrace texture Cs3. Again, we use a subscript (or super-
script) O to denote the gauge basis satisfying the unrotated’
symmetry Z2, whereas we drop this subscript (superscript)
for the rotated Zs.

A. Matter content

Following the conventions of [5], we extend the SM
extended by introducing several SU(2), scalar triplets H,,
(a=1,2,...,N),

H,=[H;* H;. Hyl. (106)

The gauge invariant Yukawa interaction relevant for neu-
trino mass takes the form

3 N

Lyp=)Y_

i,j=1 a=
+ H;;(l/{ic_lfl‘j + f{jC_II/Li)

+HELCT L),

—1
C ULj

valg0, T
Yij [Havy,
1

(107)

where Y7, are the corresponding Yukawa coupling con-
stants, the indices i, j are flavor ones, and C is the charge
conjugation matrix.

The field HY could acquire a small VEV, (H%) = v/,
that gives rise to a Majorana neutrino mass matrix of the
following form:

N
My => Yol (108)
a=1

The smallness of the VEV 2/ is attributed to the largeness
of the triplet scalar mass scale [20].

As to the charged lepton mass, we introduce, in contrast
to [5], various Higgs doublets ®,, a =1,.... K,

3

K
Lo=> Y YD, @ L.

ij=1 a=1

(109)

Note that we did not consider only one SM Higgs;
otherwise we would have got, as in [5], a diagonal charged
lepton mass matrix M,, when the neutrino mass matrix
M, had a zero texture. We would like to get a generic M
corresponding to zero texture M, , so that when we rotate
and get a vanishing subtrace texture for the neutrino mass
matrix M, we also get another generic charged lepton mass
matrix M,. This latter can under suitable assumptions be
diagonalized by infinitesimal rotations. Had we restricted
our SM Higgs to only one Higgs doublet, then the diagonal
M, corresponding to zero texture M,, will give, upon
rotation by S, a nondiagonal charged mass matrix M, that is
diagonalizable by a finite rotation S, which means that the
vanishing subtrace texture does not correspond to the
flavor basis.

B. Z? symmetry for zero texture M,, characterized
by M,412=0

In order to impose a zero texture M,y by Zg symmetry
with a generic M 4, we introduce four scalar triplets H,, and
three Higgs doublets @, with the following assignments
under Z? defined in Table XVI.

By forming bilinear terms of H,v7v; we can find out the
invariant Lagrangian terms under Z?, which gives

(110)

C. Z5 symmetry for C;; texture (M,;; + M, 5, =0)
and Yukawa couplings constraints

In order to find the new rotated symmetry Zs, we need
first to find how all the fields would transform. Here, we
carefully use the rule of [Eq. (46) or (52)] for all the fields
f, in that if f transforms under Z? according to the
diagonal, by construction, matrix 792, then it transforms

under Zs according to T% = SLC;T?ZS?X [cf. Eq. (66)] with

st = diag(S, 1,,) possibly an extension of S to match the
finite-dimensional space of the field f of dimensions
(3 + r). The invariance of the Lagrangian terms under

TABLE XVI. The Z? symmetry seesaw type II realization of
the one zero texture at the (1,2) entry corresponding upon rotation
to vanishing subtrace Cs;. H, are triplet scalars, whereas 1p
refers to the fermions, apart from the right-handed charged
leptons ¢, in the first generation and so on. The ®, denote
SM Higgs doublets. Q denotes e>7/>.

Symmetry under Z!

H H, Hy H, lp 2 3z ¢z ® @ @
1 Q¢ @ o 1 9 @ 1 1 9
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the symmetry will impose constraints on the Yukawa
couplings that one can in principle solve to give the form
of the mass matrices when the Higgs/scalar fields geta VEV.
Actually, one can check that under both Z‘S) and Zs,
defined by the transformations T?CZ and T? , respectively, we

have the following constraints:
(Y§) = Top (TO7) T (Yo )(T27)

(111)

and

(Y?) = T (TZ) T (Y*)(TF,). (112)
where (a,b =1, ...,4), (ng) is a matrix in flavor space
with element Y‘éf?j at its (i, j)th entry. The two constraints of

Egs. (111) and (112) are related in that if we know the
solution to one constraint we know it for the other. More
specifically, one can check that if (Y4”) was a solution of
Eq. (111), then

(r) =

(STYE)(S)(SE e (113)

is a solution of Eq. (112).

D. M,y and M, resulting, respectively,
from Z? and Z; invariance
By solving Egs. (111) and (112) we get when HY’s get
the VEVs v under Z%:

Youveh 0 Yihuth
My = Yi50h  Yo3s005
- - Y306
=Yl = Y5 —YSof + YRl Yol —iviied + ivsief
M, = - Yool + vl iysioll + Yol + y3oll (114)
- Yl
|
We see that the texture Cs3 is met in M, while (M,g;, =0)  and
for M,y. One can deduce the relations between the Higgs
VEVs in the unrotated system (v{,) and the Higgs VEVs in (Y?h) = Téab(T%L)T(Yfa) (Tg,?)’ (117)

the rotated system (v//) by writing Eq. (69) and considering
Eq. (113).

