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We explore the 1-loop renormalization group flow of two models coming from a generalization of the
Connes-Lott version of noncommutative geometry in Lorentzian signature: the noncommutative Standard
Model and its B − L extension. Both make predictions on coupling constants at high energy, but only the
latter is found to be compatible with the top quark and Higgs boson masses at the electroweak scale.
We took into account corrections introduced by threshold effects and the relative positions of the Dirac
and Majorana neutrino mass matrices and found them to be important. Some effects of 2-loop corrections
are briefly discussed. The model is consistent with experiments only for a very small part of its parameter
space and is thus predictive. The masses of the Z0 and B − L breaking scalar are found to be of the
order 1014 GeV.
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I. INTRODUCTION

Noncommutative geometry (NCG) is a remarkably
elegant mathematical framework which allows to derive
the field content and Lagrangian of the Standard Model of
particle physics [1,2]. The history of the NCG approach to
the Standard Model (SM) is described in a recent paper [3].
A first landmark is Ref. [4] where Connes and Lott
obtained the SM bosonic Lagrangian thanks to a universal
formula of Yang-Mills type, i.e., the squared length of the
curvature of a single non-commutative one-form which
encapsulates simultaneously the gauge and Higgs fields.
This construction automatically generates the quartic
potential for the Higgs field. In 1995, Connes [5] added
a key element to his construction, namely a charge reversal
operator (i.e., a real structure). In 1996, Chamseddine and
Connes [6] observed that the SM bosonic Lagrangian can
be obtained directly by using the “spectral action princi-
ple”: the physical action depends only on the spectrum of
the Dirac operator. This is a major breakthrough since the
Einstein-Hilbert action evaluated on the manifold metric
turns out to be a component of the spectral action. This
raises the hope of understanding all the known fundamental
forces as the different facets of a unique gravitational field
defined on a generalized manifold, fulfilling the dream of

Einstein, Kaluza and Klein. Right-handed neutrinos were
added in 2006 [7]: the type I seesaw mechanism is then
automatically triggered by the general principles of NCG.
When recovering the SM bosonic Lagrangian through the
spectral action, relations between couplings are obtained. In
particular the gauge couplings are unified, which means
that these relations hold only at high energy. When running
the renormalization group equations down to the electro-
weak scale, one obtains a prediction for the top quark and
Higgs boson masses.
The spectral action has a physical drawback: to date, it

has only been possible to define it for Euclidean space-
times. After this action is evaluated, it is then necessary to
perform a Wick rotation. On the other hand, the Connes-
Lott action can be defined on Lorentzian spacetimes, as
shown by Karen Elsner [8]. In this paper, we insist on
using the physically correct signature right from the start,
and this is why we will use the second approach. It is
admittedly less ambitious: by using a noncommutative
1-form as the bosonic variable, the Connes-Lott approach
is a noncommutative version of gauge theory, which
forgets about gravity, whereas the Connes-Chamseddine
spectral action uses directly the metric, in close analogy
with Kaluza-Klein theory. However, it must be said that in
order to promote Connes-Chamseddine theory to a full-
fledged noncommutative Kaluza-Klein theory, one has to
define a structure in which the Dirac operator may vary,
and would be to spectral triples what bare differentiable
manifolds are to Riemannian manifolds. Such a structure
has been recently proposed [9] in the form of algebraic
backgrounds.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 035003 (2021)

2470-0010=2021=103(3)=035003(20) 035003-1 Published by the American Physical Society

