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We explore the 1-loop renormalization group flow of two models coming from a generalization of the
Connes-Lott version of noncommutative geometry in Lorentzian signature: the noncommutative Standard
Model and its B — L extension. Both make predictions on coupling constants at high energy, but only the
latter is found to be compatible with the top quark and Higgs boson masses at the electroweak scale.
We took into account corrections introduced by threshold effects and the relative positions of the Dirac
and Majorana neutrino mass matrices and found them to be important. Some effects of 2-loop corrections
are briefly discussed. The model is consistent with experiments only for a very small part of its parameter
space and is thus predictive. The masses of the Z' and B — L breaking scalar are found to be of the

order 10'* GeV.
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I. INTRODUCTION

Noncommutative geometry (NCG) is a remarkably
elegant mathematical framework which allows to derive
the field content and Lagrangian of the Standard Model of
particle physics [1,2]. The history of the NCG approach to
the Standard Model (SM) is described in a recent paper [3].
A first landmark is Ref. [4] where Connes and Lott
obtained the SM bosonic Lagrangian thanks to a universal
formula of Yang-Mills type, i.e., the squared length of the
curvature of a single non-commutative one-form which
encapsulates simultaneously the gauge and Higgs fields.
This construction automatically generates the quartic
potential for the Higgs field. In 1995, Connes [5] added
a key element to his construction, namely a charge reversal
operator (i.e., a real structure). In 1996, Chamseddine and
Connes [6] observed that the SM bosonic Lagrangian can
be obtained directly by using the “spectral action princi-
ple”: the physical action depends only on the spectrum of
the Dirac operator. This is a major breakthrough since the
Einstein-Hilbert action evaluated on the manifold metric
turns out to be a component of the spectral action. This
raises the hope of understanding all the known fundamental
forces as the different facets of a unique gravitational field
defined on a generalized manifold, fulfilling the dream of
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Einstein, Kaluza and Klein. Right-handed neutrinos were
added in 2006 [7]: the type I seesaw mechanism is then
automatically triggered by the general principles of NCG.
When recovering the SM bosonic Lagrangian through the
spectral action, relations between couplings are obtained. In
particular the gauge couplings are unified, which means
that these relations hold only at high energy. When running
the renormalization group equations down to the electro-
weak scale, one obtains a prediction for the top quark and
Higgs boson masses.

The spectral action has a physical drawback: to date, it
has only been possible to define it for Euclidean space-
times. After this action is evaluated, it is then necessary to
perform a Wick rotation. On the other hand, the Connes-
Lott action can be defined on Lorentzian spacetimes, as
shown by Karen Elsner [8]. In this paper, we insist on
using the physically correct signature right from the start,
and this is why we will use the second approach. It is
admittedly less ambitious: by using a noncommutative
1-form as the bosonic variable, the Connes-Lott approach
is a noncommutative version of gauge theory, which
forgets about gravity, whereas the Connes-Chamseddine
spectral action uses directly the metric, in close analogy
with Kaluza-Klein theory. However, it must be said that in
order to promote Connes-Chamseddine theory to a full-
fledged noncommutative Kaluza-Klein theory, one has to
define a structure in which the Dirac operator may vary,
and would be to spectral triples what bare differentiable
manifolds are to Riemannian manifolds. Such a structure
has been recently proposed [9] in the form of algebraic
backgrounds.

Published by the American Physical Society


https://orcid.org/0000-0003-2643-6980
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.035003&domain=pdf&date_stamp=2021-02-03
https://doi.org/10.1103/PhysRevD.103.035003
https://doi.org/10.1103/PhysRevD.103.035003
https://doi.org/10.1103/PhysRevD.103.035003
https://doi.org/10.1103/PhysRevD.103.035003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

FABIEN BESNARD and CHRISTIAN BROUDER

PHYS. REV. D 103, 035003 (2021)

In a previous article [10], we put forward a working
definition of indefinite spectral triples, applicable to
pseudo-Riemannian manifolds and taking charge conjuga-
tion and parity into account. We showed that, in this
approach, the Lagrangian of quantum electrodynamics in
Lorentzian spacetime was recovered. In the present work
we build an indefinite spectral triple to recover the
Lagrangian of the Standard Model (including right-handed
neutrinos) on a smooth globally hyperbolic (Lorentzian)
four-dimensional manifold M, which we assume time- and
space-orientable. In order to do this, we will introduce in
Sec. II the strictly necessary material on indefinite spectral
triples and algebraic backgrounds, without requiring any
previous knowledge of the subject. We will then be able to
define these particular structures in the case of the SM, in
Sec. III. The next step will be a necessary updating of NC
gauge theory to take into account the real structure and
semi-Riemannian signature (Sec. IV). When this is done,
we will apply these tools to the indefinite spectral triple of
the SM defined earlier and obtain in Sec. V a particle model
which has exactly the same field content and Lagrangian as
the SM extended by right- neutrinos and type I seesaw,
except (1) it has an additional abelian gauge field X,
and (2) there are constraints on the parameters of the
Lagrangian, such as the unification of the gauge couplings.
Once the X-field is removed by the unimodularity con-
dition (as is usual in NCG), we obtain the SM with the
correct physical signature entirely within the framework of
NCG [11]. Running down the renormalization group
equations (RGE) from some unification energy scale
Hunit (Which is a free parameter), we confirm in this new
context the result already obtained with the spectral action
[12]: the predicted Higgs mass is at least 30% too large. It
was observed in Ref. [13] that one can remedy this situation
by adding a real scalar field to the model. We will briefly
review the results of renormalization group analysis of this
scalar extended model in Sec. VI, also including threshold
corrections which were not taken into account in Ref. [13].
It has been an important trend in later years to find
theoretical motivations for this new scalar [14—17]. The
most direct explanation from a theoretical point of view is
probably the embedding of the model into a noncommu-
tative version of Pati-Salam theory [18], but this requires
important modifications to the usual formalism of NCG
[19]. Moreover the RGE of the full Pati-Salam model are
quite involved and their analysis relies on many assump-
tions [20,21]. We will propose instead in Sec. VII a simpler
extension of the noncommutative SM. This follows from
the observation that in the framework of algebraic back-
grounds, the configuration space of NC gauge theory is a
subspace of the configuration space of NC Kaluza-Klein
theory which is stable under certain symmetries. In the case
of the SM background, these symmetries include the B — L
gauge symmetries, as shown in Ref. [22]. Hence, from the
algebraic background point of view, the noncommutative

SM is not a consistent theory: only its B — L extension is.
Finally we perform the RG analysis of the B — L extended
SM with the initial conditions yielded by the Connes-Lott-
Elsner action. We show that there are only 3 relevant
parameters n, p, and €, which are in order a normalization
constant, the quotient of two Yukawa couplings, and the
angle between the Dirac and Majorana mass matrices for
neutrinos. We find that there exist a region of the parameter
space which gives good fit to the experimental values.
Using bounds on light neutrino masses, we observe that the
model predicts very high (>10'* GeV) masses for the Z’
bosons and the B — L-breaking Higgs.

If one is ready to take the mathematical motivations for
granted, the reading can start directly at Sec. V.

II. THE SEMI-RIEMANNIAN
NCG FRAMEWORK

The main difference between our indefinite spectral
triple (see next section for a precise definition) and the
spectral triples of Euclidean NCG is the replacement of the
Hilbert space by a pre-Krein space, i.e., a complex vector
space equipped with a Hermitian form (.,.) such that (y, )
can be of arbitrary sign depending on the vector . Indeed,
working with a noncompact Lorentzian manifold instead of
a compact Riemannian one triggers a cascade of effects that
need to be taken into account. First, the metric on spinor
fields becomes indefinite (through the insertion of a y°
matrix). This means that the smooth part of the almost-
commutative spectral triple under construction will cease to
be Euclidean. Less obviously, this feature will be trans-
mitted to the finite-dimensional part through the general
rules for forming tensor products of indefinite spectral
triples. Even less obviously perhaps, the completion of the
space of spinor fields ceases to be unique because of the
noncompactness of the base manifold [23], forcing us to
use the pre-Krein space of compactly supported fields
instead of an arbitrary L?-completion.

A. Indefinite spectral triples

For the convenience of the reader, we repeat the
definition of an indefinite spectral triple that we recently
put forward [10]. The only difference is that we put the
Krein product to the forefront instead of the fundamental
symmetry. We explain this choice below. We recall that a
Krein product is a nondegenerate Hermitian form. The
adjoint of an operator 7" with respect to a Krein product
will be denoted by T, except when the Krein product is
positive-definite, in which case we revert to the more
traditional 7.