E. M,y and M, resulting, respectively,
from Z? and Zs invariance
The introduction of three SM Higgs ®’s was needed
essentially to produce a generic charged lepton matrix.
Actually the bilinear of the relevant term D ;£ ; transforms
under Z? as

11 1
Dutr=|Q @ o (115)
Qo O

We see now that the transformations of ®’s in Table XVI
were chosen exactly to make all the entries in M 4 eligible.
Again expressing the invariance under Z? gives constraints
on the Yukawa couplings:

(Y") = Taa (T, ) (Y§)(T77) (116)

where (a,b = 1, ...,3) and (Y5?) is a matrix in flavor space
with element Y/, atits (i, j)th entry. The two constraints of

Eqgs. (116) and (117) are related in that if (Y5?) was a
solution of Eq. (116), then

(Y?7)

= (SN)YE)(S)(SE g (118)

is a solution of Eq. (117) where S® = § since we have
three @’s.

Solving the Yukawa constraints in Egs. (116) and (117)
we see that when the ®,’s get VEVs v, we get the

following M, and M ,:

1@ /1@ /1,0

Youvor Yonvor  Yoisvor

_ 2o 0o o
Me = | Youv00 Yo Yo23002 (119)

3, ® £3 @ £3 @

Yo51v03  Y032003  Y033%03

and
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22, 22,
Y21 + Y11 ”2 Yzz

+ Y21v2 —Yff

M= | Yo}

£3
Y5 ”3

Again, one can deduce the relations between the unrotated
VEVs (v®) and the rotated VEVs (»®) by writing
[cf. Eq. (69)] M, = S" - M, - S and considering Eq. (118).

Thus if we assume the related VEVs are comparable
Vo, R Vg, R Vg, ¥ U, then we get

YR4+YR  YR+YR  vE+vd
Memo| <YR+¥2 —YR4+YE Y341
vg v vg
al
=] b7 (121)
o
Consequently,
a a-b a-c
MM,~v*b-a b-b b-c|, (122
-b

so taking only the following natural assumption on the
norms of the vectors

lall/llell = m/m,~3 x 107,

b/ llell = m,/m; ~6x 1072, (123)

one can diagonalize M ,M ; by an infinitesimal rotation as
was done in [5], which proves that we are to a good
approximation in the flavor basis.

XII. DIRECT REALIZATION OF TYPE I
SEESAW WITH Z¢ x Z, SYMMETRY

We present now another method that leads directly to
the vanishing subtrace texture without relating it to zero
textures by rotation. It is applicable again only for the four
textures (Csz, Cqy, Cyy, and Cy;).

A. Type I seesaw direct realization of Ci3:
Vanishing of M, { +M,,,

Within the type 1 seesaw scenario, the Lagrangian
responsible for mass is similar to the one given in
Eq. (58) which, after conveniently simplifying the notations
by dropping the Yukawa O-subscript and the summation
signs, is rewritten here as

+YGY Y5t + Yl
+Y50Y Yl + YR (120)
Y§iog Yiof
|
Ly D YygpviiC vy + Y D1i®av;
+ Y4, D@ g (124)

We have for the pattern Cs; the relation M,;; + M5, = 0,
which can give a hint motivating the search for solutions
involving a permutation symmetry (1 <> 2). Actually, we
can think of the vanishing subtrace constraint as arising
from symmetry considerations leading to textures imple-
menting these “permutation”restrictions at the level of Mg
and M p, which by the seesaw scenario resurface at the level
of M, which inherits the permutation structure. One can try
simple forms for both My and M, with enough parameters
in order to produce generic M, having the sole constraint
M, +M,, =0. To be concrete, one can assume the
following forms for M and M as shown below together
with the derived M, (through the seesaw mechanism),

x y 0 A —-B iC
Mp=1y —x 0], Mp = B A —-C |,
0 0 =z —-iD D E
A X
M,=MpMz'M5 =1 - -A x|, (125)

where A, B, C, D, E, x, y, and z are generic independent
parameters and the x and A signs denote generic inde-
pendent nonvanishing entries. We stress here that these
forms proposed for My and M are not necessarily the
simplest choices, but they are just mere possibilities that
can be derived from symmetry considerations.

The fields and their assigned symmetry transformations
under Zg X Z, are presented in Table XVII.

Forming the required bilinears dictated by Z4 symmetry,
we obtain

1 1 w 1 1l o

r % 5y %

yRil/Rj = 1 1 w R DLil/R/' = 1 1 w |,
© © o? ® @ 1
-1 -1 o

_ Z

DLiijé —1 —1 CU4 . (126)
o* @* -1

When the resulting bilinears combine with the appropriate
scalar fields, we get under Zg, keeping only the combina-
tions that produce singlets, the following:
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TABLE XVII. The Zg x Z, symmetry seesaw type I realization of the vanishing subtrace Cs3. ® are five SM
Higgs doublets, D; refers to the flavor three left-handed lepton doublets, while the three right-handed charged

lepton singlets are denoted by £g. @ denotes /3.

