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We consider a texture for the neutrino mass matrix characterized by one vanishing 2 × 2 subtrace.
We analyze phenomenologically and analytically all the six possible patterns, and show that all nonsingular
ones are able to accommodate the experimental bounds, whereas singular patterns allow for only four
inverted-hierarchy type textures. We then present some possible realizations of this texture, within seesaw
scenarios, either directly or indirectly by relating it to zero textures.
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I. INTRODUCTION

The fact that neutrinos are massive was the first firm sign
of physics beyond standard model [1]. Many flavor models
for neutrino mass matrix were conceived, motivated by
phenomenological data on neutrino oscillations [2]. Zero
textures were studied extensively [3–5], but other forms of
textures were equally studied, such as zero minors [6] and
partial μ − τ symmetry textures [7].
The objective of this work is to study the texture

characterized by one vanishing subtrace, motivated by
many factors. First, a particular texture of vanishing two
subtraces was studied in [8], where analytical expressions
for the measurable neutrino observables were derived, and
numerical analysis was done to show that 8 patterns, out of
the 15 independent ones, can accommodate data. Second,
the so-called μ − τ antisymmetry texture was studied in,
say, Ref. [9]. This texture, in addition to the condition
(Meμ ¼ −Meτ) which can also be implemented in μ − τ
symmetry textures [7], included also a certain vanishing
subtrace condition (Mμμ þMττ ¼ 0). Third, the one van-
ishing 2 × 2 subtrace texture can actually be seen as a
generalization of the zero texture when the latter is regarded

as a vanishing 1 × 1 subtrace texture. Fourth, since the
equal entries texture has been of interest recently, either in
hybrid texture (e.g., Ref. [10]) or simply in assuming two
such equalities (e.g., Ref. [11]), and since such an equality
condition is closely related to a condition of the vanishing
sum of the corresponding two entries, so studying textures
of vanishing subtrace adds further analysis into these
studies. We implement the new experimental bounds of
[12], with the new updates on the nonvanishing value of the
smallest mixing matrix [13], and carry out a complete
numerical analysis, where all the free parameters are
scanned within their experimentally accepted ranges. We
discuss nonsingular patterns having all the neutrino masses
nonvanishing and singular patterns where one of the masses
is zero. We find all six nonsingular textures able to
accommodate the experimental data. As to singular tex-
tures, only four textures can accommodate data of the
inverted hierarchy type. We then address the question of
how to realize such a vanishing subtrace texture. First, we
relate the symmetry imposing the vanishing subtrace
pattern to another symmetry which forces zeros at specific
locations. The former pattern arises upon rotating the zero-
texture form. Although the texture form is imposed at high
scale, however, many arguments [14] were presented in
favor of keeping the form when running into low scale. The
method we suggest for realizing the vanishing subtrace
texture applies only to four out of six possible patterns.
However, it is generic enough to be applicable to any
specific texture related by unitary transformation to zero
textures, and we apply it successfully within type I and
type II seesaw scenarios. Second, we present direct
realizations of the textures within type I and type II seesaw
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scenarios, without relating them to zero textures, based on
discrete symmetries.
The plan of the paper is as follows. In Sec. II, we present

the notation and adopted conventions. In Sec. III, we
explain the method to follow for the phenomenology. In
Sec. IV, we present the analysis of all the nonsingular six
patterns of one vanishing subtrace supplemented with one
single table summarizing all the predictions of the various
patterns. Subsections therein correspond to these different
patterns where for each one we report the relevant defining
quantities, correlation plots, and one representative point
for each type of hierarchy. We repeat the analysis in Sec. V
for the singular patterns. Section VI outlines the problem of
how to build models implementing the vanishing subtrace
texture whether it be directly or indirectly. In Sec. VII, we
develop the generic method relating the symmetry of
vanishing subtraces to that of zero textures and use it as

an indirect method for getting the vanishing subtrace
texture. In Sec. VIII, we clarify the notion of flavor basis
which is of paramount relevance in our discussion. The
aforementioned indirect method is applied within type I
seesaw scenarios in order to realize invertible (singular)
vanishing subtrace textures in Sec. IX (10). We reapply this
indirect method in Sec. XI but within the type II seesaw
scenario. In Secs. XII and XIII, we present, respectively, a
direct way to impose the textures within type I and type II
seesaw scenarios. The summary and conclusion are pre-
sented in Sec. 14.

II. NOTATION

In the “flavor” basis, where the charged lepton mass
matrix is diagonal and thus the observed neutrino mixing
matrix comes solely from the neutrino sector, we have

Mν ¼ VPMNS

0
B@

m1 0 0

0 m2 0

0 0 m3

1
CAðVPMNSÞT; ð1Þ

P ¼ diagðeiρ; eiσ; 1Þ; U ¼ R23ðθ23Þ R13ðθ13Þ diagð1; e−iδ; 1Þ R12ðθ12Þ;

VPMNS ¼ UP ¼

0
B@

c12c13eiρ s12c13eiσ s13
ð−c12s23s13 − s12c23e−iδÞeiρ ð−s12s23s13 þ c12c23e−iδÞeiσ s23c13
ð−c12c23s13 þ s12s23e−iδÞeiρ ð−s12c23s13 − c12s23e−iδÞeiσ c23c13

1
CA;

9>>>>=
>>>>;
; ð2Þ

where RijðθijÞ is the rotation matrix in the ði; jÞ plane by
angle θij and s12 ≡ sin θ12…. Note that in this adopted
parametrization, the third column of VPMNS is real.
The mass spectrum is classified into two categories:
(i) Normal hierarchy: characterized by m1 < m2 < m3

and is denoted by N.
(ii) Inverted hierarchy: characterized by m3 < m1 < m2

and is denoted by I.
The neutrino mass-squared differences, characterizing,

respectively, solar and atmospheric neutrino mass-
squared differences together with their ratio Rν, are
defined as

δm2 ≡m2
2 −m2

1; Δm2 ≡
����m2

3 −
1

2
ðm2

1 þm2
2Þ
����;

Rν ¼ δm2=Δm2: ð3Þ

Two parameters that put bounds on the neutrino
mass scales, through studying beta-decay kinematics and
neutrinoless double-beta decay, are the effective electron-
neutrino mass,

me ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðjVeij2m2
i Þ

vuut ; ð4Þ

and the effective Majorana mass term mee,

mee ¼ jm1V2
e1 þm2V2

e2 þm3V2
e3j ¼ jMν11j: ð5Þ

Cosmological observations put bounds on the “sum”
parameter Σ:

Σ ¼
X3
i¼1

mi: ð6Þ

The last measurable quantity we shall consider is the
Jarlskog rephasing invariant defined by

J ¼ s12c12s23c23s13c213 sin δ: ð7Þ

The experimental bounds for the oscillation parameters
are summarized in Table I.
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For the nonoscillation parameters Σ, mee, and me, we
adopt the ranges reported in the recent Ref. [15] for the first
two, while forme we use more stringent values found in the
earlier Ref. [16]:

Σ < 0.7 eV;

mee < 0.3 eV;

me < 1.8 eV:

9=
; ð8Þ

III. TEXTURE OF ONE-VANISHING
SUBTRACE

We denote by Cij the texture where the subtrace
corresponding to the ijth element (i.e., the trace of the
submatrix obtained by deleting the ith row and the jth
column ofMν) is equal to zero. We have six possibilities of
having one subtrace vanishing. Let the diagonal elements
of the trace-free submatrix corresponding to Cij be the
elements at the (a, b) and (c, d) entries of Mν, then the
vanishing subtrace condition is written as

Mν ab þMν cd ¼ 0; ð9Þ

and then we have

X3
l¼1

ðUalUbl þ UclUdlÞλl ¼ 0 ð10Þ

with λ1 ¼ m1e2iρ, λ2 ¼ m2e2iσ , and λ3 ¼ m3. This leads to

m1

m3

¼ ReðA3ÞImðA2e2iσÞ − ReðA2e2iσÞImðA3Þ
ImðA1e2iρÞReðA2e2iσÞ − ReðA1e2iρÞImðA2e2iσÞ

m2

m3

¼ ImðA3ÞReðA1e2iρÞ − ReðA3ÞImðA1e2iρÞ
ImðA1e2iρÞReðA2e2iσÞ − ReðA1e2iρÞImðA2e2iσÞ

9>>>=
>>>;
;

ð11Þ

where Aα is defined as

Aα ¼ ðUaαUbα þUcαUdαÞ; α ¼ 1; 2; 3: ð12Þ

We see that knowing the mixing and phase angles we can
get mass ratios. Considering now

m3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δm2

ðm2

m3
Þ2− ðm1

m3
Þ2

s
; m1¼m3×

m1

m3

; m2 ¼m3×
m2

m3

;

ð13Þ

we see that knowing δm2 will allow us now to
compute the mass spectrum and all the neutrino observ-
ables. Thus our input parameters will be the seven
parameters (three mixing anglesþ three phase anglesþ
solar mass squared difference) which for the texture
imposing one complex condition (two real conditions)
allows us to determine the 9 degrees of freedom of the
neutrino mass matrix. We then can compute all the
observable quantities, test the experimental bounds in
Table I of Δm2 and in Eqs. (8) of the remaining

TABLE I. Allowed 1–2–3σ ranges for the neutrino oscillation parameters: mixing angles, Dirac phase δ, mass-
square differences together with the Rν parameter, taken from the global fit to neutrino oscillation data [12]. The
quantities δm2, Δm2, and Rν are, respectively, defined as m2

2 −m2
1, jm2

3 − ðm2
1 þm2

2Þ=2j, and δm2=Δm2. Normal
and inverted hierarchies are, respectively, denoted by NH and IH.

Parameter Hierarchy Best fit 1σ 2σ 3σ

δm2 ð10−5 eV2Þ NH, IH 7.37 [7.21, 7.54] [7.07, 7.73] [6.93, 7.96]

Δm2 ð10−3 eV2Þ NH 2.53 [2.50, 2.57] [2.45, 2.61] [2.41, 2.65]
IH 2.51 [2.47, 2.54] [2.43, 2.58] [2.39, 2.62]

Rν NH 0.029 [0.028, 0.030] [0.027, 0.031] [0.026, 0.033]
IH 0.029 [0.028, 0.030] [0.027, 0.032] [0.026, 0.033]

θ12 (°) NH, IH 33.02 [32.02, 34.09] [30.98, 35.30] [30.00, 36.51]

θ13 (°) NH 8.43 [8.30, 8.55] [8.11, 8.74] [7.92, 8.90]]
IH 8.45 [8.27, 8.59] [8.08, 8.78] [7.92, 8.94]]

θ23 (°) NH 40.69 [39.82, 41.89] [38.93, 43.29] [38.10, 51.66]]
IH 42.42 ½40.23; 42.02� ∪ ½39.18; 44.02� ∪ [38.29, 52.90]

[48.86, 51.06] [46.89, 52.01]

δ (°) NH 248.40 [212.40, 289.80] [180.00, 342.00] ½0.00; 30.60� ∪
[136.80, 360]

IH 235.80 [201.60, 291.60] [165.60, 338.40] ½0; 27.00� ∪
[124.20,360]
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mass bounds, and draw correlation plots of the accepted
points.
Also, one should investigate the possibility, for each

pattern, to have a singular (noninvertible) mass matrix.
The viable singular mass matrix is characterized by one of
the two masses (m1 for the N hierarchy, and m3 for the I
hierarchy) being equal to zero, as compatibility with
the data prevents the simultaneous vanishing of two
masses:

(i) The vanishing ofm1 together with Eqs. (3), (10), and
(12) imply that the mass spectrum of m2 and m3

takes the values
ffiffiffiffiffiffiffiffi
δm2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2 þ δm2=2

p
, re-

spectively, and we get

Δm2 ¼ δm2
���� A2

A3

���2 − 1
2

�
;

e2iσ ¼ − A3m3

A2m2
:

9=
; ð14Þ

(ii) The vanishing of m3 together with Eqs. (3), (10),
and (12) imply that the mass spectrum of
m2 and m1 takes the values

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2 þ δm2=2

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δm2 − δm2=2
p

, respectively, and we get

Δm2 ¼ 1
2
δm2

�
jA1A2j

2þ1

jA1A2j
2−1

�
;

e2iðρ−σÞ ¼ − A2m2

A1m1
:

9>=
>; ð15Þ

IV. PHENOMENOLOGICAL ANALYSIS FOR
NONSINGULAR TEXTURES

The parameter space is seven-dimensional representing
the parameters (θ12, θ13, θ23, δ, ρ, σ, δm2) within their
allowed experimental ranges, where we throw N points
uniformly in the corresponding parameter space and test
using Eqs. (11) and (13) first to check the hierarchy
type, and then to see whether the bounds of Δm2 with
those of Eq. (8) are satisfied. Since the experimental
bounds stated in Table I are not identical for the two types
of hierarchy, then the parameter spaces in both cases are
different, and one is obliged to repeat the sampling
in the two cases, imposing the desired type of hierarchy
with the other experimental bounds on the accepted
points. The number of points N needed for a statistically
significant sampling is found to be at least of the order
107–1010.
In each of the following subsections, labeled by the

textures Cij, and for each corresponding pattern we
provide the analytic expressions of the quantities Aα,
defined in Eq. (12), which characterize the pattern. We
find that all the textures accommodate data for all types of
hierarchy and at all statistical levels. All various predic-
tions concerning the ranges spanned by mixing angles,

phase angles, neutrino masses, me, mee, and J are
summarized in Table II. No signature is apparent in the
case of normal ordering for the spanned ranges of neutrino
masses presented in Table II. However, in the case of
inverted ordering of the neutrino masses, we see that m3

can reach a vanishing value for the textures C12, C13 at all
σ levels, and only at 2–3–σ-levels for the textures C22 and
C33. In contrast, m3 is never vanishing for the textures C11

and C23. Thus, the textures C12, C13, C22, and C33 are
predicted to allow for singular mass matrix, as will be
shown later to be the case. The ranges spanned by the
parameter J, in Table II, show that J at the 1–2–σ-levels for
normal ordering and 1–σ-level for inverted ordering is
negative in all textures, which puts the Dirac phase δ in the
third and fourth quarters. Also from Table II, the ranges
spanned by the phase angles (ρ, σ) indicate that for the
texture C12 in the case of normal hierarchy and at the 2σ
level there are gaps (σ ∉ ½900; 1500� and ρ ∉ ½340; 1010�),
and a similar gap (ρ ∉ ½00; 180�) for the texture C13 which
becomes (ρ ∉ ½00; 50�) at the 3σ level. However, in the
case of inverted ordering, we see at all levels that the
phase ρ for the texture C23 is bound to be in the interval
(½600; 1200�).
We present for each texture with either hierarchy type the

neutrino mass matrix obtained at one representative point
chosen from the points accepted out of those generated
randomly in the corresponding parameter space at the 3 − σ
level. The choice of the representative point is made in such
a way to be as close as possible to the best fit values for
mixing and Dirac phase angles.
Finally, we plot all the possible correlations at the 2 − σ

level. We show for each texture with either ordering 20
correlations. All correlations for each texture are organized
in a single figure divided into left and right panels. The left
panel of the figure consists of two columns where the first
(second) column is devoted for a normal (inverted) hier-
archy and shows three correlations amidst the mixing
angles, three correlations amidst the phase angles, and
three correlations of δ with [J;mee, lowest neutrino mass
(LNM)] and finally the correlation (m3, m23 ≡ m2

m3
). On the

other hand, we follow for the right panel of the figure
the same division strategy as in the left one, but each
column includes all the nine intercorrelations between
the phase angles and the mixing angles, and the correlation
(m3, m21 ≡ m2

m1
). For the sake of convenience and easy

referencing, each subfigure is labeled by three letters
which indicate the vertical positioning ða; b; c;…Þ, the
type of ordering (N ¼ normal, I ¼ inverted) and the
paneling (L ¼ left, R ¼ right). The last row in the figure
thus gives information on the severity of the mass
hierarchy.
Irrespective of the ordering (normal or inverted), we find

in all the textures a sinusoidal correlation between (δ, J)
which is a direct consequence of Eq. (7) where J depends
on mixing angles and Dirac phase δ. The variations due to
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the mixing angles in this relation are tiny because of the
tight range allowed for the mixing angles, and thus
J ∝ sin δ. The appearing sinusoidal curve is not a full
sine curve which would have covered a complete cycle;
rather it is a portion depending on the admissible range for
δ. Another generic feature that we find is the quasidege-
neracy of the first two neutrino masses characterized
by m1 ≈m2.
In the case of normal ordering, we see, for the textures

C12 and C13, sizable forbidden bands for both σ and ρ that
tend to diminish as the statistical level increases, and a
quasidegenerate spectrum for all neutrino masses with
ð0.7 ≤ m23 < 1Þ. As to the textures C11 and C22, we see
that there remain persistent forbidden bands for ðσ; ρÞ at all
statistical levels, and that we can have a mild or moderate
mass hierarchy characterized by ð0.4 ≤ m23 < 1Þ in texture
C22, whereas we have a quasidegenerate spectrum for
all masses with m23 ≈ 1 in texture C11. Moreover, for the
latter texture C11, we find two ribbons for the correlation
(δ, σ). Regarding the texture C23, we see that there are
forbidden bands for ρ, and that the mass hierarchy can
be mild or moderate ð0.4 ≤ m23 ≤ 0.9Þ. This situation
repeats itself for the texture C33 where we have
ð0.35 ≤ m23 ≤ 0.9Þ.
In the case of inverted ordering, we find for the texture

C11 two ribbons for the correlation (δ, σ) and a mild or
moderate mass hierarchy characterized by ð1 < m23 ≤ 3Þ.
For the textures C12, C13, and C22, we may get an acute
hierarchy reaching a strength m23 ≈ 104 for C12 and m23 ≈
103 for both C13 and C22. We get for the mass spectrum a
mild hierarchy characterized by ð1.2 ≤ m23 ≤ 3Þ in the
texture (C23), where, in addition, we find forbidden bands
for ðσ; ρÞ. Finally for the texture C33, we have again
forbidden bands for ðσ; ρÞ, but the hierarchy can be severe
reaching a strength m23 ≈ 104.

A. Pattern C11: Vanishing of Mν22 +Mν33

The relevant expressions for A1, A2, and A3, as defined in
Eq. (12) for this pattern, are

A1 ¼ ðc12s23s13 þ s12c23e−iδÞ2 þ ðc12c23s13 − s12s23e−iδÞ2;
A2 ¼ ðs12s23s13 − c12c23e−iδÞ2 þ ðs12c23s13 þ c12s23e−iδÞ2;
A3 ¼ c213: ð16Þ

For a representative point with normal ordering, we
take θ12 ¼ 33.2327°, θ23 ¼ 41.7746°, θ13 ¼ 8.5625°, δ ¼
189.5139°, ρ¼91.0971°, σ¼102.9376°, m1 ¼ 0.2162 eV,
m2 ¼ 0.21642 eV, m3 ¼ 0.22212 eV, me ¼ 0.21642 eV,
and mee ¼ 0.20292 eV with the corresponding mass
matrix (in eV):TA
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Mν¼

0
B@
−0.2001−0.0334i 0.0400þ0.0333i 0.0495−0.0230i

0.0400þ0.0333i −0.0234−0.0059i 0.2112−0.0014i

0.0495−0.0230i 0.2112−0.0014i 0.0234þ0.0059i

1
CA: ð17Þ

For an inverted hierarchy representative point we take θ12 ¼ 33.8335°, θ23 ¼ 42.3044°, θ13 ¼ 8.7834°, δ ¼ 246.8983°,
ρ ¼ 51.0968°, σ ¼ 150.5728°, m1 ¼ 0.0553 eV, m2 ¼ 0.0560 eV, m3 ¼ 0.0236 eV, me ¼ 0.0550 eV, and mee ¼
0.0220 eV with the corresponding mass matrix (in eV):

Mν ¼

0
B@

0.0014þ 0.0219i 0.0286þ 0.0239i −0.0214 − 0.0263i

0.0286þ 0.0239i −0.0076 − 0.0055i 0.0225þ 0.0000i

−0.0214 − 0.0263i 0.0225þ 0.0000i 0.0076þ 0.0055i

1
CA: ð18Þ

We see, from Table II, that m3 does not approach
a vanishing value in inverted type which indicates that no
corresponding singular matrix exists. We see also that J at
1 − 2σ levels for normal ordering and 1σ for inverted
ordering is negative so the corresponding δ is at third or
fourth quarters. For normal ordering, the allowed ranges
for ρ and σ tend to increase as the statistical level
increases reaching ½46.41°; 131.49°� (½47.41°; 135.33°�)
for ρ (σ) at the 3σ level.
For the plots of Fig. 1, two ribbons for the correlation

(δ, σ) exist for both types of hierarchy. The mass spectrum
has a moderate mass hierarchy characterized by ð1 <
m23 ≤ 3Þ in the inverted ordering. In contrast, the mass
spectrum is quasidegenerate in the case of normal ordering
where m1 ≈m2 ≈m3.