https://orcid.org/0000-0003-2643-6980
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.035003&domain=pdf&date_stamp=2021-02-03
https://doi.org/10.1103/PhysRevD.103.035003
https://doi.org/10.1103/PhysRevD.103.035003
https://doi.org/10.1103/PhysRevD.103.035003
https://doi.org/10.1103/PhysRevD.103.035003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In a previous article [10], we put forward a working
definition of indefinite spectral triples, applicable to
pseudo-Riemannian manifolds and taking charge conjuga-
tion and parity into account. We showed that, in this
approach, the Lagrangian of quantum electrodynamics in
Lorentzian spacetime was recovered. In the present work
we build an indefinite spectral triple to recover the
Lagrangian of the Standard Model (including right-handed
neutrinos) on a smooth globally hyperbolic (Lorentzian)
four-dimensional manifold M, which we assume time- and
space-orientable. In order to do this, we will introduce in
Sec. II the strictly necessary material on indefinite spectral
triples and algebraic backgrounds, without requiring any
previous knowledge of the subject. We will then be able to
define these particular structures in the case of the SM, in
Sec. III. The next step will be a necessary updating of NC
gauge theory to take into account the real structure and
semi-Riemannian signature (Sec. IV). When this is done,
we will apply these tools to the indefinite spectral triple of
the SM defined earlier and obtain in Sec. Va particle model
which has exactly the same field content and Lagrangian as
the SM extended by right- neutrinos and type I seesaw,
except (1) it has an additional abelian gauge field X,
and (2) there are constraints on the parameters of the
Lagrangian, such as the unification of the gauge couplings.
Once the X-field is removed by the unimodularity con-
dition (as is usual in NCG), we obtain the SM with the
correct physical signature entirely within the framework of
NCG [11]. Running down the renormalization group
equations (RGE) from some unification energy scale
μunif (which is a free parameter), we confirm in this new
context the result already obtained with the spectral action
[12]: the predicted Higgs mass is at least 30% too large. It
was observed in Ref. [13] that one can remedy this situation
by adding a real scalar field to the model. We will briefly
review the results of renormalization group analysis of this
scalar extended model in Sec. VI, also including threshold
corrections which were not taken into account in Ref. [13].
It has been an important trend in later years to find
theoretical motivations for this new scalar [14–17]. The
most direct explanation from a theoretical point of view is
probably the embedding of the model into a noncommu-
tative version of Pati-Salam theory [18], but this requires
important modifications to the usual formalism of NCG
[19]. Moreover the RGE of the full Pati-Salam model are
quite involved and their analysis relies on many assump-
tions [20,21]. We will propose instead in Sec. VII a simpler
extension of the noncommutative SM. This follows from
the observation that in the framework of algebraic back-
grounds, the configuration space of NC gauge theory is a
subspace of the configuration space of NC Kaluza-Klein
theory which is stable under certain symmetries. In the case
of the SM background, these symmetries include the B − L
gauge symmetries, as shown in Ref. [22]. Hence, from the
algebraic background point of view, the noncommutative

SM is not a consistent theory: only its B − L extension is.
Finally we perform the RG analysis of the B − L extended
SM with the initial conditions yielded by the Connes-Lott-
Elsner action. We show that there are only 3 relevant
parameters n, ρ, and ϵ, which are in order a normalization
constant, the quotient of two Yukawa couplings, and the
angle between the Dirac and Majorana mass matrices for
neutrinos. We find that there exist a region of the parameter
space which gives good fit to the experimental values.
Using bounds on light neutrino masses, we observe that the
model predicts very high (≥1014 GeV) masses for the Z0
bosons and the B − L-breaking Higgs.
If one is ready to take the mathematical motivations for

granted, the reading can start directly at Sec. V.

II. THE SEMI-RIEMANNIAN
NCG FRAMEWORK

The main difference between our indefinite spectral
triple (see next section for a precise definition) and the
spectral triples of Euclidean NCG is the replacement of the
Hilbert space by a pre-Krein space, i.e., a complex vector
space equipped with a Hermitian form (.,.) such that ðψ ;ψÞ
can be of arbitrary sign depending on the vector ψ. Indeed,
working with a noncompact Lorentzian manifold instead of
a compact Riemannian one triggers a cascade of effects that
need to be taken into account. First, the metric on spinor
fields becomes indefinite (through the insertion of a γ0

matrix). This means that the smooth part of the almost-
commutative spectral triple under construction will cease to
be Euclidean. Less obviously, this feature will be trans-
mitted to the finite-dimensional part through the general
rules for forming tensor products of indefinite spectral
triples. Even less obviously perhaps, the completion of the
space of spinor fields ceases to be unique because of the
noncompactness of the base manifold [23], forcing us to
use the pre-Krein space of compactly supported fields
instead of an arbitrary L2-completion.