Matter content and symmetry transformation (pattern Css)

Symmetry under Zg

VR1 = VR1 Vpy = VR2 VR3 = Wlp3 X1 a)“)(] X2 = X2 X3 X3
Dy, — Dy, Dy = Dyy D3 —» wDp3 D - @ D, - 0, D3 - D
D, > 0Dy D5 — D5 Cri = @ Cr, Cro = @ Cra Cry = 0*Crs
Symmetry under Z,
VRl = iUpy Vgy = —ilg) VR3 = UR3 X1 =X X2 =02 X3 X3
Dy = iDp, Dy - —iDy, Di3— Dy3 D - P D, > -, D; > Dy
Dy — iP5 D5 » -, Cr1 = CRi Cra = Cro Cr3 = 3
ot ot @ 1 1 w 1 1 w
Zs Zg Zg
T ~ T, % T, %
Xgivgi 2 | o o @ |, vgvgi=2 1 1 o |, g2l 1 1 o |,
o o 1 0 © o o o’
1 1 w ® o 1 0 o o
. Zs L Zs s s L Ze 5
q)lDLiURj = 1 1 w |, q)ZDLil/Rj = () () 1 . q)3DLil/Rj = w W @ s
R 0 o @ 1 1 &
1 1 w 1 1 o
_ Zs _ Ze
®4DLiijE 1 1 w |, q)SDLiZ’ﬂRjE 1 1 w |. (127)
o @ 1 © @ 1

Thus the resulting Lagrangian dictated by Z, symmetry takes the form

LY Y}ﬁ_g;(lyg_gc_lvm
+ Y;2(11)(2V1Te1c_1”R1 + Y)2(12)(2U£IC_1VR2 + Yflﬂz’/zTezc_IUm + Y)z(zﬂszTezc_IVRz
+ Y3V C opt + Y0230k C oy + Y0030k C Ukt + Yo 3kaC ' oo
+ Y Di®ivpy + YDy ®ivgs + Yy Dio®ivpy + Y ioa Dia®ivgy + Y33 Da®ivps
+ Y3300 Povps + Y3 D1a®oves + Y33, D13 ®svr + Vi Dra®avgs
T Y DLi®alry + Y3, Di®@ualpy + Vi D@yl py + Yy D@yl gy + Va3 D3Pyl s
+ Y2 Dy @slpy + Y31,D @5l gy + Y3 Din®@sE gy + Y3 D1n @5 gy + Y 333D 1305 s, (128)

which transforms under Z, as

L & Y332 1VpsC s
- Y;2(1 X 2ViaC ' gn + Y;%lzXzV/Tezc_ll/Rl + Yﬁlﬂzl/glc_ll/m - Y;zfzzﬂle/glc_lvm
- Y;3511)(3V1Tezc_1VR2 + Y;m)ﬁl/gzc_l’/m + Y;IZ)@VITQIC_IVRZ - Y;3(22)(3V1Telc_1l/m
+ Y5 Dy @ovy = YD 1o® gy = Yo Dy ®ivgs + Yy Dy @rvgy + Y ss Dy ®ivps
+iY23D 2 ®ovps — 1Y%, Dy Dyvgs + i35 Dy 3®Psvpy — iY33, D3 Dsup
+ Y3 D@5t py + YD ®st gy — Yoy Dy @5t py — Yy Dy @5l gy + iV 433D 1358 gy
=Y Da®@ulry = Y31,D 1@l py + Y3y D @al gy + YDy @al gy — iY 333D 13l ps. (129)

Thus, invariance under Zg x Z, implies the following constraints on the Yukawa couplings:
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1 _ vyl 2 _ 2 3 _ 3 2 _ _y2 3 _ _v3
Y;(33 - Y;{33’ Y)(IZ - Y;(12’ Y;(IZ - Y;{lZ’ Y;{ll - Y;{ZZ’ Y)(]l - Y)(22’
1 _ vyl 1 _ oyl 1 1 2 2 3 _ _v3
Y33 = Ypa3s Ypiu = Ypo: Ypio = =Ypo, Ypi3 = —i¥pos, Y31 = =¥ o,
4 _ys 4 _yS 4 _ _vyS 4 _ _vyS 4 _ _ys
Yo =Y, Yo =Y, Yoo ==Y Yin ==Y, Vi = —iY 53, (130)

where all vanishing Yukawa couplings are omitted. In fact
and as was done for the rotated symmetry (indirect
realization), by brute force, one also could have used all
the machinery encoded in the invariance equations, as
given in Egs. (60), (62), and (64), in order to obtain a
system of linear equations involving Yukawa coupling
constants. Solving this resulting system of linear equations
|

would have provided us then with the symmetry con-
straints [Eq. (130)].