B. Pattern C12: Vanishing of Mν21 +Mν33

The relevant expressions for A1, A2, and A3, as defined in
Eq. (12) for this pattern, are

A1 ¼ −ðc12s23s13 þ s12c23e−iδÞc12c13
þ ðc12c23s13 − s12s23e−iδÞ2;

A2 ¼ −ðs12s23s13 − c12c23e−iδÞs12c13
þ ðs12c23s13 þ c12s23e−iδÞ2;

A3 ¼ s13s23c13 þ c223c
2
13: ð19Þ

For a representative point with normal ordering, we take
θ12 ¼ 33.7367°, θ23 ¼ 41.7468°, θ13 ¼ 8.4134°, δ ¼
312.5765°, ρ¼151.9557°, σ¼63.7910°, m1 ¼ 0.0458 eV,
m2 ¼ 0.0466 eV, m3 ¼ 0.0684 eV, me ¼ 0.0466 eV, and
mee¼0.0178eV,with the correspondingmassmatrix (in eV):

Mν ¼

0
B@

0.0102 − 0.0146i −0.0255þ 0.0052i 0.0343 − 0.0017i

−0.0255þ 0.0052i 0.0288 − 0.0081i 0.0404þ 0.0062i

0.0343 − 0.0017i 0.0404þ 0.0062i 0.0255 − 0.0052i

1
CA: ð20Þ

For an inverted hierarchy representative point we take θ12 ¼ 33.2436°, θ23 ¼ 41.4914°, θ13 ¼ 8.6242°, δ ¼ 236.7486°,
ρ ¼ 149.9638°, σ ¼ 123.9278°, m1 ¼ 0.0507 eV, m2 ¼ 0.0515 eV, m3 ¼ 0.0115 eV, me ¼ 0.0504 eV, and mee ¼
0.0456 eV with the corresponding mass matrix (in eV):

Mν ¼

0
B@

0.0118 − 0.0440i 0.0093 − 0.0076i −0.0083þ 0.0156i

0.0093 − 0.0076i −0.0194þ 0.0154i 0.0255 − 0.0121i

−0.0083þ 0.0156i 0.0255 − 0.0121i −0.0093þ 0.0076i

1
CA: ð21Þ

We see, from Table II, that m3 can reach zero in inverted
type, so we expect a possible singular texture existing.
Again J at 1 − 2σ levels for normal ordering and 1σ for
inverted ordering is negative so the corresponding δ is at
third or fourth quarters. For normal ordering, at 1 − σ level
there is a gap ½6o; 103o� (½56o; 157o�) for ρ (σ) which
becomes at 2 − σ level ½34o; 102o� (½91o; 152o�).
For the plots of Fig. 2 in normal ordering, we find large

forbidden gaps for ρ and σ and a quasidegenerate mass

spectrum where ð0.6 ≤ m23 ≤ 0.95Þ. As to the plots of
Fig. 2 in inverted type, we see that we may get an acute
hierarchy with m23 reaching up to 104 which reveals the
possibility of vanishing m3.

C. Pattern C13: Vanishing of Mν21 +Mν23

The relevant expressions for A1, A2, and A3, as defined in
Eq. (12) for this pattern, are
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FIG. 1. PatternC11 ≡Mν22 þMν33 ¼ 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of δ with J;mee, lowest neutrino mass
(LNM), and finally the correlation (m3, m23 ≡ m2

m3
) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns)

shows all the nine intercorrelations between phase angles and mixing angles, and the correlation (m3, m21 ≡ m2

m1
) for normal (N) and

inverted (I) hierarchies. Angles (masses) are evaluated in degrees (eV).
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FIG. 2. PatternC12 ≡Mν21 þMν33 ¼ 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of δ with J;mee, LNM, and finally the
correlation (m3, m23 ≡ m2

m3
) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns) shows all the nine

intercorrelations between phase angles and mixing angles, and the correlation (m3,m21 ≡ m2

m1
) for normal (N) and inverted (I) hierarchies.

Angles (masses) are evaluated in degrees (eV).
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A1 ¼ ðc12s23s13 þ s12c23e−iδÞðc12c23s13 − c12c13 − s12s23e−iδÞ;
A2 ¼ ðs12s23s13 − c12c23e−iδÞðs12c23s13 − s12c13 þ c12s23e−iδÞ;
A3 ¼ c13s23ðc23c13 þ s13Þ: ð22Þ

For a representative point with normal ordering, we take θ12 ¼ 33.8222°, θ23 ¼ 40.4289°, θ13 ¼ 8.7721°,
δ ¼ 243.7429°, ρ ¼ 148.0834°, σ ¼ 34.0333°, m1 ¼ 0.1821 eV, m2 ¼ 0.1823 eV, m3 ¼ 0.1888 eV, me ¼ 0.1823 eV,
and mee ¼ 0.0987 eV with the corresponding mass matrix (in eV):

Mν ¼

0
B@

0.0791 − 0.0590i −0.0909 − 0.0491i 0.0997þ 0.0538i

−0.0909 − 0.0491i 0.1037 − 0.0459i 0.0909þ 0.0491i

0.0997þ 0.0538i 0.0909þ 0.0491i 0.0911 − 0.0527i

1
CA: ð23Þ

Equally, for an inverted hierarchy we can take a representative point as follows: θ12 ¼ 33.8850°, θ23 ¼ 42.2823°,
θ13 ¼ 8.5649°, δ ¼ 244.3791°, ρ ¼ 48.7884°, σ ¼ 57.5072°, m1 ¼ 0.0644 eV, m2 ¼ 0.0650 eV, m3 ¼ 0.0421 eV,
me ¼ 0.0642 eV, and mee ¼ 0.0623 eV with the corresponding mass matrix (in eV):

Mν ¼

0
B@

−0.0131þ 0.0609i 0.0099 − 0.0112i 0.0023 − 0.0022i

0.0099 − 0.0112i 0.0508 − 0.0098i −0.0099þ 0.0112i

0.0023 − 0.0022i −0.0099þ 0.0112i 0.0507 − 0.0098i

1
CA: ð24Þ

We see, from Table II, that m3 can reach zero in inverted
type, so we expect a possible singular texture existing.
Table II also reveals that J, at 1 − 2σ levels for both normal
and inverted ordering, is negative so the corresponding δ is
in third or fourth quarters. For normal ordering, the ranges
for ρ (σ) are restricted to be ½42°; 155°� (½17°; 102°�) at 1σ
level, whereas they tend to be wider at 3σ level covering
½6°; 175°� (½0.01°; 180°�).
For the plots of Fig. 3 in normal ordering, we find a

quasidegenerate mass spectrum where ð0.65≤m23≤0.95Þ.
As to the plots of Fig. 3 in inverted type, we may get an
acute hierarchy withm23 reaching up to 103, so a vanishing
m3 is possible.

D. Pattern C22: Vanishing of Mν11 +Mν33

The relevant expressions for A1, A2, and A3, as defined in
Eq. (12) for this pattern, are

A1 ¼ c212c
2
13 þ ðc12c23s13 − s12s23e−iδÞ2;

A2 ¼ s212c
2
13 þ ðs12c23s13 þ c12s23e−iδÞ2;

A3 ¼ s213 þ c223c
2
13: ð25Þ

For a representative point with normal ordering, we
take θ12 ¼ 33.8006°, θ23 ¼ 40.7648°, θ13 ¼ 8.4791°, δ ¼
300.9481°, ρ¼81.5950°, σ ¼ 69.8454°, m1 ¼ 0.0398 eV,
m2 ¼ 0.0407 eV, m3 ¼ 0.0647 eV, me ¼ 0.0408 eV, and
mee¼0.0372eVwith the correspondingmassmatrix (in eV):

Mν ¼

0
B@

−0.0337þ 0.0157i 0.0064þ 0.0032i 0.0138 − 0.0059i

0.0064þ 0.0032i 0.0252 − 0.0235i 0.0327þ 0.0196i

0.0138 − 0.0059i 0.0327þ 0.0196i 0.0337 − 0.0157i

1
CA: ð26Þ

For an inverted hierarchy representative point, we take θ12 ¼ 33.5774°, θ23 ¼ 42.7607°, θ13 ¼ 8.7549°, δ ¼ 281.0485°,
ρ ¼ 99.6048°, σ ¼ 167.4130°, m1 ¼ 0.0749 eV, m2 ¼ 0.0754 eV, m3 ¼ 0.0571 eV, me ¼ 0.0747 eV, and mee ¼
0.0372 eV with the corresponding mass matrix (in eV):

Mν ¼

0
B@

−0.0263 − 0.0263i 0.0201þ 0.0479i −0.0011 − 0.0388i

0.0201þ 0.0479i 0.0162þ 0.0104i 0.0336 − 0.0196i

−0.0011 − 0.0388i 0.0336 − 0.0196i 0.0263þ 0.0263i

1
CA: ð27Þ

We see, from Table II, that m3 can reach zero in inverted type, so we expect a possible singular texture existing. Again,
from Table II, J at 1 − 2σ levels for normal ordering and 1σ for inverted ordering is negative so the corresponding δ is in
third or fourth quarters. For normal ordering, values of ρ are restricted to fall in the range ½52°; 128°� at the 3σ level.
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FIG. 3. PatternC13 ≡Mν21 þMν23 ¼ 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of δ with J;mee, LNM, and finally the
correlation (m3, m23 ≡ m2

m3
) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns) shows all the nine

intercorrelations between phase angles and mixing angles, and the correlation (m3,m21 ≡ m2

m1
) for normal (N) and inverted (I) hierarchies.

Angles (masses) are evaluated in degrees (eV).
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For the plots, Fig. 4, in normal ordering, we find forbidden bands for (σ, ρ) and a moderate mass hierarchy where
ð0.45 ≤ m23 < 1Þ. As to the plots of Fig. 4 in inverted type, there are forbidden bands for (σ, ρ) and the mass hierarchy can
become acute with m23 reaching up to 103 making a vanishing m3 possible.

E. Pattern C23: Vanishing of Mν11 +Mν23

The relevant expressions for A1, A2, and A3, as defined in Eq. (12) for this pattern, are

A1 ¼ c212c
2
13 þ ðc12s23s13 þ s12c23e−iδÞðc12c23s13 − s12s23e−iδÞ;

A2 ¼ s212c
2
13 þ ðs12s23s13 − c12c23e−iδÞðs12c23s13 þ c12s23e−iδÞ;

A3 ¼ s213 þ s23c23c213: ð28Þ

For a representative point with normal ordering, we take θ12 ¼ 33.4546°, θ23 ¼ 42.2981°, θ13 ¼ 8.4653°,
δ ¼ 248.6157°, ρ ¼ 94.3533°, σ ¼ 68.6630°, m1 ¼ 0.0203 eV, m2 ¼ 0.0221 eV, m3 ¼ 0.0554 eV, me ¼ 0.0222 eV,
and mee ¼ 0.0175 eV with the corresponding mass matrix (in eV):

Mν ¼

0
B@

−0.0173þ 0.0024i 0.0012 − 0.0013i 0.0136þ 0.0007i

0.0012 − 0.0013i 0.0361þ 0.0029i 0.0173 − 0.0024i

0.0136þ 0.0007i 0.0173 − 0.0024i 0.0369þ 0.0020i

1
CA: ð29Þ

For an inverted hierarchy representative point we take θ12 ¼ 33.2679°, θ23 ¼ 42.8064°, θ13 ¼ 8.6838°, δ ¼ 236.7459°,
ρ ¼ 98.4416°, σ ¼ 2.2660°, m1 ¼ 0.0573 eV, m2 ¼ 0.0579 eV, m3 ¼ 0.0288 eV, me ¼ 0.0570 eV, and mee ¼
0.0222 eV with the corresponding mass matrix (in eV):

Mν ¼

0
B@

−0.0198 − 0.0100i −0.0214þ 0.0285i 0.0299 − 0.0243i

−0.0214þ 0.0285i 0.0122 − 0.0172i 0.0198þ 0.0100i

0.0299 − 0.0243i 0.0198þ 0.0100i 0.0042 − 0.0042i

1
CA: ð30Þ

We see, from Table II, that m3 cannot reach zero, so we
expect no viable corresponding singular pattern. Again,
from Table II, J at 1 − 2σ levels for normal ordering and 1σ
for inverted ordering is negative so the corresponding δ is in
third or fourth quarters. For both normal and inverted
ordering, the phase ρ is bound at all σ levels to be nearly in
the interval (½60°; 120°�).
For the plots, Fig. 5, in both normal and inverted

ordering, we get an approximately degenerate spectrum
characterized, respectively, by ð0.4 ≤ m23 ≤ 0.9Þ and
ð1.2 ≤ m23 ≤ 3Þ. The plots in Fig. 5 also reveal that the
phase ρ is bound to fall approximately in the interval
(½60°; 120°�), while there are forbidden bands for the phase
σ for both types of hierarchies.

F. Pattern C33: Vanishing of Mν11 +Mν22

The relevant expressions for A1, A2, and A3, as defined in
Eq. (12) for this pattern, are

A1 ¼ c212c
2
13 þ ðc12s23s13 þ s12c23e−iδÞ2;

A2 ¼ s212c
2
13 þ ðs12s23s13 − c12c23e−iδÞ2;

A3 ¼ s213 þ s223c
2
13: ð31Þ

As for a normal type representative point, we take
θ12 ¼ 33.5935°, θ23 ¼ 40.7528°, θ13 ¼ 8.7162°, δ ¼
252.1164°, ρ¼77.1818°, σ¼164.3730°, m1¼0.0530eV,
m2 ¼ 0.0537 eV, m3 ¼ 0.0736 eV, me ¼ 0.0537 eV, and
mee¼0.0184 eV with the corresponding mass matrix (in eV):

Mν ¼

0
B@

−0.0170þ 0.0072i 0.0158þ 0.0354i 0.0047 − 0.0320i

0.0158þ 0.0354i 0.0170 − 0.0072i 0.0456 − 0.0010i

0.0047 − 0.0320i 0.0456 − 0.0010i 0.0333þ 0.0073i

1
CA: ð32Þ

For an inverted type representative point, we can take θ12 ¼ 33.0850°, θ23 ¼ 42.6054°, θ13 ¼ 8.7610°, δ ¼ 221.0642°,
ρ ¼ 123.4419°, σ ¼ 60.2387°, m1 ¼ 0.0540 eV, m2 ¼ 0.0547 eV, m3 ¼ 0.0231 eV, me ¼ 0.0537 eV, and mee ¼
0.0300 eV with the corresponding mass matrix (in eV):
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FIG. 4. PatternC22 ≡Mν11 þMν33 ¼ 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of δ with J;mee, LNM, and finally the
correlation (m3, m23 ≡ m2

m3
) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns) shows all the nine

intercorrelations between phase angles and mixing angles, and the correlation (m3,m21 ≡ m2

m1
) for normal (N) and inverted (I) hierarchies.

Angles (masses) are evaluated in degrees (eV).
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FIG. 5. PatternC23 ≡Mν11 þMν23 ¼ 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of δ with J;mee, LNM, and finally the
correlation (m3, m23 ≡ m2

m3
) for normal (N) and inverted (I) hierarchies. The right panel (the right two columns) shows all the nine

intercorrelations between phase angles and mixing angles, and the correlation (m3,m21 ≡ m2

m1
) for normal (N) and inverted (I) hierarchies.

Angles (masses) are evaluated in degrees (eV).
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Mν ¼

0
B@

−0.0221 − 0.0204i −0.0148 − 0.0236i 0.0231þ 0.0260i

−0.0148 − 0.0236i 0.0221þ 0.0204i 0.0041 − 0.0138i

0.0231þ 0.0260i 0.0041 − 0.0138i 0.0146þ 0.0072i

1
CA: ð33Þ

We see, from Table II, that m3 can reach zero in inverted
type, so we expect a viable corresponding singular pattern.
Again, from Table II, J at 1 − 2σ levels for normal ordering
and 1σ for inverted ordering is negative so the correspond-
ing δ is in third or fourth quarters. For normal ordering, the
values of the phase ρ are restricted to fall in the range
½64°; 126°� at the 1σ level, in ½56°; 129°� at the 2σ level, and
in ½52°; 130°� at the 3σ level, but, in contrast, there is almost
no restriction for σ. For inverted ordering, there is a
restriction for the phase ρ range: ½57°; 132°� at 1 − σ level,
½15°; 170°� at 2 − σ level, and ½1.5°; 173°� at 3 − σ level. In
contrast, there is a forbidden gap for σ which is ½94°; 142°�
at 1 − σ level, ½86°; 106°� at 2 − σ level, and ½83°; 100°� at
3 − σ level.
For the plots, Fig. 6, in normal ordering, we find narrow

forbidden bands for (ρ) and a mild mass hierarchy
characterized by ð0.35 ≤ m23 ≤ 0.9Þ. As to the plots,
Fig. 6, in inverted type, we also find forbidden bands
for both ρ and σ, but the hierarchy can be severe with m23

reaching up to 104 indicating the possibility of vanish-
ing m3.

V. PHENOMENOLOGICAL ANALYSIS FOR
SINGULAR TEXTURES

Experimental data allow for one neutrino mass to vanish.
Equations (11) are not valid when the neutrino mass matrix
is singular, where instead we should use Eqs. (14) and (15)
to calculate the mass spectrum given the mixing and phase
(Dirac and one Majorana) angles and the solar squared
mass splitting. The analytic formulas we get are simpler
than when the mass matrix is invertible, but still they are too
cumbersome to write them down, even if one restricts to
first order in powers of sz.
The mass spectrum in the normal ordering is given by

m1 ¼ 0; m2 ¼
ffiffiffiffiffiffiffiffi
δm2

p
; m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2 þ δm2=2

q
;

Δm2 ¼ δm2

�����A2

A3

����2 − 1

2

�
: ð34Þ

Numerically, no singular texture of normal type could
accommodate data.
In the inverted ordering the mass spectrum is given by

m3 ¼ 0; m1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2−δm2=2

q
;

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2þδm2=2

q
; Δm2¼ 1

2
δm2

�jA1

A2
j2þ1

jA1

A2
j2−1

�
: ð35Þ

Four “acceptable” textures (C12, C13, C22, C33) are found
able to accommodate data.
We follow the same methodology in generating numeri-

cal results (random sampling) and the same nomenclature
in presenting results as in the case of nonsingular mass
matrices. All various predictions concerning the ranges
spanned by mixing angles, phase angles, neutrino masses,
me, mee, and J are summarized in Table III. We note that
the textures C22 and C33 do not pass the experimental
constraints at 1σ level. We present for each viable singular
texture the neutrino mass matrix obtained at one represen-
tative point chosen from the accepted points out of those
generated randomly in the corresponding parameter space
at the 3 − σ level. The choice of the representative point is
made in such a way to be as close as possible to the best fit
values for mixing and Dirac phase angles.
Briefly, we see that J < 0 at all σ levels for the texture

C13, putting δ in the third and fourth quarters. The same
applies for the texture C12 at 1 − 2σ levels, and for the
texture C22 at 2σ level, specifying equally the δ quarters for
these acceptable textures. Positive values for J can be
achieved at 3σ level for the texturesC12 andC22 and also at
1 − 2σ levels for the texture C33.
Finally, we plot for each texture the possible correlations

at the 2σ level showing 18 correlations grouped into two
panels. The left panel shows three correlations amidst the
mixing angles, three correlations amidst the phase angles,
and two correlations of δ with ðJ;meeÞ, and finally the
correlation (m12 ≡m1=m2; m2). The right panel includes
all the nine intercorrelations between phase angles and
mixing angles.
In all four acceptable textures, the mass spectrum is

almost degenerate (m1 ≈m2), and there is a strong linear
correlation between (ρ, σ) depicting two linear ribbons of
positive slope. Also, there is a linear correlation between
ðJ; δÞ in the four textures, and this is due to the small
allowed range for δwhich renders the sine curve ðJ ∝ sin δÞ
looking like a linear one. In this respect, especially clear is
the positive (negative) slope in the texture C22 (C33).