A. Indefinite spectral triples

For the convenience of the reader, we repeat the
definition of an indefinite spectral triple that we recently
put forward [10]. The only difference is that we put the
Krein product to the forefront instead of the fundamental
symmetry. We explain this choice below. We recall that a
Krein product is a nondegenerate Hermitian form. The
adjoint of an operator T with respect to a Krein product
will be denoted by T×, except when the Krein product is
positive-definite, in which case we revert to the more
traditional T†.
An indefinite real even spectral triple (IST) is a tuple

ðA;K; π; χ; J; DÞ where
(1) A is a real or complex *-algebra,
(2) K is a complex pre-Krein space,
(3) π is �-representation of A on K,
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(4) χ (chirality) is a linear operator on K and J (real
structure or charge conjugation) is an antilinear
operator. It is required that ½χ; πðaÞ� ¼ 0 for all
a ∈ A, χ2 ¼ 1 and

J2 ¼ ϵ; Jχ ¼ ϵ00χJ

J× ¼ κJ; χ× ¼ ϵ00κ00χ; ð1Þ

where ϵ, ϵ00, κ, κ00 are signs,
(5) D (the Dirac) is an operator on K which com-

mutes with J, anticommutes with χ and satisfies
ðDψ ;ψ 0Þ ¼ ðψ ; Dψ 0Þ for all ψ , ψ 0 in its domain.

Note that the above definition is only the core of a more
complete set of axioms which is still under construction.
In particular we refer the reader to Refs. [24–27] for the
functional analytic conditions satisfied by π and D (in the
context of a fixed fundamental symmetry and Hilbert
completion).
It is common to add some other properties: (i) the

condition of order zero (i.e., for any a and b in A, πðaÞ
commutes with πðbÞ∘ ≔ JπðbÞ×J−1); (ii) the condition of
order one (i.e., for any a and b in A, ½D; πðaÞ� commutes
with πðbÞ∘). In this paper we will assume the order-zero
condition only (C0).
A fundamental symmetry η on an IST is an operator

which either commutes or anticommutes with χ and J,
squares to 1, and combine with the Krein product (.,.) to
form a scalar product h:; :iη ≔ ð:; η:Þ. Such a fundamental
symmetry always exists [9] (but is far from unique) and
given one the second line of (1) is equivalent to

Jη ¼ ϵκηJ; χη ¼ ϵ00κ00ηχ ð2Þ

The four signs ϵ, ϵ00, κ, κ00 depend on two even integers
m and n, unique modulo 8, such that ϵ ¼ ð−1Þnðnþ2Þ=8,
ϵ00 ¼ ð−1Þn=2, κ ¼ ð−1Þmðmþ2Þ=8 and κ00 ¼ ð−1Þm=2. Integer
n is the usual KO dimension of NCG, integer m, called the
metric dimension, is an additional integer required to
classify indefinite spectral triples [10]. Note that when
ϵ00κ00 ¼ 1 (resp. −1), the two eigenspaces of χ are orthogo-
nal with one another (resp. self-orthogonal) and funda-
mental symmetries must commute (resp. anticommute)
with χ. In that case we say that the Krein product is even
(resp. odd). This will play a role below in the definition of
tensor products.
1: We need to make a comment on the adjoint of an

antilinear operator. It is defined by

ðϕ; AψÞ ¼ sðψ ; A×ϕÞ: ð3Þ

where s ¼ 1 if ϕ and ψ are treated as a commuting
variables and s ¼ −1 if they are treated as anticommuting
ones. Since NCG is a classical theory, both cases can be
found in the literature. However the choice s ¼ 1 would

make things go astray at several places (in the definition
of the Lagrangian, for the seesaw mechanism and for
solving the fermion doubling). We will thus consider only
the s ¼ −1 case in this paper.
Remark 2: It would be tempting to consider the Hilbert

completion of K with respect to η and formulate the theory
in terms of a Hilbert space and a fundamental symmetry
instead of the less familiar (pre-)Krein space. However it
would be a bad idea for two reasons. The first is that this
completion is generally not unique [23], but even when it is,
for instance in finite-dimension, we would then put two
objects (the scalar product and the fundamental symmetry)
instead of one (the Krein product) in the background, which
would pose a conceptual problem for the definition of
symmetries (the example of Minkowski space where
choosing η is equivalent to choosing a time coordinate is
good to keep in mind).

