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We carry out a systematic study of the sufficient and necessary conditions for CP conservation in the
leptonic sector with massive Majorana neutrinos. In particular, the emphasis is placed on the number of
CP-violating phases in the presence of a partial mass degeneracy (e.g.,m1 ¼ m2 ≠ m3) or a complete mass
degeneracy m1 ¼ m2 ¼ m3, where mi (for i ¼ 1, 2, 3) stand for the masses of three ordinary neutrinos.
In the canonical seesaw model with three right-handed neutrino singlets, CP-violating phases in the special
case of a partial (e.g.,M1 ¼ M2 ≠ M3) or complete (i.e.,M1 ¼ M2 ¼ M3) mass degeneracy of three heavy
Majorana neutrinos are also examined. In addition, we derive the renormalization-group equations of the
weak-basis invariants in the effective theory with a general mass spectrum of Majorana neutrinos, to which
the solutions establish the direct connection between CP violation at low- and high-energy scales.
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I. INTRODUCTION

Neutrino oscillation experiments have firmly established
that neutrinos are indeed massive and lepton flavors are
significantly mixed [1,2]. One main goal of future long-
baseline accelerator neutrino oscillation experiments is to
discover CP violation in the leptonic sector and precisely
measure the relevantCP-violating phase [3]. To account for
tiny neutrino masses, one can go beyond the standard
model (SM) by introducing three right-handed neutrino
singlets NiR (for i ¼ 1, 2, 3). Then the SUð2ÞL × Uð1ÞY
gauge-invariant Lagrangian for lepton masses, flavor mix-
ing, and CP violation can be written as

Llepton ¼ −l̄LYllRH − l̄LYνH̃NR −
1

2
NC

RMRNR þ H:c:;

ð1:1Þ

where lL ≡ ðνL; lLÞT and H̃ ≡ iσ2H�, withH ≡ ðφþ;φ0ÞT,
are the left-handed lepton doublet and the Higgs doublet, Yl
and Yν are the charged-lepton and Dirac neutrino Yukawa
coupling matrices, andMR is the Majorana mass matrix for
right-handed neutrino singlets. Note that NC

R ≡ CNR
T has

been defined with C≡ iγ2γ0 being the charge-conjugation
matrix. As the Higgs field acquires its vacuum expectation
value hφ0i ¼ v=

ffiffiffi
2

p
with v ≈ 246 GeV and the gauge

symmetry is spontaneously broken down, the charged-lepton
mass matrix and the Dirac neutrino mass matrix are then
given by Ml≡Ylv=

ffiffiffi
2

p
and MD≡Yνv=

ffiffiffi
2

p
, respectively.

In such a minimal extension of the SM, three ordinary
neutrinos are massive Majorana particles, namely, they are
their own antiparticles [4,5]. The lepton mass spectrum,
flavor mixing, and CP violation at the low-energy scale are
then governed by the following effective Lagrangian:

L0
lepton ¼ −lLMllR −

1

2
νLMνν

C
L þ gffiffiffi

2
p lLγμνLW−

μ þ H:c:;

ð1:2Þ

where the effective mass matrix for three light Majorana
neutrinos is given by the famous seesaw formula Mν ¼
−MDM−1

R MT
D [6–10], which is in general complex and

symmetric, and the last term stands for the charged-current
weak interaction, with g being the gauge coupling constant
of the SUð2ÞL gauge group. As the Majorana mass
term of right-handed neutrinos is not subject to the
spontaneous gauge symmetry breaking, the smallness of
light Majorana neutrino masses OðMνÞ ≲ 0.1 eV can be
ascribed to the largeness of heavy Majorana neutrino
masses OðMRÞ≳ 1014 GeV, with OðMDÞ ∼ 102 GeV.
After diagonalizing the lepton mass matrices via V†

l MlV 0
l ¼

M̂l ≡ diagfme;mμ; mτg and V†
νMνV�

ν ¼ M̂ν ≡ diagfm1;
m2; m3g, where Vl, V 0

l, and Vν are 3 × 3 unitary matrices,
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and converting into the mass basis, we can obtain the
leptonic flavor mixing matrix or the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix U ¼ V†

l Vν [11,12],
which then appears in the charged-current interaction as
the origin of lepton flavor mixing and CP violation.
Since the discovery of leptonic CP violation is the

primary goal of future neutrino oscillation experiments and
it may also be connected to cosmological matter-antimatter
asymmetry [13–16], it is interesting to establish the
sufficient and necessary conditions for CP conservation
in the leptonic sector with massive Majorana neutrinos.
Only when these conditions are spoiled in a specific model
of neutrino masses can one explain the leptonic CP
violation and associate it with the dynamical generation
of cosmological matter-antimatter asymmetry. This task has
already been taken up in the literature, particularly by
Branco et al. [17] in the language of the so-called weak-
basis (WB) invariants [18]. The leptonic CP violation in
terms of WB invariants was discussed first by Pilaftsis in
the context of resonant leptogenesis [19] and subsequently
by several other authors [20,21]. The central idea of this
approach is to define the general CP transformation, which
is actually a combination of the ordinaryCP transformation
and the flavor-basis transformation. More explicitly, if the
Lagrangian in Eq. (1.2) is invariant under the following
transformations [17],

lL → ULCl�L; νL → ULCν�L;

lR → URCl�R; W−
μ → −ð−1Þδ0μWþ

μ ; ð1:3Þ

where the asterisk indicates the complex conjugation and
δ0μ (for μ ¼ 0, 1, 2, 3) stands for the Kronecker delta, while
UL and UR are two arbitrary 3 × 3 unitary matrices in the
flavor space, then the sufficient and necessary conditions
for CP conservation are equivalent to the existence of two
unitary matrices UL and UR such that the identities [17]

U†
LMνU�

L ¼ −M�
ν; U†

LMlUR ¼ M�
l ð1:4Þ

are satisfied. With the help of Eq. (1.4), one can find out
the minimal set of sufficient and necessary conditions for
CP conservation in the leptonic sector in terms of WB
invariants [22]

I1 ≡ Trf½Hν; Hl�3g ¼ 0; ð1:5Þ

I2 ≡ ImfTr½HlHνGlν�g ¼ 0; ð1:6Þ

I3 ≡ Trf½Glν; Hl�3g ¼ 0; ð1:7Þ

where Hl ≡MlM
†
l , Hν ≡MνM

†
ν, and Glν ≡MνH�

l M
†
ν

have been introduced.
It was pointed out in Ref. [23] that those conditions

in Eqs. (1.5)–(1.7) are not sufficient to guarantee CP

conservation in general. A numerical counterexample
was given therein to illustrate that CP violation still exists
even when all three conditions in Eqs. (1.5)–(1.7) are
satisfied. For this reason, a new set of three invariants
fI1; I2; I4g was suggested in Ref. [23], with I4 defined as

I4 ≡ ImfTr½HlH2
νGlν�g ¼ 0; ð1:8Þ

which can guarantee CP conservation at least in the
experimentally allowed parameter space of lepton masses
and mixing angles.1 Note that the invariance under the
generalCP transformations in Eq. (1.3) requiresU†

LHlUL ¼
H�

l , U†
LHνUL ¼ H�

ν, and U†
LGlνUL ¼ G�

lν according to
Eq. (1.4). By using these transformation rules, one can
immediately prove that I i (for i ¼ 1, 2, 3, 4) are indeedWB
invariants. Given the lepton mass matrices Ml and Mν in a
concrete model, the advantage of these WB invariants is to
remove the ambiguity of flavor-basis transformations in
judging whether CP conservation is present.
In this work, we aim to derive the sufficient and

necessary conditions for CP conservation in the leptonic
sector, and especially focus on the scenario of a partially or
completely degenerate neutrino mass spectrum [24,25].
The number of flavor mixing angles and CP-violating
phases in these special cases will be clarified. In addition,
we investigate the radiative corrections to leptonic CP
violation by using the renormalization-group equations of
the WB invariants. On the other hand, since neutrino
oscillation experiments indicate that any two of three light
neutrinos cannot be exactly degenerate in mass, we con-
sider the mass degeneracy for heavy Majorana neutrinos in
the canonical seesaw models [20,26] and explore the
implications of such a partial or complete mass degeneracy
for the leptonic CP violation at low- and high-energy
scales.
The remaining parts of our paper are structured as

follows. In Sec. II, we recall the sufficient and necessary
conditions for the CP violation in the low-energy effective
theory of lepton masses and flavor mixing, and we pay
particular attention to the cases of a partial or complete
degeneracy in neutrino masses. The renormalization-group
equations of the WB invariants will be derived and used to
study the running behaviors of CP phases. Then, we apply
the formalism for light Majorana neutrinos to the case of
heavy Majorana neutrinos in Sec. III. The full set of WB

1Here the number n of vanishing WB invariants I1 ¼ I2 ¼
I4 ¼ 0 to guarantee CP conservation coincides with the number
of CP phases in the theory, i.e., n ¼ 3 in the present case.
However, this is valid under the assumption that the lepton
masses and the flavor mixing angles do not take any contrived
values. More explicitly, we assume that all the other physical
parameters take the values within their experimentally allowed
parameter space. If this is not assumed, as pointed out in Ref. [23],
then there may still be CP violation in a theory with n CP phases,
even when the properly chosen n WB invariants vanish.
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invariants for CP conservation will be given and utilized to
analyze the possible connection between CP violation at
low- and high-energy scales. Finally, we summarize our
main conclusions in Sec. IV.