An indefinite real even spectral triple (IST) is a tuple
(A, K, 7, x,J,D) where

(1) A is a real or complex *-algebra,

(2) K is a complex pre-Krein space,

(3) x is x-representation of A on C,
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(4) y (chirality) is a linear operator on K and J (real
structure or charge conjugation) is an antilinear
operator. It is required that [y, z(a)] =0 for all
a€A y*=1and

J2=e¢,

J*=xJ,

Jy=¢€"yJ
XX — €”K”)(, (1)

where ¢, ¢”, k, k¥ are signs,

(5) D (the Dirac) is an operator on K which com-
mutes with J, anticommutes with y and satisfies
(Dy,y') = (w, Dy') for all y, ' in its domain.

Note that the above definition is only the core of a more
complete set of axioms which is still under construction.
In particular we refer the reader to Refs. [24-27] for the
functional analytic conditions satisfied by z and D (in the
context of a fixed fundamental symmetry and Hilbert
completion).

It is common to add some other properties: (i) the
condition of order zero (i.e., for any a and b in A, z(a)
commutes with z(b)° := Jx(b)*J™"); (ii) the condition of
order one (i.e., for any a and b in A, [D, z(a)] commutes
with z(b)°). In this paper we will assume the order-zero
condition only (Cy).

A fundamental symmetry n on an IST is an operator
which either commutes or anticommutes with y and J,
squares to 1, and combine with the Krein product (.,.) to
form a scalar product (.,.), := (.,7.). Such a fundamental
symmetry always exists [9] (but is far from unique) and
given one the second line of (1) is equivalent to

Jn=exnt,  yn=e€"x"ny (2)

The four signs €, €”, k, ¥ depend on two even integers
m and n, unique modulo 8, such that e = (—1)"("+2)/8,
e = (=1)"?, k = (=1)""+2)/3 and k" = (=1)"/. Integer
n is the usual KO dimension of NCG, integer m, called the
metric dimension, is an additional integer required to
classify indefinite spectral triples [10]. Note that when
'k =1 (resp. —1), the two eigenspaces of y are orthogo-
nal with one another (resp. self-orthogonal) and funda-
mental symmetries must commute (resp. anticommute)
with y. In that case we say that the Krein product is even
(resp. odd). This will play a role below in the definition of
tensor products.

1: We need to make a comment on the adjoint of an
antilinear operator. It is defined by

(¢, Ay) = s(y, A ). 3)

where s =1 if ¢ and yw are treated as a commuting
variables and s = —1 if they are treated as anticommuting
ones. Since NCG is a classical theory, both cases can be
found in the literature. However the choice s = 1 would

make things go astray at several places (in the definition
of the Lagrangian, for the seesaw mechanism and for
solving the fermion doubling). We will thus consider only
the s = —1 case in this paper.

Remark 2: Tt would be tempting to consider the Hilbert
completion of K with respect to # and formulate the theory
in terms of a Hilbert space and a fundamental symmetry
instead of the less familiar (pre-)Krein space. However it
would be a bad idea for two reasons. The first is that this
completion is generally not unique [23], but even when it is,
for instance in finite-dimension, we would then put two
objects (the scalar product and the fundamental symmetry)
instead of one (the Krein product) in the background, which
would pose a conceptual problem for the definition of
symmetries (the example of Minkowski space where
choosing 7 is equivalent to choosing a time coordinate is
good to keep in mind).

B. Noncommutative 1-forms

The theory of noncommutative 1-forms exposed in
Ref. [28] (to which we refer for more details) can be
extended without change [29] to the indefinite setting. We
recall here the main concepts. Let S = (A, ..., D) be an
IST. An element ® € End(K) of the form

W= Zn(a,.)[D, n(b)].a;. b; € A (4)

is called a noncommutative 1-form of S. The space of such
forms is written Q}). It is a bimodule over 4, and the map
dp:a > [D,n(a)] is a derivation of A into Q}, which is a
first-order differential calculus in the sense of Ref. [30].
One extends dp to Q}, by

dpw =) _[D.x(a;)][D. x(b;)]. (5)

1

However, @ can be decomposed as in (4) in several ways,
hence (5) makes sense modulo a certain ideal 7 b of so-
called [31] “junk 2-forms.” The curvature of a 1-form is
defined modulo junk by

pp(@) = dpw + @”. (6)

Let u be an invertible element of A. It defines a gauge
transformation on 1-forms by the formula

o 0" = a(u)or(u)™ + z(u)[D,z(u)7t].  (7)
Then the curvature is gauge-covariant:

pp(@*) = upp(w)u. (8)
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C. Algebraic backgrounds

For applications to physics it is important to define a
background structure in which the Dirac operator can vary.
For several reasons [9,22,32] one cannot just remove the
Dirac operator from a spectral triple. Instead we define an
algebraic background to be a tuple B= (A,...,J,Q),
where the objects A, ..., J are exactly the same as in the
definition of an IST, and Q! is an odd .A-bimodule (its
elements anticommute with y).

The symmetries of a background B are naturally defined
to be the Krein unitary operators U which commute with y
and J, and stabilize 7(.A) and Q'. A particularly important
case is the following. Let u be a unitary element of A and
define the gauge transformations Y(u) = x(u)m(u=')°.
These transformations will be symmetries of B under the
condition

a(u=1)°Qlz(u)° = Q1 9)

for all unitary u. We call (9) the weak order one condition
(weak C;). Clearly the usual order one condition implies
the weak one.

An operator D is called a compatible Dirac operator for
B if it has all the properties of a Dirac operator listed in the
definition of an IST and satisfies Q}, C Q!. It is moreover
called regular if Q, = Q!. We will always suppose that
at least one regular Dirac exists. The vector space of all
compatible Dirac operators for B is called the configuration
space. It is stable by the symmetries of B.

Given a compatible Dirac D and a self-adjoint 1-form o,
one defines the fluctuated Dirac operator

D,=D+w+ o°, (10)

where @® = Jo*J~!'. Let us suppose that for all a € A,
one has

[w®, n(a)] € Q. (11)

We call (11) the weak C'; condition, since it is analogous to
weak C. If this condition holds, it is immediate that D, is
also a compatible Dirac.

If weak C; holds then for every compatible Dirac D,
Y(u)DY (u)~! is a compatible Dirac, and if in addition C,
holds we have the formula

@

Y(u)D, Y (u)" = D,y (12)

which justifies the name “gauge transformation” for (7).

D. Tensor products

The general rules for the tensor product of two IST are
the following ones [10,33].

Let Bl = (Al’Klv ...,JI,Q%> and Bz = (./42, ICz, ey
J,,Q3) be two backgrounds. It will be sufficient to consider
the case where A, and /C, are finite-dimensional. The
(graded) tensor product B = B,®B, = (A, K, ...,J, Q") is
defined in the following way. First we set A = A; ® A,,
K:’Cl ®’C2, T =T ®7T2, X=X ®}{2 In order to
define the rest of the structure, let us define some notation.
If w is in one of the eigenspaces of y we say that it is
homogeneous, and we define its grading |w| € Z, to be
equal to 0 if yy = w and 1 if yyv = —y. Similarly, operators
commuting with the chirality are said to be even and given
the grading O, while operators anticommuting with it are
said to be odd and given the grading 1. For homogeneous
operators T; € End(K;), i = 1, 2, we can define the graded
tensor product 7,®T, by

(T\®T2)(y1 @ yr) = (~)WITT 1y @ Toyp.  (13)

The graded tensor product of homogeneous operators is
related to the usual tensor product by the formula
T,QT, =T, X\szI ® T,. With these notations in hand we
define the real structure J to be

TP @n, . (14)
The bimodule Q' will be generated by the 1-forms

0 =081+ 1Qw,, o € Q}, 0w, € Q) (15)

The Krein product on K is defined by

(01&d2. 1 Q) = (h1.w1),(h2. fya)s.  (16)

where g = 1if (.,.), is even, f = y, if (.,.); is odd and
(...)yiseven, and § = iy, if (., .); , are both odd. Note that
the KO and metric dimensions are additive with respect
to tensor products. Finally we observe that if D, D, are
compatible (resp. regular) Dirac operators for B, B,
respectively, then

D =D ®! + 1®D,, (17)

is a compatible (resp. regular) Dirac operator for B.
Consequently the tensor product of two IST S| =
(A, ....J1,Dy) and S, = (As, ..., 5, D,) is defined by
S=(A,....J,D), with A,...,J as above and D given
by (17).

III. SM ALGEBRAIC BACKGROUND AND IST

The IST adapted to the Standard Model is very close to
the spectral triple defined by Connes and coll. [1], except
for the fact that we work in a Lorentzian four-dimensional
spacetime M [signature (1,3)]. First, out of M we build the
background By, = (Ay, ..., Q},) where Ay = C® (M), is
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the algebra of real-valued smooth functions over M which
are constant outside a compact (this is the unitization of the
algebra of compactly supported functions), /Cy, is the space
of compactly supported spinor fields, z,, is the represen-
tation of functions by multiplication on spinors, y,, is
the multiplication by ys, the Krein product is [34]
(w.y') = yw'yow', Jyw = yoy*. Finally the 1-forms are
just the usual 1-forms represented on ), by Clifford
multiplication. A regular Dirac operator for M is the
canonical Dirac operator [35] D), = iy*0,. Note that the
KO-metric pair is (6,4) so that e =1, ¢’ = -1, k = —1,
k" =1. The background B;, and the IST Sy =
(Aps, ..., Dyy) are respectively called the canonical back-
ground and IST of M, respectively.