B. Noncommutative 1-forms

The theory of noncommutative 1-forms exposed in
Ref. [28] (to which we refer for more details) can be
extended without change [29] to the indefinite setting. We
recall here the main concepts. Let S ¼ ðA;…; DÞ be an
IST. An element ω ∈ EndðKÞ of the form

ω ¼
X
i

πðaiÞ½D; πðbiÞ�; ai; bi ∈ A ð4Þ

is called a noncommutative 1-form of S. The space of such
forms is written Ω1

D. It is a bimodule over A, and the map
dD∶a ↦ ½D; πðaÞ� is a derivation of A into Ω1

D which is a
first-order differential calculus in the sense of Ref. [30].
One extends dD to Ω1

D by

dDω ¼
X
i

½D; πðaiÞ�½D; πðbiÞ�: ð5Þ

However, ω can be decomposed as in (4) in several ways,
hence (5) makes sense modulo a certain ideal J 1

D of so-
called [31] “junk 2-forms.” The curvature of a 1-form is
defined modulo junk by

ρDðωÞ ¼ dDωþ ω2: ð6Þ

Let u be an invertible element of A. It defines a gauge
transformation on 1-forms by the formula

ω ↦ ωu ≔ πðuÞωπðuÞ−1 þ πðuÞ½D; πðuÞ−1�: ð7Þ

Then the curvature is gauge-covariant:

ρDðωuÞ ¼ uρDðωÞu−1: ð8Þ
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C. Algebraic backgrounds

For applications to physics it is important to define a
background structure in which the Dirac operator can vary.
For several reasons [9,22,32] one cannot just remove the
Dirac operator from a spectral triple. Instead we define an
algebraic background to be a tuple B ¼ ðA;…; J;Ω1Þ,
where the objects A;…; J are exactly the same as in the
definition of an IST, and Ω1 is an odd A-bimodule (its
elements anticommute with χ).
The symmetries of a background B are naturally defined

to be the Krein unitary operators U which commute with χ
and J, and stabilize πðAÞ and Ω1. A particularly important
case is the following. Let u be a unitary element of A and
define the gauge transformations ϒðuÞ ≔ πðuÞπðu−1Þo.
These transformations will be symmetries of B under the
condition

πðu−1ÞoΩ1πðuÞo ¼ Ω1; ð9Þ

for all unitary u. We call (9) the weak order one condition
(weak C1). Clearly the usual order one condition implies
the weak one.
An operator D is called a compatible Dirac operator for

B if it has all the properties of a Dirac operator listed in the
definition of an IST and satisfies Ω1

D ⊂ Ω1. It is moreover
called regular if Ω1

D ¼ Ω1. We will always suppose that
at least one regular Dirac exists. The vector space of all
compatible Dirac operators for B is called the configuration
space. It is stable by the symmetries of B.
Given a compatible Dirac D and a self-adjoint 1-form ω,

one defines the fluctuated Dirac operator

Dω ¼ Dþ ωþ ωo; ð10Þ

where ωo ¼ Jω×J−1. Let us suppose that for all a ∈ A,
one has

½ωo; πðaÞ� ∈ Ω1: ð11Þ

We call (11) the weak C0
1 condition, since it is analogous to

weak C1. If this condition holds, it is immediate that Dω is
also a compatible Dirac.
If weak C1 holds then for every compatible Dirac D,

ϒðuÞDϒðuÞ−1 is a compatible Dirac, and if in addition C1

holds we have the formula

ϒðuÞDωϒðuÞ−1 ¼ Dωu ð12Þ

which justifies the name “gauge transformation” for (7).

D. Tensor products

The general rules for the tensor product of two IST are
the following ones [10,33].