Thus, the Z¢ X Z, symmetry imposes some constraints
on the Yukawa couplings that have to be taken into
consideration when constructing mass terms after the
relevant scalar fields acquire VEVs. The emergent My
and Mp turn out to be

_Y;z(zzvxz - Y;?zz”xg Y)2(121))(2 + Y;B(IZU)(,? 0
My = - Y200, + Yoty 0 (131)
- - Y ;1(33 Un
and
Ypove, —Ypyve, —i¥iyve,
Mp = Yo Vo, Y}nz“cb] Yo Vo, (132)
~i¥ppve, Vi, Ypasva,
One can check that the resulting M, through the seesaw mechanism, satisfies the texture Cs;.
As to M, we get
Yoovo, + Yive,  Yipve, + Yiive, 0
My = | =Y} 00, + Y Ve, —Yopva, + Yinve, 0 (133)
0 0 —iY 35300, + V33300,

Thus, and as an example, one can assume v = Vo, > Vg, SO
as to get

You Y2p 0 a’
Mymv| Y3, Y, 0 |=uv|bl (134)
T
0 0 Yy ¢

Another time, one can by just imposing some reasonable
assumptions on the ratios of the “free” vectors diagonalize
MM ; by an infinitesimal rotation, which puts us thus to a
good approximation in the flavor basis, as desired.

B. Type I seesaw direct realization of C;, C,,, and C;3

Following the same method outlined in case Csz, we
state briefly the results of the cases C;;, C,,, and Cy3, in
Tables XVIII, XIX, and XX, respectively.

XIII. DIRECT REALIZATION OF TYPE II SEESAW
WITH Z), x Z, SYMMETRY

By the same token, we present now, within the type II
seesaw scenario, a “direct’method which leads straight to
the vanishing subtrace texture without relating it to zero
textures by rotation. It is applicable again only for the four
textures (Csz, Cij, Cy, and Cjp). Besides, the key idea
behind this realization is having a permutation performed
through the group factor Z).

A. Type II seesaw direct realization of Cj;
Within the
Y HouL
responsible for M, where we introduced three Higgs
triplets. We introduce two Higgs doublets @, responsible
for M, through the term Y{D;;®,¢g; [see Eq. (109)]. We
assume the field transformations defined in Table XXI.

type II seesaw scenario, the term
Cly, j in the Lagrangian of Eq. (107) is the term

1
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TABLE XVIII. The Zg x Z, symmetry seesaw type I realization of the vanishing subtrace C;;. ®, are five SM Higgs doublets
(a = 1...5), D refers to the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by
£r. o denotes e*/3.

Matter content and symmetry transformation (pattern Cy;)

Symmetry under Zg

4
VR1 = Wlpy Vpy = Vp2 VR3 = U3 X1 = @) X2 X2 X3 X3
Dy - oDy, Dy = Dy, Dy3 — Dy D - P, D, - D, D3 — s
D, — 0Dy s — D5 Cri = o' Cro = @ Cra Crs = @ Crs

Symmetry under Z,

VRl = URi Uy = IUp3 Vp3 = —ilpy X1 =0 X2 = X2 X3 = X3
Dy, — Dy, Dy = iDy3 Dy3 = —iDp, D - P ) D; — —O3
Dy — iDs D5 — —iD, Cr1 = CRi Cro— o Cr3 = U3

Mass matrices M, Mp, M,, and M,
x 0 0 A —-iD D X
MR_<O y z),MD—(—IE B —C),Mb_<—
0 z -y E C B -

TABLE XIX. The Zg x Z, symmetry seesaw type I realization of the vanishing subtrace C,,. ®, are five SM Higgs doublets
(a = 1...5), Dy refers to the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by
£g. w denotes e"/3.

> X

5
X Vo>V, Yfll g) ?
X |\My & ve | 0 Y)n Yo

-A 0 Y;32 Y;33

Matter content and symmetry transformation (pattern C,,)

Symmetry under Zg

4
UR1 = Vg1 Upy = WUR) VR3 = UR3 X1 = 0x X2 X2 X3 7 X3
Dy — Dy Dy —» wDy, D3 — Dy D - P D, - wd, D3 > D
D, = 0Dy D5 — s Cri = @ Cr Cro = 0*Cra Crs = @ Crs

Symmetry under Z,

VRl = IVR3 Vry = UR2 Vg3 = —ilp) X1 =X X2 = X2 X3 = X3
Dyy = iDy3 D, = Dy, D3 = —iDy; D, - O ®, —» -, D; - Oy
D,y — iDs D5 - —iD, Cri = Cri Cro = Cro g3 = Crs
Mass matrices Mg, Mp, M, and M,

x 0 z A iB -C A X X Vs>V, Yf’ll 0 Y;l?
Mg=|0 y O |Mp=|-IE D E |M,=|- x x |\ M, = wgp,| 0O Y3, 0

z 0 —x C -B A - - -A Y3, 0 Y,

TABLE XX. The Z¢ x Z, symmetry seesaw type I realization of the vanishing subtrace C;3. ®, are four SM Higgs doublets
(a = 1...4), Dy refers to the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by
£. w denotes e”/3 and u is a generic independent parameter present in M.