A. Singular pattern of C12: Vanishing
of Mν21 +Mν33 and m3

We see, from Table III, that J is negative at 1 − 2σ levels
and the corresponding δ is in the third quarter.
For a representative point we take with m3 ¼ 0:

θ12 ¼ 33.8683°, θ23 ¼ 40.9412°, θ13 ¼ 8.7098°, δ ¼
255.0672°, ρ¼26.7494°, σ¼174.1569°, m1¼0.0490eV,
m2 ¼ 0.0498 eV, me ¼ 0.0487 eV, and mee ¼ 0.0417 eV
with the corresponding mass matrix (in eV):
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FIG. 6. PatternC33 ≡Mν11 þMν22 ¼ 0 for nonsingular mass matrices: The left panel (the left two columns) shows three correlations
amidst the mixing angles, three correlations amidst the phase angles, and three correlations of δ with J;mee, LNM, and finally the
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(masses) are evaluated in degrees (eV).
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Mν ¼

0
B@

0.0344þ 0.0235i 0.0113þ 0.0086i −0.0168 − 0.0122i

0.0113þ 0.0086i −0.0222 − 0.0167i 0.0170þ 0.0127i

−0.0168 − 0.0122i 0.0170þ 0.0127i −0.0113 − 0.0086i

1
CA: ð36Þ

For the plots, Fig. 7, when J increases δ tends to decrease in a linear manner. A strong positive linear correlation between
ðρ; σÞ exists with two ribbons. There is a forbidden gap for mee: [0.0395, 0.0400] eV. The mass spectrum is almost
degenerate (m1 ≈m2).

B. Singular pattern of C13: Vanishing of Mν12 +Mν23 and m3

We see, from Table III, that J is negative at all levels and the corresponding δ is in the fourth quarter.
For a representative point we take with m3 ¼ 0: θ12 ¼ 33.8148°, θ23 ¼ 40.7781°, θ13 ¼ 8.4919°, δ ¼ 284.0999°,

ρ ¼ 53.2226°, σ ¼ 85.4376°, m1 ¼ 0.0496 eV, m2 ¼ 0.0504 eV, me ¼ 0.0493 eV, and mee ¼ 0.0424 eV with the
corresponding mass matrix (in eV):

Mν ¼

0
B@

−0.0246þ 0.0346i 0.0127 − 0.0187i −0.0061þ 0.0093i

0.0127 − 0.0187i 0.0118 − 0.0174i −0.0127þ 0.0187i

−0.0061þ 0.0093i −0.0127þ 0.0187i 0.0122 − 0.0180i

1
CA: ð37Þ

For the plots in Fig. 8, a linear correlation between J and δ exists where J tends to increase as δ increases. The plots in
Fig. 8 also reveal a strong linear correlation between ðρ; σÞ with two narrow ribbons exists. Also, there is a negative-slope
linear dependence between (δ, θ12). The neutrino masses are almost degenerate (m1 ≈m2).

C. Singular pattern of C22: Vanishing of Mν11 +Mν33 and m3

We see, from Table III, that at 1σ level, the singular pattern is not viable. We also note that J is negative at 2σ level and the
corresponding δ is in the fourth quarter.
For a representative point we take with m3 ¼ 0: θ12 ¼ 34.5161°, θ23 ¼ 50.8655°, θ13 ¼ 8.5346°, δ ¼ 339.6445°,

ρ ¼ 124.3227°, σ ¼ 26.7978°, m1 ¼ 0.0492 eV, m2 ¼ 0.0499 eV, me ¼ 0.0489 eV, and mee ¼ 0.0180 eV with the
corresponding mass matrix (in eV):

Mν ¼

0
B@

−0.0026 − 0.0178i 0.0046þ 0.0304i −0.0050 − 0.0331i

0.0046þ 0.0304i 0.0000þ 0.0007i −0.0011 − 0.0081i

−0.0050 − 0.0331i −0.0011 − 0.0081i 0.0026þ 0.0178i

1
CA: ð38Þ

For the plots in Fig. 9, J and δ are correlated quasilinearly
and positively. A strong linear correlation with two ribbons
between ðρ; σÞ exists. The mass spectrum is almost degen-
erate (m1 ≈m2).

D. Singular pattern of C33: Vanishing
of Mν11 +Mν22 and m3

As in the previous case C22, the singular pattern
C33 is not viable at 1σ level as evident from Table III.

In contrast to the previous case C22, J can assume
positive as well as negative values at 2σ level and the
corresponding δ lies in the second and third quarters.
For a representative point we take with m3 ¼ 0:

θ12 ¼ 35.9702°, θ23 ¼ 42.1759°, θ13 ¼ 8.4675°, δ ¼
204.6858°, ρ¼127.4906°, σ¼45.5467°, m1¼0.0487eV,
m2 ¼ 0.0495 eV, me ¼ 0.0485 eV, and mee ¼ 0.0159 eV
with the corresponding mass matrix (in eV):

Mν ¼

0
B@

−0.0084 − 0.0135i −0.0169 − 0.0275i 0.0170þ 0.0276i

−0.0169 − 0.0275i 0.0084þ 0.0135i −0.0042 − 0.0067i

0.0170þ 0.0276i −0.0042 − 0.0067i 0.0004þ 0.0005i

1
CA: ð39Þ

For the plots in Fig. 10, we see that (J, δ) are strongly correlated linearly and negatively. A strong linear correlation
between ðρ; σÞ exists with two ribbons. The masses (m1, m2) are almost degenerate.
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FIG. 7. Pattern C12 for singular mass matrices with inverted ordering: The left panel shows three correlations amidst the mixing
angles, three correlations amidst the phase angles, and two correlations of δ with J;mee, and finally the correlation (m12 ≡ m1

m2
, m2). The

right panel shows all the nine correlations interphase angles and mixing angles. Angles (masses) are evaluated in degrees (eV).
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FIG. 8. Pattern C13 for singular mass matrices with inverted ordering: The left panel shows three correlations amidst the mixing
angles, three correlations amidst the phase angles, and two correlations of δ with J;mee, and finally the correlation (m12 ≡ m1

m2
, m2). The

right panel shows all the nine correlations between phase angles and mixing angles. Angles (masses) are evaluated in degrees (eV).
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FIG. 9. Pattern C22 for singular mass matrices with inverted ordering: The left panel shows three correlations amidst the mixing
angles, three correlations amidst the phase angles, and two correlations of δ with J;mee, and finally the correlation (m12 ≡ m1

m2
, m2). The

right panel shows all the nine correlations between phase angles and mixing angles. Angles (masses) are evaluated in degrees (eV).
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FIG. 10. Pattern C33 for singular mass matrices with inverted ordering: The left panel shows three correlations amidst the mixing
angles, three correlations amidst the phase angles, and two correlations of δ with J;mee, and finally the correlation (m12 ≡ m1

m2
, m2). The

right panel shows all the nine correlations interphase angles and mixing angles. Angles (masses) are evaluated in degrees (eV).
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VI. THEORETICAL REALIZATION
OF THE TEXTURES

We present in this section theoretical realizations of some
of the one vanishing subtrace textures, where symmetry
assignments at high scale impose this texture in the “gauge”
basis. However, one way to find these assignments is to
start from another symmetry imposing zero texture and
relate these two symmetries by a rotation. As to the
symmetry responsible for imposing the zero elements at
high scale, we can just follow the analysis of [5]. We shall
find that four vanishing subtrace textures, out of six, are
able to be amended by “rotating” zero textures. In Sec. VII,
we explain the general strategy of relating the two sym-
metries, which would be of great help in this method of
indirect realization. In Sec. VIII, we discuss the notion of
flavor basis due to its paramount relevance into our study.
In Sec. IX, making use of rotating zero textures, we adopt a
type I seesaw scenario with discrete symmetry (Z8 × Z2) in
order to generate nonsingular vanishing subtrace textures.
We repeat the work for singular vanishing subtrace textures
in Sec. X, but with discrete symmetry (Z12 × Z2). In
Sec. XI, we present an implementation of one vanishing
subtrace texture using the type II seesaw scenario supple-
mented with (Z5) discrete symmetry, and following the
same strategy of “rotation” from zero textures to vanishing
subtrace. In Sec. XII, we present a direct way of realization
for type I seesaw scenario implementation with (Z6 × Z2)
discrete symmetry not related to zero textures. In Sec. XIII,
we pursue the direct method of realization but now for type
II seesaw scenario implementation with (Z0

2 × Z2) discrete
symmetry. One can consider these outlined sections as an
exercise in model building aiming to show that the studied
texture of vanishing subtrace can be generated at the
Lagrangian level by symmetry considerations in which
the symmetry is exact but broken spontaneously. The two
“indirect” and “direct” methods are on equal footing, and
one should not discriminate one against the other. It is just
that the fields assignments in the indirect method turn out to
be more complex, so we sought a “mathematical” method
in order to find them. As a final remark, the presented
method of rotation is applicable to any specific pattern that
can be generated from the zero-texture pattern via a unitary
transformation.

VII. ROTATING STRATEGY: FROM
ZERO-TEXTURE TO VANISHING

SUBTRACE TEXTURE

We need to find a unitary matrix S which when acted on
the symmetric neutrino matrix,

Mν ¼

0
B@

A B C

B D E

C E F

1
CA; ð40Þ

gives the combination that defines the subtrace
patterns ½ðC11Þ∶Dþ F�, ½ðC12Þ∶Bþ F�, ½ðC13Þ∶Bþ E�,
½ðC22Þ∶Aþ F�, ½ðC23Þ∶Aþ E�, and ½ðC33Þ∶AþD� in
one of the elements of the transformed matrix
ðM̃ ¼ STMνSÞ, where Mν is the effective Majorana neu-
trino mass matrix. More specifically, for the texture C33, if
we take the unitary matrix

S33 ¼
1ffiffiffi
2

p

0
B@

i −1 0

i 1 0

0 0
ffiffiffi
2

p

1
CA; ð41Þ

then we find that

S33MνST33

¼−
1

2

0
B@

Aþ 2iB−D AþD −
ffiffiffi
2

p ðiC−EÞ
AþD A− 2iB−D −

ffiffiffi
2

p ðiCþEÞ
−
ffiffiffi
2

p ðiC−EÞ −
ffiffiffi
2

p ðiCþEÞ −2F

1
CA;

ð42Þ

and so the combination (AþD) appears in the element (12)
of the transformed matrix

Mν0 ¼ S33MνST33: ð43Þ

Thus, if by some symmetry SY0 applied on the transformed
matrix Mν0 one can impose a zero element,

STY0Mν0SY0 ¼ Mν0 ⇒ Mν0;12 ¼ 0; ð44Þ

then we see that we have

STYMνSY ¼ Mν ⇒ Mν11 þMν22 ¼ 0; ð45Þ

where the new symmetry implementing the vanishing
subtrace of the texture C33 is

SY ¼ ST33SY0S
T†
33 : ð46Þ

Let us define uij as the matrix resulting by swapping the
ith and the jth columns of the identity matrix (I). Then we
have the properties

uij ¼ uijT ¼ uij†; uijuij† ¼ I: ð47Þ

Then, for any matrixM, we see that ðMuijÞ swaps the ith
and the jth columns of (M), whereas ðuijMÞ swaps the ith
and the jth rows of (M). Note that uijMuij has the effect of
swapping first the (ith and the jth) columns, followed by
the (ith and the jth) rows, or the other way round. We note
now that the six vanishing one subtrace textures can be
divided into three classes:
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(i) Class of textures fC11;C22;C33g: In the sense that if I find a unitary transformation S̃ giving me one of them, then I
directly get the unitary transformation giving me the other two textures. This comes because

ðu13Mu13Þ22 ¼ M22; ðu13Mu13Þ11 ¼ M33 ⇒ u13S̃33u13 ¼ S̃11;

ðu12Mu12Þ33 ¼ M33; ðu12Mu12Þ11 ¼ M22 ⇒ u12S̃22u12 ¼ S̃11;

�
ð48Þ

where S̃ij is a unitary matrix which, provided its action onMν keeps the latter invariant, imposes the texture defined
by the subtrace ðCi;jÞ [see Eq. (45) where SY plays the role of S̃33].

(ii) Class of textures fC13g: Actually, we can take

S13 ¼
1ffiffiffi
2

p

0
B@

1 0 1

0
ffiffiffi
2

p
0

−1 0 1

1
CA; ð49Þ

because the (Bþ E) combination appears in the (1,2) element of

S13MνST13 ¼
1

2

0
B@

Aþ 2Cþ F
ffiffiffi
2

p ðBþ EÞ F − Affiffiffi
2

p ðBþ EÞ 2D
ffiffiffi
2

p ðE − BÞ
F − A

ffiffiffi
2

p ðE − BÞ A − 2Cþ F

1
CA: ð50Þ

(iii) Class of textures fC12;C32g:

ðu13Mu13Þ33 ¼ M11; ðu13Mu13Þ21 ¼ M23 ⇒ u13S̃12u13 ¼ S̃32: ð51Þ

However, one can algebraically show that the transformation SMνST cannot bring in the sole combination Aþ E,
corresponding to the texture C32, at any entry.

Our strategy for the realization of the vanishing subtrace
texture is that one imposes a starting symmetry, with
corresponding transformations on the Higgs and the lepton
fields at the Lagrangian level (“gauge” basis), known to
impose some zero elements for the neutrino mass matrix
Mν0. We then transform this symmetry by applying some
rotation so that to get a new second symmetry, with new
transformations on the fields (also at the gauge basis),
which would imply the vanishing subtrace texture for Mν.
We stress here that Mν and Mν0 are not mass matrices for
the same system at different bases related by rotation.
Rather, they are mass matrices of two systems, satisfying
two different symmetries, where the matrices are defined in
the same Lagrangian gauge—or “symmetry”—bases. The
two symmetries are related by rotation. By following the
previous discussion, we may find the rotation which, when
applied on the neutrino mass matrix, allows going from
zero texture to vanishing subtrace, so now this rotation
would help to define, by Eq. (46), how to move from the
first symmetry field transformations to the second sym-
metry ones by the following “adjoint action” rule:

Tf ¼ STT0
fS

T†; ð52Þ

where TfðT0
fÞ defines the transformation on the field f

satisfying the new (old) symmetry and S is the unitary
transformation relating the two symmetries. We remind the
reader here that this rotation method is just to find some
“complex” field assignments by relating them to other more
“trivial” ones, and had we been able to “guess” the
complicated assignments, then we would have dispensed
with the whole idea of rotation.
However, one should be sure that the new symmetry

transformations assure that we are at the flavor basis,
or approximately so. The point is that we should get a
generic charged lepton mass matrix by the first symmetry,
so that we can also get a generic one by the second
symmetry. Then, by adopting some natural assumptions
on the fields’ vacuum expectation values (VEVs),
without the need of unnatural constraints on the Yukawa
couplings, one can diagonalize the “generic” charged
lepton mass matrix by an infinitesimal rotation, and so
one can, with a good approximation, assume that the new
symmetry puts us in the flavor basis. We shall give some
examples for this strategy within both type I and II
seesaw scenarios, where the symbol 0 will be consigned
for quantities corresponding to the first “unrotated”
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symmetry.1 The method based on rotated symmetry can be
considered as an indirect method for realizing the texture of
the vanishing subtrace.

VIII. FLAVOR BASIS

The notion of basis is intricate and needs to be clarified
since a variety of bases could arise in our discussion such as
gauge, flavor, and mass basis. In order to delve into the
notion of different types of basis, we take for simplicity the
following Lagrangian piece responsible for the mass terms
in the leptonic sector expressed in the gauge basis as

LM ⊃ Yg
1ijD̄LiHeRj þ Yg

2ijD̄LiH̃νRj

þ Yg
3ijν

T
RiC

−1χνRj; ð53Þ

where DLi is the left-handed lepton doublet ðνLi; eLiÞT , eRi
is the right-handed charged lepton, νRi is the right-handed
neutrino, χ is a scalar singlet, H is the Higgs doublet, and
H̃ ≡ iσ2H�. The relevant Yukawa coupling matrices are
denoted by (Yg

1, Y
g
2, Y

g
3) which are defined in this “gauge"

basis, whence the superscript (g). The indices i, j are the
family ones while C is the charge conjugation.
When the Higgs doubletH and the singlet χ take a VEV,

then we get the mass term which can be cast into the form

ēLiMlijeRj þ ēRiMlijeLj

þ
�
νTLi νTRj

�
C−1
�

0 MDij

MDji MRij

��
νLi

νRj

�
; ð54Þ

which, via the seesaw mechanism, gives approximately,
after decoupling the right-handed neutrinos,

LM ⊃ ēLi
MlijeRj þ νTliC

−1Mνijνlj; ð55Þ

with Mν ¼ MDM−1
R MT

D, and νli are approximately left-
handed (≈νLi).
By diagonalizing, we get the “mass” basis which is

denoted by the superscript m:

LM ⊃ ēmLU
†
LMlURemR þ νml V

TMνVνml ;

⊃ ēmLM
diag
l emR þ νml M

diag
ν νml ;

emL ¼ U†
LeL; emR ¼ U†

ReR; νml ¼ V†νl;

9>>=
>>; ð56Þ

where U†
LMlUR and VTMνV are diagonal.

In the gauge basis, the interaction (say, ēLW−νl) between
the charged lepton sector and the neutrino sector, when
expressed in terms of the mass bases (ēmLU

†
LVW

−νml ) would
involve the experimentally measurable VPMNS ¼ U†

LV
expressing the mismatch between the rotations of the
left-handed charged leptons and of the left-handed neu-
trinos. The “flavor basis,” by definition, occurs when by
convention we assume, without loss of generality, the left-
handed charged leptons to be pure states, i.e., UL ¼ 1 and
emL ¼ eL. This can always be taken, since one can use the
freedom in defining the fields in a way to attribute the
whole rotation, appearing when expressing the interaction
term in terms of mass states, entirely to the left-handed
neutrinos. The situation is exactly the same for the quark
sectors when one can take by convention the up sector as
pure states and the flavor mixing is described in terms of the
rotation Cabibbo-Kobayashi-Maskawa matrix operating on
the down sector only [17].
In the realization models we shall construct in the next

sections, the field assignments are given in the symmetry-
gauge basis at the level of the Lagrangian, and thus we get a
charged lepton field mass matrix which is not necessarily
diagonal. We shall examine at which conditions one can
have diagonal, or almost diagonal to a very good approxi-
mation, mass matrix for the charged leptons, in a way to say
that the symmetry leading to the sought for texture in the
neutrino sector puts us also, nearly, in the flavor basis for
the charged leptons.
The question arises as to whether one should update the

phenomenological analysis upon carrying out the infini-
tesimally small, under these conditions, rotation Rϵ of the
charged leptons from the symmetry-gauge into the “flavor
(mass)” basis. Actually, the phenomenology study was
carried out in the flavor basis, which means it is valid up to
small corrections of the order of the small rotation Rϵ.

2

With this in mind, this small correction should be added to
the already anticipated one stemming from the renormal-
ization group loop effects upon running from the high
scale, when the symmetry was imposed, to the low scale of
the experimental data.

IX. INDIRECT REALIZATION OF TYPE I
SEESAW WITH Z8 × Z2 SYMMETRY
FOR NONSINGULAR TEXTURES

We implement here a discrete symmetry within a type I
seesaw scenario in order to generate one vanishing subtrace
texture following the rotating strategy.