II. LOW-ENERGY EFFECTIVE THEORY

At the low-energy scale, leptonic CP violation arises
from the complex mass matrices of charged leptons and
light Majorana neutrinos, as indicated in Eq. (1.2). If three
Majorana neutrinos are not degenerate in mass, the minimal
set of sufficient and necessary conditions for CP conser-
vation have already been given in Eqs. (1.5), (1.6), and
(1.8). Although the details can be found in Ref. [23], we

briefly summarize the key points concerning these suffi-
cient and necessary conditions for CP conservation in the
case of nondegenerate neutrino masses in order to establish
our notation. As the WB invariants are by definition
independent of basis transformations in the flavor space,
it should be kept in mind that one can calculate them in any
convenient basis and the final results depend only on
physical parameters.
In the mass basis of charged leptons and light Majorana

neutrinos, the CP-violating phases are contained in the
PMNSmatrix [1], which is usually parametrized in terms of
three mixing angles fθ12; θ13; θ23g, one Dirac-type CP
phase δ, and two Majorana-type CP phases fρ; σg, namely,

U ¼

0
B@ c13c12 c13s12 s13e−iδ

−s12c23 − c12s13s23eiδ þc12c23 − s12s13s23eiδ c13s23
þs12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

1
CA ·

0
B@ eiρ 0 0

0 eiσ 0

0 0 1

1
CA; ð2:1Þ

where cij ≡ cos θij and sij ≡ sin θij (for ij ¼ 12, 13, 23)
have been defined. Therefore, the invariants fI1; I2; I4g
can be expressed in terms of the charged-lepton masses
fme;mμ; mτg, neutrino masses fm1; m2; m3g, leptonic
flavor mixing angles fθ12; θ13; θ23g, and CP-violating
phases fδ; ρ; σg. It is straightforward to verify that the
invariant I1 in Eq. (1.5) can be written as

I1 ¼ −6iΔ21Δ31Δ32ΔeμΔμτΔτeJ ; ð2:2Þ

where Δij ≡m2
i −m2

j (for i, j ¼ 1, 2, 3) are neutrino mass-
squared differences, Δαβ ≡m2

α −m2
β (for α; β ¼ e, μ, τ) are

charged-lepton mass-squared differences, and J ≡
Im½Ue1U�

e2U
�
μ1Uμ2� is the Jarlskog invariant for CP viola-

tion in the leptonic sector [27–29]. For the standard
parametrization of U in Eq. (2.1), one can get the explicit
expression J ¼ s12c12s23c23s13c213 sin δ. In a similar way,
the other two WB invariants I2 and I4 can also be
calculated, but the explicit analytical expressions are too
lengthy to list here. Taking the advantage of the simple
result for I1 in Eq. (2.2), we can show that I1 ¼ I2 ¼
I4 ¼ 0 are sufficient conditions for CP conservation in the
case of nondegenerate neutrino masses. First of all, I1 ¼ 0
holds if and only if δ ¼ 0 or π. After using I1 ¼ 0 to
eliminate the Dirac CP phase δ, we can then observe that
I2 ¼ 0 and I4 ¼ 0 give rise to two independent equations
of two Majorana CP phases ρ and σ, namely,

f1 sinð2ρÞ þ f2 sinð2σÞ þ f3 sinð2ρ − 2σÞ ¼ 0; ð2:3Þ

h1 sinð2ρÞ þ h2 sinð2σÞ þ h3 sinð2ρ − 2σÞ ¼ 0; ð2:4Þ

where fi and hi (for i ¼ 1, 2, 3) are functions of
three mixing angles and six lepton masses. The explicit

expressions of fi and hi can be found in Ref. [23]. Since
Eqs. (2.3) and (2.4) are actually nonlinear in nature, they
cannot force ρ and σ to take only trivial values (i.e., 0 or
π=2) in general. However, it can be proved that at least in
the whole physically allowed parameter space, these two
equations are sufficient to ensure that ρ and σ take only
trivial values [23], so CP conservation is justified. On the
other hand, it is easy to prove that the vanishing of three
invariants fI1; I2; I4g is also a necessary condition for CP
conservation with nondegenerate neutrino masses [17].
In the following discussions, we shall concentrate

on the partially degenerate mass spectrum2 m1¼m2≠m3

and the completely degenerate mass spectrum m1 ¼
m2 ¼ m3. These two special cases were not considered
in Ref. [23].

A. Partial mass degeneracy

If the partial mass degeneracy m1 ¼ m2 ≠ m3 is
assumed, then from Eq. (2.2) we find that I1 vanishes
automatically and it can no longer be used to investigate the
properties of CP violation. Nevertheless, there exists an
extra degree of freedom in the system with two degenerate
neutrino masses, which can be implemented to reduce the
number of CP-violating phases.
To see this point more clearly, we choose the basis

where both neutrino mass matrix Mν and the charged-
current interaction are flavor diagonal. In this basis, the
neutrino mass matrix Mν ¼ M̂ν ¼ diagfm;m;m3g, where
we have taken m1 ¼ m2 ¼ m, is invariant under the
transformation

2The other two possibilities, i.e., m1 ≠ m2 ¼ m3 and
m1 ¼ m3 ≠ m2, can be examined in a similar way.
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0
B@

ν1L

ν2L

ν3L

1
CA →

0
B@

ν01L
ν02L
ν03L

1
CA ¼ R†

12ðαÞ

0
B@

ν1L

ν2L

ν3L

1
CA

≡
0
B@

cos α − sin α 0

sin α cos α 0

0 0 1

1
CA
0
B@

ν1L

ν2L

ν3L

1
CA; ð2:5Þ

where R12ðαÞ has been defined as the rotation matrix in the
(1,2) plane, with α being an arbitrary real rotation angle. To
keep the flavor-diagonal charged-current interaction
unchanged, one thus has to make the same transformation
on the left-handed charged leptons simultaneously, i.e.,0

B@
eL
μL

τL

1
CA →

0
B@

e0L
μ0L
τ0L

1
CA ¼ R†

12ðαÞ

0
B@

eL
μL

τL

1
CA

≡
0
B@

cos α − sin α 0

sin α cos α 0

0 0 1

1
CA
0
B@

eL
μL

τL

1
CA: ð2:6Þ

Under these transformations, the entire effective
Lagrangian in Eq. (1.2) is not modified except for the
charged-lepton mass matrix Ml, which together with Hl ≡
MlM

†
l transforms as follows:

Ml → M0
l ¼ R†

12ðαÞMl;

Hl → H0
l ¼ R†

12ðαÞHlR12ðαÞ: ð2:7Þ

In the chosen basis, only the charged-lepton mass matrix
Ml is complex, and thus it contains all the information
about CP-violating phases. Furthermore, to remove the
unphysical phases related to the right-handed charged-
lepton fields, we consider only the Hermitian matrix Hl.
Now we show that the rotation matrix R12ðαÞ can be
utilized to reduce the number of CP phases in the original
Lagrangian. To be explicit, we directly establish the
correspondence between the matrix elements of H0

l and
those of Hl, i.e.,

8>>>>>>>>><
>>>>>>>>>:

H0
11 ¼ 1

2
½H11 þH22 þ ðH11 −H22Þ cos 2αþ 2H12 sin 2α cosϕ12�;

H0
22 ¼ 1

2
½H11 þH22 − ðH11 −H22Þ cos 2α − 2H12 sin 2α cosϕ12�;

H0
33 ¼ H33;

H0
12e

iϕ0
12 ¼ H12eiϕ12cos2α − 1

2
ðH11 −H22Þ sin 2α −H12e−iϕ12sin2α;

H0
13e

iϕ0
13 ¼ H13eiϕ13 cos αþH23eiϕ23 sin α;

H0
23e

iϕ0
23 ¼ H23eiϕ23 cos α −H13eiϕ13 sin α;

ð2:8Þ

where Hij ≡ jðHlÞijj and ϕij ≡ arg ½ðHlÞij� have been
defined for Hl (for i, j ¼ 1, 2, 3), and likewise H0

ij ≡
jðH0

lÞijj and ϕ0
ij ≡ arg ½ðH0

lÞij� forH0
l. Note thatHl (orH0

l) is
Hermitian, so only three phases fϕ12;ϕ13;ϕ23g in Hl (or
fϕ0

12;ϕ
0
13;ϕ

0
23g in H0

l) are independent. In the case of
nondegenerate neutrino masses, where these three phases
are all physical, three conditions I1 ¼ 0, I2 ¼ 0, and
I4 ¼ 0 are needed to guarantee CP conservation. In the
presence of mass degeneracy m1 ¼ m2, we can adjust the
rotation angle α to eliminate one phase in H0

l. For example,
if we set

tan α ¼ −
H13 sinϕ13

H23 sinϕ23

; ð2:9Þ

then one can immediately verify that ϕ0
13 ¼ 0 holds or

equivalently that ðH0
lÞ13 is real, with the help of Eq. (2.9).

This is true for the most general case of H23 sinϕ23 ≠ 0.
In the special case of H23 sinϕ23 ¼ 0, we can observe

from Eq. (2.9) that H0
23 sinϕ

0
23 ¼ −H13 sinϕ13 sin α and

H0
13 sinϕ

0
13 ¼ H13 sinϕ13 cos α, so it is possible to elimi-

nate ϕ0
23 or ϕ0

13 by setting α ¼ 0 or π=2.
In general, we are left with only two phases fϕ0

12;ϕ
0
23g in

H0
l,whileM

0
ν is real anddiagonal. Therefore,wecanprove that

only twoWB invariants are needed to ensureCP conservation
in the leptonic sector, which will be taken to be fI2; I3g. It is
worth stressing that the choice of two independent WB
invariants is by no means unique, and fI2; I3g are chosen
simply for illustration. The proof is as follows.
(a) Now that M0

ν ¼ diagfm;m;m3g is real and diagonal,
we can directly compute the WB invariant I2 in
Eq. (1.6) with ϕ0

13 ¼ 0 in H0
l. The analytical expres-

sion turns out to be quite simple, namely,

I2 ¼ mm3ðm2
3 −m2ÞH02

23 sin 2ϕ
0
23; ð2:10Þ

so I2 ¼ 0 leads to ϕ0
23 ¼ 0 or ϕ0

23 ¼ π=2. In both
cases, one can find that the WB invariant I3 depends
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on the phase ϕ0
12. More explicitly, for ϕ0

23 ¼ 0, we
have I3 ∝ sinϕ0

12, while for ϕ0
23 ¼ π=2 we get

I3 ∝ cosϕ0
12. As a consequence, together with

I3¼0, I2 ¼ 0 implies that fϕ0
12¼0;ϕ0

23¼0;ϕ0
13¼0g

or fϕ0
12 ¼ π=2;ϕ0

23 ¼ π=2;ϕ0
13 ¼ 0g. In either case,

these trivial phases are expected for the absence of CP
violation.