Matter content and symmetry transformation (pattern C,3)

Symmetry under Zg

UR1 = Vg1 VRy = WVRy URs = UR3 X1 w4}(1 X2 = X2 X3 X3
Dy — Dy, Dy, - oDy, D3 — Dy; D) — P, D) - o®, @3 - 0’ P,
D, = 0Dy Cri = @ Cr, Cry = 0*Cpo Crs = @ Crs

Symmetry under Z,

VR = Vg3 Vry = Vg2 Vg3 = —Iilpi X1~ X X2 = X2 X3 = X3
DL] b d _DL3 DL2 b d DL2 DL3 b d _DLl d)l d (I)l (I>2 e d q)z (1)3 - lq)4
Dy — —ids Cri = Cri Cra = Cro Cr3 = Cr3

Mass matrices Mp, Mp, M,, and M,

x 0 z iA -D -iC x A x oy >V Y4, 0 Y4,
Mg=(0 y 0| Mp=(0 B 0 | M,=(- x —-A| M, = ve| 0 Yi, O

z 0 u C D A - - X Y4 0 Y4,
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TABLE XXI.

The Z, x Z, symmetry seesaw type II realization of the vanishing subtrace Cs;. H are three triplet

scalars, D; refers to the flavor three left-handed lepton doublets, while the three right-handed charged lepton
singlets are denoted by £. The ® denotes two SM Higgs doublets.

Matter content (pattern Css)

H D, Cr @

Symmetry under Z)

GyH Gy,D; G,tx Gyp®

Gy = diag(1,1,-1) 0 -i 0 G, =diag(1,1,1) G — (O 1)

G = <+i 0 O) 7 \1 0
0 0 1
Symmetry under Z,
GyH GpDy, G,tx Go®

Gy = diag(1,-1,-1) Gp = diag(—1,-1,1)

G, = diag(1,1,-1) G = diag(—1,-1)

By forming bilinear terms in order to see the trans-
formations under Z,, we get for I/{iuLj,

1 1 -1
Z
I/inng 1 1 -1 s
-1 -1 1

[S)

(135)

and so, when the bilinear l/{,,VLJ. is combined with the
transformation of H, under Z,, we get

1 1 -1
z
Hulw 2001 1 -1,
-1 -1 1
-1 -1 1
Z,
H(Z)uziv”% -1 -1 1 ],
1 1 -1
-1 -1 1
01, 2
H3ULiVLj= -1 -1 1 (136)
1 1 -1

Thus, the Lagrangian terms in Eq. (107), responsible for
M,, which are due to the interaction with HY and are
consistent with Z, symmetry are

z _ _ _
Ly, < HY(Y{ICT W] vy + Y55 ,C vy + Y53 [C g

+ Y357, C vy + YT,C ), (137)

which transforms under Z as
z, 4

> 0(_ywl, T -1 AW S v, T -l

Ly, = H) (=Y v,C v = Y50 Clup + Y 3C

vl T n—1 vl T n—1

+Y v C v+ Y ,C v ). (138)
Thus, invariance under Z, x Z/, implies the constraint

vl vl

Yip =-rs,

Y = ysl = 0. (139)

By the same way, one can see the constraints on the

Yukawa couplings due to interaction with H9 and HY, and
we get

2 _ yi2

Yi3 = iY3;,

v3 __ ~yU3
Y3 =—iY53,

M= vg =i =o
vi—ri=ri=o (40
So when HY gets a VEV v we get M, in the form

vl ,H vl ,\H
—Your Y

_ vl ,,H
M, = - Yo, v

i(Y3v) — Y3508
(V5305 + Yi3ud))

vl ,,H
Y30y

(141)

We see that the texture Csz is realized.

For the charged lepton mass matrix M,, we follow the
same procedure by forming bilinear terms in order to see
the transformations under Z,:

-1 -1 1
_ Z, _ Z, _
11 -l
11 -l
Z
=1 1 - (142)
-1 -1 1

Thus, the Lagrangian terms in Eq. (109), responsible for
M, which are due to the interaction with ®;, ®, and are
consistent with Z, symmetry are

Lgff « @ (YD \Er) + YD1 Era + Y51 Dot gy
+ Y5ID 2l ko + YiiD 3t k)
+ @y (Y(IDp\Cr1 + Y (3D 11 Era + Y5ID 12 gy

+ YD1yl ry + Y3D 138 k3), (143)

which transforms under Z) as
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Z!
Z, 22 AT AT
Lgy, — @2<_1Y11DL25R1 —iY), Dol

+ YD Cry + iYAD L Cry + YA D13 Rs)

+ @ (=iY3D ol ry — iY (3D ks + iY5ID L Cpy
+iY3DEry + Y3D 13 R3).

Thus, invariance under Z, x Z’2 implies the constraint

(144)

1 yl2 ‘1 _
Yy =Yy, Yy, =

(7 S v
Y33 _Y33’

)
Y5, = —iYi;,

212 2102 212 £1(2
Y13():Y23<):Y31():Y32<):0~

)
Yy = —iYiy,

(145)

So when @Y gets a VEV v®, we get M, in the form

TABLE XXII. The Z), x Z, symmetry seesaw type II realization of the vanishing subtrace C,. H are three triplet scalars, D; refers to
the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by . The ® denotes two

SM Higgs doublets.