Let B1 ¼ ðA1;K1;…; J1;Ω1
1Þ and B2 ¼ ðA2;K2;…;

J2;Ω2
2Þ be two backgrounds. It will be sufficient to consider

the case where A2 and K2 are finite-dimensional. The
(graded) tensor product B ¼ B1⊗̂B2 ≔ ðA;K;…; J;Ω1Þ is
defined in the following way. First we set A ¼ A1 ⊗ A2,
K ¼ K1 ⊗ K2, π ¼ π1 ⊗ π2, χ ¼ χ1 ⊗ χ2. In order to
define the rest of the structure, let us define some notation.
If ψ is in one of the eigenspaces of χ we say that it is
homogeneous, and we define its grading jψ j ∈ Z2 to be
equal to 0 if χψ ¼ ψ and 1 if χψ ¼ −ψ . Similarly, operators
commuting with the chirality are said to be even and given
the grading 0, while operators anticommuting with it are
said to be odd and given the grading 1. For homogeneous
operators Ti ∈ EndðKiÞ, i ¼ 1, 2, we can define the graded
tensor product T1⊗̂T2 by

ðT1⊗̂T2Þðψ1 ⊗ ψ2Þ ≔ ð−1Þjψ1jjT2jT1ψ1 ⊗ T2ψ2: ð13Þ

The graded tensor product of homogeneous operators is
related to the usual tensor product by the formula

T1⊗̂T2 ¼ T1χ
jT2j
1 ⊗ T2. With these notations in hand we

define the real structure J to be

J1χ
jJ2j
1 ⊗̂J2χ

jJ2j
2 : ð14Þ

The bimodule Ω1 will be generated by the 1-forms

ω ¼ ω1⊗̂1þ 1⊗̂ω2; ω1 ∈ Ω1
1;ω2 ∈ Ω1

2 ð15Þ

The Krein product on K is defined by

ðϕ1⊗̂ϕ2;ψ1⊗̂ψ2Þ ¼ ðϕ1;ψ1Þ1ðϕ2; βψ2Þ2; ð16Þ

where β ¼ 1 if ð:; :Þ1 is even, β ¼ χ2 if ð:; :Þ1 is odd and
ð:; :Þ2 is even, and β ¼ iχ2 if ð:; :Þ1;2 are both odd. Note that
the KO and metric dimensions are additive with respect
to tensor products. Finally we observe that if D1, D2 are
compatible (resp. regular) Dirac operators for B1, B2

respectively, then

D ¼ D1⊗̂1þ 1⊗̂D2; ð17Þ

is a compatible (resp. regular) Dirac operator for B.
Consequently the tensor product of two IST S1 ¼
ðA1;…; J1; D1Þ and S2 ¼ ðA2;…; J2; D2Þ is defined by
S ¼ ðA;…; J; DÞ, with A;…; J as above and D given
by (17).

III. SM ALGEBRAIC BACKGROUND AND IST

The IST adapted to the Standard Model is very close to
the spectral triple defined by Connes and coll. [1], except
for the fact that we work in a Lorentzian four-dimensional
spacetime M [signature (1,3)]. First, out of M we build the
background BM ¼ ðAM;…;Ω1

MÞ where AM ¼ C̃∞ðMÞc is
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the algebra of real-valued smooth functions over M which
are constant outside a compact (this is the unitization of the
algebra of compactly supported functions),KM is the space
of compactly supported spinor fields, πM is the represen-
tation of functions by multiplication on spinors, χM is
the multiplication by γ5, the Krein product is [34]
ðψ ;ψ 0Þ ¼ ψ†γ0ψ

0, JMψ ¼ γ2ψ
�. Finally the 1-forms are

just the usual 1-forms represented on KM by Clifford
multiplication. A regular Dirac operator for M is the
canonical Dirac operator [35] DM ¼ iγμ∂μ. Note that the
KO-metric pair is (6,4) so that ϵ ¼ 1, ϵ00 ¼ −1, κ ¼ −1,
κ00 ¼ 1. The background BM and the IST SM ¼
ðAM;…; DMÞ are respectively called the canonical back-
ground and IST of M, respectively.
The ISTof the Standard Model is SSM ≔ SM⊗̂SF where

SF is a finite IST that we now need to describe. The algebra
is AF ¼ C ⊕ H ⊕ M3ðCÞ, where H is the algebra of
quaternions. The Krein space is

KF ¼ KR ⊕ KL ⊕ KR̄ ⊕ KL̄; ð18Þ

where these four spaces represent the right particles, left
particles, anti-right-particles and anti-left-particles. EachKi
is 24-dimensional and isomorphic to