The IST of the Standard Model is Sqy; := S, ®S ) where
Sp is a finite IST that we now need to describe. The algebra
is Ap =C® H & M3(C), where H is the algebra of
quaternions. The Krein space is

Kr=Kr® K, ® K ®Kj. (18)

where these four spaces represent the right particles, left
particles, anti-right-particles and anti-left-particles. Each K,
is 24-dimensional and isomorphic to

Ko=(C:®CiQC})®C). (19)

The relation with the physical particles is the following
(i) CZ is a lepton doublet of canonical basis (v, €)
(ii) C2 is a quark doublet of canonical basis (u, d)

(iii) a:§ is the space of colors (r, g, b) or (1,2,3)

(iv) CJ is the space of generations (usually N = 3)
For example, a basis of the space Cy of right particles is
made of (vg, eg, uk, up, ub, dy, d%, dy) for each genera-
tion, a basis of the space L; of anti-left-particles (which are
right-handed antiparticles) is made of (15, e§, ul, uj, ub®,
dre,di, d>) for each generation. Another way to look
at (19) is to see ¢ as the fourth color as in Pati-Salam
theory, and write

Ko=Ci®C:®Cl. (20)

With this decomposition we can introduce the useful
notation @ :=a ® 1, ® 1. Using this notation, the rep-
resentation 7z is defined as follows: for an element
(4,g,m) € C @ H @& M;(C), one defines

7p(A, q,a) = diag(g;, .1, ® (A @ a)
Rly, LIU®a)®1y) (21)

where ¢; = (¢ !

algebra of matrices of the form (f‘ﬁ 7) and 2@ a is the
block diagonal matrix (3% acting on the color C*.
Moreover (21) is seen as a diagonal matrix in the

) is the embedding of C into H seen as the

decomposition (18). Using the same decomposition (which
we will use hereafter without further notice), the chirality
operator is

xr = diag(l,-1,-1,1) (22)

where 1 is the identity operator on K. The Krein product
on Kr is (.,.)p = (., np.), with fundamentally symmetry

ne = diag(1,—=1,-1,1) = yp. (23)

The real structure is

00 -1 0

Jp = 00 0 - oc.c. (24)
1 0 0 O
o1 0 O

with the same notation and c.c. means complex conjuga-
tion. The finite Dirac is

0 =Yt —-M" 0
b T 0 0 0 25)
7m0 0o -7 |
0O 0 YT 0
where
v (% 0 (26
N0 T, ®13) )

with T,, T, € M,(My(C)) given by

T_(TD o> T_(TU 0) on
“~\o v1,) “~\o 1,/

where we have decomposed the C? factor using the (u, d)
basis, while

M_(m 0)®
~\0 0

where m € My(C) is a symmetric matrix (responsible for
the type I seesaw mechanism). This ends the definition
of SSM'

The SM background Bgy, is the tensor product B, @B,
where B is the finite background constructed out of
the same objects as Sy except that we replace Dy with
Q= Qp, (so that Dy is a regular Dirac by construction).

The bimodule Q. contains matrices of the form

(28)

S O O =
o O O O
o O O O
oS O O O
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0 T*él 0 0
g, Y 0 0 0
op = , g, € H. (29
F 0 0 0 0 q1-92 ( )
0 0 0 0

The definitions of the SM triple and background seem
extremely contrived, but the beauty of the NCG approach is
that there is on the contrary very little freedom in these
choices. Clearly definition (19) is dictated by the fermionic
content of the theory, while the choice of the algebra is
motivated by the gauge group. One can see from (18) a
quadruplication of the fermionic degrees of freedom, since
Ky already contains four-dimensional Dirac spinor fields.
This problem, known for a long time [36], is solved by
defining the physical Krein space by the Majorana-Weyl
conditions [37]

J¥ =V,
1P =V (30)

This solution can be shown to be unique [38] up to a phase
under natural symmetry assumptions, but requires the KO-
dimension of the SM background to be 0[8]. Since the KO-
dimension of the manifold background is 1 — 3 = 6[8] we
obtain that B has KO-dimension 2[8]. Moreover it can be
shown that the fermionic action is non-vanishing only if the
metric dimension of Bgy is 2[8], which yields a metric
dimension of 6[8] for the finite background. These con-
straints completely determine (22), (23), (24) up to a
change of basis. The Dirac operator D is also strongly
constrained by the IST axioms as well as the order 1
condition. The forms (25) and (26) are the most general,
while there exist other solutions beyond (27), (28) which
are here taken to be the simplest nontrivial ones. There are
some theoretical arguments to reduce the freedom even
more [14,39,40]. It is important to observe in particular that
the axioms satisfied by Dy force m to be symmetric.

IV. NONCOMMUTATIVE GAUGE THEORY IN
THE PRESENCE OF A REAL STRUCTURE

Noncommutative gauge theory has been devised by
the Connes and Lott at a time when the role of the real
structure had not yet come to the forefront. It was also
formulated in the Euclidean context. The extension to
almost-commutative triples with a manifold part of general
signature poses no problem and has already been per-
formed [8]. We quickly present here a new version
compatible with the presence of J and general signature
on the finite part.

Consider a background B = (A, ...,Q!) satisfying the
order 0 condition. Since the fluctuated Dirac in Eq. (10)
contains contributions @ from Q) and @° from (QL)°,

we use the J-symmetrized background B obtained by
replacing: .

(i) A with the algebra A generated by z(A) and z(.A)°,

(i) = with # = Id, .

(iii) Q' with Q', which the A-bimodule generated by Q!

and (Q!)°,

all the other pieces of data remaining unchanged. Note that,
using C, Alis the image of the enveloping algebra A ® A°
under a @ b’ + n(a)n(b)°, where A° is the opposite
algebra of A, characterized by a°b° = (ba)°. Let D be a
regular Dirac for B. It is then automatically a regular
operator for B. Let Dp be the space of fluctuations (10)
of D. It is the configuration space of NC gauge theory, and
contains all the gauge and Higgs degrees of freedom, while
the full configuration space also contains the gravitational
degrees of freedom [9]. We would like to define a gauge-
invariant action functional on Dj. This is meaningful if:

(1) gauge transformations are symmetries of B,

(2) Dp is a subspace of the configuration space of 1,

(3) Dp is gauge-invariant.
All 3 requirements are implied by the order 1 condition
which holds for the SM. In the B — L-extended SM to be
studied below, weak C; and C) hold, so that requirements
1 and 2 are met. It can be shown [41] that 3 holds
automatically under weak C;. In the B — L case it can
also be seen directly or by showing that inner fluctuations
in the sense of Ref. [19] are fluctuations in the usual sense
[42]. For any model satisfying 1, 2, 3, a gauge-invariant
action S(D,,) can be defined on Dy, by applying any gauge-
invariant function to the gauge-covariant curvature pp (@)
computed in the J-symmetrized background. In Connes-
Lott theory this function is of Yang-Mills type. In order to
be more specific, let us specialize to the case where
B = By ®Bp, with B, the canonical background of a
manifold and By a finite-dimensional background. Then
we can define the “Krein-Schmidt product”

(A1, A;) = ReTr(A¥A,) (31)

on operators A; in End(C* ® Ky), where i = 1, 2 and C*
is the space of Dirac spinors. Then the generalized
Connes-Lott-Elsner action is the integral over M of the
Lagrangian [43]

£,(D,) = = (Plpp(). Plpp(@))).  (32)

where n is some constant and P is a projection operator
which we now need to describe. We recall that pp(®) is
only defined modulo the junk ideal 7},. The operator P is
the projection on the orthogonal of J L. Tts insertion in (32)
makes the formula well-defined. Moreover P has the
properties P = P*, P(n(a)Tz(b)) = n(a)P(T)xn(b) from
which the reality and gauge-invariance of (32) follow.
Note that in a Krein space the orthogonal projection on a
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subspace V is well defined iff V nV+ ={0}, which
happens to be the case both for the SM and its B — L-
extension. For more details, see Ref. [38].

Remark: One can easily prove that

pp(w+@°) = pp(w) +pp(w)° +{w.0’}, (33)

and that moreover the term {®, @’} is in the junk under C;.
Using also the property (A, B°) = (A°, B) of the Krein-
Schmidt product, one can make the dependence of the
Connes-Lott-Elsner action on @ disappear entirely. This is
the approach followed in Ref. [33]. In this case there is no
need for J-symmetrized background. Since in this paper we
will consider the B — L-extension for which C; does not
hold, we must use the most general approach. Note
however that even for the SM there is a subtle difference
between the two approaches coming from the fact that the

junk ideals 7}, and 7}, are not the same.