(b) On the other hand, one can relate the CP-violating
phases in H0

l to those in the PMNS matrix U. In the
chosen basis, we have M0

l ¼ U†M̂l and H0
l ¼ U†D̂lU,

where M̂l≡diagfme;mμ;mτg and D̂l≡ cM2
l ¼diagfm2

e;
m2

μ;m2
τg. Then it is possible to relate the three phases in

H0
l to the three physical phases in the PMNS matrix,

H0
12e

iϕ0
12 ¼ ½ðs212eiδ − c212e

−iδÞs13s23c23 þ s12c12ðs223 − c223Þ�Δμτe−iðρ−σÞ

þ ðΔeμs223 − Δτec223Þs12c12c213e−iðρ−σÞ;
H0

13e
iϕ0

13 ¼ ðΔeμs223 − Δτec223Þc12s13c13e−iðρþδÞ − Δμτs12c13s23c23e−iρ;

H0
23e

iϕ0
23 ¼ ðΔeμs223 − Δτec223Þs12s13c13e−iðσþδÞ þ Δμτc12c13s23c23e−iσ;

where it is interesting to observe that the expression of
H0

23e
iϕ0

23 can be obtained from that of H0
13e

iϕ0
13 by simply

replacing θ12 with θ12 − π=2 and ρ with σ. Then fϕ0
12 ¼

ϕ0
13 ¼ ϕ0

23 ¼ 0g or fϕ0
12 ¼ ϕ0

23 ¼ π=2;ϕ0
13 ¼ 0g is equiv-

alent to fδ ¼ ρ ¼ σ ¼ 0g or fδ ¼ ρ ¼ 0; σ ¼ π=2g, which
is equivalent to CP conservation.3 This completes the proof
that fI2 ¼ 0; I3 ¼ 0g constitute the sufficient and neces-
sary conditions of CP conservation in the case of partial
mass degeneracy.
In summary, for the partial degeneracy of neutrino

masses m1 ¼ m2 ≠ m3, there are only two independent
CP-violating phases, and the vanishing of two WB invar-
iants in Eqs. (1.6) and (1.7), namely, I2 ¼ 0 and I3 ¼ 0,
serves as the sufficient and necessary condition for the
leptonic CP conservation. In addition, it is worthwhile to
notice that the freedom associated with the mass degen-
eracy m1 ¼ m2 can be implemented to reduce the number
of CP-violating phases by one, leaving three flavor mixing
angles intact.

B. Complete mass degeneracy

If neutrino masses are completely degenerate, i.e.,
m1 ¼ m2 ¼ m3 ≡m, then it is straightforward to verify
that the WB invariants I1, I2, and I4 automatically vanish,
whereas I3 is generally nonzero. However, compared to the
case of partial mass degeneracy, the complete mass
degeneracy allows for more degrees of freedom, which
can be utilized to reduce the number of physical CP-
violating phases.
In the same way as for the partial mass degeneracy,

working in the basis where the neutrino mass matrix

Mν ¼ M̂ν ¼ diagfm;m;mg is real and diagonal, we can
introduce two successive rotations in the flavor basis0
B@

ν1L

ν2L

ν3L

1
CA →

0
B@

ν01L
ν02L
ν03L

1
CA ¼ ½R12ðαÞR13ðβÞ�†

0
B@

ν1L

ν2L

ν3L

1
CA; ð2:11Þ

0
B@

eL
μL

τL

1
CA →

0
B@

e0L
μ0L
τ0L

1
CA ¼ ½R12ðαÞR13ðβÞ�†

0
B@

eL
μL

τL

1
CA; ð2:12Þ

where the rotation matrices are defined as

R12ðαÞ ¼

0
B@

cos α − sin α 0

sin α cos α 0

0 0 1

1
CA;

R13ðβÞ ¼

0
B@

cos β 0 sin β

0 1 0

− sin β 0 cos β

1
CA;

with α and β being two arbitrary real rotation angles.
After these rotations, the neutrino mass matrix Mν is
unchanged and the charged-current interaction remains
flavor diagonal, but the charged-lepton mass matrix Hl ≡
MlM

†
l transforms as

Hl → H0
l ¼ ½R12ðαÞR13ðβÞ�† ·Hl · ½R12ðαÞR13ðβÞ�; ð2:13Þ

which contains all the physical CP-violating phases.
Similar to what we have done in Sec. II A, we can show

how to adjust α and β to eliminate two CP-violating phases
inH0

l. This is equivalent to the reduction of the total number
of CP-violating phases in the leptonic sector by two. After
some straightforward calculations, we find that if α and β
are taken to be

3It should be noted that ρ and σ are Majorana-type CP-
violating phases and that the CP symmetry is still conserved
when they take the value of π=2 in the standard parametrization in
Eq. (2.1). The properties of three phases in Hl are quite different.
For instance, if one of three phases in Hl takes the value of π=2
and the other two are zero, then the CP symmetry is violated.
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tan α ¼ −
H13 sinϕ13

H23 sinϕ23

; tan β ¼ H23 sinϕ23

H12 sinϕ12

1

cos α
;

ð2:14Þ

then sinϕ0
13 ¼ sinϕ0

23 ¼ 0, indicating that the imaginary
parts of the matrix elements ðH0

lÞ13 and ðH0
lÞ23 vanish. As a

result, one needs only one vanishing WB invariant, e.g.,
I3 ¼ 0, to eliminate the remaining one CP-violating phase
in H0

l. After setting ϕ0
13 ¼ ϕ0

23 ¼ 0 or π, we can greatly
simplify the explicit expression of I3, namely,

I3 ¼ −48iH03
12m

6½H0
13H

0
23ðH0

22 −H0
11Þ

þH0
12ðH02

13 −H02
23Þ cosϕ0

12� sin3 ϕ0
12; ð2:15Þ

implying that I3 ¼ 0 gives rise to ϕ0
12 ¼ 0 or π if the whole

coefficient in front of sin3 ϕ0
12 is not fine-tuned to be zero.

Therefore, I3 ¼ 0 is the sufficient and necessary condition
for CP conservation in the case of complete neutrino mass
degeneracy, which is consistent with the conclusion pre-
viously drawn in Ref. [24].
Generally speaking, the neutrino mass matrix Mν ¼

M̂ν ≡ diagfm;m;mg in the case of complete mass degen-
eracy is invariant under an arbitrary orthogonal rotation with
three rotation angles. Onemaywonder whether it is possible
to eliminate all three CP-violating phases. Now we dem-
onstrate that this is impossible. To this end, we first carry out
the most general orthogonal rotation in the flavor basis0
B@

ν1L

ν2L

ν3L

1
CA →

0
B@

ν01L
ν02L
ν03L

1
CA ¼ ½R12ðαÞR13ðβÞR23ðγÞ�†

0
B@

ν1L

ν2L

ν3L

1
CA;

ð2:16Þ0
B@

eL
μL

τL

1
CA →

0
B@

e0L
μ0L
τ0L

1
CA ¼ ½R12ðαÞR13ðβÞR23ðγÞ�†

0
B@

eL
μL

τL

1
CA;

ð2:17Þ
where R12ðαÞ and R13ðβÞ are the same as before and

R23ðγÞ ¼

0
B@

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

1
CA;

with γ being another real arbitrary rotation angle. Such
transformations will keep the neutrino mass matrix and the
charged-current interaction unchanged. However, it is
straightforward to prove that the third degree of freedom
can be used to eliminate only a flavor mixing angle rather
than the remainingCP-violating phase. One can accomplish
the proof by contradiction. First, given Eq. (2.17), the
Hermitian matrix Hl transforms as

Hl → H0
l

¼ ½R12ðαÞR13ðβÞR23ðγÞ�† ·Hl · ½R12ðαÞR13ðβÞR23ðγÞ�;
ð2:18Þ

and we suppose that all three CP-violating phases inH0
l can

be made trivial (i.e., ϕ0
12;ϕ

0
23;ϕ

0
13 ¼ 0 or π) by adjusting the

rotation angles α, β, and γ. If this is possible, then we can
observe that the imaginary parts of three off-diagonal
elements of H0

l in Eq. (2.18) should vanish, i.e.,

0
B@
H0

12 sinϕ
0
12

H0
23 sinϕ

0
23

H0
13 sinϕ

0
13

1
CA¼

0
B@

cβcγ sαsγ þcαsβcγ cαsγ − sαsβcγ
−cβsγ sαcγ −cαsβsγ cαcγ þ sαsβsγ
−sβ cαcβ −sαcβ

1
CA

×

0
B@
H12 sinϕ12

H23 sinϕ23

H13 sinϕ13

1
CA¼ 0; ð2:19Þ

which is a system of homogeneous linear equations for
H12 sinϕ12, H23 sinϕ23, and H13 sinϕ13. Note that sα ≡
sin α and cα ≡ cos αwere defined in Eq. (2.19), and likewise
for β and γ. It is interesting to notice that the determinant of
the 3 × 3 coefficient matrix in the middle of Eq. (2.19) is
actually −1, which is independent of α, β, and γ. Therefore,
Eq. (2.19) holds if and only if sinϕ12 ¼ sinϕ23 ¼
sinϕ13 ¼ 0, which runs into a contradiction with the fact
that there are in general three CP-violating phases inHl. So
this proves that even in the limit of complete mass degen-
eracy, there is still one nonvanishing phase so thatCP can be
violated in the leptonic sector, which is consistent with the
conclusion drawn in Ref. [24].
To use the third degree of freedom to eliminate a flavor