1Concretely, a discrete symmetry of the form Z0
n × Z0

m is
imposed on one system leading to zero textures in the neutrino
mass matrixMν0 in the “symmetry-gauge” basis, whereas another
system has a symmetry Zn × Zm leading to a vanishing subtrace
in the corresponding Mν defined again in the symmetry-gauge
basis. The unitary transformation S helps to relate the field
assignments of both systems under the two symmetries.

2One should be aware not to mix the two rotations. The
“mathematical rotation” S relating two systems with two different
discrete symmetries, which is “large (finite)” normally, and the
“physical rotation” Rϵ, which is “small (infinitesimal),” and is
applied on the charged leptons to go from the symmetry-gauge
basis into the flavor-mass basis.
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A. Indirect realization of C33 (type I nonsingular):
Vanishing of Mν11 +Mν22

We saw that the matrix S33 conjures, when acted on Mν,
the combination Mν22 þMν33 in the element (1,2) of the
transformed M̃ν. Thus we follow [5] and impose Z8 × Z2

symmetry to have a zero in the (1,2) entry of the unrotated
Mν0 and check that the rotated mass matrix Mν ¼ STMν0S
has a texture C33 with S ¼ S33,

S ¼ 1ffiffiffi
2

p

0
B@

i −1 0

i 1 0

0 0
ffiffiffi
2

p

1
CA⇒ ST

0
B@

A 0 C

0 D E

C E F

1
CAS

¼

0
BB@

− 1
2
ðAþDÞ i

2
ðD − AÞ iffiffi

2
p ðEþ CÞ

i
2
ðD − AÞ 1

2
ðAþDÞÞ 1ffiffi

2
p ðE − CÞ

iffiffi
2

p ðEþ CÞ 1ffiffi
2

p ðE − CÞ F

1
CCA: ð57Þ

First, we show how one can impose the zero texture.
We introduce five Standard Model (SM) Higgs doublets
Φaða ¼ 1;…; 5Þ, use three real scalar singlets χi (i ¼ 1, 2,
3), and denote the left-handed lepton doublet of the first
(second, third) family byDL1 (DL2,DL3). The right-handed
charged lepton and neutrino singlets are denoted by (lR,
νR). We assume the transformations shown in Table IV
under Z0

8 × Z0
2 for the fields.

By forming bilinear terms of D̄LilRj and D̄LiνRj,
relevant for Dirac mass matrices of neutrino and charged
leptons, and of νRiνRj, relevant for the Majorana neutrino
mass matrix MR in the Lagrangian [Ya

ij are the Yaukawa
coupling constants, the indices (i, j) are flavor ones, the
indices (a, b) run, respectively, over the Higgs doublet and
scalar singlet fields, C is the charge conjugation matrix, and
Φ̃ ¼ iσ2Φ�],

LM ⊃
X3
i;j¼1

X5
a¼1

X3
b¼1

Yb
0χijχbν

T
RiC

−1νRj þ Ya
0DijD̄LiΦ̃aνRj

þ Ya
0lijD̄LiΦalRj; ð58Þ

and examining how they transform under Z0
8 × Z0

2, we see
that the invariance under the symmetry implies the follow-
ing forms:

MD0 ¼

0
B@

× 0 0

0 × 0

× 0 ×

1
CA; MR0 ¼

0
B@

× 0 0

0 × ×

0 × ×

1
CA

⇒ Mν0 ¼ MD0M−1
R0M

T
D0 ¼

0
B@

× 0 ×

0 × ×

× × ×

1
CA: ð59Þ

Note that, in contrast to [5] where we introduced only three
Higgs doublets, we introduce here five Higgs doublets;
otherwise, we would have got as in [5] a diagonal charged
lepton mass matrix before proceeding to the rotation
defined by S of Eq. (57). Had we done this then, we
should have gotten field transformations corresponding to
the rotated symmetry by adjoint acting on the unrotated
transformations by the rotation S, which will produce a
nondiagonal matrix for the charged leptons, which means
that upon rotating and getting the vanishing subtrace
texture we would have left the flavor basis. Actually, we
added the extra Higgs fields exactly in order to get a generic
charged lepton mass matrix in the unrotated basis while
keeping the form of the Dirac neutrino mass matrix. The
fields Φ4;5 are responsible for the desired form of MD0,
whereas the fields (Φ1;2;3) produce generic Ml0.
In order to find the new rotated symmetry, we need to

find then how all the fields would transform. Thus, we
should explicitly write down the form of the mass matrices
in terms of the Yukawa couplings when the Higgs and
singlet scalar fields get VEVs. Actually the invariance of
the Majorana term under Z0

8 × Z0
2 implies the following

constraint:

ðYb
0χÞ ¼ T0Z

χabðT0Z
νRÞTðYa

0χÞðT0Z
νR Þ; ð60Þ

where (a, b ¼ 1, 2, 3), ðYb
0χÞ is a matrix in flavor space with

element Yb
0χij at its ði; jÞth entry, and T0Z

f (f ¼ χ, νR) is a
matrix (diagonal by construction) defining the transforma-
tion of the field f under the considered symmetry factor Z
(Z ¼ Z0

8 or Z
0
2). This constraint [Eq. (60)] can be solved for

both symmetry factors and leads to the following form,
when χa gets a VEV v0χa:

MR0 ¼

0
B@

Y1
0χ11v0χ1 0 0

0 Y1
0χ22v0χ1 Y2

0χ23v0χ2
0 Y2

0χ23v0χ2 Y3
0χ33v0χ3

1
CA: ð61Þ

The invariance of the Dirac neutrino mass term under
Z0
8 × Z0

2 implies the following constraint:

TABLE IV. The Z0
8 × Z0

2 symmetry realization of the one zero
texture at the (1,2) entry corresponding upon rotation to vanishing
subtrace C33. The index DL1 indicates the left-handed lepton
doublet first family and so on. The χk denotes a scalar singlet that
produces an entry in the right-handed Majorana mass matrix
when acquiring a VEV at the seesaw scale. ω denotes eiπ=4.

Symmetry under Z0
8 factor

Φ1 Φ2 Φ3 Φ4 Φ5 DL1 DL2 DL3 νR1 νR2 νR3 χ1 χ2 χ3 lR
1 ω4 ω 1 ω7 1 ω4 ω 1 ω4 ω 1 ω3 ω6 1

Symmetry under Z0
2 factor

1 1 1 ω4 ω4 1 1 1 ω4 ω4 ω4 1 1 1 1
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ðYb
0DÞ ¼ ðT0Z

Φ Þ†abðT0Z
DL
Þ†ðYa

0DÞðT0Z
νR Þ; ð62Þ

where (a; b ¼ 1;…; 5), ðYa
0DÞ is a matrix in flavor space

with element Ya
0Dij at its ði; jÞth entry, and ðT0Z

f Þðf ¼ Φ;
DL; νRÞ is a diagonal—by construction—matrix defining
the transformation of the field f under the considered
symmetry factor Z (Z ¼ Z0

8 or Z0
2) which leads when

solved for both Z0
8 and Z0

2 to the following form, when Φa
gets a VEV v0Φa

:

MD0 ¼

0
B@

Y4
0D11v0Φ4

0 0

0 Y4
0D22v0Φ4

0

Y5
0D31v0Φ5

0 Y4
0D33v0Φ4

1
CA: ð63Þ

And we get Mν0 ¼ MD0M−1
R0M

T
D0 of the desired form with

vanishing element at the (2,1)th entry. As to the charged
lepton mass matrix, the invariance of the corresponding
mass term gives

ðYb
0lÞ ¼ T0Z

ΦabðT0Z
DL
Þ†ðYa

0lÞðT0Z
lR
Þ; ð64Þ

where (a; b ¼ 1;…; 5), (Ya
0l) is a matrix in flavor space

with element Ya
0lij at its ði; jÞth entry, and T0Z

f ðf ¼ Φ;
DL;lRÞ is a matrix defining the transformation of the field

f under the considered symmetry factor Z (Z ¼ Z0
8 or Z

0
2)

which leads to a generic form for the charged lepton matrix:

Ml0 ¼

0
B@

Y1
0l11v0Φ1

Y1
0l12v0Φ1

Y1
0l13v0Φ1

Y2
0l21v0Φ2

Y2
0l22v0Φ2

Y2
0l23v0Φ2

Y3
0l31v0Φ3

Y3
0l32v0Φ3

Y3
0l33v0Φ3

1
CA: ð65Þ

In order to find the field transformations corresponding
to the new rotated symmetry defined by S [Eq. (57)], we
apply the same rule as in Eq. (46) or Eq. (52), with caution,
for all the fields f,

TZ
f ¼ S†T0Z

f S; ð66Þ

and extending in the case of the five-dimensional Φ the
matrix S to be Sex ¼ diagðS; 12×2Þ. We state in Table V the
resulting assignments for the fields under Z8 × Z2.
Note that we do not get generally diagonal matrices TZ

f
because of the rotation S. Thus one can write down similar
constraints to those of Eqs. (60), (62), and (64) correspond-
ing to the rotated symmetry, albeit with Yukawa couplings
and VEVs without the subscript 0, and by solving
them we get

MR ¼

0
B@

−Y1
χ22ðvχ1 þ ivχ2Þ −iY2

χ12ðvχ1 þ ivχ2Þ Y2
χ23ð−vχ1 þ ivχ2Þ

– Y1
χ22ðvχ1 þ ivχ2Þ −iY2

χ23ð−vχ1 þ ivχ2Þ
– – Y3

χ33vχ3

1
CA; ð67Þ

where – denotes an element deduced by symmetry property
of the matrix (M ¼ MT), and this convention will be used
from now on,

MD ¼

0
B@

Y4
D22vΦ4

−Y4
D21vΦ4

0

Y4
D21vΦ4

Y4
D22vΦ4

0

−iY5
D32vΦ5

Y5
D32vΦ5

Y4
D33vΦ4

1
CA: ð68Þ

One can check that the resulting Mν satisfies the texture
C33. Note also that all the Yukawa couplings and the VEVs
in Eqs (67) and (68) are different from those in Eqs (61) and
(63) since each set of Yukawa couplings and VEVs

correspond to the Lagrangian under a specific symmetry.
However, they are related through the transformation

M ¼ STM0S; ð69Þ

which should be valid for (Mν, MR, MD), and one can
check that the form of Mðν;D;RÞ is the same as that of
STMðν0;D0;R0ÞS.
We need to show now that the symmetry-gauge basis for

the charged leptons, in which the symmetry was given, can
under natural assumptions be taken to a very good
approximation, to be the flavor basis. Actually, we get a
generic mass matrix Ml:

Ml ¼

0
B@

Y2
l21vΦ1

− Y1
l21vΦ2

Y2
l22vΦ1

− Y1
l22vΦ2

Y2
l23vΦ1

− Y1
l23vΦ2

Y1
l21vΦ1

þ Y2
l21vΦ2

Y1
l22vΦ1

þ Y2
l22vΦ2

Y1
l23vΦ1

þ Y2
l23vΦ2

Y3
l31vΦ3

Y3
l32vΦ3

Y3
l33vΦ3

1
CA; ð70Þ
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so if assume the related VEVs are comparable, vΦ1
≈ vΦ2

≈
vΦ3

≈ v, then we get

Ml ≈ v

0
B@

Y2
l21 − Y1

l21 Y2
l22 − Y1

l22 Y2
l23 − Y1

l23

Y1
l21 þ Y2

l21 Y1
l22 þ Y2

l22 Y1
l23 þ Y2

l23

Y3
l31 Y3

l32 Y3
l33

1
CA

¼ v

0
B@

aT

bT

cT

1
CA; ð71Þ

where a, b, and c stand for column vectors extracted from
the corresponding rows, formed of Yukawa couplings, in
the matrixMl, and this abbreviation will be used from now
on. The dot product refers to the usual Hermitian inner
product defined as a · b ¼P3

i¼1 aib
�
i . Thus

MlM
†
l ≈ v2

0
B@

a · a a · b a · c

b · a b · b b · c

c · a c · b c · c

1
CA; ð72Þ

so taking only the following natural assumption on the
norms of the vectors:

kak=kck ¼ me=mτ ∼ 3 × 10−4;

kbk=kck ¼ mμ=mτ ∼ 6 × 10−2; ð73Þ

one can diagonalize MlM
†
l by an infinitesimal rotation as

was done in [5], which proves that we are to a good
approximation in the flavor basis.
Some remarks are in order here. First, one would

naturally assume Yukawa couplings of the same order,
and the assumption jjaj ≪ jjbjj ≪ jjcjj cannot be met
unless there is fine-tuning in the Yukawas. We find nothing
wrong with the needed fine-tuning, especially that an
analogous fine-tuning, to enforce the charged lepton mass
hierarchies, is needed in many similar models, and even in

the SM [18]. Second, as said earlier and in line with [19],
the subtrace texture is zero by construction in the sym-
metry-gauge basis of the neutrino fields, whereas the
gauge-symmetry basis of the charged leptons is deviated
infinitesimally from the flavor basis, and this deviation is of
the order of the “acute” charged lepton masses’ hierarchies,
which means we are to a very good approximation in the
flavor basis.

B. Indirect realization of C11 (type I nonsingular):
Vanishing of Mν22 +Mν33

Following the same procedure as for the case C33, we
just state briefly the results. The rotation matrix which
moves a zero texture at (2,3) to the texture C11 is given by

S ¼ 1ffiffiffi
2

p

0
B@

ffiffiffi
2

p
0 0

0 i −1
0 i 1

1
CA⇒ ST

0
B@

A B C

B D 0

C 0 F

1
CAS

¼

0
B@

A iffiffi
2

p ðBþ CÞ − 1ffiffi
2

p ðB − CÞ
– − 1

2
ðDþ FÞÞ − i

2
ðD − FÞ

– – 1
2
ðDþ FÞ

1
CA; ð74Þ

TABLE V. The Z8 × Z2 symmetry realization of the vanishing subtrace C33. The DL1 indicates the left-handed
lepton doublet first family and so on. The χk denotes a scalar singlet that produces an entry in the right-handed
Majorana mass matrix when acquiring a VEVat the seesaw scale. The right-handed charged leptons lR are assumed
singlets under the discrete symmetry. ω denotes eiπ=4.

Symmetry under Z8 factor

Φ ¼ ðΦ1;Φ2;Φ3;Φ4;Φ5ÞT DL ¼ ðDL1; DL2; DL3ÞT νR ¼ ðνR1; νR2; νR3ÞT χ ¼ ðχ1; χ2; χ3ÞT0
BBB@

0 i 0 0 0

−i 0 0 0 0

0 0 ω 0 0

0 0 0 1 0

0 0 0 0 ω7

1
CCCA

 
0 i 0

−i 0 0

0 0 ω

! 0
BB@

ð1þω3Þ
2

ið1−ω3Þ
2

0
ið−1þω3Þ

2

ð1þω3Þ
2

0

0 0 ω6

1
CCA

Symmetry under Z2 factor
diagð1; 1; 1;−1;−1Þ diagð1; 1; 1Þ diagð−1;−1;−1Þ diagð1; 1; 1Þ

TABLE VI. The Z0
8 × Z0

2 symmetry realization of the one zero
texture at the (2,3) entry corresponding upon rotation to vanishing
subtrace C11. The DL1 indicates the left-handed lepton doublet
first family and so on. The χk denotes a scalar singlet which
produces an entry in the right-handed Majorana mass matrix
when acquiring a VEV at the seesaw scale. The right-handed
charged leptons lR are assumed singlets under the discrete
symmetry. ω denotes eiπ=4.

Symmetry under Z0
8 factor

Φ1 Φ2 Φ3 Φ4 Φ5 DL1 DL2 DL3 νR1 νR2 νR3 χ1 χ2 χ3 lR

1 ω4 ω 1 ω 1 ω4 ω 1 ω4 ω 1 ω4 ω6 1

Symmetry under Z0
2 factor

1 1 1 ω4 ω4 1 1 1 ω4 ω4 ω4 1 1 1 1
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and we check that the sum of elements at (2,2) and (3,3)
vanishes. At the Lagrangian level, the symmetry trans-
formations for the fields which impose a zero texture
neutrino mass matrix with a generic charged lepton mass
matrix are given in Table VI.
By forming bilinear terms of the fields we see that the

above transformations force a neutrino mass matrix with
zero texture at the (2,3) entry. Again we define the new

transformations for the fields corresponding to the new
symmetry imposing the vanishing subtrace by the rule in
Eq. (66), but with S as given in Eq. (74). We state in
Table VII the resulting assignments for the fields under
Z8 × Z2.
The rotated symmetry imposes some constraints on the

Yukawa couplings and the VEVs, which when solved give
the following results for MR and MD:

MR ¼

0
B@

Y1
χ11vχ1 Y2

χ12ðvχ2 þ ivχ3Þ iY2
χ12ðvχ2 þ ivχ3Þ

– ið−Y1
χ23vχ1 þ iY2

χ33vχ2 þ Y2
χ33vχ3Þ Y1

χ23vχ1 þ iY2
χ33vχ2 þ Y2

χ33vχ3
– – −ið−Y1

χ23vχ1 þ iY2
χ33vχ2 þ Y2

χ33vχ3Þ

1
CA ð75Þ

and

MD ¼

0
B@

Y4
D11vΦ4

iY5
D13vΦ5

Y5
D13vΦ5

0 Y4
D22vΦ4

Y4
D23vΦ4

0 −Y4
D23vΦ4

Y4
D22vΦ4

1
CA: ð76Þ

One can check that the resulting Mν satisfies the texture C11.
As to Ml we get

Ml ¼

0
B@

Y1
l11vΦ1

Y1
l12vΦ1

Y1
l13vΦ1

Y3
l13vΦ2

þ Y3
l21vΦ3

Y2
l22vΦ2

− Y2
l32vΦ3

Y3
l33vΦ2

þ Y3
l23vΦ3

−Y3
l21vΦ2

þ Y3
l31vΦ3

Y2
l32vΦ2

þ Y2
l22vΦ3

−Y3
l23vΦ2

þ Y3
l33vΦ3

1
CA; ð77Þ

then we see that if we assume all the related VEVs are comparable vΦ1
≈ vΦ2

≈ vΦ3
≈ v, then we get

Ml ≈ v

0
B@

Y1
l11 Y1

l12 Y1
l13

Y3
l13 þ Y3

l21 Y2
l22 − Y2

l32 Y3
l33 þ Y3

l23

−Y3
l21 þ Y3

l31 Y2
l32 þ Y2

l22 −Y3
l23 þ Y3

l33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA; ð78Þ

which can be diagonalized by an infinitesimal rotation under some natural assumptions on the amplitudes of the Yukawa
vectors as done for the case of C33.

TABLE VII. The Z8 × Z2 symmetry realization of the vanishing subtrace C11. The DL1 indicates the left-handed lepton doublet first
family and so on. The χk denotes a scalar singlet which produces an entry in the right-handed Majorana mass matrix when acquiring a
VEV at the seesaw scale. The right-handed charged leptons are assumed to be singlets under the discrete symmetry. ω denotes eiπ=4.