V. THE LAGRANGIAN AND THE RG FLOW
OF THE NC STANDARD MODEL

The Dirac operator around which we fluctuate is
D = DM®1 +1®D r. One can show [9] that the elements
of Dp are then of the form

A 1 1 1
D+ ly”@ <Xlx + EgB”[y +§gWWZt§§V + EQSGZI%>
+1Q(P(g—1) + P(g—1)°) (34)
where X, B,, Wy, G are real fields, ¢ is a quaternionic
field, g, g,,, g, are some constants and ty, ty, tj,, ¢ are

diagonal matrices of the form diag(zg,7;,7%.7;) ® Ly,
where in decomposition (19) we have

i (0 o>@<o
T fy. =
M- TR=\ o 0

7 = —il, ® —il, ® 13,

forty:TR:<O 0 )@(gl O>®137
0 -2i 0o %

3

0 )@1
~2i >

. i
T, = —112 @ 512 ® 13,
for #§,: 7 =0,
7, = ic’ @ ic” @ 13,

fOI‘ t%: TR:TL:0612®1}40,

a=1,2,3
a=1,...,8

and where we choose the bases ¢ and A¢ of Pauli and Gell-
Mann matrices, normalized by Tr(c%c;,) =Tr(4“;,) =254,
Formula (34) is just a decomposition of D, on a particular
basis chosen to recognize the usual fields. But one notices
an intruder, namely the X-field. It has to be set to zero
by hand: this is the infamous unimodularity problem

(see Ref. [2], chap 8 for a thorough exposition) which
affects all NCG models of particle physics to date. The
removal of the X field, which is equivalent to anomaly
freeness, is consistent with (12) only if we restrict u
to have determinant 1, yielding the correct gauge group
U(1) x SU(2) x SU(3).

The computation [9] of (32) yields (for N = 3 gener-
ations):
nL, = —40g’B,, B" — 24g, Wa,Wa' — 244:G4, G’

+ 16A|D, H|* — 8V, (|H* — 1) (35)

where H is the second column of the quaternion ¢, and

1. 1.
D,H = (8” +§lgWW,‘jaa —l—ElgB”)H, (36)

from which we see that the doublet H has hypercharge 1.

The constants A and Vy can be computed from the entries
of Dg. More precisely, under the genericity hypothesis that
T is invertible and that any matrix commuting with both
Y,Y) and Y,Y} (resp. Y, Y} and TdTZ) is scalar, we
find that

A = Tr(T, Y5+ Y, + 37,15 +37,T))

Vo = LTI + 0 CEP + 30, X0l + 3]0, X1

e 0 e A

Sin
||TUTZ - TeTZ”z
21 At 2

N 6|\TMT1|| 1T TP
1T, 0h = T X5

—I—2|

0,

0

(37)

q

where the angles 6, and 6, are defined up to sign by

ReTr(Y, Y} T, %) = ||, L5 T, YL cos(6y)

ReTr(Y, Y1 Y, X)) = [T, X0 TaY] ] cos(8,).  (38)

the norm of a matrix A € My(C) is the Hilbert-Schmidt
norm ||A|| = \/Tr(AA) and A = A — % Ly.

Remark: The tildes and the sine terms are not present in
the traditional formalism of Euclidean Connes-Lott theory.
Their presence can be traced back to the use of the
J-symmetrized background.

In order to normalize gauge kinetic terms as usual one

has to set the coupling constants to the special values

5 n
g%:g?:—gz:%-

- (39)

Similarly we introduce the Higgs field
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b= 4\/%11, (40)

so that the kinetic term is |D,¢|*. This fixes the values of
the Higgs quartic coupling to

o Von

b= (41)

Since the Higgs potential is obtained via (32) as a square,
its minimum is zero and the Higgs field does not contribute
to the cosmological constant. Moreover the minimum is
obtained for |H| = 1, the vev of ¢ therefore satisfies

v A
= 4\ﬁ. 42
Let us now look at the fermionic action. It is given by

Sf(Dwv T) = <1Pv leP) (43)

N[ —

where ¥ belongs to the subspace Kpyy of K determined
by (30). Alternatively [38], one can take for ¥ a generic
element of /C and use the action

S¢(D.'¥) =5 (x¥. D) (44)

N[ =

1

N |

il

where 7 = W is the projector on Kpyy. Either way

we obtain all the usual terms of the SM. Let us compute
some of them in order to show the peculiarities of
the calculations of a NCG model. This will also yield
the precise interpretation of the matrices T and M entering
Dp. Seeing W as a field with values in S ® Kp, one
sees that

W= "yh® pr+Juwh ® P+l ® pL—Juw ® p§
p

(45)

where p runs through the orthonormal basis of elementary
fermions. One then just has to plug (34) and (45) into (43).
The result for the gauge term in the electron sector is for
instance

2ewrren) (308,) + (evrten) (398, ) 40

which can be used to check the consistency of the charge
assignments and convention for the covariant derivative.
Now the Yukawa and Majorana terms are

(P AB(Dp + B(g ~ 1) + (g~ 1))¥) = > ((vp. av) (L) + Wy fep)(To)iy = (ef BvR) (L)

+ (627a*62)(T6)ii’ + (ulLv au%)(’ru)ii’ + (”bﬂd%)(Td)ii’
- (dz’ﬂ*u%)(’ru)ii’ + (di, a*d%)(rd>ii’)

1 o
+ E;(JMD;, vie)(m);y + H.c. (47)

where we recall H = (/) is related to the Higgs field
¢ = (‘(’;ﬁ) by (40). However since the minimum of the Higgs
potential corresponds to ¢ = 1 by construction, we see that
Y,, T, Y, Y, are exactly the Dirac mass matrices of
fermions. We also see that m/2 is the Majorana mass matrix
of right-handed neutrinos.

Remark: From (37) one can then infer the following
interpretation for A and Vi: A is the sum of the Dirac
masses of fermions squared, while the first four terms of V,
are variances of fermion masses.

The unification of the gauge couplings which is pre-
dicted by the approach holds at some energy scale ;. At
this energy the bosonic Lagrangian is given by (32), and the
prediction (39), (41), and (42) are supposed to hold. There
is also a relation between the W-bosons and fermions

|
masses at the unification scale. Charge eigenstates W are
introduced as usual and their tree-level mass is

VG (48)
From this we obtain:

1

iy = 1 v’ gy
1 4 .
- Z9%32nTr(1reafZ FTLYS 3T, + 370
1
=13 Z squared masses of fermions, (49)
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where in the second line we have used (42). In particular we
obtain the bound

m, < 2my. (50)

We note that this prediction is different from the one
obtained with the spectral action, which is [44]
m, < +/8/3my,.

We will suppose as in Ref. [7] that only one Dirac
neutrino mass mp is non-negligible with respect to the top
quark mass. Introducing the couplings y, and y, defined
such that the Dirac masses of the top quark and neutrino are

1
—y,0,
\/Eyl‘

one obtains from (42) and (37)

m; = mp (51)

1
= — l}’
Nk
32
v? M (3m? + m3),

where we have neglected all masses except for m, and mp,.
Plugging in (51) and introducing

P =Y,/ Ve (52)

we get the relations

In order to obtain A at unification scale, let us observe
that for a matrix A € My(C), one has Tr(A?) =
Tr(A%) — 4 Tr(A)?. If the spectrum of A is dominated by
an eigenvalue M? we have the approximation Tr(A?) ~
Tr(A)? ~ M*, so that

Tr(A?) ~ NT_lM“. (54)

Using this observation and Eqgs. (37) and (41), we obtain
the approximation

n(N-1)(3+p%
32N (3 + p?)?

(55)

Together with (39), (53), and (55) can be used as initial
values [45] for a run down of the renormalization group
equations to the experimentally accessible energy scales.
We see that there are two free parameters n and p, and a
starting energy s, which is tied to n by (39). Since the
gauge couplings never exactly come together under the SM
RGE, we cannot define a precise value for p,;r. Instead we
will use the following strategy: we give a value to n and set
Munit SO as to minimize the error on gauge couplings at the
Z mass scale. To estimate this error we use the relative
standard deviation

wsp V302 = 97+ (9u0m7) = 67 + (9:m7) = 5.))

where g;(m) are the running coupling obtained by running
down the RGE from energy scale p,r, and g; are the
experimental values at m,. We keep only the values of n for
which RSD,, can be lowered to less than 5 percent. This
leaves the interval [22, 35] for n, corresponding to energies
going from 10'> GeV to the Planck scale. The relative
standard deviation of gauge couplings will then be (at
1-loop) the same function of n for all the models studied in
this paper.