mixing angle, we can first choose the rotation angles α and
β to obtain ϕ0

23 ¼ 0 and ϕ0
12 ¼ ϕ0

13, and then H0
l can be

explicitly written as

H0
l ¼ Pl

0
B@

H0
11 H0

12 H0
13

H0
12 H0

22 H0
23

H0
13 H0

23 H0
33

1
CAP†

l

¼ ðPlOlÞ ·

0
B@

m2
e 0 0

0 m2
μ 0

0 0 m2
τ

1
CA · ðPlOlÞ†; ð2:20Þ

where Pl ≡ diagfeiϕ0
12 ; 1; 1g and Ol is the 3 × 3 orthogonal

matrix that can be used to diagonalize the real and
symmetric matrix P†

l H
0
lPl. Since the neutrino mass matrix

is already diagonal, the PMNS matrix is simply given by
U ¼ ðPlOlÞ† ¼ OT

l P
�
l . Furthermore, noticing that the mass

eigenstates ν2 and ν3 are now degenerate in mass and that
their Majorana CP phases are both vanishing, we are
allowed to rotate away one mixing angle by choosing the
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particular parametrization of Ol, as explicitly shown
in Ref. [25].
To summarize, in the case of complete mass degeneracy,

we are left with one CP-violating phase and two mixing
angles. This should be compared with the case of partial
mass degeneracy, where two CP-violating phases and three
mixing angles are retained. It is worth mentioning that
Ref. [25] examines the case where both neutrino masses
and the associated Majorana CP-violating phases are
partially or completely degenerate at the same time, which
is quite different from the scenario under consideration. It is
physically inequivalent to assume the equality of two
Majorana CP phases before or after the elimination of
one mixing angle.

C. The massless limit

Current neutrino oscillation data still permit the lightest
neutrino to be massless, so we make a brief comment on
this particular situation. Without loss of generality, we take
m1 ¼ 0 in the case of normal neutrino mass ordering
(i.e., m1 < m2 < m3).
Ifm1 ¼ 0 holds, then the Majorana CP-violating phase ρ

associated with the mass eigenstate ν1 automatically dis-
appears from the theory. In this case, we are left with two
CP-violating phases and need to require twoWB invariants
to vanish in order to ensure CP conservation. Luckily, none
of the previously introduced four WB invariants I i (for
i ¼ 1, 2, 3, 4) vanish in the limit of m1 ¼ 0, so we can
choose any two of them to guarantee CP conservation. To
be more concrete, we take the set fI1; I2g. First, we can
use I1 ¼ 0 to eliminate the Dirac CP-violating phase δ,
since I1 is proportional to sin δ. Now that both δ and ρ are
set at zero, I2 turns out to be proportional to sin 2σ, where σ
denotes the remaining Majorana CP-violating phase. Then,
the condition I2 ¼ 0 enforces σ to take only trivial values
(i.e., 0 or π=2), thus implying CP conservation.
Therefore, in the limitm1 ¼ 0, the vanishing of the set of

two WB invariants fI1; I2g serves as the sufficient and
necessary condition forCP conservation. As we shall see in
the next section, the lightest neutrino is indeed massless
at the tree level in the minimal seesaw model, which leads
to the massless limit of the low-energy effective theory
under consideration.

D. Renormalization-group running

In this section, we derive the renormalization-group
equations (RGEs) of the WB invariants in leptonic sector
in the effective theory, which have rarely been investigated
in the literature.4 These RGEs can be applied to examine
the evolution of the WB invariants and establish the
connection between CP violation at low- and high-energy

scales. At the one-loop level, the evolution of the effective
Majorana neutrino mass matrix Mν and the charged-
lepton mass matrix Ml are governed by the following
RGEs [31–43]:

dMν

dt
¼ ανMν −

3

2
½ðYlY

†
l ÞMν þMνðYlY

†
l ÞT�; ð2:21Þ

dMl

dt
¼ αlMl þ

3

2
ðYlY

†
l ÞMl; ð2:22Þ

where t≡ lnðμ=ΛEWÞ=ð16π2Þ has been defined with
ΛEW being the electroweak scale and μ being the renorm-
alization scale between ΛEW and the seesaw scale. In the
SM framework, we have αν ≈ −3g22 þ λþ 6y2t and αl ≈
−9g21=4 − 9g22=4þ 3y2t , where g1 and g2 are the SM gauge
couplings, yt is the top-quark Yukawa coupling, and λ is the
quartic Higgs coupling [41].
Starting with Eqs. (2.21) and (2.22) and recalling the

definitions ofHl≡MlM
†
l ,Hν≡MνM

†
ν, andGlν≡MνH�

l M
†
ν,

one can easily find

dHl

dt
¼ 2αlHl þ 6H2

l =v
2; ð2:23Þ

dHν

dt
¼ 2ανHν − 3ðHlHν þHνHlÞ=v2 − 6Glν=v2; ð2:24Þ

dGlν

dt
¼ 2ðαν þ αlÞGlν − 3ðGlνHl þHlGlνÞ=v2; ð2:25Þ

where the relation Yl ¼
ffiffiffi
2

p
Ml=v has been used. It is then

straightforward to calculate the RGEs of the WB invariants
I i (for i ¼ 1, 2, 3, 4). The final results are summarized as
follows.
(a) First, as shown in Eq. (2.2), I1 is proportional to

the Jarlskog invariant J , which depends only on the
Dirac CP-violating phase δ in the standard paramet-
rization of the PMNS matrix. For this WB invariant,
we have

dI1

dt
¼ Tr

�
d
dt
½Hν; Hl�3

�
¼ 6ðαν þ αlÞI1 þ 9I ð1Þ

1 =v2 − 18I ð2Þ
1 =v2; ð2:26Þ

where I ð1Þ
1 ≡ Trf½Hν; Hl�2 · ½Hν; H2

l �g and I ð2Þ
1 ≡

Trf½Hν; Hl�2 · ½Glν; Hl�g are also two WB invariants.
Interestingly, it is easy to derive the explicit expression

of I ð1Þ
1 , i.e.,

I ð1Þ
1 ¼ −4iðm2

e þm2
μ þm2

τÞΔ21Δ31Δ32ΔeμΔμτΔτeJ

¼ 2

3
ðm2

e þm2
μ þm2

τÞI1; ð2:27Þ4The renormalization-group evolution of the WB invariants in
the quark sector was discussed in Ref. [30].
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which is proportional to I1 itself and thus to the
Jarlskog invariant J . In the derivation of
Eq. (2.27), we have made use of the identities
Trf½Hν; Hl�2 · ½Hν; H2

l �g ¼ 2Trf½Hν; Hl�3Hlg and
Trf½Hν; Hl�3Hlg ¼ Trf½Hν; Hl�3g · TrðHlÞ=3. How-

ever, the WB invariant I ð2Þ
1 depends on all three

CP-violating phases in the PMNS matrix, i.e.,

fδ; ρ; σg; its explicit expression turns out to be quite
complicated and will be omitted here.
For illustration, let us consider the possibility of

radiatively generating a nontrivial value of δ via the
RGE from a vanishing δ at some high-energy scale [39–
42]. In this case, we set δ ¼ 0 as the initial condition;

then the expression of I ð2Þ
1 can be greatly simplified as

I ð2Þ
1 ¼ 2ifþH13½H13ðH2

12 −H2
23Þ þH12H23ðH33 −H11Þ�m1m3Δ12Δ23 sinð2ρÞ

þH23½H23ðH2
13 −H2

12Þ þH12H13ðH22 −H33Þ�m3m2Δ13Δ12 sinð2σÞ
þH12½H12ðH2

23 −H2
13Þ þH23H13ðH11 −H22Þ�m2m1Δ23Δ13 sinð2ρ − 2σÞg: ð2:28Þ

As δ has been set to zero, the moduli of the elements of Hl can be directly related to three charged-lepton masses and three
flavor mixing angles via

H12 ¼ s12c12c213Δeμ − ½s12c12ðs213c223 − s223Þ þ ðc212 − s212Þs13s23c23�Δμτ;

H13 ¼ c12s13c13Δeμ − ðs12s23 − c12s13c23Þc13c23Δμτ;

H23 ¼ s12s13c13Δeμ þ ðc12s23 þ s12s13c23Þc13c23Δμτ;

H11 ¼ m2
e − ð1 − c212c

2
13ÞΔeμ − ðs12s23 − c12s13c23Þ2Δμτ;

H22 ¼ m2
μ þ s212c

2
13Δeμ − ðc12s23 þ s12s13c23Þ2Δμτ;

H33 ¼ m2
τ þ s213Δeμ þ ðs213 þ c213s

2
23ÞΔμτ;

which can be inserted back into Eq. (2.28) to obtain the
explicit expression of I ð2Þ

1 . From Eqs. (2.26)–(2.28), we
can observe that the following hold:

(i) If CP is conserved (namely, δ ¼ 0 and ρ¼σ¼0
or π=2) at the initial high-energy scale, then

I ð1Þ
1 ¼ I ð2Þ

1 ¼ I1 ¼ 0 and dI1=dt vanishes,
implying that I1 will stay at zero all the way
down to low-energy scales.

(ii) If CP is violated with δ ¼ 0 but nontrivial
values of ρ or σ at some high-energy scale, then
dI1=dt is no longer vanishing, as a conse-

quence of the nonzero I ð2Þ
1 in Eq. (2.28).

Consequently, as the energy scale evolves, a
nonzero value of I1 will be developed, leading
to a nonzero δ. As stressed in Ref. [39], a
nontrivial value of the Dirac CP phase δ can be
generated from the Majorana CP phase ρ or σ
via the RG running, even though δ ¼ 0 is
assumed at the beginning.