K0 ¼ ðC2
l ⊕ C2

q ⊗ C3
cÞ ⊗ CN

g : ð19Þ

The relation with the physical particles is the following
(i) C2

l is a lepton doublet of canonical basis ðν; eÞ
(ii) C2

q is a quark doublet of canonical basis ðu; dÞ
(iii) C3

c is the space of colors ðr; g; bÞ or (1,2,3)
(iv) CN

g is the space of generations (usually N ¼ 3)
For example, a basis of the space KR of right particles is
made of ðνR; eR; urR; ugR; ubR; drR; dgR; dbRÞ for each genera-
tion, a basis of the space LL̄ of anti-left-particles (which are
right-handed antiparticles) is made of ðνcL; ecL; urcL ; ugcL ; ubcL ;
drcL ; d

gc
L ; dbcL Þ for each generation. Another way to look

at (19) is to see l as the fourth color as in Pati-Salam
theory, and write

K0 ¼ C2
I ⊗ C4

c ⊗ CN
g : ð20Þ

With this decomposition we can introduce the useful
notation ã ≔ a ⊗ 14 ⊗ 1N . Using this notation, the rep-
resentation πF is defined as follows: for an element
ðλ; q; mÞ ∈ C ⊕ H ⊕ M3ðCÞ, one defines

πFðλ; q; aÞ ¼ diagðq̃λ; q̃; 12 ⊗ ðλ ⊕ aÞ
⊗ 1N; 12 ⊗ ðλ ⊕ aÞ ⊗ 1NÞ ð21Þ

where qλ ¼ ðλ
0
0
λ�Þ is the embedding of C into H seen as the

algebra of matrices of the form ð α
−β�

β
α�Þ and λ ⊕ a is the

block diagonal matrix ðλ
0
0
aÞ acting on the color C4.

Moreover (21) is seen as a diagonal matrix in the

decomposition (18). Using the same decomposition (which
we will use hereafter without further notice), the chirality
operator is

χF ¼ diagð1;−1;−1; 1Þ ð22Þ

where 1 is the identity operator on K0. The Krein product
on KF is ð:; :ÞF ¼ h:; ηF:i, with fundamentally symmetry

ηF ¼ diagð1;−1;−1; 1Þ ¼ χF: ð23Þ

The real structure is

JF ¼

0BBB@
0 0 −1 0

0 0 0 −1
1 0 0 0

0 1 0 0

1CCCA∘c:c: ð24Þ

with the same notation and c.c. means complex conjuga-
tion. The finite Dirac is

DF ¼

0BBB@
0 −ϒ† −M† 0

ϒ 0 0 0

M 0 0 −ϒT

0 0 ϒ� 0

1CCCA; ð25Þ

where

ϒ ¼
�
ϒl 0

0 ϒq ⊗ 13

�
; ð26Þ

with ϒl, ϒq ∈ M2ðMNðCÞÞ given by

ϒl ¼
�
ϒν 0

0 ϒe

�
; ϒq ¼

�
ϒu 0

0 ϒd

�
; ð27Þ

where we have decomposed the C2 factor using the ðu; dÞ
basis, while

M ¼
�
m 0

0 0

�
⊗

0BBB@
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCCA ð28Þ

where m ∈ MNðCÞ is a symmetric matrix (responsible for
the type I seesaw mechanism). This ends the definition
of SSM.
The SM background BSM is the tensor product BM⊗̂BF,

where BF is the finite background constructed out of
the same objects as SF except that we replace DF with
Ω1

F ≔ Ω1
DF

(so that DF is a regular Dirac by construction).
The bimodule Ω1

F contains matrices of the form
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ωF ¼

0BBB@
0 ϒ†q̃1 0 0

q̃2ϒ 0 0 0

0 0 0 0

0 0 0 0

1CCCA; q1; q2 ∈ H: ð29Þ

The definitions of the SM triple and background seem
extremely contrived, but the beauty of the NCG approach is
that there is on the contrary very little freedom in these
choices. Clearly definition (19) is dictated by the fermionic
content of the theory, while the choice of the algebra is
motivated by the gauge group. One can see from (18) a
quadruplication of the fermionic degrees of freedom, since
KM already contains four-dimensional Dirac spinor fields.
This problem, known for a long time [36], is solved by
defining the physical Krein space by the Majorana-Weyl
conditions [37]