Symmetry under Z8 factor

Φ ¼ ðΦ1;Φ2;Φ3;Φ4;Φ5ÞT DL ¼ ðDL1; DL2; DL3ÞT νR ¼ ðνR1; νR2; νR3ÞT χ ¼ ðχ1; χ2; χ3ÞT0
BBB@

1 0 0 0 0

0 −1þω
2

−ið1þωÞ
2

0 0

0
ið1þωÞ

2
−1þω

2
0 0

0 0 0 1 0

0 0 0 0 ω

1
CCCA

0
B@ 1 0 0

0 −1þω
2

−ið1þωÞ
2

0
ið1þωÞ

2
−1þω

2

1
CA

0
B@ 1 0 0

0 −1þω6

2

−ið1þω6Þ
2

0
ið1þω6Þ

2
−1þω6

2

1
CA

Symmetry under Z2 factor
diagð1; 1; 1;−1;−1Þ diagð1; 1; 1Þ diagð−1;−1;−1Þ diagð1; 1; 1Þ
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C. Indirect realization of C22 (type I nonsingular):
Vanishing of Mν11 +Mν33

The rotation matrix which moves a zero texture at (1,3)
to the texture C22 is given by

S ¼ 1ffiffiffi
2

p

0
B@

i 0 −1
0

ffiffiffi
2

p
0

i 0 1

1
CA⇒ ST

0
B@

A B 0

B D E

0 E F

1
CAS

¼

0
B@

− 1
2
ðAþ FÞ iffiffi

2
p ðBþ EÞ iffiffi

2
p ðF − AÞ

– D 1ffiffi
2

p ðE − BÞ
– – 1

2
ðAþ FÞ

1
CA; ð79Þ

and we check that the sum of elements at (1,1) and (3,3)
vanishes.
At the Lagrangian level, the symmetry transformations

for the fields which impose a zero textureMν0 with generic
Ml0 are given in Table VIII.
By forming bilinear terms of the fields we see that the

above transformations force the (1,3) entry in Mν0 to
vanish. Again we define the new transformations for the

fields corresponding to the new symmetry imposing the
vanishing subtrace by the rule in Eq. (66), but with S given
by Eq. (79).
We state in Table IX the resulting assignments for the

fields under Z8 × Z2.
The rotated symmetry imposes some constraints on the

Yukawa couplings and the VEVs, which when solved give
the following results:

MR ¼

0
B@

i½Y3
χ33ðvχ1 þ ivχ3Þ − Y2

χ13vχ2 � Y3
χ23ð−vχ1 þ ivχ3Þ Y3

χ33ðvχ1 þ ivχ3Þ þ Y2
χ13vχ2

– −iY3
χ22ðvχ1 þ ivχ3Þ −iY3

χ23ð−vχ1 þ ivχ3Þ
– – −i½Y3

χ33ðvχ1 þ ivχ3Þ − Y2
χ13vχ2 �

1
CA ð80Þ

and

MD ¼

0
B@

Y4
D11vΦ4

0 −Y4
D31vΦ4

−iY5
D23vΦ5

Y4
D22vΦ4

Y5
D23vΦ5

Y4
D31vΦ4

0 Y4
D11vΦ4

1
CA: ð81Þ

One can check that the resulting Mν satisfies the texture C22. As to Ml one gets

TABLE VIII. The Z0
8 × Z0

2 symmetry realization of the one zero
texture at the (1,3) entry corresponding upon rotation to vanishing
subtrace C22. The DL1 indicates the left-handed lepton doublet
first family and so on. The χk denotes a scalar singlet which
produces an entry in the right-handed Majorana mass matrix
when acquiring a VEV at the seesaw scale. ω denotes eiπ=4.

Symmetry under Z0
8 factor

Φ1 Φ2 Φ3 Φ4 Φ5 DL1 DL2 DL3 νR1 νR2 νR3 χ1 χ2 χ3 lR
1 ω4 ω 1 ω5 ω ω4 1 ω ω4 1 1 ω6 ω6 1

Symmetry under Z0
2 factor

1 1 1 ω4 ω4 1 1 1 ω4 ω4 ω4 1 1 1 1

TABLE IX. The Z8 × Z2 symmetry realization of the vanishing subtrace C22. The DL1 indicates the left-handed
lepton doublet first family and so on. The χk denotes a scalar singlet which produces an entry in the right-handed
Majorana mass matrix when acquiring a VEVat the seesaw scale. The right-handed charged leptons are assumed to
be singlets under the discrete symmetry. ω denotes eiπ=4.

Symmetry under Z8 factor

Φ ¼ ðΦ1;Φ2;Φ3;Φ4;Φ5ÞT DL ¼ ðDL1; DL2; DL3ÞT νR ¼ ðνR1; νR2; νR3ÞT χ ¼ ðχ1; χ2; χ3ÞT0
BBB@

1þω
2

0
ið1−ωÞ

2
0 0

0 −1 0 0 0
−ið1−ωÞ

2
0 1þω

2
0 0

0 0 0 1 0

0 0 0 0 ω5

1
CCCA

0
B@

1þω
2

0
−ið1−ωÞ

2

0 −1 0
ið1−ωÞ

2
0 1þω

2

1
CA

0
B@ 0 0 i

0 ω6 0

−i 0 0

1
CA

Symmetry under Z2 factor
diagð1; 1; 1;−1;−1Þ diagð1; 1; 1Þ diagð−1;−1;−1Þ diagð1; 1; 1Þ
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Ml ¼

0
B@

Y1
l11vΦ1

þ Y3
l11vΦ3

Y1
l12vΦ1

þ Y3
l12vΦ3

Y1
l13vΦ1

þ Y3
l13vΦ3

Y2
l21vΦ2

Y2
l22vΦ2

Y2
l23vΦ2

Y3
l11vΦ1

− Y1
l11vΦ3

Y3
l12vΦ1

− Y1
l12vΦ3

Y3
l13vΦ1

− Y1
l13vΦ3

1
CA; ð82Þ

then we see that if we assume all the related VEVs are comparable vΦ1
≈ vΦ2

≈ vΦ3
≈ v, then we get

Ml ≈ v

0
B@

Y1
l11 þ Y3

l11 Y1
l12 þ Y3

l12 Y1
l13 þ Y3

l13

Y2
l21 Y2

l22 Y2
l23

Y3
l11 − Y1

l11 Y3
l12 − Y1

l12 Y3
l13 − Y1

l13

1
CA ¼ v

0
B@

aT

bT

cT

1
CA; ð83Þ

which can be diagonalized by an infinitesimal rotation
under some natural assumptions on the amplitudes of the
Yukawa vectors as done for the previous two cases.

D. Indirect realization of C31 (type I nonsingular):
Vanishing of Mν12 +Mν23

The rotation matrix which moves a zero texture at (2,3)
to the texture C23 is given by

S ¼ 1ffiffiffi
2

p

0
B@

1 0 −1
0

ffiffiffi
2

p
0

1 0 1

1
CA⇒ ST

0
B@

A B C

B D 0

C 0 F

1
CAS

¼

0
BB@

1
2
ðAþ FÞ þ C 1ffiffi

2
p B 1ffiffi

2
p ðF − AÞ

– D − 1ffiffi
2

p B

– – 1
2
ðAþ FÞ − C

1
CCA; ð84Þ

and we check that the sum of elements at (1,2) and (2,3)
vanishes.

At the Lagrangian level, the symmetry transformations
for the fields which impose a zero texture Mν0 at the (2,3)
entry with generic Ml0 are given in Table X.
Again we define the new transformations for the fields

corresponding to the new symmetry imposing the vanishing
subtrace by the adjoint action rule [Eq. (66)], but with S
given by Eq. (84). We state in Table XI the resulting
assignments for the fields under Z8 × Z2.
We repeat that if we could guess the “nondiagonal”

transformations under Z8 × Z2 of Tables V, VII, IX, and XI,
then we would not have needed to resort to the rotation
method relating them to simpler ones under Z0

8 × Z0
2.

However, as is clear from the tables, the transformations
of the Higgs and scalar fields are in particular difficult to
guess directly.
The rotated symmetry imposes some constraints on the

Yukawa couplings and the VEVs, which when solved give
the following results:

MR ¼

0
B@

Y1
χ33vχ1 þ Y1

χ13vχ3 −Y2
χ23vχ2 Y1

χ13vχ1 þ Y1
χ33vχ3

– −Y3
χ22ðvχ1 − vχ3Þ Y2

χ23vχ2
– – Y1

χ33vχ1 þ Y1
χ13vχ3

1
CA ð85Þ

and

MD ¼

0
B@

Y4
D11vΦ4

þ Y5
D11vΦ5

0 Y4
D31vΦ4

þ Y5
D11vΦ5

0 Y4
D22vΦ4

0

−Y5
D11vΦ5

þ Y4
D31vΦ4

0 Y4
D11vΦ4

− Y5
D11vΦ5

1
CA: ð86Þ

One can check that the resulting Mν satisfies the texture C31. As to Ml, we get

Ml ¼

0
B@

Y1
l11vΦ1

þ Y1
l31vΦ3

Y1
l12vΦ1

þ Y1
l32vΦ3

Y1
l13vΦ1

þ Y1
l33vΦ3

Y2
l21vΦ2

Y2
l22vΦ2

Y2
l23vΦ2

Y1
l31vΦ1

þ Y1
l11vΦ3

Y1
l32vΦ1

þ Y1
l12vΦ3

Y1
l33vΦ1

þ Y1
l13vΦ3

1
CA; ð87Þ
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then we see that if we assume v ≈ vΦ1
≈ vΦ2

≫ vΦ3
, then

we get

Ml ≈ v

0
B@

Y1
l11 Y1

l12 Y1
l13

Y2
l21 Y2

l22 Y2
l23

Y1
l31 Y1

l32 Y1
l33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA; ð88Þ

which can be diagonalized by an infinitesimal rotation
under some natural assumptions on the amplitudes of the
vectors as done in the previous cases.

X. INDIRECT REALIZATION OF TYPE I
SEESAW WITH Z12 × Z2 SYMMETRY

FOR SINGULAR TEXTURES

We shall adopt the same strategy of moving from the
symmetry imposing a zero texture where MD is singular to
the symmetry imposing a vanishing subtrace with again
MD singular, which gives via seesaw type I a singular
neutrino mass matrix. Again, we follow [5] to find the
symmetry transformations leading to zero elements at
singular Mν, but will add in new fields so that to get a
generic charged lepton mass matrix and not a diagonal one
as was the case in [5], in such a way that the new rotated
symmetry, as defined in Eq. (66), leads to vanishing
subtraces at singular Mν and to another generic Ml.

The latter under some reasonable assumptions can be
diagonalized via infinitesimal rotations, which put us to
a good approximation in the flavor basis.

A. Indirect realization of C33 (type I singular):
Vanishing of Mν11 +Mν22

As in the nonsingular cases, we move from zero texture
at (1,2) to the texture C33 by S of Eq. (57).
At the Lagrangian level, the symmetry transformations

for the fields which impose a zero texture neutrino
mass matrix with generic charged lepton mass matrix
and singular Dirac neutrino mass matrix are given in
Table XII.
By forming bilinear terms of the fields we see that the

above transformations force a neutrino mass matrix with
zero texture at the (1,2) entry. Actually, we get

MR0 ¼

0
BB@

Y1
0χ11v0χ1 0 0

0 Y2
0χ22v0χ2 0

0 0 Y3
0χ33v0χ3

1
CCA;

MD0 ¼

0
B@

Y4
0D11v0Φ4

0 0

0 0 Y5
0D23v0Φ5

Y6
0D31v0Φ6

0 Y7
0D33v0Φ7

1
CA: ð89Þ

We see that MD0 is singular, and Mν0 ¼ MD0M−1
R0M

T
D0 is

singular with the desired form of a vanishing element at the
(1,2)th entry. We can check that Ml0 is of generic form as
the one presented in Eq. (65).
Again, in order to find the field transformations corre-

sponding to the new rotated symmetry defined by S
[Eq. (57)], we apply the rule in Eq. (66) for all the fields
f and extending in the case of the seven-dimensional Φ the
matrix S to be Sex ¼ diagðS; 14×4Þ, in such a way that we do
not get generally diagonal matrices TZ

f because of the
rotation S. As in nonsingular cases, one can write down
constraints involving the Yukawa couplings and VEVs
(now without the subscript 0), and by solving them we get

TABLE X. The Z0
8 × Z0

2 symmetry realization of the one zero
texture at the (2,3) entry corresponding upon rotation to vanishing
subtrace C31. The DL1 indicates the left-handed lepton doublet
first family and so on. The χk denotes a scalar singlet which
produces an entry in the right-handed Majorana mass matrix
when acquiring a VEV at the seesaw scale. ω denotes eiπ=4.

Symmetry under Z0
8 factor

Φ1 Φ2 Φ3 Φ4 Φ5 DL1 DL2 DL3 νR1 νR2 νR3 χ1 χ2 χ3 lR
1 ω4 ω 1 ω 1 ω4 ω 1 ω4 ω 1 ω4 ω6 1

Symmetry under Z0
2 factor

1 1 1 ω4 ω4 1 1 1 ω4 ω4 ω4 1 1 1 1

TABLE XI. The Z8 × Z2 symmetry realization of the vanishing subtrace C31. The DL1 indicates the left-handed
lepton doublet first family and so on. The χk denotes a scalar singlet which produces an entry in the right-handed
Majorana mass matrix when acquiring a VEVat the seesaw scale. The right-handed charged leptons are assumed to
be singlets under the discrete symmetry. ω denotes eiπ=4.

Symmetry under Z8 factor

Φ ¼ ðΦ1;Φ2;Φ3;Φ4;Φ5ÞT DL ¼ ðDL1; DL2; DL3ÞT νR ¼ ðνR1; νR2; νR3ÞT χ ¼ ðχ1; χ2; χ3ÞT0
BBB@

1þω
2

0 −1þω
2

0 0

0 −1 0 0 0
−1þω

2
0 1þω

2
0 0

0 0 0 1 0

0 0 0 0 ω

1
CCCA

0
B@

1þω
2

0 −1þω
2

0 −1 0
−1þω

2
0 1þω

2

1
CA

0
B@

1þω6

2
0 −1þω6

2

0 −1 0
−1þω6

2
0 1þω6

2

1
CA

Symmetry under Z2 factor
diagð1; 1; 1;−1;−1Þ diagð1; 1; 1Þ diagð−1;−1;−1Þ diagð1; 1; 1Þ
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MR¼

0
B@
−Y1

χ22vχ1−Y2
χ22vχ2 −Y2

χ22vχ1þY1
χ22vχ2 0

−Y2
χ22vχ1þY1

χ22vχ2 Y1
χ22vχ1þY2

χ22vχ2 0

0 0 Y3
χ33vχ3

1
CA;

MD¼

0
B@
−iY4

D12vΦ4
Y4
D12vΦ4

−iY5
D23vΦ5

−Y4
D12vΦ4

−iY4
D12vΦ4

Y5
D23vΦ5

−iY6
D32vΦ6

Y6
D32vΦ6

Y7
D33vΦ7

1
CA: ð90Þ

One can check that the resultingMν is singular and satisfies
the texture C33.
As to Ml, we get a generic mass matrix:

Ml ¼

0
B@

Y2
l21vΦ1

þ Y2
l11vΦ2

Y2
l22vΦ1

þ Y2
l12vΦ2

Y2
l23vΦ1

þ Y2
l13vΦ2

−Y2
l11vΦ1

þ Y2
l21vΦ2

−Y2
l12vΦ1

þ Y2
l22vΦ2

−Y2
l13vΦ1

þ Y2
l33vΦ2

Y3
l31vΦ3

Y3
l32vΦ3

Y3
l33vΦ3

1
CA: ð91Þ

If we assume the related VEVs are comparable vΦ1
≈ vΦ2

≈ vΦ3
≈ v, then we get

Ml ≈ v

0
B@

Y2
l21 þ Y1

l11 Y2
l22 þ Y2

l12 Y2
l23 þ Y2

l13

−Y2
l11 þ Y2

l21 −Y2
l12 þ Y2

l22 −Y2
l13 þ Y2

l23

Y3
l31 Y3

l32 Y3
l33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA; ð92Þ

whereas if we assume v ≈ vΦ1
≈ vΦ3

≫ vΦ2
, we get

Ml ≈ v

0
B@

Y2
l21 Y2

l22 Y2
l23

−Y2
l11 −Y2

l12 −Y2
l13

Y3
l31 Y3

l32 Y3
l33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA: ð93Þ

In both cases, one can naturally diagonalize Ml by an
infinitesimal rotation, which means that we are to a good
approximation in the flavor basis.

B. Indirect realization of C11 (type I singular):
Vanishing of Mν22 +Mν33

We move from zero texture at (2,3) to the texture C11 by
S of Eq. (74).
The symmetry transformations for the fields which

impose a zero texture Mν0 with generic Ml0 and singular
MD0 are given in Table XIII. By forming bilinear terms of
the fields we see that the above transformations force a
neutrino mass matrix with zero texture at the (2,3) entry.
Again we define the new transformations for the fields
corresponding to the new symmetry imposing the vanishing
subtrace by the rule in Eq. (66) with S given by Eq. (74) or
its extension Sex to the seven-dimensional space of Φ’s.
The rotated symmetry imposes some constraints on the

Yukawa couplings and the VEVs, which when solved give
the following results:

MR ¼

0
BB@
Y1
χ11vχ1 0 0

0 −Y3
χ23vχ1 þY2

χ23vχ3 Y2
χ23vχ2 þY3

χ23vχ3
0 Y2

χ23vχ1 þY3
χ23vχ3 Y3

χ21vχ2 −Y2
χ23vχ3

1
CCA;

MD ¼

0
B@

Y4
D11vΦ4

iY5
D13vΦ5

Y5
D13vΦ5

iY6
D31vΦ6

Y7
D33vΦ7

−iY7
D33vΦ7

Y6
D31vΦ6

iY7
D33vΦ7

Y7
D33vΦ7

1
CA: ð94Þ

TABLE XII. The Z0
12 × Z0

2 symmetry realization of the one zero
singular texture at the (1,2) entry corresponding upon rotation to
singular vanishing subtrace C33. The DL1 indicates the left-
handed lepton doublet first family and so on. The χk denotes a
scalar singlet which produces an entry in the right-handed
Majorana mass matrix when acquiring a VEV at the seesaw
scale. θ denotes eiπ=6.

Symmetry under Z0
12 factor

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 DL1 DL2 DL3 νR1 νR2 νR3 χ1 χ2 χ3 lR

θ11 θ9 θ4 θ2 θ8 θ9 θ θ11 θ9 θ4 θ θ2 θ5 θ10 θ8 θ2 1

Symmetry under Z0
2 factor

1 1 1 θ6 θ6 θ6 θ6 1 1 1 θ6 θ6 θ6 1 1 1 1

TABLE XIII. TheZ0
12 × Z0

2 symmetry realization of the one zero
singular texture at the (2,3) entry corresponding upon rotation to
singular vanishing subtraceC11. TheDL1 indicates the left-handed
lepton doublet first family and so on. The χk denotes a scalar singlet
which produces an entry in the right-handedMajoranamass matrix
when acquiring a VEV at the seesaw scale. θ denotes eiπ=6.

Symmetry under Z0
12 factor

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 DL1 DL2 DL3 νR1 νR2 νR3 χ1 χ2 χ3 lR

θ11 θ9 θ4 θ2 θ6 θ4 θ θ11 θ9 θ4 θ θ2 θ5 θ10 θ8 θ2 1

Symmetry under Z0
2 factor

1 1 1 θ6 θ6 θ6 θ6 1 1 1 θ6 θ6 θ6 1 1 1 1
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One can check that detðMDÞ ¼ 0, and that the resulting Mν is singular and satisfies the texture C11.
As to Ml, we get a generic mass matrix:

Ml ¼

0
B@

Y1
l11vΦ1

Y1
l12vΦ1

Y1
l13vΦ1

Y3
l31vΦ2

þ Y3
l21vΦ3

Y3
l32vΦ2

þ Y3
l22vΦ3

Y3
l33vΦ2

þ Y3
l23vΦ3

−Y3
l21vΦ2

þ Y3
l31vΦ3

−Y3
l22vΦ2

þ Y3
l32vΦ3

−Y3
l23vΦ2

þ Y3
l33vΦ3

1
CA: ð95Þ

Assuming the related VEVs are comparable vΦ1
≈ vΦ2

≈
vΦ3

≈ v, then we get

Ml ≈ v

0
B@

Y1
l11 Y1

l12 Y1
l13

Y3
l31 þ Y3

l21 Y3
l32 þ Y3

l22 Y3
l33 þ Y3

l23

−Y3
l21 þ Y3

l31 −Y3
l22 þ Y3

l32 −Y3
l23 þ Y3

l33

1
CA

¼ v

0
B@

aT

bT

cT

1
CA; ð96Þ

whereas if we assume v ≈ vΦ1
≈ vΦ3

≫ vΦ2
, we get

Ml ≈ v

0
B@

Y1
l11 Y1

l12 Y1
l13

Y3
l21 Y3

l22 Y3
l23

Y3
l31 Y3

l32 Y3
l33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA: ð97Þ

Again, in both cases, one can naturally diagonalize Ml by
an infinitesimal rotation, which means that we are to a good
approximation in the flavor basis.