(b) Then, we can derive the RGE of I2 defined in
Eq. (1.6) in a similar way, namely,

dI2

dt
¼ 4ðαν þ αlÞI2

− 6ImfTr½HlHνHlGlν þHlG2
lν�g=v2; ð2:29Þ

where one can easily verify that the second term on the
right-hand side actually vanishes due to the Hermi-
ticity of Hl, Hν, and Glν and the cyclic invariance of
the trace. As an immediate consequence, the derivative
of the WB invariant I2 is proportional to itself. We can
formally integrate Eq. (2.29) and obtain

I2ðtÞ¼ I2ð0Þexp
�
4

Z
t

0

½ανðt0Þþαlðt0Þ�dt0
�
; ð2:30Þ

where I2ð0Þ≡ I2ðt ¼ 0Þ stands for the value at the
electroweak scale μ ¼ ΛEW, while I2ðtÞ stands for
the value at an arbitrary high-energy scale μ ¼ Λ. For
the direct connection between low- and high-energy
mass or mixing parameters in an integral form, one
may refer to previous works [44–47].
Since I2 depends on all the three CP phases, its

explicit expression is rather lengthy. As before, by
setting δ ¼ 0 at some energy scale, we arrive at

I2 ¼ H2
13m1m3Δ13 sinð2ρÞ þH2

23m2m3Δ23 sinð2σÞ
þH2

12m1m2Δ12 sinð2ρ − 2σÞ: ð2:31Þ

For I3, the RGE can be calculated easily and it is
interesting to find
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dI3

dt
¼ 6ðανþ2αlÞI3þ9Trf½Glν;Hl�2 · ½Glν;H2

l �g=v2;
ð2:32Þ

where the second term on the right-hand side is similar

to I ð1Þ
1 in Eq. (2.26) and the difference is simply to

replace Hν in the latter by Glν. After a straightforward
calculation, we can obtain

Trf½Glν; Hl�2 · ½Glν; H2
l �g ¼ 2Trf½Glν; Hl�3Hlg

¼ 2

3
ðm2

e þm2
μ þm2

τÞI3;

ð2:33Þ
such that the RGE of I3 can be formally solved as in
the case of I2, i.e.,

I3ðtÞ

¼I3ð0Þexp
�
3

Z
t

0

�
2ανðt0Þþ4αlðt0Þþ

X
α

y2αðt0Þ
�
dt0

�
;

ð2:34Þ
where yα ≡

ffiffiffi
2

p
mα=v denotes the charged-lepton

Yukawa coupling for α ¼ e, μ, τ. Since the RGEs

of ανðtÞ, αlðtÞ, and yαðtÞ can be separately solved, we
establish another direct connection between the high-
and low-energy WB invariants.

(c) Finally, let us investigate the RGE of I4, which has
been defined in Eq. (1.8). The final result is

dI4

dt
¼ 2ð3αν þ 2αlÞI4 − 12I ð1Þ

4 =v2; ð2:35Þ

where I ð1Þ
4 ≡ ImfTr½HlHνG2

lν�g has been introduced.
Notice that a few useful identities, i.e.,
ImfTr½HlH2

νHlGlν�g ¼ ImfTr½HlGlνHνGlν�g ¼ 0 and
Tr½HlHνHlHνGlν� ¼ Tr½HlHνG2

lν�, have been used.
Because of the second term on the right-hand side
of Eq. (2.35), it is not possible to directly solve the
RGE of I4. To render the analytical formulas of I4

and I ð1Þ
4 readable, we set δ ¼ 0 and get

I4 ¼ þH2
13m1m3Δ13ðm2

1 þm2
3Þ sinð2ρÞ

þH2
23m2m3Δ23ðm2

2 þm2
3Þ sinð2σÞ

þH2
12m1m2Δ12ðm2

1 þm2
2Þ sinð2ρ − 2σÞ ð2:36Þ

and

I ð1Þ
4 ¼ þH13½H12H23 þH13ðH11 þH33Þ�m1m3Δ13ðm2

1 þm2
3Þ sinð2ρÞ

þH23½H12H13 þH23ðH22 þH33Þ�m2m3Δ23ðm2
2 þm2

3Þ sinð2σÞ
þH12½H13H23 þH12ðH11 þH22Þ�m1m2Δ12ðm2

1 þm2
2Þ sinð2ρ − 2σÞ: ð2:37Þ

Given I1 ¼ 0 or equivalently δ ¼ 0, we can see that I2 in

Eq. (2.31), I4, and I
ð1Þ
4 are vanishing if ρ and σ take trivial

values of 0 or π=2 at the beginning. This is also true for I3,
although its expression has not been explicitly written
down.
To conclude, we find that dI2=dt ¼ 4ðαν þ αlÞI2 and

dI3=dt ¼ 3½2αν þ 4αl þ ðy2e þ y2μ þ y2τÞ�I3, which can be
formally solved, and thus establish a direct link between
low- and high-energy WB invariants. For I1 and I4, their
derivatives with respect to t ¼ ½lnðμ=ΛEWÞ�=ð16π2Þ turn
out not to be proportional to themselves. However, if CP
conservation is assumed at some energy scale, i.e., all three
CP phases take trivial values, then CPwill be conserved all
the way down to the electroweak scale. If one of the three
CP phases is nontrivial at the beginning, namely, CP
violation exists in theory, the other phases will be generated
radiatively during the RGE running. In the case of partial or
complete neutrino mass degeneracy, one can choose
suitable WB invariants from fI1;I2; I3; I4g and
apply the corresponding RGEs to study their running
behaviors.

III. CANONICAL SEESAW MODEL

The partial or complete mass degeneracy of three light
neutrinos has already been excluded by neutrino oscillation
data [48,49], which require two independent neutrino
mass-squared differences to be Δ21 ≈ 7.4 × 10−5 eV2 and
Δ31 ≈�2.5 × 10−3 eV2. On the other hand, as we have
mentioned, the effective theory considered in the previous
section is valid when the heavy degrees of freedom asso-
ciated with neutrino mass generation are integrated out.
Therefore, we now examine the necessary and sufficient
conditions for CP conservation with a partial or complete
mass degeneracy of three heavy Majorana neutrinos in the
canonical seesaw model, for which the gauge-invariant
Lagrangian was given in Eq. (1.1). After the spontaneous
gauge symmetry breaking, it can be rewritten as

Llepton ¼ −lLMllR − ν̄LMDNR −
1

2
NC

RMRNR

þ gffiffiffi
2

p lLγμνLW−
μ þ H:c:; ð3:1Þ
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where the charged-current interaction has been included to
cover all possible places for CP violation. In the presence of
right-handed neutrinos, the sufficient and necessary con-
ditions for CP conservation in the full seesaw model are
equivalent to the existence of three unitary matricesUL,UR,
and VR such that the Lagrangian in Eq. (3.1) is invariant
under

lL → ULCl�L; νL → ULCν�L; lR → URCl�R;

NR → VRCN�
R; W−

μ → −ð−1Þδ0μWþ
μ ; ð3:2Þ

where the notation is the same as in Eq. (1.3). In terms of the
fermion mass matrices, one can easily prove that this is
equivalent to the conditions

U†
LMlUR ¼ M�

l ; U†
LMDVR ¼ M�

D;

VT
RMRVR ¼ −M�

R; ð3:3Þ
which will be used to construct the WB invariants for CP
conservation, similar to the construction in the effective
theory. To this end, we further introduce HD ≡M†

DMD,
HR ≡M†

RMR, GDR ≡M†
RH

�
DMR, and

Hn ≡M†
DðHlÞnMD; Gn ≡M†

RH
�
nMR; ð3:4Þ

where n denotes the positive integer. It is straightforward to
verify that the transformation rules for these newly defined
Hermitian matrices are as follows:

V†
RHDVR ¼H�

D; V†
RHRVR ¼H�

R; V†
RGDRVR ¼G�

DR;

V†
RHnVR ¼H�

n; V†
RGnVR ¼G�

n; ð3:5Þ
which are universal and make the construction of WB
invariants much easier. As shown in Ref. [20], the sufficient
and necessary conditions forCP conservation are equivalent
to the vanishing of a minimal set of WB invariants.
Before constructing the WB invariants, we count the

number of physical parameters in the canonical seesaw
model and will pay particular attention to the CP phases.
Without loss of generality, one can always choose the basis
in which Ml, MR and the charged-current interaction in
Eq. (3.1) are simultaneously diagonal, so that the complex
mass matrix MD will be the only source of CP violation.
Following Refs. [20,50], we adopt the convenient para-
metrization MD ¼ UDYΔ, where UD is a 3 × 3 unitary
matrix and YΔ is a lower triangular matrix, i.e.,

YΔ ¼

0
B@

y11 0 0

y21eiϕ21 y22 0

y31eiϕ31 y32eiϕ32 y33

1
CA; ð3:6Þ

where yij (for 1 ≤ j ≤ i ≤ 3) are all real and positive
parameters and ϕij (for ij ¼ 21, 31, 32) are the phases
of three off-diagonal nonzero elements. As usual, three
unphysical phases of UD can be eliminated by redefining

the phases of νL, lL, and lR, leaving the Lagrangian
unchanged. Therefore, MD contains only 15 real para-
meters, six of which are phases. To be more explicit,
we rewrite it as MD ¼ UξPαYζPβ [20], where Pα ¼
diagf1; eiα1 ; eiα2g and Pβ ¼ diagf1; eiβ1 ; eiβ2g are two
diagonal phase matrices. In addition,

Yζ ¼

0
B@

y11 0 0

y21 y22 0

y31 y32eiζ y33

1
CA ð3:7Þ

is related to YΔ by properly factorizing out relevant phases,
and Uξ is the Cabibbo-Kobayashi-Maskawa (CKM)-like
unitary matrix, with ξ being the CP phase and the
three rotation angles being fθD12; θD13; θD23g. In this way,
15 real parameters of MD are now specified, i.e., six
phases fξ; ζ; α1;α2; β1; β2g and nine real parameters
fθD12; θD13; θD23g and fy11; y22; y33; y21; y31; y32g. All the
information aboutCP violation is represented by six phases
ofMD. As we shall show soon, CP is conserved if and only
if sin α1 ¼ sin α2 ¼ sin ξ ¼ sin ζ ¼ sin 2β1 ¼ sin 2β2 ¼ 0
holds.5 Using the adopted parametrization of MD, we
can obtain

HD ¼ M†
DMD ¼ P†

βY
†
ζYζPβ; ð3:8Þ

where only three phases fζ; β1; β2g are involved.
Consequently, even if HD were real, there would still be
CP violation. Unlike the effective theory, in which real
Hl ¼ MlM

†
l implies CP conservation, all six phases ofMD

are important [20].