JΨ ¼ Ψ;

χΨ ¼ Ψ: ð30Þ

This solution can be shown to be unique [38] up to a phase
under natural symmetry assumptions, but requires the KO-
dimension of the SM background to be 0½8�. Since the KO-
dimension of the manifold background is 1 − 3 ¼ 6½8� we
obtain that BF has KO-dimension 2½8�. Moreover it can be
shown that the fermionic action is non-vanishing only if the
metric dimension of BSM is 2½8�, which yields a metric
dimension of 6½8� for the finite background. These con-
straints completely determine (22), (23), (24) up to a
change of basis. The Dirac operator DF is also strongly
constrained by the IST axioms as well as the order 1
condition. The forms (25) and (26) are the most general,
while there exist other solutions beyond (27), (28) which
are here taken to be the simplest nontrivial ones. There are
some theoretical arguments to reduce the freedom even
more [14,39,40]. It is important to observe in particular that
the axioms satisfied by DF force m to be symmetric.

IV. NONCOMMUTATIVE GAUGE THEORY IN
THE PRESENCE OF A REAL STRUCTURE

Noncommutative gauge theory has been devised by
the Connes and Lott at a time when the role of the real
structure had not yet come to the forefront. It was also
formulated in the Euclidean context. The extension to
almost-commutative triples with a manifold part of general
signature poses no problem and has already been per-
formed [8]. We quickly present here a new version
compatible with the presence of J and general signature
on the finite part.
Consider a background B ¼ ðA;…;Ω1Þ satisfying the

order 0 condition. Since the fluctuated Dirac in Eq. (10)
contains contributions ω from Ω1

D and ω∘ from ðΩ1
DÞ∘,

we use the J-symmetrized background B̂ obtained by
replacing:

(i) A with the algebra Â generated by πðAÞ and πðAÞo,
(ii) π with π̂ ¼ Id,
(iii) Ω1 with Ω̂1, which the Â-bimodule generated by Ω1

and ðΩ1Þo,
all the other pieces of data remaining unchanged. Note that,
usingC0, Â is the image of the enveloping algebraA ⊗ Ao

under a ⊗ bo ↦ πðaÞπðbÞo, where A∘ is the opposite
algebra of A, characterized by a∘b∘ ¼ ðbaÞ∘. Let D be a
regular Dirac for B. It is then automatically a regular
operator for B̂. Let DD be the space of fluctuations (10)
of D. It is the configuration space of NC gauge theory, and
contains all the gauge and Higgs degrees of freedom, while
the full configuration space also contains the gravitational
degrees of freedom [9]. We would like to define a gauge-
invariant action functional on DD. This is meaningful if:
(1) gauge transformations are symmetries of B,
(2) DD is a subspace of the configuration space of B,
(3) DD is gauge-invariant.

All 3 requirements are implied by the order 1 condition
which holds for the SM. In the B − L-extended SM to be
studied below, weak C1 and C0

1 hold, so that requirements
1 and 2 are met. It can be shown [41] that 3 holds
automatically under weak C1. In the B − L case it can
also be seen directly or by showing that inner fluctuations
in the sense of Ref. [19] are fluctuations in the usual sense
[42]. For any model satisfying 1, 2, 3, a gauge-invariant
action SðDωÞ can be defined onDD by applying any gauge-
invariant function to the gauge-covariant curvature ρDðωÞ
computed in the J-symmetrized background. In Connes-
Lott theory this function is of Yang-Mills type. In order to
be more specific, let us specialize to the case where
B ¼ BM⊗̂BF, with BM the canonical background of a
manifold and BF a finite-dimensional background. Then
we can define the “Krein-Schmidt product”

ðA1; A2Þ ¼ ReTrðA×
1A2Þ ð31Þ

on operators Ai in EndðC4 ⊗ KFÞ, where i ¼ 1, 2 and C4

is the space of Dirac spinors. Then the generalized
Connes-Lott-Elsner action is the integral over M of the
Lagrangian [43]