C. Indirect realization of C22 (type I singular):
Vanishing of Mν11 +Mν33

We move from zero texture at (1,3) to the texture C22 by
S of Eq. (79). The symmetry transformations for the fields
which impose a zero textureMν0 at entry (1,3), with generic
Ml0 and singular MD0 are given in Table XIV.
Once more, we define the new transformations for the

fields corresponding to the new symmetry imposing the
vanishing subtrace by applying the rule in Eq. (66) with S
given by Eq. (79) or its extension Sex to the seven-
dimensional space of Φ’s. The rotated symmetry imposes
some constraints on the Yukawa couplings and the VEVs,
which when solved give the following results:

MR ¼

0
B@

−Y3
χ13vχ1 þ Y3

χ11vχ3 0 Y3
χ11vχ1 þ Y3

χ13vχ3
0 Y2

χ22vχ2 0

Y3
χ11vχ1 þ Y3

χ13vχ3 0 Y3
χ13vχ1 − Y3

χ11vχ3

1
CA;

MD ¼

0
B@

Y7
D33vΦ7

þ Y4
D33vΦ4

0 −iY7
D33vΦ7

þ iY4
D33vΦ4

−iY5
D23vΦ5

þ iY6
D23vΦ6

0 Y6
D23vΦ6

þ Y5
D23vΦ5

iY7
D33vΦ7

− iY4
D33vΦ4

0 Y7
D33vΦ7

þ Y4
D33vΦ4

1
CA: ð98Þ

One can check that detðMDÞ ¼ 0, and that the resulting Mν is singular and satisfies the texture C22.
As to Ml, we get a generic mass matrix:

Ml ¼

0
B@

Y3
l31vΦ1

þ Y3
l11vΦ3

Y3
l32vΦ1

þ Y3
l12vΦ3

Y3
l33vΦ1

þ Y3
l13vΦ3

Y2
l21vΦ2

Y2
l22vΦ2

Y2
l23vΦ2

−Y3
l11vΦ1

þ Y3
l31vΦ3

−Y3
l12vΦ1

þ Y3
l32vΦ3

−Y3
l13vΦ1

þ Y3
l33vΦ3

1
CA: ð99Þ

When vΦ1
≈ vΦ2

≈ vΦ3
≈ v, then we get

Ml ≈ v

0
B@

Y3
l31 þ Y3

l11 Y3
l32 þ Y3

l12 Y3
l33 þ Y3

l13

Y2
l21 Y2

l22 Y2
l23

−Y3
l11 þ Y3

l31 −Y3
l12 þ Y3

l32 −Y3
l13 þ Y3

l33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA; ð100Þ
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whereas when v ≈ vΦ3
≈ vΦ2

≫ vΦ1
, we get

Ml ≈ v

0
B@

Y3
l11 Y3

l12 Y3
l13

Y2
l21 Y2

l22 Y2
l23

Y3
l31 Y3

l32 Y3
l33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA: ð101Þ

In both cases, one can naturally diagonalize Ml by an
infinitesimal rotation, which means that we are approx-
imately in the flavor basis.

D. Indirect realization of C31 (type I singular):
Vanishing of Mν12 +Mν23

We move from zero texture at (2,3) to the texture C31 by
S of Eq. (84). The symmetry transformations for the fields
which imposes a zero texture at entry (2,3) of Mν0 with
generic Ml and singular MD0 are given in Table XV.
In order to define the new transformations for the fields

corresponding to the new symmetry imposing the vanishing
subtrace, we apply the rule of Eq. (66) with S given by
Eq. (84) or its extension Sex to the seven-dimensional space
of Φ’s. Solving the constraints on the Yukawa couplings
and the VEVs resulting from the rotated symmetry, we get

MR ¼

0
B@

Y1
χ11vχ1 þ Y1

χ13vχ3 0 Y1
χ13vχ1 þ Y1

χ11vχ3
0 Y2

χ22vχ2 0

Y1
χ13vχ1 þ Y1

χ11vχ3 0 Y1
χ11vχ1 þ Y1

χ13vχ3

1
CA;

MD ¼

0
B@

Y4
D33vΦ4

− Y5
D31vΦ5

þ Y7
D33vΦ7

0 −Y4
D33vΦ4

− Y5
D31vΦ5

þ Y7
D33vΦ7

−Y6
D23vΦ6

0 Y6
D23vΦ6

−Y4
D33vΦ4

þ Y5
D31vΦ5

þ Y7
D33vΦ7

0 Y4
D33vΦ4

þ Y5
D31vΦ5

þ Y7
D33vΦ7

1
CA: ð102Þ

One can check that detðMDÞ ¼ 0, and that the resulting Mν is singular and satisfies the texture C31.
As to Ml, we get a generic mass matrix:

Ml ¼

0
B@

Y3
l31vΦ1

þ Y3
l11vΦ3

Y3
l32vΦ1

þ Y3
l12vΦ3

Y3
l33vΦ1

þ Y3
l13vΦ3

Y2
l21vΦ2

Y2
l22vΦ2

Y2
l23vΦ2

Y3
l11vΦ1

þ Y3
l31vΦ3

Y3
l12vΦ1

þ Y3
l32vΦ3

Y3
l13vΦ1

þ Y3
l33vΦ3

1
CA: ð103Þ

When v ≈ vΦ1
≈ vΦ2

≫ vΦ3
, then we get

Ml ≈ v

0
B@

Y3
l31 Y3

l32 Y3
l33

Y2
l21 Y2

l22 Y2
l23

Y3
l11 Y3

l12 Y3
l13

1
CA ¼ v

0
B@

aT

bT

cT

1
CA; ð104Þ

whereas if we assume v ≈ vΦ3
≈ vΦ2

≫ vΦ1
, we get

Ml ≈ v

0
B@

Y3
l11 Y3

l12 Y3
l13

Y2
l21 Y2

l22 Y2
l23

Y3
l31 Y3

l32 Y3
l33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA: ð105Þ

TABLE XIV. The Z0
12 × Z0

2 symmetry realization of the one
zero singular texture at the (1,3) entry corresponding upon
rotation to singular vanishing subtrace C22. The DL1 indicates
the left-handed lepton doublet first family and so on. The χk
denotes a scalar singlet which produces an entry in the right-
handed Majorana mass matrix when acquiring a VEV at the
seesaw scale. θ denotes eiπ=6.

Symmetry under Z0
12 factor

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 DL1 DL2 DL3 νR1 νR2 νR3 χ1 χ2 χ3 lR

θ11 θ9 θ4 θ2 θ4 θ8 θ θ11 θ9 θ4 θ θ2 θ5 θ10 θ8 θ2 1
Symmetry under Z0

2 factor
1 1 1 θ6 θ6 θ6 θ6 1 1 1 θ6 θ6 θ6 1 1 1 1

TABLE XV. The Z0
12 × Z0

2 symmetry realization of the one zero
singular texture at the (2,3) entry corresponding upon rotation to
singular vanishing subtrace C31. The DL1 indicates the left-
handed lepton doublet first family and so on. The χk denotes a
scalar singlet which produces an entry in the right-handed
Majorana mass matrix when acquiring a VEV at the seesaw
scale. θ denotes eiπ=6.

Symmetry under Z0
12 factor

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 DL1 DL2 DL3 νR1 νR2 νR3 χ1 χ2 χ3 lR

θ11 θ9 θ4 θ2 θ6 θ4 θ θ11 θ9 θ4 θ θ2 θ5 θ10 θ8 θ2 1
Symmetry under Z0

2 factor
1 1 1 θ6 θ6 θ6 θ6 1 1 1 θ6 θ6 θ6 1 1 1 1
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In both cases, one can naturally diagonalize Ml by an
infinitesimal rotation, which means that we are in the flavor
basis approximately.

XI. INDIRECT REALIZATION OF TYPE II
SEESAW WITH Z5 SYMMETRY

To fix the ideas, we treat here in some details the case of
the C33 vanishing subtrace which can be related to zero
texture, noting that the procedure can be generalized to all
other textures (C11,C22, andC31) that also can be related to
zero textures. We follow the same rotating strategy outlined
in Sec. VII.
As we saw in Eq. (57), the matrix S allows one to move

from one zero texture at the (1,2)th entry to the vanishing
subtrace texture C33. Again, we use a subscript (or super-
script) 0 to denote the gauge basis satisfying the unrotated’
symmetry Z0

5, whereas we drop this subscript (superscript)
for the rotated Z5.

A. Matter content

Following the conventions of [5], we extend the SM
extended by introducing several SUð2ÞL scalar triplets Ha,
ða ¼ 1; 2;…; NÞ,

Ha ≡ ½Hþþ
a ; Hþ

a ; H0
a�: ð106Þ

The gauge invariant Yukawa interaction relevant for neu-
trino mass takes the form

LH;L ¼
X3
i;j¼1

XN
a¼1

Yνa
ij ½H0

aν
T
LiC

−1νLj

þHþ
a ðνTLiC−1lLj þ lT

LjC
−1νLiÞ

þHþþ
a lT

LiC
−1lLj�; ð107Þ

where Ya
ij are the corresponding Yukawa coupling con-

stants, the indices i, j are flavor ones, and C is the charge
conjugation matrix.
The field H0

a could acquire a small VEV, hH0
ai ¼ vHa ,

that gives rise to a Majorana neutrino mass matrix of the
following form:

Mνij ¼
XN
a¼1

Yνa
ij v

H
a : ð108Þ

The smallness of the VEV vHa is attributed to the largeness
of the triplet scalar mass scale [20].
As to the charged lepton mass, we introduce, in contrast

to [5], various Higgs doublets Φa, a ¼ 1;…; K,

Ll ¼
X3
i;j¼1

XK
a¼1

Yla
ij D̄LiΦalRj: ð109Þ

Note that we did not consider only one SM Higgs;
otherwise we would have got, as in [5], a diagonal charged
lepton mass matrix Ml0 when the neutrino mass matrix
Mν0 had a zero texture. We would like to get a genericMl0
corresponding to zero texture Mν0, so that when we rotate
and get a vanishing subtrace texture for the neutrino mass
matrixMν we also get another generic charged lepton mass
matrix Ml. This latter can under suitable assumptions be
diagonalized by infinitesimal rotations. Had we restricted
our SM Higgs to only one Higgs doublet, then the diagonal
Ml0 corresponding to zero texture Mν0 will give, upon
rotation by S, a nondiagonal charged mass matrixMl that is
diagonalizable by a finite rotation S, which means that the
vanishing subtrace texture does not correspond to the
flavor basis.

B. Z0
5 symmetry for zero texture Mν0 characterized

by Mν012 = 0

In order to impose a zero texture Mν0 by Z0
5 symmetry

with a genericMl0, we introduce four scalar tripletsHa and
three Higgs doublets Φb, with the following assignments
under Z0

5 defined in Table XVI.
By forming bilinear terms ofHaν

T
LνL we can find out the

invariant Lagrangian terms under Z0
5, which gives

Mν0 ¼

0
B@

× 0 ×

0 × ×

× × ×

1
CA: ð110Þ

C. Z5 symmetry for C33 texture (Mν11 +Mν22 = 0)
and Yukawa couplings constraints

In order to find the new rotated symmetry Z5, we need
first to find how all the fields would transform. Here, we
carefully use the rule of [Eq. (46) or (52)] for all the fields
f, in that if f transforms under Z0

5 according to the
diagonal, by construction, matrix T0Z

f , then it transforms

under Z5 according to TZ
f ¼ Sf†exT0Z

f Sfex [cf. Eq. (66)] with

Sfex ¼ diagðS; 1r×rÞ possibly an extension of S to match the
finite-dimensional space of the field f of dimensions
(3þ r). The invariance of the Lagrangian terms under

TABLE XVI. The Z0
5 symmetry seesaw type II realization of

the one zero texture at the (1,2) entry corresponding upon rotation
to vanishing subtrace C33. Ha are triplet scalars, whereas 1F
refers to the fermions, apart from the right-handed charged
leptons lR, in the first generation and so on. The Φb denote
SM Higgs doublets. Ω denotes ei2π=5.

Symmetry under Z0
5

H1 H2 H3 H4 1F 2F 3F lR Φ1 Φ2 Φ3

1 Ω3 Ω2 Ω 1 Ω Ω2 1 1 Ω Ω2
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the symmetry will impose constraints on the Yukawa
couplings that one can in principle solve to give the form
of the mass matrices when the Higgs/scalar fields get a VEV.
Actually, one can check that under both Z0

5 and Z5,
defined by the transformations T0Z

f and TZ
f , respectively, we

have the following constraints:

ðYνb
0 Þ ¼ T0Z

HabðT0Z
νL ÞTðYνa

0 ÞðT0Z
νL Þ ð111Þ

and

ðYνbÞ ¼ TZ
HabðTZ

νLÞTðYνaÞðTZ
νLÞ; ð112Þ

where (a; b ¼ 1;…; 4), ðYνb
0 Þ is a matrix in flavor space

with element Yνb
0ij at its ði; jÞth entry. The two constraints of

Eqs. (111) and (112) are related in that if we know the
solution to one constraint we know it for the other. More
specifically, one can check that if ðYνb

0 Þ was a solution of
Eq. (111), then

ðYνeÞ ¼ ðSTÞðYνb
0 ÞðSÞðSHexÞbe ð113Þ

is a solution of Eq. (112).

D. Mν0 and Mν resulting, respectively,
from Z0

5 and Z5 invariance

By solving Eqs. (111) and (112) we get when H0
a’s get

the VEVs vH0a under Z0
5:

Mν0 ¼

0
B@

Yν1
011v

H
01 0 Yν2

013v
H
02

– Yν2
022v

H
02 Yν3

023v
H
03

– – Yν4
033v

H
04

1
CA;

Mν ¼

0
B@

−Yν2
23v

H
1 − Yν2

22v
H
2 −Yν2

22v
H
1 þ Yν2

12v
H
2 Yν2

23v
H
1 − iYν2

23v
H
2 þ iYν3

23v
H
3

– Yν2
12v

H
1 þ Yν2

22v
H
2 iYν2

23v
H
1 þ Yν2

23v
H
2 þ Yν3

23v
H
3

– – Yν4
33v

H
4

1
CA: ð114Þ

We see that the texture C33 is met inMν while ðMν012 ¼ 0Þ
for Mν0. One can deduce the relations between the Higgs
VEVs in the unrotated system (vH0a) and the Higgs VEVs in
the rotated system (vHa ) by writing Eq. (69) and considering
Eq. (113).

E. Ml0 and Ml resulting, respectively,
from Z0

5 and Z5 invariance

The introduction of three SM Higgs Φ’s was needed
essentially to produce a generic charged lepton matrix.
Actually the bilinear of the relevant term D̄LilRj transforms
under Z0

5 as

D̄LilRj ≅

0
B@

1 1 1

Ω4 Ω4 Ω4

Ω3 Ω3 Ω3

1
CA: ð115Þ

We see now that the transformations of Φ’s in Table XVI
were chosen exactly to make all the entries inMl0 eligible.
Again expressing the invariance under Z0

5 gives constraints
on the Yukawa couplings:

ðYlb
0 Þ ¼ T0Z

ΦabðT0Z
DL
Þ†ðYla

0 ÞðT0Z
lR
Þ ð116Þ

and

ðYlbÞ ¼ TZ
ΦabðTZ

DL
Þ†ðYlaÞðTZ

lR
Þ; ð117Þ

where (a; b ¼ 1;…; 3) and ðYlb
0 Þ is a matrix in flavor space

with element Ylb
0ij at its ði; jÞth entry. The two constraints of

Eqs. (116) and (117) are related in that if ðYlb
0 Þ was a

solution of Eq. (116), then

ðYlgÞ ¼ ðS†ÞðYlb
0 ÞðSÞðSΦexÞbg ð118Þ

is a solution of Eq. (117) where SΦex ¼ S since we have
three Φ’s.
Solving the Yukawa constraints in Eqs. (116) and (117)

we see that when the Φa’s get VEVs vΦ0a, we get the
following Ml0 and Ml:

Ml0 ¼

0
B@

Yl1
011v

Φ
01 Yl1

012v
Φ
01 Yl1

013v
Φ
01

Yl2
021v

Φ
02 Yl2

022v
Φ
02 Yl2

023v
Φ
02

Yl3
031v

Φ
03 Yl3

032v
Φ
03 Yl3

033v
Φ
03

1
CA ð119Þ

and
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Ml ¼

0
B@

Yl2
21v

Φ
1 þ Yl2

11v
Φ
2 Yl2

22v
Φ
1 þ Yl2

12v
Φ
2 Yl2

23v
Φ
1 þ Yl2

13v
Φ
2

−Yl2
11v

Φ
1 þ Yl2

21v
Φ
2 −Yl2

12v
Φ
1 þ Yl2

22v
Φ
2 −Yl2

13v
Φ
1 þ Yl2

23v
Φ
2

Yl3
31v

Φ
3 Yl3

31v
Φ
3 Yl3

33v
Φ
3

1
CA: ð120Þ

Again, one can deduce the relations between the unrotated
VEVs (vΦoa) and the rotated VEVs (vΦa ) by writing
[cf. Eq. (69)]Ml ¼ S† ·Mlo · S and considering Eq. (118).
Thus if we assume the related VEVs are comparable

vΦ1
≈ vΦ2

≈ vΦ3
≈ v, then we get

Ml ≈ v

0
B@

Yl2
21 þ Yl2

11 Yl2
22 þ Yl2

12 Yl2
23 þ Yl2

13

−Yl2
11 þ Yl2

21 −Yl2
12 þ Yl2

22 −Yl2
13 þ Yl2

23

Yl3
31 Yl3

31 Yl3
33

1
CA

¼ v

0
B@

aT

bT

cT

1
CA: ð121Þ

Consequently,

MlM
†
l ≈ v2

0
B@

a · a a · b a · c

b · a b · b b · c

c · a c · b c · c

1
CA; ð122Þ

so taking only the following natural assumption on the
norms of the vectors

kak=kck ¼ me=mτ ∼ 3 × 10−4;

kbk=kck ¼ mμ=mτ ∼ 6 × 10−2; ð123Þ

one can diagonalize MlM
†
l by an infinitesimal rotation as

was done in [5], which proves that we are to a good
approximation in the flavor basis.

XII. DIRECT REALIZATION OF TYPE I
SEESAW WITH Z6 × Z2 SYMMETRY

We present now another method that leads directly to
the vanishing subtrace texture without relating it to zero
textures by rotation. It is applicable again only for the four
textures (C33, C11, C22, and C31).