Once p ;¢ is found for a given n, we set p so as to
minimize the RSD of the top and Higgs masses computed
according to the formula:

V2((m,(172) = 172)% + (m,(125) — 125)?)

RSD,, =
SDy 172 + 125

(57)

Note that in order to measure how well the model fits the
experimental data we do not use the predicted pole masses

. (56)

9+ 9wt gs

|

of the top and Higgs but the running masses computed at
their respective experimental values (for instance, the top
mass in Table I is the running mass m,(172)). The figures
should be close if the model is good. Note also that we
calculated m, from (51) and the Higgs mass from

TABLE 1. Relative standard deviations of gauge couplings at
mz energy scale. RSD of top and Higgs masses computed at
scales 172 and 125 GeV respectively. p,;r chosen to minimize
RSD, and p to minimize RSD,,.

n 24 26 28 30 32
logo(uunit/GeV) 1827 1675 1545 1432  13.34
p 1.84 1.85 1.85 1.86 1.86
RSD, 0.032  0.020 0.015 0.020 0.031
RSD,, 0.131  0.141 0.151 0.162 0.173
Top mass 161 162 163 163 164
Higgs mass 161 164 168 172 175
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TABLE II. Same as Table I when the gauge couplings are TABLE III. Results of the run down of the Chamseddine-
corrected by an unknown threshold effect. Connes model with no threshold.
n 24 26 28 30 32 log o (#unit/GeV) 18.27 16.75 15.45
logo(uunis/GeV) 1827 16.75 1545 1432  13.34 RSD,, < 0.05 [1.38, 1.47]  [1.34;1.39]  [1.31, 1.32]
P 1.09 1.07 1.07 1.03 1.02 best fit 0.048 0.049 0.050
RSD,, 0.076  0.077 0.077 0.078  0.079
Top mass 159 160 161 161 161
Hi 139 141 141 143 143 . .
1885 mass neutrinos. Their model depends on two parameters: the
unification scale p,,;r and p := y,/y,. They found that for
) ) any fnir in the allowed zone there exists a p which gives a
mj, = 2407, (58) good fit for the Higgs mass. However, they remarked that

using v = 246.66 GeV and ignoring renormalization of v.
We explored the parameter space using 1-loop RGE and
found no value of p for which RSD,, were less than ten
percent. Worse, the Higgs mass is always off by more than
30 percent. Examples of results are shown in Table 1. Note
that if instead of calculating the RSD of masses we fix p to
fit the top mass perfectly (which happens for p ~ 1.5), then
the Higgs mass is way too large (close to 170 GeV).
One could argue that instead of (39) one should use as
initial values for the gauge couplings those which are run
up from the Z scale, setting RSD, to 0 by construction (this
is the strategy used in Refs. [12] and [44]). Hence, at one
loop, the values of g, g,, and g at p,,;; are switched to

g = (g(mz)* = 2kb; (log(ptunis) — log(my)))~"/2
gw = (gw(mZ)2 - 2kb2(10g(/’tunif) - 1og(mZ)))_1/2
95 = (9s(mz)* = 2kbs(log(punir) — log(mz))) ™"/,

where k = 1/167%, by = 41/6, b, = —19/6, by = -7, and
the couplings at m  are the experimental values. This can
be justified by embedding the SM in a larger (unspecified)
extension with a threshold happening just at p,;;. Hence
some threshold correction 6 would change ginto g+ 6 = g
and so forth. However this does not change the results
significantly as far as RSD,, is concerned (see Table 1I). We
conclude that the model is not satisfactory for empirical
reasons. We will see in Sec. VII that it also suffers from a
theoretical inconsistency.

VI. THE CHAMSEDDINE-CONNES MODEL

In Ref. [13] Connes and Chamseddine performed the
RGE analysis at one loop of the Euclidean NCSM with the
spectral action, extended with a real scalar added by hand.
The general agreement with the experimental values of
the top and Higgs masses was an important step for the
subsequent development of the theory. For this reason, we
are going to briefly reanalyze this model and use it as a
benchmark. We do not enter into any detail, referring
instead to Refs. [13] or [44].

Connes and Chamseddine set themselves in the case
where there is effectively only one family of right-handed

for such a p the predicted top mass was off by a few
percents and argued that the 2-loop effects could correct
this. Instead of fitting the Higgs mass first and looking at
the error on the top mass, we give in Table III the interval
to which p must belong in order to obtain RSD,, < 0.05,
as well as the minimum of RSD,, when p varies in this
interval. We see that the agreement with experimental
values is never much better that 5%. However, the mass
of the real scalar has been estimated [44] to be at least of the
order 10'> GeV. Hence it must decouple from the RGE
under this energy, giving rise to a threshold effect. We see
from Tables IV and V that the model gives better results
(RSD,,, around 3%) when this threshold effect is taken
into account.

VII. THE B - L-EXTENDED NC
STANDARD MODEL

A. Formulation of the model and prediction
of the couplings at high energy

The model presented in Sec. III is not consistent with the
viewpoint of algebraic backgrounds since with the latter
it can be shown that the B — L symmetry must be gauged
[22]. In order to fulfill this requirement we extend the
algebra by a factor of C. The extended SM triple and
background SgY; and Bg);, respectively, are hence defined
exactly as before except for the following modifications:

TABLE IV. Results of the run down of the Chamseddine-
Connes model with a threshold at 10!2 GeV under which the real
scalar decouples.

1080 (Hunit /GeV) 18.27 16.75 15.45
RSD,, < 0.05 [1.42, 1.62] [1.38, 1.54] [1.34, 1.48]
best fit 0.031 0.032 0.033

TABLE V. Results of the run down of the Chamseddine-
Connes model with a threshold at 10'* GeV for the real scalar.

10810 (tunir/GeV) 18.27 16.75 15.45
RSD,, < 0.05 [1.42, 1.59] [1.37, 1.52] [1.35, 1.47]
best fit 0.024 0.026 0.028
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(i) Ap is replaced with AX' =C & C @ H @ M;(C),
(ii) = is replaced with 7% defined by

77 (4,4, g, a) = diag(g;, 4,1, ® (¥ @ a)
Rly.L®W@a)®1y) (59)

(iii) Q. is replaced with (QL)®! containing the 1-forms

0 Y'g, zM" 0
ext ZDT O 0 O
wp” = )
oM 0 0 0
0 0 0 0
9192 €H, 21,20 € C. (60)

Let us note that Bg); only satisfies weak C;. The choice of
(60) for the bimodule of finite 1-forms is such that Dy is
still a regular Dirac operator for the extended background.
This can serve as a first justification, but it should be noted
that (Q})®! can also be found as a solution of the following
two constraints [41]: the extended background must (1) sat-
isfy weak Cy, and (2) satisfy C; when the algebra elements
are restricted to A;. Moreover this solution is almost unique:
T and M must have the form given by Eqs. (26) and (28), the
only remaining freedom being in the form (27).

Within the extended background we can fluctuate around
the same Dirac operator as before, or make the simpler
choice D = Dy,®1 (for the same result). With the latter
choice, the elements of the extended configuration space
are [46]

N 1 1 1
D+ ly”@ (XZX + EgBM[Y —l—ngWZt“fV + Egstjt‘é

s Zyps + 18(®(g) + D(g)" + a<z>) (61)

with z a complex field,

0 0 zzM" 0
0 0 0 0
o(z) = , 62
@) zM 0 0 0 (62)
0O 0 0 0

and the B— L generator is t3_; = diag(zg,7.,75,7;) ® ly
with

) i
TR:TL:_ZIZ®§12®13' (63)

Inserting (61) into (32) yields (for N = 3)

nL, = —40¢°B,,B" — 242 W, ,W* — 24¢2G,,,,G"*
- 64422, 2" — 6499, Z,, B"
+ 16A|D,H|* + 8B|D,z|> — 8V, (|H|> — 1)?
—8Wo(lz]> = 1)> = 16K(|H]> = 1)(]z]* = 1)  (64)

where A and V) keep the same meaning as in (37) and the
other constants are

b = Tr(m"'m)

Wo = [[mm|]?,

K = ReTe(T)Y, m'm), (65)
The covariant derivative of z is
D,z = (0, +2igyZ,)z (66)

which shows that z has B — L charge 2. Table XIII
summarizes all the other charges. Normalizing the gauge
kinetic terms to

1 1 1 1 K
_Z |B;u/|2 _Z |qu‘2 _ Z Gﬁu|2 _ Z ‘lel|2 _ Ezﬂy/Bﬂu’

(67)

we obtain

5 8 n 2
2 _ 222 %o _ — /=
Go=G =30 =30 =g X \/5 (68)

To deal with the kinetic mixing term we perform the
standard triangular transformation [47] to obtain new fields
B and 7'