Matter content (pattern Cy;)

H D, £r @

Symmetry under Z)

Gy H GyD, Gty Gy ®

Gy = diag(1,1,-1) 10 0 G, = diag(1.1,1) o (o 1)
Gh=[0 0 —i *=\1 0

0 i 0
Symmetry under Z,
GyH GpD, G, tx Go®

Gy = diag(1,-1,-1)

Mass matrices

vl H (Y2, H v3 , H
Yijol i(Yivy = Yise))

vl  H
M, = - =Y505

Gp = diag(1,—1,-1)

v2 , H v3 , H
Yi50v; 1+11513”3
(2
Y231”1H M,
v
—Y530

G, = diag(—1,1,1)

o Y2 0 0
( 0 3 ng)

0 Yg Yy

Go = diag(~1,-1)

TABLE XXIII. The Z), x Z, symmetry seesaw type Il realization of the vanishing subtrace C,,. H are three triplet scalars, D; refers to
the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by £. The @ denotes two

SM Higgs doublets.

Matter content (pattern C,,)

H D, CR ¢

Symmetry under Z

GyH GpD; GLtr GL®

G}y = diag(1.1,-1) 00 —i G, = diag(1. 1.1) Gl = (O 1)
Gy=|0 1 o bo

i 00
Symmetry under Z,
GyH GpDy, Gty Go®

Gy = diag(1,—1,-1)

Mass matrices

vl , H
- Y v

vl , H c(yv2 ,,H v3 , H
Yol i(Y3e) - Y5e))
M, =

Gp = diag(—1,1,-1)

G, = diag(1,-1,1)

ST

YDIUH
oW Y EEal s £2
(2 (2 T~
(Y3v) +Y5305) | .My "= 05 0 Yo 0

vl H
Y30y

L2 £2
—iY5; 0 Y5

Ge = diag(-1,-1)
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TABLE XXIV. The Z, x Z, symmetry seesaw type Il realization of the vanishing subtrace C ;. H are three triplet scalars, D, refers to
the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by #;. The @ denotes two

SM Higgs doublets.

Matter content (pattern C,3)

H Dy ‘r 0]

Symmetry under Z)

GyH GpD; G,tg Gyp®

Gy, = diag(1,-1,-1) 0 0 1 G, = diag(1,1,1) Gly — ((]) 1)

Gy=10 10 0
1 0 0
Symmetry under Z,
GyH GpDy, G lx Go®

Gy = diag(1,1,-1)

Mass matrices

Gp = diag(~1,1,-1)

G, = diag(1,-1.1) G = diag(—1,-1)

ST
0 Y3 0
i 0 vy

e et B 0 ot
M, = - Yo, 1 i]’gg% . My x5
- - Yoy + Y30,

21,0 | :yll, ® yvil,d | yll,d
Y{ vy +iY5 vy Y07 +iY5,v5 0
_ 21, ® _yll, ® yil, o :yll, d
My=| Y507 —iY{ vy Y50 —iY v, 0
1,0 , @
0 0 Y3 (v +07)
(146)
Thus, when v ~ v > v, we get
1 1 T
iYs5, iYs5, 0 a
My, =v| —iY{l —iYjh 0 [ =v|bT (147)
1 T
0 0 Y5, c

One can by just imposing some reasonable assumptions on
the ratios of the free vectors diagonalize MfM} by an
infinitesimal rotation, which puts us thus to a good
approximation in the flavor basis, as desired.

B. Type II seesaw direct realization of C;, C,;, and Cy3

Following the same method outlined in case Csz, we
state briefly the results of the cases C;;, Cy,, and C,3, in
Tables XXII, XXIII, and XXIV, respectively.

XIV. SUMMARY, DISCUSSION,
AND CONCLUSION

We have studied a specific texture characterized by one
vanishing subtrace of the neutrino mass matrix. We found
that all textures, whether they be of inverted or normal
type, can accommodate the recent experimental bounds.
Moreover, four textures of inverted type can accommodate
data in case one neutrino mass is zero. We have carried out

a complete phenomenological and analytic analysis, but
did not state the analytic expressions, as they are too
cumbersome, even the first terms in a Taylor expansion in
powers of s;5. Finally, for the model building of the texture,
we first proposed a generic strategy to justify such a
specific texture form based on finding a corresponding
symmetry implying certain zeros at M,,;, which when
rotated to a new rotated symmetry leads to the desired
form of vanishing subtrace in M,. We applied this strategy
for both types of seesaw scenarios and in both invertible
and singular neutrino mass matrices. We also presented a
direct method to realize the textures without rotation for
both types of seesaw scenarios based on discrete symmetry.

In all these theoretical models, the spontaneous sym-
metry breaking of a discrete symmetry Z, x Z,,, triggered
by some fields (®, y)—some of which are very heavy—
taking a VEV, led by construction to a texture of vanishing
subtrace, and this presumably happens at high scale.
However, the question arises as to whether the running
of the Yukawa couplings from high scale to weak scale
spoils the form of the texture. In our work we assumed this
change is slight, and that the texture would be kept when
running to weak scale, in line with [14]. However, it was
argued in [10] that the “entries-equality” condition is not
stable against radiative corrections, and surely this question
is worthy of a thorough analysis in its own right.