A. Type I seesaw direct realization of C33:
Vanishing of Mν11 +Mν22

Within the type I seesaw scenario, the Lagrangian
responsible for mass is similar to the one given in
Eq. (58) which, after conveniently simplifying the notations
by dropping the Yukawa 0-subscript and the summation
signs, is rewritten here as

LM ⊃ Yb
χijχbν

T
RiC

−1νRj þ Ya
DijD̄LiΦ̃aνRj

þ Ya
lijD̄LiΦalRj: ð124Þ

We have for the pattern C33 the relation Mν11 þMν22 ¼ 0,
which can give a hint motivating the search for solutions
involving a permutation symmetry (1 ↔ 2). Actually, we
can think of the vanishing subtrace constraint as arising
from symmetry considerations leading to textures imple-
menting these “permutation”restrictions at the level of MR
andMD, which by the seesaw scenario resurface at the level
ofMν which inherits the permutation structure. One can try
simple forms for bothMR andMD with enough parameters
in order to produce generic Mν having the sole constraint
Mν11 þMν22 ¼ 0. To be concrete, one can assume the
following forms for MR and MD as shown below together
with the derived Mν (through the seesaw mechanism),

MR ¼

0
B@

x y 0

y −x 0

0 0 z

1
CA; MD ¼

0
B@

A −B iC

B A −C
−iD D E

1
CA;

Mν ¼ MDM−1
R MT

D ¼

0
B@

Δ × ×

– −Δ ×

– – ×

1
CA; ð125Þ

where A, B, C, D, E, x, y, and z are generic independent
parameters and the × and Δ signs denote generic inde-
pendent nonvanishing entries. We stress here that these
forms proposed for MR and MD are not necessarily the
simplest choices, but they are just mere possibilities that
can be derived from symmetry considerations.
The fields and their assigned symmetry transformations

under Z6 × Z2 are presented in Table XVII.
Forming the required bilinears dictated by Z6 symmetry,

we obtain

νTRiνRj ≅
Z6

0
B@

1 1 ω

1 1 ω

ω ω ω2

1
CA; D̄LiνRj ≅

Z6

0
B@

1 1 ω

1 1 ω

ω5 ω5 1

1
CA;

D̄LilRj ≅
Z6

0
B@

−1 −1 ω4

−1 −1 ω4

ω2 ω2 −1

1
CA: ð126Þ

When the resulting bilinears combine with the appropriate
scalar fields, we get under Z6, keeping only the combina-
tions that produce singlets, the following:
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χ1ν
T
RiνRj ≅

Z6

0
B@

ω4 ω4 ω5

ω4 ω4 ω5

ω5 ω5 1

1
CA; χ2ν

T
RiνRj ≅

Z6

0
B@

1 1 ω

1 1 ω

ω ω ω2

1
CA; χ3ν

T
RiνRj ≅

Z6

0
B@

1 1 ω

1 1 ω

ω ω ω2

1
CA;

Φ̃1D̄LiνRj ≅
Z6

0
B@

1 1 ω

1 1 ω

ω5 ω5 1

1
CA; Φ̃2D̄LiνRj ≅

Z6

0
B@

ω5 ω5 1

ω5 ω5 1

ω4 ω4 ω5

1
CA; Φ̃3D̄LiνRj ≅

Z6

0
B@

ω ω ω2

ω ω ω2

1 1 ω5

1
CA;

Φ4D̄LilRj ≅
Z6

0
B@

1 1 ω

1 1 ω

ω5 ω5 1

1
CA; Φ5D̄LilRj ≅

Z6

0
B@

1 1 ω

1 1 ω

ω5 ω5 1

1
CA: ð127Þ

Thus the resulting Lagrangian dictated by Z6 symmetry takes the form

LZ6

M ∝ Y1
χ33χ1ν

T
R3C

−1νR3

þ Y2
χ11χ2ν

T
R1C

−1νR1 þ Y2
χ12χ2ν

T
R1C

−1νR2 þ Y2
χ12χ2ν

T
R2C

−1νR1 þ Y2
χ22χ2ν

T
R2C

−1νR2

þ Y3
χ11χ3ν

T
R1C

−1νR1 þ Y3
χ12χ3ν

T
R1C

−1νR2 þ Y3
χ12χ3ν

T
R2C

−1νR1 þ Y3
χ22χ3ν

T
R2C

−1νR2

þ Y1
D11D̄L1Φ̃1νR1 þ Y1

D12D̄L1Φ̃1νR2 þ Y1
D21D̄L2Φ̃1νR1 þ Y1

D22D̄L2Φ̃1νR2 þ Y1
D33D̄L3Φ̃1νR3

þ Y2
D13D̄L1Φ̃2νR3 þ Y2

D23D̄L2Φ̃2νR3 þ Y3
D31D̄L3Φ̃3νR1 þ Y3

D32D̄L3Φ̃3νR2

þ Y4
l11D̄L1Φ4lR1 þ Y4

l12D̄L1Φ4lR2 þ Y4
l21D̄L2Φ4lR1 þ Y4

l22D̄L2Φ4lR2 þ Y4
l33D̄L3Φ4lR3

þ Y5
l11D̄L1Φ5lR1 þ Y5

l12D̄L1Φ5lR2 þ Y5
l21D̄L2Φ5lR1 þ Y5

l22D̄L2Φ5lR2 þ Y5
l33D̄L3Φ5lR3; ð128Þ

which transforms under Z2 as

LZ6

M →
Z2 Y1

χ33χ1ν
T
R3C

−1νR3

− Y2
χ11χ2ν

T
R2C

−1νR2 þ Y2
χ12χ2ν

T
R2C

−1νR1 þ Y2
χ12χ2ν

T
R1C

−1νR2 − Y2
χ22χ2ν

T
R1C

−1νR1

− Y3
χ11χ3ν

T
R2C

−1νR2 þ Y3
χ12χ3ν

T
R2C

−1νR1 þ Y3
χ12χ3ν

T
R1C

−1νR2 − Y3
χ22χ3ν

T
R1C

−1νR1

þ Y1
D11D̄L1Φ̃2νR2 − Y1

D12D̄L2Φ̃1νR1 − Y1
D21D̄L1Φ̃1νR2 þ Y1

D22D̄L1Φ̃1νR1 þ Y1
D33D̄L3Φ̃1νR3

þ iY2
D13D̄L2Φ̃2νR3 − iY2

D23D̄L1Φ̃2νR3 þ iY3
D31D̄L3Φ̃3νR2 − iY3

D32D̄L3Φ̃3νR1

þ Y4
l11D̄L2Φ5lR1 þ Y4

l12D̄L2Φ5lR2 − Y4
l21D̄L1Φ5lR1 − Y4

l22D̄L1Φ5lR2 þ iY4
l33D̄L3Φ5lR3

− Y5
l11D̄L2Φ4lR1 − Y5

l12D̄L2Φ4lR2 þ Y5
l21D̄L1Φ4lR1 þ Y5

l22D̄L1Φ4lR2 − iY5
l33D̄L3Φ4lR3: ð129Þ

Thus, invariance under Z6 × Z2 implies the following constraints on the Yukawa couplings:

TABLE XVII. The Z6 × Z2 symmetry seesaw type I realization of the vanishing subtrace C33. Φ are five SM
Higgs doublets, DL refers to the flavor three left-handed lepton doublets, while the three right-handed charged
lepton singlets are denoted by lR. ω denotes eiπ=3.

Matter content and symmetry transformation (pattern C33)

Symmetry under Z6

νR1 → νR1 νR2 → νR2 νR3 → ωνR3 χ1 → ω4χ1 χ2 → χ2 χ3 → χ3
DL1 → DL1 DL2 → DL2 DL3 → ωDL3 Φ1 → Φ1 Φ2 → ωΦ2 Φ3 → ω5Φ3

Φ4 → ω3Φ4 Φ5 → ω3Φ5 lR1 → ω3lR1 lR2 → ω3lR2 lR3 → ω4lR3

Symmetry under Z2

νR1 → iνR2 νR2 → −iνR1 νR3 → νR3 χ1 → χ1 χ2 → χ2 χ3 → χ3
DL1 → iDL2 DL2 → −iDL1 DL3 → DL3 Φ1 → Φ1 Φ2 → −Φ2 Φ3 → Φ3

Φ4 → iΦ5 Φ5 → −iΦ4 lR1 → lR1 lR2 → lR2 lR3 → lR3
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Y1
χ33 ¼ Y1

χ33; Y2
χ12 ¼ Y2

χ12; Y3
χ12 ¼ Y3

χ12; Y2
χ11 ¼ −Y2

χ22; Y3
χ11 ¼ −Y3

χ22;

Y1
D33 ¼ Y1

D33; Y1
D11 ¼ Y1

D22; Y1
D12 ¼ −Y1

D21; Y2
D13 ¼ −iY2

D23; Y3
D31 ¼ −iY3

D32;

Y4
l11 ¼ Y5

l21; Y4
l12 ¼ Y5

l22; Y4
l21 ¼ −Y5

l11; Y4
l22 ¼ −Y5

l12; Y4
l33 ¼ −iY5

l33; ð130Þ

where all vanishing Yukawa couplings are omitted. In fact
and as was done for the rotated symmetry (indirect
realization), by brute force, one also could have used all
the machinery encoded in the invariance equations, as
given in Eqs. (60), (62), and (64), in order to obtain a
system of linear equations involving Yukawa coupling
constants. Solving this resulting system of linear equations

would have provided us then with the symmetry con-
straints [Eq. (130)].
Thus, the Z6 × Z2 symmetry imposes some constraints

on the Yukawa couplings that have to be taken into
consideration when constructing mass terms after the
relevant scalar fields acquire VEVs. The emergent MR
and MD turn out to be

MR ¼

0
B@

−Y2
χ22vχ2 − Y3

χ22vχ3 Y2
χ12vχ2 þ Y3

χ12vχ3 0

– Y2
χ22vχ2 þ Y3

χ22vχ3 0

– – Y1
χ33vχ1

1
CA ð131Þ

and

MD ¼

0
B@

Y1
D22vΦ1

−Y1
D21vΦ1

−iY2
D23vΦ2

Y1
D21vΦ1

Y1
D22vΦ1

Y2
D23vΦ2

−iY3
D32vΦ3

Y3
D32vΦ3

Y1
D33vΦ1

1
CA: ð132Þ

One can check that the resulting Mν, through the seesaw mechanism, satisfies the texture C33.
As to Ml we get

Ml ¼

0
B@

Y5
l21vΦ4

þ Y5
l11vΦ5

Y5
l22vΦ4

þ Y5
l12vΦ5

0

−Y5
l11vΦ4

þ Y5
l21vΦ5

−Y5
l12vΦ4

þ Y5
l22vΦ5

0

0 0 −iY5
l33vΦ4

þ Y5
l33vΦ5

1
CA: ð133Þ

Thus, and as an example, one can assume v ≈ vΦ5
≫ vΦ4

so
as to get

Ml ≈ v

0
B@

Y5
l11 Y5

l12 0

Y5
l21 Y5

l22 0

0 0 Y5
l33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA: ð134Þ

Another time, one can by just imposing some reasonable
assumptions on the ratios of the “free” vectors diagonalize
MlM

†
l by an infinitesimal rotation, which puts us thus to a

good approximation in the flavor basis, as desired.

B. Type I seesaw direct realization of C11, C22, and C13

Following the same method outlined in case C33, we
state briefly the results of the cases C11, C22, and C13, in
Tables XVIII, XIX, and XX, respectively.

XIII. DIRECT REALIZATION OF TYPE II SEESAW
WITH Z0

2 × Z2 SYMMETRY

By the same token, we present now, within the type II
seesaw scenario, a “direct”method which leads straight to
the vanishing subtrace texture without relating it to zero
textures by rotation. It is applicable again only for the four
textures (C33, C11, C22 and C31). Besides, the key idea
behind this realization is having a permutation performed
through the group factor Z0

2.

A. Type II seesaw direct realization of C33

Within the type II seesaw scenario, the term
Yνa
ij H

0
aν

T
LiC

−1νLj in the Lagrangian of Eq. (107) is the term
responsible for Mν where we introduced three Higgs
triplets. We introduce two Higgs doublets Φb responsible
for Ml through the term Yla

ij D̄LiΦalRj [see Eq. (109)]. We
assume the field transformations defined in Table XXI.
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TABLE XVIII. The Z6 × Z2 symmetry seesaw type I realization of the vanishing subtrace C11. Φa are five SM Higgs doublets
(a ¼ 1…5),DL refers to the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by
lR. ω denotes eiπ=3.

Matter content and symmetry transformation (pattern C11)

Symmetry under Z6

νR1 → ωνR1 νR2 → νR2 νR3 → νR3 χ1 → ω4χ1 χ2 → χ2 χ3 → χ3
DL1 → ωDL1 DL2 → DL2 DL3 → DL3 Φ1 → Φ1 Φ2 → ω5Φ2 Φ3 → ωΦ3

Φ4 → ω3Φ4 Φ5 → ω3Φ5 lR1 → ω4lR1 lR2 → ω3lR2 lR3 → ω3lR3

Symmetry under Z2

νR1 → νR1 νR2 → iνR3 νR3 → −iνR2 χ1 → χ1 χ2 → χ2 χ3 → χ3
DL1 → DL1 DL2 → iDL3 DL3 → −iDL2 Φ1 → Φ1 Φ2 → Φ2 Φ3 → −Φ3

Φ4 → iΦ5 Φ5 → −iΦ4 lR1 → lR1 lR2 → lR2 lR3 → lR3

Mass matrices MR, MD, Mν, and Ml

MR ¼
 x 0 0

0 y z
0 z −y

!
;MD ¼

 A −iD D
−IE B −C
E C B

!
;Mν ¼

 × × ×
– Δ ×
– – −Δ

!
;Ml ≈

vΦ5
≫vΦ4

vΦ5

 Y5
l11 0 0

0 Y5
l22 Y5

l23
0 Y5

l32 Y5
l33

!

TABLE XIX. The Z6 × Z2 symmetry seesaw type I realization of the vanishing subtrace C22. Φa are five SM Higgs doublets
(a ¼ 1…5),DL refers to the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by
lR. ω denotes eiπ=3.

Matter content and symmetry transformation (pattern C22)

Symmetry under Z6

νR1 → νR1 νR2 → ωνR2 νR3 → νR3 χ1 → ω4χ1 χ2 → χ2 χ3 → χ3
DL1 → DL1 DL2 → ωDL2 DL3 → DL3 Φ1 → Φ1 Φ2 → ωΦ2 Φ3 → ω5Φ3

Φ4 → ω3Φ4 Φ5 → ω3Φ5 lR1 → ω3lR1 lR2 → ω4lR2 lR3 → ω3lR3

Symmetry under Z2

νR1 → iνR3 νR2 → νR2 νR3 → −iνR1 χ1 → χ1 χ2 → χ2 χ3 → χ3
DL1 → iDL3 DL2 → DL2 DL3 → −iDL1 Φ1 → Φ1 Φ2 → −Φ2 Φ3 → Φ3

Φ4 → iΦ5 Φ5 → −iΦ4 lR1 → lR1 lR2 → lR2 lR3 → lR3

Mass matrices MR, MD, Mν, and Ml

MR ¼
 x 0 z
0 y 0

z 0 −x

!
;MD ¼

 A iB −C
−IE D E
C −B A

!
;Mν ¼

 Δ × ×
– × ×
– – −Δ

!
;Ml ≈

vΦ5
≫vΦ4

vΦ5

0
B@Y5

l11 0 Y5
l13

0 Y5
l22 0

Y5
l13 0 Y5

l33

1
CA

TABLE XX. The Z6 × Z2 symmetry seesaw type I realization of the vanishing subtrace C13. Φa are four SM Higgs doublets
(a ¼ 1…4),DL refers to the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by
lR. ω denotes eiπ=3 and u is a generic independent parameter present in MR.

Matter content and symmetry transformation (pattern C13)

Symmetry under Z6

νR1 → νR1 νR2 → ωνR2 νR3 → νR3 χ1 → ω4χ1 χ2 → χ2 χ3 → χ3
DL1 → DL1 DL2 → ωDL2 DL3 → DL3 Φ1 → Φ1 Φ2 → ωΦ2 Φ3 → ω3Φ3

Φ4 → ω3Φ4 lR1 → ω3lR1 lR2 → ω4lR2 lR3 → ω3lR3

Symmetry under Z2

νR1 → iνR3 νR2 → νR2 νR3 → −iνR1 χ1 → χ1 χ2 → −χ2 χ3 → χ3
DL1 → −DL3 DL2 → DL2 DL3 → −DL1 Φ1 → Φ1 Φ2 → Φ2 Φ3 → iΦ4

Φ4 → −iΦ3 lR1 → lR1 lR2 → lR2 lR3 → lR3

Mass matrices MR, MD, Mν, and Ml

MR ¼
 x 0 z
0 y 0

z 0 u

!
;MD ¼

 iA −D −iC
0 B 0

C D A

!
;Mν ¼

 × Δ ×
– × −Δ
– – ×

!
;Ml ≈

vΦ4
≫vΦ3

vΦ4

 Y4
l11 0 Y4

l13
0 Y4

l22 0

Y4
l31 0 Y4

l33

!
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By forming bilinear terms in order to see the trans-
formations under Z2, we get for νTLiνLj,

νTLiνLj ≅
Z2

0
B@

1 1 −1
1 1 −1
−1 −1 1

1
CA; ð135Þ

and so, when the bilinear νTLi
νLj

is combined with the
transformation of Ha under Z2, we get

H0
1ν

T
LiνLj ≅

Z2

0
B@

1 1 −1
1 1 −1
−1 −1 1

1
CA;

H0
2ν

T
LiνLj ≅

Z2

0
B@

−1 −1 1

−1 −1 1

1 1 −1

1
CA;

H0
3ν

T
LiνLj ≅

Z2

0
B@

−1 −1 1

−1 −1 1

1 1 −1

1
CA: ð136Þ

Thus, the Lagrangian terms in Eq. (107), responsible for
Mν, which are due to the interaction with H0

1 and are
consistent with Z2 symmetry are

LZ2

H1ν
∝ H0

1ðYν1
11C

−1νTL1νL1 þ Yν1
22ν

T
L2C

−1νL2 þ Yν1
33ν

T
L3C

−1νL3

þ Yν1
12ν

T
L1C

−1νL2 þ Yν1
12ν

T
L2C

−1νL1Þ; ð137Þ

which transforms under Z0
2 as

LZ2

H1ν
→
Z0
2 H0

1ð−Yν1
11ν

T
L2C

−1νL2−Yν1
22ν

T
L1C

−1νL1þYν1
33ν

T
L3C

−1νL3

þYν1
12ν

T
L1C

−1νL2þYν1
12ν

T
L2C

−1νL1Þ: ð138Þ

Thus, invariance under Z2 × Z0
2 implies the constraint

Yν1
11 ¼ −Yν1

22; Yν1
13 ¼ Yν1

23 ¼ 0: ð139Þ

By the same way, one can see the constraints on the
Yukawa couplings due to interaction with H0

2 and H0
3, and

we get

Yν2
13 ¼ iYν2

23; Yν2
11 ¼ Yν2

22 ¼ Yν2
12 ¼ 0;

Yν3
13 ¼ −iYν3

23; Yν3
11 ¼ Yν3

22 ¼ Yν3
12 ¼ 0: ð140Þ

So when H0
a gets a VEV vHa we get Mν in the form

Mν ¼

0
B@

−Yν1
22v

H
1 Yν1

12v
H
1 iðYν2

23v
H
2 − Yν3

23v
H
3 Þ

– Yν1
22v

H
1 ðYν2

23v
H
2 þ Yν3

23v
H
3 Þ

– – Yν1
33v

H
1

1
CA: ð141Þ

We see that the texture C33 is realized.
For the charged lepton mass matrix Ml, we follow the

same procedure by forming bilinear terms in order to see
the transformations under Z2:

D̄LilRj ≅
Z2

0
B@

−1 −1 1

−1 −1 1

1 1 −1

1
CA⇒ D̄LilRjΦ1 ≅

Z2

D̄LilRjΦ2

≅
Z2

0
B@

1 1 −1
1 1 −1
−1 −1 1

1
CA: ð142Þ

Thus, the Lagrangian terms in Eq. (109), responsible for
Ml, which are due to the interaction with Φ1, Φ2 and are
consistent with Z2 symmetry are

LZ2

Φl ∝ Φ1ðYl1
11D̄L1lR1 þ Yl1

12D̄L1lR2 þ Yl1
21D̄L2lR1

þ Yl1
22D̄L2lR2 þ Yl1

33D̄L3lR3Þ
þΦ2ðYl2

11D̄L1lR1 þ Yl2
12D̄L1lR2 þ Yl2

21D̄L2lR1

þ Yl2
22D̄L2lR2 þ Yl2

33D̄L3lR3Þ; ð143Þ

which transforms under Z0
2 as

TABLE XXI. The Z0
2 × Z2 symmetry seesaw type II realization of the vanishing subtrace C33. H are three triplet

scalars, DL refers to the flavor three left-handed lepton doublets, while the three right-handed charged lepton
singlets are denoted by lR. The Φ denotes two SM Higgs doublets.