A. Nondegenerate masses

First, we summarize the main results in the case of
nondegenerate masses, namely, M1 ≠ M2 ≠ M3, where
Mi stands for the heavy Majorana neutrino mass (for
i ¼ 1, 2, 3). As demonstrated in Ref. [20], the following
six conditions,

Ĩ1 ≡ ImfTr½HDHRGDR�g ¼ 0; ð3:9Þ
Ĩ2 ≡ ImfTr½HDH2

RGDR�g ¼ 0; ð3:10Þ
Ĩ3 ≡ ImfTr½HDH2

RGDRHR�g ¼ 0; ð3:11Þ

Ĩ4 ≡ ImfTr½H1HRG1�g ¼ 0; ð3:12Þ

Ĩ5 ≡ ImfTr½H1H2
RG1�g ¼ 0; ð3:13Þ

Ĩ6 ≡ ImfTr½H1H2
RG1HR�g ¼ 0; ð3:14Þ

5It is worth noticing that β1 and β2 are actually the Majorana-
type CP phases and can take the value of π=2 without violating
the CP symmetry.
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must be fulfilled to guarantee CP conservation. Notice that
Hn and Gn [having been introduced in Eq. (3.4)] with
n ¼ 1 have been used in Eqs. (3.12)–(3.14). With the help
of the transformation rules in Eq. (3.5), we can easily prove
that Ĩ i (i ¼ 1; 2;…; 6) are WB invariants and Ĩ i ¼ 0 in
Eqs. (3.9)–(3.14) serve as the sufficient and necessary
conditions for CP conservation.
Since fĨ1; Ĩ2; Ĩ3g depend on only three phases in HD,

i.e., fζ; β1; β2g, the vanishing of these three WB invariants
gives three independent constraints on the relevant three
phases. The other WB invariants fĨ4; Ĩ5; Ĩ6g depend on all
six phases in MD. After three phases in HD are eliminated
by Eqs. (3.9)–(3.11), we are left with another set of three
independent constraints from Eqs. (3.12)–(3.14) on the
remaining three phases, i.e., fξ; α1; α2g. However, as
explained in Ref. [23], although fĨ1; Ĩ2; Ĩ3g are indepen-
dent, the vanishing of them leads to three nonlinear
equations of ζ, β1, and β2, from which nontrivial solutions

(i.e., those other than 0 and π=2) of these three phases can
be obtained for some special values of other physical
parameters. For this reason, we recommend another set of
three invariants fĨ1; Ĩ2; Ĩ

0
3g, where the new WB invariant

Ĩ 0
3 ≡ Trf½HR; HD�3g replaces the original one Ĩ3. In the

chosen basis, whereHR ¼ diagfM2
1;M

2
2;M

2
3g andHD is as

given in Eq. (3.8), one can explicitly find

Ĩ 0
3¼6ðM2

1−M2
2ÞðM2

1−M2
3ÞðM2

2−M2
3Þy22y233y21y31y32sinζ;

ð3:15Þ

which is simply proportional to sin ζ. If the masses of heavy
Majorana neutrinos are nondegenerate and the parameters
yij are nonzero, then Ĩ

0
3 ¼ 0 is the sufficient and necessary

condition for ζ ¼ 0. Now that ζ ¼ 0 is guaranteed by
Ĩ 0
3 ¼ 0, we can calculate the other two invariants, namely,

Ĩ1 ¼ M3
2½M3y233y

2
32 þM1ðy22y21 þ y31y32Þ2 þM2ðy222 þ y232Þ2� sin 2β1

þM3
3y

2
33ðM3y233 þM1y231 þM2y232Þ sin 2β2 ¼ 0; ð3:16Þ

Ĩ2 ¼ M5
2½M3y233y

2
32 þM1ðy22y21 þ y31y32Þ2 þM2ðy222 þ y232Þ2� sin 2β1

þM5
3y

2
33ðM3y233 þM1y231 þM2y232Þ sin 2β2 ¼ 0: ð3:17Þ

The above system of linear homogeneous equations
of sin 2β1 and sin 2β2 has the unique trivial solutions
sin 2β1 ¼ 0 and sin 2β2 ¼ 0, since the determinant of the
coefficient matrix is proportional to ðM2

3 −M2
2Þ, which is

nonzero in the case of nondegenerate masses. Therefore, the
vanishing of three WB invariants fĨ1; Ĩ2; Ĩ

0
3g is the

sufficient and necessary condition for the vanishing of those
three phases inHD. After fixing three phases inHD, we have
another three independent constraints on the remaining
phases fξ; α1; α2g from Eqs. (3.12)–(3.14). However, these
equations are in general nonlinear, so there may be some
parameter spacewhere Eqs. (3.12)–(3.14) do not necessarily
imply CP conservation, as shown in Ref. [23] for the
effective theory.Without any information about the physical
parameters at high-energy scales, such as the heavy Major-
ana neutrino masses and the matrix elements of MD, it is
impossible for us to find another set of three invariants to
guaranteeCP conservation, at least in the physically allowed
parameter. Therefore, we take Eqs. (3.12)–(3.14) to be the
sufficient and necessary conditions of eliminating the
remaining three phases in a particular parameter space.
Although the invariants given in Eqs. (3.9)–(3.14) are by

construction independent of the flavor basis, it is conven-
ient to calculate them in the special basis whereMl andMR
are both diagonal. By inspecting these conditions, we can
prove that CP symmetry is conserved if and only if

ωα
mn ≡ arg½ðMDÞαm� − arg½ðMDÞαn�

¼ ðpn − pmÞ
π

2
þ kαπ; ð3:18Þ

where pn, pm, kα are arbitrary integers with m, n ¼ 1, 2, 3
and α ¼ e, μ, τ. The above equation gives in total six
independent constraints on the phases of MD, while
the number of independent phases in MD responsible
for CP violation is also six. From Eq. (3.18), we conclude
that in the basis where Ml and MR are diagonal,
if the masses of heavy Majorana neutrinos are non-
degenerate, then the sufficient and necessary conditions
for CP conservation are simply that (i) the phases
of the elements of MD in the same row but different
columns can differ only by an integral multiple of
π=2, and (ii) the phase differences between two different
rows, i.e., ωα

mn − ωβ
mn, can differ only by an even multiple

of π=2.
As a concrete example for the CP violation at high-

energy scales, we consider the CP-violating decays
of heavy Majorana neutrinos into left-handed lepton and
Higgs doublets, i.e., Ni → lα þH and Ni → l̄α þ H̄ (for
i ¼ 1, 2, 3 and α ¼ e, μ, τ). The CP asymmetries arise from
the interference between the tree-level and one-loop-level
decay amplitudes and can be written as
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ϵiα ≡ ΓðNi → lα þHÞ − ΓðNi → l̄α þ H̄ÞP
α½ΓðNi → lα þHÞ þ ΓðNi → l̄α þ H̄Þ� ; ð3:19Þ

where ΓðNi → lα þHÞ and ΓðNi → l̄α þ H̄Þ stand for the
decay rate of Ni → lα þH and that of Ni → l̄α þ H̄,
respectively. In the vanilla scenario of leptogenesis, the CP
violation in the out-of-equilibrium decays of heavy
Majorana neutrinos gives rise to lepton number asymme-
tries, which will be finally converted into baryon number
asymmetry in our Universe [14–16]. Concentrating on the
CP asymmetries, in the basis where Ml and MR are
diagonal, we have [41]

ϵiα ¼
1

4πv2ðHDÞii
X
j≠i

�
Im½ðM�

DÞαiðMDÞαjðHDÞij�F
�
M2

j

M2
i

�

þ Im½ðM�
DÞαiðMDÞαjðHDÞ�ij�G

�
M2

j

M2
i

��
; ð3:20Þ

where the loop functions F ðxÞ≡ ffiffiffi
x

p fð2 − xÞ=ð1 − xÞ þ
ð1þ xÞ ln½x=ð1þ xÞ�g and GðxÞ≡ 1=ð1 − xÞ have been
defined. It is easy to verify that all the CP asymmetries
ϵiα (for i ¼ 1, 2, 3 and α ¼ e, μ, τ) vanish if the phases of
the matrix elements of MD satisfy the following relations:

sin ðωα
ij þ ωβ

ijÞ ¼ sin ðωα
ij − ωβ

ijÞ ¼ 0; ð3:21Þ

where ωα
ij ≡ arg½ðMDÞαi� − arg½ðMDÞαj� has been defined,

and likewise for ωβ
ij. The solutions to Eq. (3.21) are exactly

the same as those in Eq. (3.18). Hence we reach the
conclusion that if the phases of the matrix elements of MD
fulfill the conditions in Eq. (3.18) in the basis whereMl and
MR are diagonal, then there will be no CP violation in the
canonical seesaw model and all the CP asymmetries ϵiα
vanish in the decays of heavy Majorana neutrinos.
In summary, if the masses of heavy Majorana neutrinos

are nondegenerate, we must implement six WB invariants
to ensure CP conservation, e.g., those in Eqs. (3.9)–(3.14).
This conclusion has been obtained in the literature [20,26].
However, if a partial or complete mass degeneracy of heavy
Majorana neutrinos is assumed, an immediate question is
how many WB invariants we need for CP conservation.

B. Partial mass degeneracy

If the masses of heavy Majorana neutrinos are partially
degenerate, e.g., M1 ¼ M2 ≠ M3, then one can verify that
fĨ1; Ĩ2; Ĩ3g become linearly dependent on each other, and
so do fĨ4; Ĩ5; Ĩ6g. As a consequence, Eqs. (3.9)–(3.14)
give rise to only two independent equations, which are
insufficient to guarantee CP conservation. In this section,
we attempt to make clear how many CP phases are left in
the theory and how to construct the WB invariants for CP
conservation in the presence of a partial mass degeneracy.