K

G- D)6 @

-«

Rewriting the covariant derivative (or Dirac operator) in
terms of the tilded fields introduce new couplings constants
¢ and § defined such that

1 1 . ~(1_
9Bty + 92 Z,tg_ = 5 9Bty +Z, <§ng + g/tB—L>s

2 2
(70)
which yields
9z ~ Kg
V1 —«? V1 —«? )
From (68) we obtain é = - ‘5‘ which exactly the same value

as that coming from SO(10) unification [48].
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Let us turn to the scalar sector. Introducing the normal-
ized Higgses

¢ = 4\/EH, &= \/@2, (72)
n n

the scalar Lagrangian becomes |D,¢|* + |D, &[> — V(9. £),
where the potential is

V($.8) = mi|g]* + m3|El® + gl + Al

+ Al (E)7 + (73)
with
_ Von _ Wyn _ Kn
1T 3042 S Y 37 8AB
’"%:_VO:K’ m%:—zw‘);K,
ﬂzsw. (74)

Once again, the minimum of the potential is obtained for
|z| = |H| = 1 directly from (64), and this gives the vev’s:

2A B
v =44/ —, v = 4\/7. (75)
n n

The fermionic action gets new terms coming from the Z’
and z-fields. The latter is

! o
EZZ(VR’ Vi)m;y + H.c. (76)

ii’

and we recover the Majorana mass matrix %m when z = 1.

Let us now look for a set of initial conditions for the
RGE. In order to do that we have to choose a scenario for
the hierarchy of Majorana masses. In this respect it is
interesting to note from (74) and (65) that the initial value

of 1, and A5 are proportional to ||mm'||> and |mm?||
respectively. This means that m cannot be too close to the
identity matrix since in that case 4, and 13 would be only
radiatively generated and be too small to have a sizable
impact on the Higgs mass (this argument is supported
by numerical simulations). We will thus use the opposite
scenario in which one Majorana mass m,, dominates the
others. As far as the Dirac masses are concerned, we will
continue to suppose as in Sec. V that one Dirac mass mp is
dominant and non-negligible with respect to the top mass.

Let us define the Majorana and Dirac Yukawa coupling
matrix Y and Y, by

m=2Y\v,
1

YT, =—7Y,v. 7
V2 77)

Performing a unitary change of basis in the left and right
neutrino spaces, we can always suppose that Y, is diagonal,
and thus of the form Y, = diag(mp, 0, 0). In the same basis
we have Y, = diag(y,,0,0) and y, is related to n and p by
the same formula (53) as in Sec. V.

Now from (65) we obtain

B~ (my)? (78)

and from (75) we find

2
m= 4mM\/:YN (79)
n

Since m is symmetric, its singular value decomposition can
be written

m = UZUT (80)

where U is a unitary matrix. The fact that X ~diag(m,,,0,0)
will allow us to suppress many degrees of freedom in U,
retaining only its first column (a, b, ¢)”. Thus we have

a> ab ac

m=xmy| ba b* bc (81)

ca cb 2

and the only remaining freedom we have is to multiply U to
the right by an orthogonal matrix commuting with X,
yielding a global change of sign of (a, b, ¢). Now from (79)
we obtain

a- ab ac
Yvr—4 /= 2 , 82
N A5 ba b* bc (82)
ca cb 2

where (a, b, ¢) is a point of the complex 2-sphere, uniquely
defined up to a global sign. Using the spherical coordinates
with origin (1,0,0) we can parametrize it by

a = cos e,

b = sin@cos pe’,

¢ = sin @ sin ge’r (83)
with a € [0, z[, B,y €] — 7, 7], 0, ¢ € [0,7/2].

To obtain the other initial values we observe that we can
write
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N —————p*mi(my)?*, (84)

where K is obtained by direct computation. From (74) we
then obtain the initial conditions

(3+p*)n _n

_ n (3lal> = 1)p*n
PTag(3 402 P

A pu—
T 2403+ )

(85)

Equations (53), (68), (82), and (85) now form a complete
set of initial values [49] for the RGE. The latter, which we
have computed with the PyR@TE 3 software [50] are given in
the Appendix A. When the run down is performed we
obtain predictions for the top quark mass and the lightest
scalar of the model, which is identified to the SM Higgs.
The formula for the top mass is the same as in the SM, but
the mass of the Higgs gets a correction. Indeed, the masses
of the two Higgses satisfy [51,52]:

My = 407 + 20 F \/(/11”2 — %)+ (A00)2

(86)
Using 1> < v’ (see Eq. (94) below) one finds
3
m%] ~ 21]2 (ll - E) s (87)

which replaces Eq. (58). In the next sections we present the
results of the run down and compare the predictions of the
top and SM Higgs mass with their experimental values.

B. The gauge couplings

The running of the gauge couplings presents interesting
peculiarities (Fig. 1) which need to be discussed.

One notes the extreme stability of x and the almost
perfect equality of the two normalized Abelian couplings at
all scales. An explanation of the first phenomenon is the
following: let us change the (ty,tg_;, %, %) basis to an
orthogonal one. This is done just by removing the orthogo-
nal projection of ¢z_; onto ty, defining the new basis vector

t
ty =1g_; — (Z‘B_L, tY)W =1Ip_ _gtY- (88)

Since the curvature is linear in the Abelian fields,
this change of basis also removes the kinetic mixing,
and is equivalent to (69) at the level of fields components.
Though (69) is meaningful in any B — L model and scale-
dependent, (88) is scale-independent. This shows that the

value x = \/% is stable under RGE. This feature is shared

— /5/3g
—
1.1 4 — s

V8/39z

— K

0.9
0.8
0.7
0.6
0.5
0 2 4 6 8 10 12 14 16 18 20
logyo(/GeV)
FIG. 1. The normalized gauge couplings +/5/39, ¢y s>

8/3¢g, and k as functions of log,o(u/GeV) for n = 24.

by any theory in which the gauge couplings are unified, as
shown in Ref. [53]. It is also proved in the latter paper that
the normalized couplings of the Abelian fields associated
with the diagonalizing basis, here \/5/3¢; and 1/8/3g,,
are equal at all scales since their beta functions coincide.
By (71) and the constancy of k, we obtain that ¢ and g are
also equal at all scales when correctly normalized.

C. The Yukawa and scalar sectors
in first approximation

In this section we present the results of the running down
of the RGE with the initial conditions (53), (82), and (85)
with @ = 1, b = ¢ = 0. This amounts to consider only one
species of right neutrinos (which by definition will be
the 7). Note also that we will not consider any threshold
correction. We hence make the same simplifying assump-
tions as in the Chamseddine-Connes model. Although
crude, this approximation will allow us to get a feel of
the general properties of the B — L extension. In particular,
it can be seen from Table VI that, in stark contrast with the
NC SM, compatibility with the experimental values of the

TABLE VI. The sixth line shows the intervals of p for which
RSD,, falls below 5 percent. The two last lines show the values of
y, and yM at the Z-scale for p = 1.5.

n 24 26 28 30
logo 18.27 16.75 15.45 14.32
(Hunit/ GeV)

best RSD,, 0.001 0.008 0.017 0.024
Phest 1.47 1.46 1.44 1.43
RSD,, < 0.05 [1.35, 1.58] [1.35, 1.56] [1.35, 1.53][1.35, 1.51]
v, (my) 0.50 0.53 0.56 0.59
yM(my) 0.48 0.51 0.53 0.55
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top and Higgs masses can be achieved for any allowed
value of n, as long as p satisfies

135 <p < 1.58. (89)

These bounds are roughly the same as in the Chamseddine-
Connes model, but the RSD,, is much improved, as can be
seen by comparing Tables III and VI.

We can also obtain some information on the masses at
experimentally accessible scales. At any energy u we have
the relations

m¥ = 2y (u)v' (u)

m? () = émﬂ)v(m. (90)

From the seesaw formula g & (m2)?/m} we also get

o Y
llght(/") Zﬁyi”(ﬂ)v’(,u) (91)

For all the values of n and p which are allowed by the
experimental values of the SM gauge couplings and top and
Higgs masses, we have (see Table VI)

y¥(mz) = y,(mz) = 0.5 (92)

and with v = 246.66 GeV (neglecting the running of v
from the Fermi scale) this yields

10*

v'(mz)

(93)

Miight (mz) ~

Now from the bound n;,, < 0.2 €V at the Z scale on light
neutrino masses [54] and one obtains

v'(mz) 25 x 10* GeV. (94)

This makes o'/v very large. Consequently the mixing
angle @ which rotates to the mass eigenstates of the Z
and Z'-bosons, given by [52]

tan(20') = — :
7+ 16475 - gi — 97

is vanishingly small at the Z-scale. In this regime the
Z'-boson mass is given by [Ref. [52], formula (46)]

Mzr(mz) ~ ZQ/(mZ)U/(mZ) z 3.7 x 1014 GeV (96)

and from (87)

my,, (mz) =~ /22, (mz)v' (mz) 2 4 x 10" GeV.  (97)

These values are of course well out of reach of accelerators,
so that we obtain without surprise compatibility with the
LEP bounds [55,56]

0] < 1073
MZ/

/

> 7 TeV. (98)

The masses of the Z' and the new scalar show that the
model should get a threshold correction at 10'* GeV. This
will be done in Sec. VIID below.