Moreover, we have not discussed the scalar and Higgs
potential. In Appendix we stated the general form of the
renormalizable scalar-Higgs potential in one case (Cs3)
respecting the discrete symmetry (Z, x Zg), and therein
we put in constraints on the coupling constants and
stated the tadpole equations and the corresponding mass
matrices.

035020-45



ISMAEL, ALKHATEEB, CHAMOUN, and LASHIN

PHYS. REV. D 103, 035020 (2021)

The questions of stability and perturbative unitarity, in
that the potential is copositive and bounded from below or
at least it accepts local minima with sufficiently large
decaying timescales through tunneling, and that the cou-
pling constants are small enough for perturbative expan-
sion, are all assumed to be met through tuning of the
potential parameters. Surely, a term such as ®'®y "y would
break the discrete symmetry when y takes a VEV, and here
we wonder whether the ®@ can behave as an SM Higgs field,
as we assumed in our realization models, in which case we
ask how its mass is kept small, whereas such a term gives a
contribution of the form Yv)% where v, is expected to be
high. Again, we assume a sort of fine-tuning imposing the
corresponding Y to be too small, and this is reminiscent of
the Higgs hierarchy problem, where even in the SM and at
tree levels, one needs fine-tuning in order to keep the Higgs
mass at electroweak scale assuming it is coupled to heavy
scalars.

Finally, the existence in our realization models of many
electroweak doublets ®’s which get a VEV at the
electroweak scale could lead to an interesting phenom-
enology of the extra states at the Large Hadron Collider
(LHC). We did not discuss this, but rather assumed again
a fine-tuning position. First, the parameters of the Higgs-
scalar potential are assumed to be fine-tuned so that
several Higgs fields @ get a VEV v at the electroweak
scale, while other fields y get a VEV v, at high scale.
Second, the corresponding “quartic” Yukawas for some
of these electroweak doublets (Y4®*) are tuned to be
high, so that the “low scale” contribution to their masses
(Yov3), when added to the “high scale” contribution to
their masses (Y@{vf() originating from the coupling term
(Y, ®*7%), is in such a way that the resulting mass for all
the electroweak doublets @’s, except the SM one, are
beyond the reach of current accelerators. Actually,
this is a “common” assumption because fine-tuning of
parameters is required whenever there are two different
scales in the theory, which are generated by the Higgs
VEVs [21]. In [18], a similar enriched scalar sector with
three Higgs doublets and two scalar gauge singlets was
studied, and again a high level of fine-tuning was required
in order to eliminate the large radiative corrections,
originated from the existence of a high scale in the
model, through renormalization to the mass of light
scalars.

We hope to address some of the above mentioned points
in the future.
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APPENDIX: SCALAR POTENTIAL FOR THE
CASE (33 UNDER Z, x Zg SYMMETRY

Looking at Table XVII as a representative case of direct
realization,3 we see that for the sake of constructing the
scalar potential, we can drop the two gauge singlets so that
we have five doublets, ¢ = (¢;, ¢,, P3, P4, ¢5)T, and one
singlet y. The scalar fields transform under Z, x Zg as
follows (& = e™/3):

¢—>dlag(1 o, 0,0, 0*)p = Ugh,

1 0 0 0 0
0 -1 0 0 0
s34 0 10 0]|p=U0,
0 0 0 i
0 0 —i 0
S0t x5z (A1)

Dictated by gauge symmetry, we see directly that the most
general renormalizable potential expressing the coupling
amidst the ¢ and y fields can be restricted to the following
form:

V=V,+V,+Vy,
Vy = b + Aapcababpdida.
V, = my'y +24,00%)%
Vir = a0 1) (hs).
where p,;, and mf( are mass square parameters while 4,4,

Ayap> and 4, are Yukawa coupling coefficients of fields having

74
the corresponding indices. The sum convention over
repeated indices is implied. We see directly from the
definition of quartic couplings that 1,;,.4 = A.445- Together

with Hermiticity, the coupling coefficients satisfy

(A2)

Hap = M ys Ayab = Apq(m3 and A, are real),

Aabcd = ﬂcdab = ﬂZadc' (A3)

In constructing the scalar potential we follow closely the
notation of [22,23].

Let us find the independent couplings from the con-
straints of Eq. (A3) alone. Since this is a common problem,
we consider n doublets ¢, (in our case n = 5) with one
gauge singlet scalar y. In order to ease the counting and also
to provide notational simplicity, we arrange the indices of
the mass parameters and Yukawa couplings in 2-tuples and
4-tuples as (a, b) and (a, b, ¢, d). Thus, it is easy to count
the number of independent couplings for each of the

quadratic (u,,) and cubic (4,,,) couplings as

*We could equally choose the case Cs; of indirect realization
as presented in Table V but we chose the case of direct realization
since it is simpler.
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(a,b):a < b,

counting1+2+3+---+n=2k:7.