First, in the basis where Ml and MR are diagonal, we
have the freedom to rotate the heavy Majorana neutrino
fields as NR → R†

12ðαÞNR, where R12ðαÞ is the same
rotation matrix as that given in Sec. II A. Under such a
rotation, we have

MD → MDR12ðαÞ; HD → R†
12ðαÞHDR12ðαÞ; ð3:22Þ

while the charged-lepton mass matrix Ml and the charged-
current interaction are unchanged. Similar to what we have
done in Sec. II A, one can adjust α to eliminate one of three
CP phases in HD, e.g., β2. Hence with only two phases left
in HD, the expression of Ĩ1 becomes quite simple

Ĩ1 ¼ M1M3ðM2
1 −M2

3Þy233y232 sin ½2ðβ1 þ ζÞ�: ð3:23Þ

In addition to Ĩ1, inspired by I3 in Eq. (1.7), we introduce
another WB invariant that depends only on the phases in
HD, namely,

Ĩ7 ≡ Trf½GDR; HD�3g ¼ 0: ð3:24Þ

After some algebraic calculations, it is easy to verify that
Ĩ1 ¼ 0 leads to either β1 þ ζ ¼ 0 or β1 þ ζ ¼ π=2, as
indicated by Eq. (3.23). Furthermore, we can obtain Ĩ7 ∝
sin β1 in the former case, while Ĩ7 ∝ cos β1 in the latter.
Therefore, Ĩ1 ¼ 0 and Ĩ7 ¼ 0 imply either β1¼β2¼σ¼0
or β1 ¼ π=2; β2 ¼ ζ ¼ 0, rendering three CP phases HD
trivial.
Then, we need another three independent invariants to

eliminate the remaining three phases in MD. However, as
mentioned above, fĨ4; Ĩ5; Ĩ6g turn out to be linearly
dependent in the case of a partial mass degeneracy, so
they are no longer sufficient to give three independent
constraints on the CP phases in MD. To this end, we shall
construct a new series of WB invariants by using Hn and
Gn, which were introduced in Eq. (3.4). For instance, we
introduce

Ĩ8 ≡ Trf½G1; H1�3g ¼ 0; ð3:25Þ

Ĩ9 ≡ Trf½G2; H2�3g ¼ 0; ð3:26Þ

Ĩ10 ≡ Trf½G3; H3�3g ¼ 0; ð3:27Þ

where the explicit expressions ofHn andGn (for n¼1, 2, 3)
can be read off from Eq. (3.4). The construction of
three WB invariants in Eqs. (3.25)–(3.27) has been inspired
by two important observations. First, all the invariants
fĨ8; Ĩ9; Ĩ10g are constructed by directly using MD instead
of HD, so these invariants contain the remaining three CP
phases in MD. Second, these invariants are similar to each
other but have been constructed intentionally by adopting
the charged-lepton mass matrix via ðHlÞn for n ¼ 1, 2, 3.
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In this way, because of the hierarchical mass spectrum of
charged leptons, these three invariants are linearly inde-
pendent even when the masses of heavy Majorana neu-
trinos are fully degenerate. Therefore, one can constrain
the remaining phases in MD to be trivial by requiring
Ĩ8 ¼ Ĩ9 ¼ Ĩ10 ¼ 0, whereas those three CP phases in HD

have already been eliminated by Ĩ1 ¼ Ĩ7 ¼ 0.
To conclude, in the presence of a partial mass degeneracy

of heavy Majorana neutrinos, the number of CP phases in
the theory will be reduced from six to five. In this case, we
advocate a new set of WB invariants fĨ1; Ĩ7; Ĩ8; Ĩ9; Ĩ10g.
The vanishing of all these invariants serves as the sufficient
and necessary condition for CP conservation in this
particular case.

C. Complete mass degeneracy

Once the masses of heavy Majorana neutrinos are
completely degenerate, i.e., M1 ¼ M2 ¼ M3, all six WB
invariants in Eqs. (3.9)–(3.14) will automatically vanish.
Therefore, they will not carry any useful information about
CP violation.
In the presence of full mass degeneracy, however, we are

allowed to perform an arbitrary orthogonal rotation of MR
in the basis where both Ml and MR are diagonal without
changing the heavy Majorana neutrino mass term. As we
have proved in Sec. II B, these 3 degrees of freedom in the
arbitrary orthogonal rotation can be taken to reduce the
number of CP phases in HD at most by two, so we are left
with four CP phases in total.
It is obvious that these four CP phases can be made

trivial by requiring four WB invariants in Eq. (3.24) and in
Eqs. (3.25)–(3.27) to be zero. First, Ĩ7 ¼ 0 can be used to
get rid of the only CP phase in HD, as the other two phases
have been removed by two successive rotations. Then, the
vanishing of fĨ8; Ĩ9; Ĩ10g in Eqs. (3.25)–(3.27) guarantees
that the three remaining phases inMD are trivial. Therefore,
for the complete mass degeneracy of heavy Majorana
neutrinos, there are four CP phases and the vanishing of
the WB invariants fĨ7; Ĩ8; Ĩ9; Ĩ10g serves as the sufficient
and necessary condition for CP conservation.
It is worth stressing that the partial or complete mass

degeneracy of heavy Majorana neutrinos may be guaran-
teed by flavor symmetries or may simply be accidental, and
thus the degeneracy will be shifted by explicit symmetry
breaking or radiative corrections [51–56], leading to the
possibility of successful resonant leptogenesis [57,58].
Moreover, once the mass degeneracy is broken, the number
of CP-violating phases and relevant WB invariants will be
changed, as discussed in Sec. III A.
In the presence of either partial or complete mass

degeneracy of heavy Majorana neutrinos, the CP asym-
metries defined in Eq. (3.19) cannot simply be obtained
from Eq. (3.20), which turns out to be singular in the exact
degeneracy limit (i.e., Mi ¼ Mj). When the resonant

mixing between any two nearly degenerate unstable par-
ticles is properly treated [19,57–60], the divergence arising
from one-loop self-energy corrections to the heavy
Majorana neutrino decays can be removed. After taking
into account both one-loop self-energy and vertex correc-
tions, one can find that the loop functions in the expressions
of CP asymmetries in Eq. (3.20) are modified with a
regulator [61],

F ðxijÞ¼ ffiffiffiffiffiffi
xij

p �
1−xij

ð1−xijÞ2þr2ij
þ1þð1þxijÞln

�
xij

1þxij

��
;

GðxijÞ¼
1−xij

ð1−xijÞ2þr2ij
; ð3:28Þ

where xij ≡M2
i =M

2
j has been defined and the regulator rij

has been introduced [57–60]. If the mass spectrum of heavy
Majorana neutrinos is strongly hierarchical, then the loop
functions defined in Eq. (3.28) will be reduced to the forms
below Eq. (3.20). However, when the masses of heavy
Majorana neutrinos become nearly degenerate, the regula-
tor rij will play an important role. In particular, in the
limit of exact mass degeneracy, i.e., xij ¼ 1, the regulator
removes the singularity and gives a physically meaningful
result.
It should be emphasized that in the limit of complete

mass degeneracy (i.e., M1 ¼ M2 ¼ M3), although the CP
asymmetries ϵiα defined in Eq. (3.19) remain nonvanishing
due to the contribution from the interference between the
tree-level amplitude and the one-loop vertex correction,
there are actually no CP asymmetries in the decays of
heavy Majorana neutrinos [19,57]. This is because the CP-
violating source terms contributing to the generation of
lepton number asymmetry (i.e., the difference between the
number density of leptons and that of antileptons) in the
Boltzmann equations depend only on the following combi-
nations of CP asymmetries from different generations of
heavy Majorana neutrinos in the limit of complete mass
degeneracy [57], namely,

ϵeff ≡
P

3
i¼1 ½ΓðNi → lα þHÞ − ΓðNi → l̄α þ H̄Þ�P

3
i¼1

P
α ½ΓðNi → lα þHÞ þ ΓðNi → l̄α þ H̄Þ� ;

ð3:29Þ

which turn out to be vanishing. This can be understood by
noticing that all the heavy Majorana neutrinos in the mass-
degeneracy limit contribute to the generation of CP
asymmetries and only the effective CP asymmetries
defined in Eq. (3.29) play a role in leptogenesis.
To conclude, although there remain four nonvanishing

CP phases in the limit of complete mass degeneracy, there
are actually no CP asymmetries in the decays of heavy
Majorana neutrinos.