One notes that the allowed interval for p tends to narrow
down as n grows, and that the agreement becomes less and
less good. The best fit is obtained for n = 24, which is a
particularly interesting value [57] since it is the dimension
of Ky and could be interpreted as a natural normalization
of the trace in (32). We find it remarkable that this value
which is the most aesthetically appealing not only falls in
the allowed range but yields the best fit for the Higgs and
top masses. This also sets all gauge couplings to 1/2 and
corresponds to the energy 10'®27 GeV, which is quite close
to the Planck scale.

Besides compatibility with experimental values, there
are also two interesting theoretical constraints which are the
perturbativity bounds [48]

/11,2’3 < \/47[ (99)
and the stability bounds

Ao >0, A:=441, —ﬂ% > 0. (100)
The first one is satisfied at all scales and for all values of
(n, p) already allowed by the experimental constraints (see

Fig. 2 for an example of running of the quartic couplings).

[——

—_—

— )y

0.8 4

0.6

0.4

0.2 +

T
0 2 4 6 8 10 12 14 16 18 20
log,o(/Gev)

FIG. 2. Running of the quartic couplings for n = 24, p = 1.47.
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FIG. 3. The running of A =441, -4} for n=24 and

p = 1.47. Though this is difficult to spot, A does fall below 0
around 10" GeV.

The stability bounds are satisfied at all scales and for all n
as soon as p < 1.45. It is intriguing that the value p = 1.45
for which the minimum of A is exactly 0 is so close to the
value fitting best the Higgs and top masses which is 1.47.
Note however that p has to be > 1.5 in order for A to take
on negative values of non-negligible magnitude (see Fig. 3
for a plot with p = 1.47).

D. The full parameter space
and threshold corrections

In this section we explore the full parameter space for Yy
and we also include the threshold corrections. The nota-
tions used in this section are summarized in Table XIV.

Up to now we ran down one and the same RGE, defined
in the MS scheme, from the GUT scale to the Z scale. The
latter procedure is suspicious because of the Appelquist-
Carazzone decoupling theorem, which is not manifest in
the mass independent MS renormalization scheme. Hence
the couplings to the very massive &, Z' and vy, particles are
to be suppressed by hand when the energy scale falls below
a threshold which, according to the previous analysis,
should be at least of the order 10'* GeV.

The 1-loop RGE are thus supplemented by the tree-level
matching conditions [58]:

/12
1211—4—;2,

(101)
which can be obtained from the continuity of the Higgs
mass [formulas (58) and (87)]. Since there is no shift in the
W mass, and in the limit v2 < ¢/ the shift in the Z° mass is
negligible, the matching conditions for g; and g, are trivial.

Up to a set of Lebesgue measure zero, the parameter
space ) for Yy is the product of the spherical positive

TABLE VII. This table exemplifies the near independence of
RSD,, and m, on the complex phases (a,,7) for 10* random
points in the 3-torus and some fixed values of (p, 6, ). The
energy scale is set to 10'827 GeV, corresponding to n = 24.

(p.0.9) (2,0.1,0.2) (2.1,0.7,0.8)
st. dev. of RSD,), 3.8 x 107 6.8 x 107
st. dev. of m, (in eV) 2.2 x 107 1.3x 107

octant O [containing the moduli (|al,|b|,|c|) and para-
metrized by (6, )] with a 3-torus 7 of phases (a, 3, 7). Let
us now explore this parameter space.

We start with the numerical observation that (a,f,y)
have almost no impact on the Higgs, top quark and light
neutrinos masses. To see this we first fix a value of p and a
point in O and run down the RGE for a random sample of
10° points in 7 equipped with the uniform law. We then
compute the standard deviations of RSD,, and the light
neutrino mass m, for this sample. The results are displayed
in Table VIIL.

We can understand this behaviour from the 1-loop
RGE (see Appendix A). First we see that Y, and Y, do
not depend on Y at all. As for the quartic couplings,
we see that they depend on Yy only through Tr(YyY3 ),
Tr((YyY5)?), and Tr(Y, Y% Yy Y)). However these 3 traces
are independent on the phases at s, so that the depend-
ency only appears indirectly from radiative corrections
which will stay small between p,;; and the threshold at
10'* GeV where they are set to zero. From now on we will
consider only the case a = f = y = 0 for simplicity.

As it shows on Table VIII, RSD,, is also independent of
@. This again can be understood from the RGE. Let 6 be an
angle and Rz be the rotation matrix Rz = ((1) 0(25_3“5)

0 siné cosd

Clearly Rs; commutes with Y, at u,,;s, and one has

RsUSUTR;' = R;USUTRY

= (RsU)Z(RsU)" (102)
from which we infer that RsYy(a,b,c)R5' =Y y(d',b',c’),
where (a', b, ¢')T is the image of (a, b, ¢)T by the rotation
R;s. Let us replace Y, with R;Y,R;' =Y, and Yy with
RsYy(a,b,c)R5' = Yy(a', b/, c') at the unification scale.
Since a = d’ this does not change the initial conditions
for the quartic couplings. Let us call Y}, (¢) and Y/ () the
running matrices with these new conditions. Since the beta

TABLE VIII. This table shows the independence of RSD,, and
m, on the longitude ¢ for 100 random points with (n, p, 6) fixed.
(n,p,0) (24,2,0.1)  (26,2,0.5)  (28,2.3,1)
best RSD,, 0.03083 0.11157 0.13939
worst RSD,, 0.03083 0.11157 0.13939
st. dev. of m, (in eV) 24 x107'% 23 x 10716 2.6 x 1071
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TABLE IX.  €yinmax are respectively the minimum and maximum values of e for which RSD,, < 0.05. €y, is the
value of e for which RSD,, is minimized. Here n = 24.

p 1.95 2 2.05 2.1 2.15 22 2.25 2.3 2.35
€min 0 0 0 0 0 0.07 0.12 0.16 0.22

Epest 0 0 0 0.07 0.12 0.15 0.18 0.20 0.22

€max 0.11 0.15 0.18 0.20 0.22 0.23 0.24 0.24 0.22

best RSD,, 0.038 0.026 0.019 0.023 0.028 0.034 0.039 0.045 0.050

functions for Y, and Y, are covariant with respect to 1.88 < p <2.36. (105)

unitary changes of basis, at any energy scale we have
Y, (4) = R;Y,(u)R;" and Yy () = R;Y y(u)R;". Now the
beta functions for the quartic couplings are invariant under
the change (Y,,Yy) — (Y.,Yy), and since the initial
conditions are the same, we obtain that the scalar masses
are invariant under rotations of the vector (a, b, ¢)! around
the first axis. The conclusion we can draw from this study is
that among the 5-dimensional parameter space of Y only
|a| = cos @ is really relevant. This parameter has a direct
interpretation in terms of the matrices entering D through
the formula

T
:—|< v )| = COs €.

af = 1
I

(103)

which defines the angle ¢ between the matrices Y, and m.
Because of this interpretation we will now express the
results in terms of e rather that 6. Table IX shows the
minimum, maximum and best fit values of € as functions of
p for n = 24. We see that ¢,,,;, which is constantly equal to
zero at first starts growing rapidly when p =~ 2.15 and meets
€max around p = 2.35 so that no value of € is accepted for
larger values of p. This behavior is similar for the other
values of n, with a lower value of ¢,,,, so that the model
predicts the bound

€<0.24 (104)
The intervals of p for which there exists an accepted value
of e are given in table X for different values of n. They yield
the prediction of the model for the parameter p, namely

TABLE X. Interval of p for which there exists € such that
RSD,, < 0.05. The masses of the Higgs and top are given for the
best fit parameters. Threshold at 10'* GeV.

n 24 26 28 30
log ;o (punit/GeV) 18.27 16.75 1545 14.32
RSD,, < 0.05 [1.88, 2.25] [1.99, 2.35] [2.12, 2.36] @
best fit 0.0267 0.0290 0.0354
Prest 2.02 2.13 2.23
Higgs mass 127.8 126.4 129.7

(in GeV)

Top mass (in GeV)  166.7 165.9 165.3

We also see from this table that as n grows the starting
energy is closer to the threshold, and the effects of the new
fields become less important, resulting in a worse fit to the
experimental values. At the limit when n = 30, we are
almost at the threshold and we see that no value of p is
accepted.