Matter content (pattern C33)

H DL lR Φ

Symmetry under Z0
2

G0
HH G0

DDL G0
llR G0

ΦΦ
G0

H ¼ diagð1; 1;−1Þ
G0

D ¼
 

0 −i 0

þi 0 0

0 0 1

! G0
l ¼ diagð1; 1; 1Þ

G0
Φ ¼

�
0 1

1 0

�

Symmetry under Z2

GHH GDDL GllR GΦΦ
GH ¼ diagð1;−1;−1Þ GD ¼ diagð−1;−1; 1Þ Gl ¼ diagð1; 1;−1Þ GΦ ¼ diagð−1;−1Þ
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LZ2

Φl →
Z0
2 Φ2ð−iYl1

11D̄L2lR1 − iYl1
12D̄L2lR2

þ iYl1
21D̄L1lR1 þ iYl1

22D̄L1lR2 þ Yl1
33D̄L3lR3Þ

þΦ1ð−iYl2
11D̄L2lR1 − iYl2

12D̄L2lR2 þ iYl2
21D̄L1lR1

þ iYl2
22D̄L1lR2 þ Yl2

33D̄L3lR3Þ: ð144Þ

Thus, invariance under Z2 × Z0
2 implies the constraint

Yl1
11 ¼ iYl2

21 ; Yl1
12 ¼ iYl2

22 ; Yl1
21 ¼ −iYl2

11 ;

Yl1
22 ¼ −iYl2

12 ; Yl1
33 ¼ Yl2

33 ;

Yl1ð2Þ
13 ¼ Yl1ð2Þ

23 ¼ Yl1ð2Þ
31 ¼ Yl1ð2Þ

32 ¼ 0: ð145Þ

So when Φ0
a gets a VEV vΦa, we get Ml in the form

TABLE XXII. The Z0
2 × Z2 symmetry seesaw type II realization of the vanishing subtrace C11.H are three triplet scalars, DL refers to

the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by lR. The Φ denotes two
SM Higgs doublets.

Matter content (pattern C11)

H DL lR Φ

Symmetry under Z0
2

G0
HH G0

DDL G0
llR G0

ΦΦ
G0

H ¼ diagð1; 1;−1Þ
G0

D ¼
 
1 0 0

0 0 −i
0 i 0

! G0
l ¼ diagð1; 1; 1Þ

G0
Φ ¼

�
0 1

1 0

�

Symmetry under Z2

GHH GDDL GllR GΦΦ
GH ¼ diagð1;−1;−1Þ GD ¼ diagð1;−1;−1Þ Gl ¼ diagð−1; 1; 1Þ GΦ ¼ diagð−1;−1Þ
Mass matrices

Mν ¼

0
B@Yν1

11v
H
1 iðYν2

13v
H
2 − Yν3

13v
H
3 Þ Yν2

13v
H
2 þ Yν3

13v
H
3

– −Yν1
33v

H
2 Yν1

23v
H
1

– – −Yν1
33v

H
1

1
CA;Ml ≈

vΦ
2
≫vΦ

1
vΦ2

 Yl2
11 0 0

0 Yl2
22 Yl2

23

0 Yl2
32 Yl2

33

!

TABLE XXIII. The Z0
2 × Z2 symmetry seesaw type II realization of the vanishing subtraceC22.H are three triplet scalars,DL refers to

the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by lR. The Φ denotes two
SM Higgs doublets.

Matter content (pattern C22)

H DL lR Φ

Symmetry under Z0
2

G0
HH G0

DDL G0
llR G0

ΦΦ
G0

H ¼ diagð1; 1;−1Þ
G0

D ¼

0
B@ 0 0 −i

0 1 0

i 0 0

1
CA

G0
l ¼ diagð1; 1; 1Þ

G0
Φ ¼

�
0 1

1 0

�

Symmetry under Z2

GHH GDDL GllR GΦΦ
GH ¼ diagð1;−1;−1Þ GD ¼ diagð−1; 1;−1Þ Gl ¼ diagð1;−1; 1Þ GΦ ¼ diagð−1;−1Þ
Mass matrices

Mν ¼
 −Yν1

33v
H
1 iðYν2

23v
H
2 − Yν3

23v
H
3 Þ Yν1

13v
H
1

– Yν1
22v

H
1 ðYν2

23v
H
2 þ Yν3

23v
H
3 Þ

– – Yν1
33v

H
1

!
;Ml ≈

vΦ
2
≫vΦ

1
vΦ2

0
B@ Yl2

11 0 Yl2
13

0 Yl2
22 0

−iYl2
31 0 Yl2

33

1
CA

ISMAEL, ALKHATEEB, CHAMOUN, and LASHIN PHYS. REV. D 103, 035020 (2021)

035020-44



Ml¼

0
B@
Yl1
11v

Φ
1 þ iYl1

21v
Φ
2 Yl1

12v
Φ
1 þ iYl1

22v
Φ
2 0

Yl1
21v

Φ
1 − iYl1

11v
Φ
2 Yl1

22v
Φ
1 − iYl1

12v
Φ
2 0

0 0 Yl1
33ðvΦ1 þvΦ2 Þ

1
CA:

ð146Þ

Thus, when v ≈ vΦ2 ≫ vΦ1 , we get

Ml ¼ v

0
B@

iYl1
21 iYl1

22 0

−iYl1
11 −iYl1

12 0

0 0 Yl1
33

1
CA ¼ v

0
B@

aT

bT

cT

1
CA: ð147Þ

One can by just imposing some reasonable assumptions on
the ratios of the free vectors diagonalize MlM

†
l by an

infinitesimal rotation, which puts us thus to a good
approximation in the flavor basis, as desired.

B. Type II seesaw direct realization of C11, C22, and C13

Following the same method outlined in case C33, we
state briefly the results of the cases C11, C22, and C13, in
Tables XXII, XXIII, and XXIV, respectively.

XIV. SUMMARY, DISCUSSION,
AND CONCLUSION

We have studied a specific texture characterized by one
vanishing subtrace of the neutrino mass matrix. We found
that all textures, whether they be of inverted or normal
type, can accommodate the recent experimental bounds.
Moreover, four textures of inverted type can accommodate
data in case one neutrino mass is zero. We have carried out

a complete phenomenological and analytic analysis, but
did not state the analytic expressions, as they are too
cumbersome, even the first terms in a Taylor expansion in
powers of s13. Finally, for the model building of the texture,
we first proposed a generic strategy to justify such a
specific texture form based on finding a corresponding
symmetry implying certain zeros at Mν0, which when
rotated to a new rotated symmetry leads to the desired
form of vanishing subtrace in Mν. We applied this strategy
for both types of seesaw scenarios and in both invertible
and singular neutrino mass matrices. We also presented a
direct method to realize the textures without rotation for
both types of seesaw scenarios based on discrete symmetry.
In all these theoretical models, the spontaneous sym-

metry breaking of a discrete symmetry Zn × Zm, triggered
by some fields (Φ, χ)—some of which are very heavy—
taking a VEV, led by construction to a texture of vanishing
subtrace, and this presumably happens at high scale.
However, the question arises as to whether the running
of the Yukawa couplings from high scale to weak scale
spoils the form of the texture. In our work we assumed this
change is slight, and that the texture would be kept when
running to weak scale, in line with [14]. However, it was
argued in [10] that the “entries-equality” condition is not
stable against radiative corrections, and surely this question
is worthy of a thorough analysis in its own right.
Moreover, we have not discussed the scalar and Higgs

potential. In Appendix we stated the general form of the
renormalizable scalar-Higgs potential in one case (C33)
respecting the discrete symmetry (Z2 × Z6), and therein
we put in constraints on the coupling constants and
stated the tadpole equations and the corresponding mass
matrices.

TABLE XXIV. The Z0
2 × Z2 symmetry seesaw type II realization of the vanishing subtraceC13.H are three triplet scalars,DL refers to

the flavor three left-handed lepton doublets, while the three right-handed charged lepton singlets are denoted by lR. The Φ denotes two
SM Higgs doublets.

Matter content (pattern C13)

H DL lR Φ

Symmetry under Z0
2

G0
HH G0

DDL G0
llR G0

ΦΦ
G0

H ¼ diagð1;−1;−1Þ
G0

D ¼

0
B@ 0 0 1

0 1 0

1 0 0

1
CA

G0
l ¼ diagð1; 1; 1Þ

G0
Φ ¼

�
0 1

1 0

�

Symmetry under Z2

GHH GDDL GllR GΦΦ
GH ¼ diagð1; 1;−1Þ GD ¼ diagð−1; 1;−1Þ Gl ¼ diagð1;−1; 1Þ GΦ ¼ diagð−1;−1Þ
Mass matrices

Mν ¼

0
B@Yν1

33v
H
1 − Yν2

33v
H
2 −Yν3

32v
H
3 Yν1

13v
H
1

– Yν1
22v

H
1 Yν3

23v
H
3

– – Yν1
33v

H
1 þ Yν2

33v
H
2

1
CA;Ml ≈

vΦ
2
≫vΦ

1
vΦ2

0
B@Yl2

11 0 Yl2
13

0 Yl2
22 0

Yl2
31 0 Yl2

33

1
CA
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The questions of stability and perturbative unitarity, in
that the potential is copositive and bounded from below or
at least it accepts local minima with sufficiently large
decaying timescales through tunneling, and that the cou-
pling constants are small enough for perturbative expan-
sion, are all assumed to be met through tuning of the
potential parameters. Surely, a term such as Φ†Φχ†χ would
break the discrete symmetry when χ takes a VEV, and here
we wonder whether theΦ can behave as an SMHiggs field,
as we assumed in our realization models, in which case we
ask how its mass is kept small, whereas such a term gives a
contribution of the form Yv2χ where vχ is expected to be
high. Again, we assume a sort of fine-tuning imposing the
corresponding Y to be too small, and this is reminiscent of
the Higgs hierarchy problem, where even in the SM and at
tree levels, one needs fine-tuning in order to keep the Higgs
mass at electroweak scale assuming it is coupled to heavy
scalars.
Finally, the existence in our realization models of many

electroweak doublets Φ’s which get a VEV at the
electroweak scale could lead to an interesting phenom-
enology of the extra states at the Large Hadron Collider
(LHC). We did not discuss this, but rather assumed again
a fine-tuning position. First, the parameters of the Higgs-
scalar potential are assumed to be fine-tuned so that
several Higgs fields Φ get a VEV vΦ at the electroweak
scale, while other fields χ get a VEV vχ at high scale.
Second, the corresponding “quartic” Yukawas for some
of these electroweak doublets (YΦΦ4) are tuned to be
high, so that the “low scale” contribution to their masses
(YΦv2Φ), when added to the “high scale” contribution to
their masses (YΦχv2χ) originating from the coupling term
(YΦχΦ2χ2), is in such a way that the resulting mass for all
the electroweak doublets Φ’s, except the SM one, are
beyond the reach of current accelerators. Actually,
this is a “common” assumption because fine-tuning of
parameters is required whenever there are two different
scales in the theory, which are generated by the Higgs
VEVs [21]. In [18], a similar enriched scalar sector with
three Higgs doublets and two scalar gauge singlets was
studied, and again a high level of fine-tuning was required
in order to eliminate the large radiative corrections,
originated from the existence of a high scale in the
model, through renormalization to the mass of light
scalars.
We hope to address some of the above mentioned points

in the future.
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APPENDIX: SCALAR POTENTIAL FOR THE
CASE C33 UNDER Z2 × Z6 SYMMETRY

Looking at Table XVII as a representative case of direct
realization,3 we see that for the sake of constructing the
scalar potential, we can drop the two gauge singlets so that
we have five doublets, ϕ ¼ ðϕ1;ϕ2;ϕ3;ϕ4;ϕ5ÞT , and one
singlet χ. The scalar fields transform under Z2 × Z6 as
follows (ω ¼ eπi=3):

ϕ→
Z6 diagð1;ω;ω5;ω3;ω3Þϕ ¼ U6ϕ;

ϕ→
Z2

0
BBBBBB@

1 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 0 i

0 0 0 −i 0

1
CCCCCCA
ϕ ¼ U2ϕ;

χ→
Z6

ω4χ; χ→
Z2

χ: ðA1Þ
Dictated by gauge symmetry, we see directly that the most
general renormalizable potential expressing the coupling
amidst the ϕ and χ fields can be restricted to the following
form:

V ¼ Vϕ þ Vχ þ Vϕχ ;

Vϕ ¼ μabϕ
†
aϕb þ λabcdϕ

†
aϕbϕ

†
cϕd;

Vχ ¼ m2
χχ

†χ þ λχðχ†χÞ2;
Vϕχ ¼ λχabðχ†χÞðϕ†

aϕbÞ; ðA2Þ
where μab and m2

χ are mass square parameters while λabcd,
λχab, and λχ areYukawacoupling coefficients of fields having
the corresponding indices. The sum convention over
repeated indices is implied. We see directly from the
definition of quartic couplings that λabcd ¼ λcdab. Together
with Hermiticity, the coupling coefficients satisfy

μab ¼ μ�ba; λχab ¼ λ�χbaðm2
χ and λχ are realÞ;

λabcd ¼ λcdab ¼ λ�badc: ðA3Þ
In constructing the scalar potential we follow closely the
notation of [22,23].
Let us find the independent couplings from the con-

straints of Eq. (A3) alone. Since this is a common problem,
we consider n doublets ϕa (in our case n ¼ 5) with one
gauge singlet scalar χ. In order to ease the counting and also
to provide notational simplicity, we arrange the indices of
the mass parameters and Yukawa couplings in 2-tuples and
4-tuples as ða; bÞ and ða; b; c; dÞ. Thus, it is easy to count
the number of independent couplings for each of the
quadratic ðμabÞ and cubic ðλχabÞ couplings as

3We could equally choose the case C33 of indirect realization
as presented in Table V but we chose the case of direct realization
since it is simpler.
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ða; bÞ∶a ≤ b; counting 1þ 2þ 3þ � � � þ n ¼
Xn
k¼1

k ¼ nðnþ 1Þ
2

: ðA4Þ

For the quartic coefficients, one can, using the constraints of Eq. (A3), span all the couplings once and only once, by
restricting to

ða; b; c; dÞ∶fa ¼ Minfa; b; c; dg ∧ a ∉ fb; c; dgg counting
Xn
k¼1

ðn − kÞ3 ¼ n2ðn − 1Þ2
4

;

ða; a; c; dÞ∶fc ≤ d; a ¼ Minfa; c; dg ∧ a ∉ fc; dgg
ða; b; a; dÞ∶fb ≤ d; a ¼ Minfa; b; dg ∧ a ∉ fb; dgg
ða; b; c; aÞ∶fb ≤ c; a ¼ Minfa; b; cg ∧ a ∉ fb; cgg

counting 3
Xn
k¼1

Xn
j¼kþ1

ðn − jþ 1Þ ¼ nðn2 − 1Þ
2

;

ða; a; a; dÞ∶fa < dg counting
Xn
k¼1

ðn − kÞ ¼ nðn − 1Þ
2

;

ða; a; a; aÞ counting n: ðA5Þ

By adding the number of independent parameters, we get
n4þ3n2

4
, giving 175 independent quartic Yukawa coefficients.

Imposing the invariance under Z2 × Z6 symmetry we find
the following constraints:

μcd ¼ U�
αa cUαb dμa b

λχcd ¼ U�
αa cUαb dλχab

λefgh ¼ U�
αa eUαb fU�

αc gUαdhλabcd

9=
;α ∈ f2; 6g: ðA6Þ

We end up with the following independent Yukawa
couplings (5 quadratic, 5 cubic, and 33 quartic coefficients)
shown in Table XXV.
We assume that the Yukawa coupling are such that the

potential gets local minima, around one of which the fields
are expanded as follows:

ϕk ¼
� φþ

k
1ffiffi
2

p ðvk þ φo
kÞ
�
; χ ¼ vχ þ χoffiffiffi

2
p : ðA7Þ

In terms of the fields (φþ
a , φo

b, χ
o), the potential can be

decomposed into constant, linear, quadratic, cubic, and
quartic terms. Being in a local minimum means that the

linear term is vanishing, whence we get the tadpole
conditions:

½μab þ λabcdv�cvd�vb þ
1

2
λχabv�χvχvb ¼ 0; ðA8Þ

�
m2

χ þ
1

2
λχabv�avb

�
vχ ¼ 0: ðA9Þ

As to the quadratic term, it gives the mass matrices

V2 ¼ φ−
a ðM2

�Þabφþ
b þ 1

2
N TM2

oN ; ðA10Þ

where N represents the neutral fields organized as

N ≡ ðRe½φo
1�;…;Re½φo

5�; Im½φo
1�;…;

Im½φo
5�;Re½χo�; Im½χo�ÞT: ðA11Þ

The Hermitian 5 × 5 matrix M2
�, in Eq. (A10), represents

the mass matrix of charged fields and is given as

TABLE XXV. Independent Yukawa coupling in the case C33 under Z2 × Z6 symmetry.

Independent Yukawa couplings ∈ which number field

μ11; μ22; μ33; μ44 ¼ μ5;5; λχ11; λχ22; λχ33; λχ44 ¼ λχ5;5 R
μ45; λχ45 iR
λ1111; λ1122; λ1133; λ1144 ¼ λ1155; λ1221; λ1331; λ1441 ¼ λ1551 R
λ2222; λ3333; λ4444 ¼ λ5555; λ2233; λ3344 ¼ λ3355; λ2244 ¼ λ2255
λ2332; λ3443 ¼ λ3553; λ2442 ¼ λ2552; λ4455; λ4545; λ4554
λ1145; λ1451; λ2245; λ2452; λ3345; λ3453 iR
λ1213; λ1415; λ1414 ¼ −λ1515; λ2324 ¼ −iλ2325; λ2343 ¼ −iλ2353 C
λ2434 ¼ λ2535; λ2435 ¼ λ2534; λ4445 ¼ −λ�4555 C
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ðM2
�Þab ¼ μab þ λabcdv�cvd þ

1

2
λχabv�χvχ ; ðA12Þ

while the 12 × 12 matrixM2
o for neutral fields is expressed

in terms of block matrices as

M2
o ¼

�
M2

φ M2
χφ

M2
χφ

T M2
χ

�
; ðA13Þ

where the 10 × 10 matrix M2
φ is in turn given in terms of

block matrices as

M2
φ ¼

�
M2

R M2
RI

M2
RI

T M2
I

�
with

ðM2
RÞab ¼ Re½ðM2

�Þab þ λacdbvcv�d þ λacbdvcvd�;
ðM2

IÞab ¼ Re½ðM2
�Þab þ λacdbvcv�d − λacbdvcvd�;

ðM2
RIÞab ¼ −Im½ðM2

�Þab þ λacdbvcv�d − λacbdvcvd�;
ðA14Þ

and the 10 × 2 matrix M2
χφ is given in terms of four 5 × 1 matrices as follows:

M2
χφ ¼

� M2
χφR M2

χφRI

M2
χφIR M2

χφI

�
with

ðM2
χφRÞa1 ¼ Re½λχabðv�χvb þ vχvbÞ�;

ðM2
χφIÞa1 ¼ Re½λχabðv�χvb − vχvbÞ�;

ðM2
χφRIÞa1 ¼ Im½λχabðv�χvb þ vχvbÞ�;

ðM2
χφIRÞa1 ¼ −Im½λχabðv�χvb − vχvbÞ�:

ðA15Þ

Finally, the 2 × 2 matrix M2
χ is given by

M2
χ ¼

�
m2

χ þ
1

2
λχabv�avb

�
diagð1; 1Þ: ðA16Þ

Note that M2
� is Hermitian, whereas M2

R, M
2
I, M

2
χ are

real symmetric. The matrices M2
RI, M

2
χφR, M

2
χφI, M

2
χφRI,

M2
χφIR are real, so we get M2

o as real symmetric.

One should diagonalize the mass matrices in order to get
the physical masses, but we anticipate at least three
vanishing masses which would correspond to the would
be Goldstone bosons. With such a large number of free
parameters, we do not carry out this task, but just assume
that the Yukawa couplings are chosen in their parameters’
space so that the mass spectrum is such that one doublet
would play the role of the SM Higgs, whereas the others
would be outside the LHC reach.
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