SUFFICIENT AND NECESSARY CONDITIONS FOR CP … PHYS. REV. D 103, 035017 (2021)

035017-13



D. Minimal seesaw model

In this section, we examine the so-called minimal seesaw
model (MSM), in which only two right-handed neutrino
singlets are introduced [62–66]. See, e.g., Refs. [67,68] for
recent reviews on the MSM. In this minimal scenario, MD
is actually a 3 × 2 complex matrix, and the effective mass
matrix of three light Majorana neutrinos is given by the
seesaw formulaMν ¼ −MDM−1

R MT
D. As is well known, the

rank ofMν will thus be at most 2, indicating that the lightest
neutrino is massless. Without loss of generality, we take
m1 ¼ 0 for the normal mass ordering for illustration.
Although MD generally contains six phases, three of

them are actually unphysical and can be removed by the
basis transformations of lepton fields νL, lL, and lR. In the
following discussions, we take the Casas-Ibarra paramet-
rization of MD [69,70], i.e.,

MD ¼ iU
ffiffiffiffiffiffiffi
M̂ν

q
R

ffiffiffiffiffiffiffi
M̂R

q
; ð3:30Þ

where the PMNS matrix U can be decomposed as
U ¼ V · diagf1; eiσ; 1g,6 with V being the CKM-like
matrix that contains one Dirac CP phase δ and three
mixing angles. In addition, both light and heavy Majorana
neutrino mass matrices M̂ν ¼ diagf0; m2; m3g and M̂R ¼
diagfM1;M2g are diagonal, and the complex and orthogo-
nal matrix R, satisfying RTR ¼ diagf1; 1g and RRT ¼
diagf0; 1; 1g can be parametrized as [70]

R ¼

0
B@

0 0

cos z − sin z

� sin z � cos z

1
CA; ð3:31Þ

where z is an arbitrary complex number. With such a
parametrization, one can observe that one CP phase ofMD
is located in R, while the other two are included in the
PMNS matrix U.
Now we explain how to construct the WB invariants in

the MSM and present the sufficient and necessary con-
ditions for CP conservation in the cases of nondegenerate
(i.e., M1 ≠ M2) and degenerate (i.e., M1 ¼ M2) heavy
Majorana neutrino masses.
(a) For M1 ≠ M2, there are in total three CP phases in

MD, for which one has to construct three WB
invariants to guarantee CP conservation. In the
MSM, however, only two out of the six invariants
in Eqs. (3.9)–(3.14) are linearly independent, and we
choose Ĩ1 and Ĩ4. As one can see from the definition
of Ĩ1 in Eq. (3.9), onlyHD is involved in this invariant,
so it contains the unique CP phase in R. On the other

hand, Ĩ4 defined in Eq. (3.12) depend on the CP phase
in R as well as the two CP phases in the PMNS matrix
U. For this reason, we need to construct extra WB
invariants in which the CP phases in U are present.
Unfortunately, all the invariants fĨ7; Ĩ8; Ĩ9; Ĩ10g in
Eqs. (3.24)–(3.27) vanish automatically in the MSM.
Inspired by the invariants fI1; I2; I3; I4g in the

effective theory, we can simply replace Mν with
−MDM−1

R MT
D everywhere in these invariants and then

obtain four nontrivial WB invariants in the MSM, i.e.,

Î1 ≡ Trf½MDM−1
R H�

DðM−1
R Þ†M†

D; Hl�3g; ð3:32Þ

Î2 ≡ ImfTr½HlMDM−1
R H�

DðM−1
R Þ†

×HDM−1
R MT

DH
�
l M

�
DðM−1

R Þ†M†
D�g; ð3:33Þ

Î3≡Trf½MDM−1
R MT

DH
�
l M

�
DðM−1

R Þ†M†
D;Hl�3g; ð3:34Þ

Î4 ≡ ImfTr½HlðMDM−1
R H�

DðM−1
R Þ†M†

DÞ2
×MDM−1

R MT
DH

�
l M

�
DðM−1

R Þ†M†
D�g: ð3:35Þ

It should be noted that Î i (for i ¼ 1, 2, 3, 4) depend on
only two CP phases in the PMNS matrix U and have
nothing to do with the CP phase in R. Moreover, Î1 is
proportional to sin δ, where δ is the Dirac-type CP
phase in the PMNS matrix U, but not related to the
Majorana-type CP phase σ. In contrast, fÎ2; Î3; Î4g
depend on both δ and σ. With all these invariants,
to guarantee CP conservation, we can first require
Ĩ1 ¼ 0 to render the phase in R trivial, then Î1 ¼ 0 to
eliminate δ in U, and finally either Ĩ4 ¼ 0 or one of
fÎ2 ¼ 0; Î3 ¼ 0; Î4 ¼ 0g to get rid of σ in U.

(b) For M1 ¼ M2, as in the case of partial mass degen-
eracy in the effective theory or in the canonical seesaw
model, there is an extra degree of freedom in the
system, which can be implemented to remove the only
CP phase in R. Therefore, we are left with two CP
phases. It is straightforward to verify that Ĩ1 and Ĩ4

vanish automatically in this limit of M1 ¼ M2. How-
ever, since fÎ1; Î2; Î3; Î4g are independent of heavy
Majorana neutrino masses, they are in general nonzero
in the presence of mass degeneracy. We can first use
Î1 ¼ 0 to make δ in U trivial, then choose any one of
fÎ2 ¼ 0; Î3 ¼ 0; Î4 ¼ 0g to eliminate the remaining
phase σ in U so that CP conservation is guaranteed.

In summary, if there is no mass degeneracy of heavy
Majorana neutrinos, we have three CP phases and the
vanishing of three WB invariants fĨ1; Ĩ4; Î1g serves as the
sufficient and necessary condition for CP conservation. In
addition, in the case of mass degeneracy, there are two CP
phases and one can find that CP conservation is ensured by
fÎ1 ¼ 0; Î2 ¼ 0g. It is worth mentioning that the choice of

6As the lightest neutrino is massless, the Majorana CP phase
associated with the corresponding neutrino mass eigenstate
disappears from the theory.
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WB invariants is by no means unique, but different choices
are all equivalent.

IV. SUMMARY

In this paper, we have performed a systematic study of
the sufficient and necessary conditions for CP conservation
in leptonic sector, both in the low-energy effective theory of
massive Majorana neutrinos and in the canonical seesaw
model. A particular attention has been paid to the cases of
the mass degeneracy of either light or heavy Majorana
neutrinos. We have demonstrated how to count correctly
the number of independent CP phases in these cases and
have explained the strategy to construct the WB invariants
to guarantee CP conservation.
In the low-energy effective theory, if the masses of light

Majorana neutrinos are not degenerate, there are in total
three independent CP phases. If the masses of light
neutrinos are partially or completely degenerate, then there
will be extra degrees of freedom in the theory, allowing us
to rotate the left-handed neutrino fields without changing
their mass term. As a consequence, such degrees of
freedom can be used to reduce the number of independent
CP phases. The number of CP phases and the WB
invariants chosen to guarantee CP conservation in different
cases are summarized in Table I. Moreover, the renorm-
alization-group equations of the WB invariants in the
effective theory have been derived. By using these equa-
tions of WB invariants, we show that CP conservation will
not be violated by radiative corrections.
In the canonical seesaw model, there are in total six

independent CP phases in the case of nondegenerate
masses of heavy Majorana neutrinos. Just as in the effective
theory, in the presence of mass degeneracy, it is possible to
reduce the number of CP phases. The main results have
been summarized in Table II. The sufficient and necessary
conditions for CP conservation in the minimal seesaw
model are also given. In the basis where the charged-lepton

mass matrixMl and right-handed neutrino mass matrixMR
are diagonal, the conserved CP symmetry would lead to the
vanishing of all flavor-dependent CP asymmetries in the
heavy Majorana neutrino decays, i.e., ϵiα for i ¼ 1, 2, 3 and
α ¼ e, μ, τ, while any nonzero CP asymmetries imply
the existence of CP violation. It is worth pointing out
that a flavor symmetry must be introduced to protect the
mass degeneracy. Otherwise, either partial or complete
mass degeneracy of heavy Majorana neutrinos will be
violated by radiative corrections [51–56] and all six WB
invariants in Eqs. (3.9)–(3.14) are needed to guarantee CP
conservation.
We stress that the choice of different sets of WB

invariants for CP conservation is not unique. In each case,
we have explicitly given a suitable set of WB invariants,
which should be useful for the future studies of leptonic CP
violation and for the model building of neutrino mass
generation and lepton flavor mixing.
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TABLE I. Summary of the number of independent CP phases
and the weak-basis invariants chosen to guarantee CP conserva-
tion in the low-energy effective theory. Notice that the choice of
weak-basis invariants is by no means unique.

Low-energy effective
theory

Number of
CP phases

Weak-basis invariants

No degeneracy
(m1 ≠ m2 ≠ m3)

3 I1 ≡ Trf½Hν; Hl�3g
I2 ≡ ImfTr½HlHνGlν�g
I4 ≡ ImfTr½HlH2

νGlν�g
Partial degeneracy
(m1 ¼ m2 ≠ m3)

2 I2 ≡ ImfTr½HlHνGlν�g
I3 ≡ Trf½Glν; Hl�3g

Full degeneracy
(m1 ¼ m2 ¼ m3)

1 I3 ≡ Trf½Glν; Hl�3g

No degeneracy
with m1 ¼ 0

2 I1 ≡ Trf½Hν; Hl�3g
I2 ≡ ImfTr½HlHνGlν�g

TABLE II. Summary of the number of independent CP phases
and the weak-basis invariants chosen to guarantee CP conserva-
tion in the canonical seesaw model. Notice that the choice of
weak-basis invariants is by no means unique.

Canonical seesaw
model

Number of
CP phases

Weak-basis invariants

No degeneracy
(M1 ≠ M2 ≠ M3)

6 Ĩ1 ≡ ImfTr½HDHRGDR�g
Ĩ2 ≡ ImfTr½HDH2

RGDR�g
Ĩ 0
3 ≡ Trf½HR; HD�3g

Ĩ4 ≡ ImfTr½H1HRG1�g
Ĩ5 ≡ ImfTr½H1H2

RG1�g
Ĩ6 ≡ ImfTr½H1HRG1HR�g

Partial degeneracy
(M1 ¼ M2 ≠ M3)

5 Ĩ1 ≡ ImfTr½HDHRGDR�g
Ĩ7 ≡ Trf½GDR; HD�3g
Ĩ8 ≡ Trf½G1; H1�3g
Ĩ9 ≡ Trf½G2; H2�3g
Ĩ10 ≡ Trf½G3; H3�3g

Full degeneracy
(M1 ¼ M2 ¼ M3)

4 Ĩ7 ≡ Trf½GDR; HD�3g
Ĩ8 ≡ Trf½G1; H1�3g
Ĩ9 ≡ Trf½G2; H2�3g
Ĩ10 ≡ Trf½G3; H3�3g

Minimal seesaw
model (M1 ≠ M2)

3 Ĩ1 ≡ ImfTr½HDHRGDR�g
Ĩ4 ≡ ImfTr½H1HRG1�g
Î1 in Eq. (3.32)

Minimal seesaw
model (M1 ¼ M2)

2 Î1 in Eq. (3.32)
Î2 in Eq. (3.33)
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