In Table XI we also display the results obtained when we
correct the initial values of the SM gauge coupling with a
threshold effect, as described in Sec. V. We see that this
improves RSD,, for n = 24 but does not affect much the
allowed values for p.

Remark: We see that the model is quite sensitive to
neutrino physics, and it would be interesting to connect it
with some parameters on which there exist experimental
bounds, like the entries of the PMNS matrix.

In the flavour basis the Dirac and Majorana mass

matrices are Y and m/. By unitary change of bases in

the Left and Right neutrino spaces we can diagonalize /.
Since we assumed that T, were diagonal, we can thus write

T, = VYV,

From (80) we thus obtain m, = V;UZUTV;Q. Using the
seesaw approximation, the masses of the light neutrinos
are then the singular values of M = Y/ (m/ )~ ().

Here we have
M=V, T VL(VRU U VR VET, VT
=v,y,uzturr, vl

=V, AVT (107)

TABLE XI. Same as table X except that the gauge couplings are
corrected by a threshold effect.

24 26 28 30
log o (#unit/GeV) 18.27 16.75 15.45 14.32
RSD,, < 0.05 [1.91, 2.35] [1.98, 2.35] [2.10, 2.37] @
best fit 0.019 0.027 0.037
Drest 2.05 2.13 2.23
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FIG. 4. Running of 4, forn =24, p =1.9, ¢ = 0.

where A is diagonal and we identify V; as the PMNS
matrix. We see that cos ¢ can be written as

12 7

Let us conclude this section with the observation that the
field £, decoupling above the electoweak vacuum instability
scale ~10% GeV, is not able to cure this problem anymore.
As can be seen on Fig. 4, 4; takes small negative values just
below the threshold. The figure is drawn for particular
values of the parameters, but the phenomenon is general.

E. 2-loop effects

When we use the beta functions at 2 loops we must first
lower a little the unification energy as a function of n to
have the best fit of the gauge couplings at the Z energy. The
results of the run down in the first approximation regime
(no threshold, a = 1, b = ¢ = 0) is then quite similar to the
one found in Sec. VII C as can be seen from Table XII. The
fit of the top and Higgs masses is a little less good but stays
of the same order as the fit of the gauge couplings, which is
enough. In order to take into account the 2-loop effects in

TABLE XII. Results of the run down of the 2-loop RGE.

n 24 26 28

log o (funir/GeV) 18.07 16.57 15.28
RSD, 0.033 0.020 0.013
best RSD,, 0.011 0.018 0.026
Phest 1.53 1.52 1.51
RSD,, < 0.05 [1.41, 1.64] [1.42, 1.62] [1.42, 1.59]
m; 174.2 175.8 177.3
Migiges 124.4 142.0 122.7

the more general regime, we should have to go to 1-loop
matching conditions, which goes beyond the scope of this
paper. However, we expect from the present section that
these corrections would be small in front of the effects
induced by the threshold itself and by the parameter e.

VIII. CONCLUSION

The 1-loop RGE analysis of NCG particle models had
already been performed in the Euclidean context followed
by a Wick rotation using the spectral action [59] or Connes-
Lott action [60] (without right-handed neutrinos), but never
before in a genuinely Lorentzian framework as we did in
this paper. Despite different initial conditions, our con-
clusions were similar to the ones of these previous studies,
with in particular a large discrepancy between the predicted
and experimental values of the Higgs boson mass. In order
to remedy this situation, and also to comply with the new
framework of algebraic backgrounds, we introduced a
B — L-extension of the NC Standard Model, based on
the algebra C @ C @ H @ M3(C) and a generalization of
the Connes-Lott action. We explored the RG flow of this
model, including the corrections introduced by (1) the
decoupling of the particles with very high masses, and
(2) the relative positions of the Majorana and Dirac
neutrino mass matrices. We found these corrections to
be important (and dominant with respect to 2-loop effects)
and that there exists a region of the parameter space
compatible with the experimental values of the top quark,
Higgs boson, and light neutrino masses. Hence, the model
we analyzed is the first one coming from NCG which (1) is
Lorentzian right from the start, (2) is consistent with the
algebraic background point of view, (3) yields masses for
the top quark and Higgs boson which agree well with
the experimental values (improving significantly on the
Chamseddine-Connes model in this respect). The model is
predictive, since one has to start from a rather small region
of the parameter space to fit the top and Higgs masses.
The predicted parameters are the quotient of the Yukawa
couplings y, and y,, as well as the angle between the Dirac
and Majorana mass matrices for neutrinos. Another pre-
diction of the model is that the Majorana masses of the
heavy neutrinos are not too close together, thus ruling out
the scenario of a universal Majorana coupling which is
sometimes considered in the literature [52]. It would be
interesting to compare these predictions with the ones
coming from the spectral action in Euclidean signature.
This will be the subject of a forthcoming paper [61].

Let us conclude by saying that the model we have
explored in this paper is incomplete, as can be seen for
instance from the running of the gauge couplings. A
possible theoretical development would be to include the
finite algebra in the Clifford algebra of a 10-dimensional
space, with possible connections with SO(10) GUT. From
the phenomenological point of view, the most pressing
issue would be to relate the parameters in the neutrino
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sector which are predicted by the model we studied with
those accessible to current experiments.

The pyr@TE 3 model files and Scilab codes used in this
paper are available upon request to the authors [62].
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Down quarks and electrons Yukawa couplings are
neglected. The Yukawa coupling matrix of up quarks
and neutrinos are Y4, Y, and Y, the latter being associated
with the Majorana mass term. The RGE are obtained from
PyR@TE 3 [50].

1. Gauge couplings
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questions, Mark Goodsell for very useful comments and
suggestions, and Lohan Sartore for his invaluable help with () 3 l e 9
the PyR@TE 3 software. Pg) = +124° + + gl
P () = —g
APPENDIX A: RENORMALIZATION GROUP 92 6 %
EQUATIONS FOR THE B-L
EXTENDED MODEL AV (g3) = -7
We use the standard notation
- 32 32 ., 41 41
x_ PG =+75 09+ 597 + 555+ 120%0+ 7.
X M (X).
PX) == G0
|
2. Yukawa couplings
3 ' N 17 2 5 17 9
POT,) = +5 VY, + 3TV, Y)Y, + Te(V Y)Y, = — @Y, =50V =S g 0¥, = =TV = 7037, = 853,
2 12 3 3 12 4
(1) 3 il * il i 3 2 72 I~ 3 =~ 9 2
ﬁ (Yu) = +§ Yqu/Yu + 2YI./YNYN + 3Tr(YuYM)YL/ + Tr(YyYU)YV _Zg Yl/ - 69 Yz/ - 39 gYu - Zg YI./ - ZgZYU

pU(Yy)

= +YTYEY N 4 YNYiY, + 4V Y5 Yy + 2Te(Y Y)Yy

_ 6g/2 YN

3. Quartic couplings

BY(A)) = +2422 + 23 — 3674, — 354, —
+ 124, Te(Y, Y5) + 44, Tr (Y, Y})
BV () = 42023 + 243
BV (43)

T I S T N
89 499 4992 89 4929 892

— 6Tr(Y,YLY,Yh) = 2Te(Y, Y]Y,Y))

— 48922, + 964* + 84, Tr(YyYy) — 16Tr(Y Y YN Yy)

3 3 9
= +12j,1/13 + 8&2/13 + 4/1% - Egzllj, — 249/2/13 - 592/13 - Eg%/'{?, + 1291292 + 6/13TI'(YM Yl)

+ 25Tr(Y,Y5) + 40 Te(Yy Vi) — 16Te(Y, Y5 Yy Yy).
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APPENDIX B: NOTATION

TABLE XIII.

Charges of fermions and scalars in the B — L extended model, where ¢, is the SU(3) strong charge,

q,, the SU(2) weak charge, ¢y the U(1) hypercharge and ¢, the U(1) B — L charge. The covariant derivative of each
field is D, = 0, + 4 4,9,G%2, + 14,9, W0, + S ayigyY, + qzig,Z),, where A, are the Gell-Mann matrices and

o, the Pauli matrices.

qs qw qy qz
VR 0 0 0 -1
er 0 0 -2 -1
ug 1 0 4/3 1/3
dg 1 0 -2/3 1/3
) 0 1 -1 —1
qr 1 1 1/3 1/3
¢ 0 1 1 0
& 0 0 0 2
TABLE XIV. Free parameters.
A Allowed part of )
(a,b,c)" First column of the unitary matrix diagonalizing m
a, p,y Arguments of a, b, ¢
Hunif Unification energy scale
n Normalization constant of the Connes-Lott action
@) Space of (6, @) (spherical positive octant)
P v,/y, (at unification scale)
T Space of (a, f,7) (3-torus)
0, 9) Latitude and longitude of (|al, ||, |c|)
Yy Space of (a,b,¢) (=OxT)
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