(A4)

For the quartic coefficients, one can, using the constraints of Eq. (A3), span all the couplings once and only once, by

restricting to

n*(n—1)>°

(a,b,c,d):{a =Min{a,b,c,d} AN a & {b,c,d}} counting Z(n —k)P =

(a,a,c¢,d):{c <d,a=Min{a,c,d} Na & {c,d}}
(a.b.a.d):{b <d.a=Min{a,b.d} Aa ¢ {b.d}} counting3) Y (n—j+1)=
(a,b,c,a):{b <c,a=Min{a,b,c} Aa & {b,c}}

4

k=1

L& n(n*-1)
k=1 j=kt1 2

- nn—1)

(a,a,a,d):{a < d} counting Z(n —k) =
k=1

(a,a,a,a) counting n.

By adding the number of independent parameters, we get
%, giving 175 independent quartic Yukawa coefficients.
Imposing the invariance under Z, x Zg symmetry we find
the following constraints:

—IT*
Hea = Uaa CUab dHab
— IT*
A}(cd - Uaa cUah dj';(ah

}“efgh = U;a eU(xbeZc gU(xd h/labcd

ae{2.6}. (A6)

We end up with the following independent Yukawa
couplings (5 quadratic, 5 cubic, and 33 quartic coefficients)
shown in Table XXV.

We assume that the Yukawa coupling are such that the
potential gets local minima, around one of which the fields
are expanded as follows:

+
ggk 1])(+){0
= , = . A7
& (ﬁwkw@) ==n o W

In terms of the fields (¢, @7, x°), the potential can be
decomposed into constant, linear, quadratic, cubic, and
quartic terms. Being in a local minimum means that the

TABLE XXV.

2

’

(AS)

linear term is vanishing, whence we get the tadpole
conditions:

1
Wab + AapeaVivalvy + Eﬂxabl};v){vb =0, (A8)

1
(mf( + 2/1)(“,,1)311,7) v, = 0. (A9)

As to the quadratic term, it gives the mass matrices

1
Vy =07 (M) 0, +§NTM§N, (A10)
where N\ represents the neutral fields organized as
N = (Re[p]], ....Re[p?], Im[p]], ...,
Im[gp¢], Re[y?], Im[y?])". (A11)

The Hermitian 5 x 5 matrix M2i in Eq. (A10), represents
the mass matrix of charged fields and is given as

Independent Yukawa coupling in the case Cs; under Z, x Zg symmetry.

Independent Yukawa couplings

€ which number field

Hi1s K22, H335 Hag = /454,5;/1;(11,/1;(227/1;(337/1;(44 = /1;{5.5
M45;/1;(45

A Atz Anisss Aiaa = Anisss dizans Aizans Araar = Aiss
42022, 43333 Aaaas = Assss, 4233, 43344 = 43355, Aonag = Aass

j'2332ﬂ )“3443 = 13553 ’ j'2442 = j’2552 s /14455 ’ 14545 ’ /14554
j'1 145 11451 ’ /12245 ’ j'24SZv 13345 ’ /13453

/112135/114157/11414 = _/115157/12324 = _i/12325»/12343 = _i/12353

— — _ *
/12434 - /125355 /12435 - /125347 /14445 - _/14555

R
iR
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1
(Mi)ab = Hab + lubcdvzvd + zl)mbv;y)(v (Alz)

while the 12 x 12 matrix M2 for neutral fields is expressed
in terms of block matrices as

Mg

M2 = M,
T AME,”
RI

M

2
M2 = < Mo
o M2 T

19

M2
~ > (A13)
M)(

where the 10 x 10 matrix Mg, is in turn given in terms of
block matrices as

(M%{>ab = Re[(Mi)ab + /Iacdbvcvz + ﬂacbdvcvd]i
) with (M%)ah = Re[(Mgt)ab =+ )“acdhvcv:; - j'acbdvcvd]’

and the 10 x 2 matrix M;%w is given in terms of four 5 x 1 matrices as follows:

M2 M2

R RI .

M2, =< w0 e ) with
M2 M2
7@IR 79l

Finally, the 2 x 2 matrix M? is given by
M:? = 2 1/1 p diag(1,1 Al6
T m)( + 5 )(abvavb lag( ’ ) ( )

Note that MZ is Hermitian, whereas My, M3, M2 are

real symmetric. The matrices My, M2 g, M2 1, MC &1,
MZ

o1r are real, so we get M2 as real symmetric.

(A14)
(M%{I)ab = _Im[(Mi)ab + )“acdbvcvz - j’acbdvcyd]’
(M;?(pR)al = Re[/l)(ab(v;vb + U)(Ub)]’
(Mz )a = Reu ab(v*vb - v 1}],)],
);/JI 1 v4 x* X (A15)
(M;((pRI)al = Im[lzab(vzvb + /U;(’Uh)]v

(M;%(pIR)al = _Im[/l)(ab(y;vb - U)(Ub)]‘

One should diagonalize the mass matrices in order to get
the physical masses, but we anticipate at least three
vanishing masses which would correspond to the would
be Goldstone bosons. With such a large number of free
parameters, we do not carry out this task, but just assume
that the Yukawa couplings are chosen in their parameters’
space so that the mass spectrum is such that one doublet
would play the role of the SM Higgs, whereas the others
would be outside the LHC reach.
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