LbðDωÞ ¼ −
1

n
ðPðρDðωÞÞ; PðρDðωÞÞÞ; ð32Þ

where n is some constant and P is a projection operator
which we now need to describe. We recall that ρDðωÞ is
only defined modulo the junk ideal Ĵ 1

D. The operator P is
the projection on the orthogonal of Ĵ 1

D. Its insertion in (32)
makes the formula well-defined. Moreover P has the
properties P ¼ P×, PðπðaÞTπðbÞÞ ¼ πðaÞPðTÞπðbÞ from
which the reality and gauge-invariance of (32) follow.
Note that in a Krein space the orthogonal projection on a
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subspace V is well defined iff V ∩ V⊥ ¼ f0g, which
happens to be the case both for the SM and its B − L-
extension. For more details, see Ref. [38].
Remark: One can easily prove that

ρDðωþ ωoÞ ¼ ρDðωÞ þ ρDðωÞo þ fω;ωog; ð33Þ

and that moreover the term fω;ωog is in the junk under C1.
Using also the property ðA;BoÞ ¼ ðAo; BÞ of the Krein-
Schmidt product, one can make the dependence of the
Connes-Lott-Elsner action on ωo disappear entirely. This is
the approach followed in Ref. [33]. In this case there is no
need for J-symmetrized background. Since in this paper we
will consider the B − L-extension for which C1 does not
hold, we must use the most general approach. Note
however that even for the SM there is a subtle difference
between the two approaches coming from the fact that the
junk ideals J 1

D and Ĵ 1
D are not the same.

V. THE LAGRANGIAN AND THE RG FLOW
OF THE NC STANDARD MODEL

The Dirac operator around which we fluctuate is
D ¼ DM⊗̂1þ 1⊗̂DF. One can show [9] that the elements
of DD are then of the form

Dþ iγμ⊗̂
�
XtX þ 1

2
gBμtY þ 1

2
gwWa

μtaW þ 1

2
gsGa

μtaC

�
þ 1⊗̂ðΦðq − 1Þ þΦðq − 1ÞoÞ ð34Þ

where X, Bμ, Wa
μ, Ga

μ are real fields, q is a quaternionic
field, g, gw, gs are some constants and tX, tY , taW , t

a
C are

diagonal matrices of the form diagðτR; τL; τ�R; τ�LÞ ⊗ 1N ,
where in decomposition (19) we have

for tX∶ τR ¼
�
0 0

0 −2i

�
⊕
�
0 0

0 −2i

�
⊗ 13;

τL ¼ −i12 ⊕ −i12 ⊗ 13;

for tY∶ τR ¼
�
0 0

0 −2i

�
⊕
� 4i

3
0

0 − 2i
3

�
⊗ 13;

τL ¼ −i12 ⊕
i
3
12 ⊗ 13;

for taW∶ τR ¼ 0;

τL ¼ iσa ⊕ iσa ⊗ 13; a ¼ 1; 2; 3

for taC∶ τR ¼ τL ¼ 0 ⊕ 12 ⊗ iλa; a ¼ 1;…; 8

and where we choose the bases σa and λa of Pauli and Gell-
Mann matrices, normalized by TrðσaσbÞ¼TrðλaλbÞ¼2δab.
Formula (34) is just a decomposition of Dω on a particular
basis chosen to recognize the usual fields. But one notices
an intruder, namely the X-field. It has to be set to zero
by hand: this is the infamous unimodularity problem

(see Ref. [2], chap 8 for a thorough exposition) which
affects all NCG models of particle physics to date. The
removal of the X field, which is equivalent to anomaly
freeness, is consistent with (12) only if we restrict u
to have determinant 1, yielding the correct gauge group
Uð1Þ × SUð2Þ × SUð3Þ.
The computation [9] of (32) yields (for N ¼ 3 gener-

ations):

nLb ¼ −40g2BμνBμν − 24g2wWa
μνW

μν
a − 24g2sGa

μνG
μν
a

þ 16AjDμHj2 − 8V0ðjHj2 − 1Þ2 ð35Þ

where H is the second column of the quaternion q, and

DμH ¼
�
∂μ þ

1

2
igwWa

μσa þ
1

2
igBμ

�
H; ð36Þ

from which we see that the doublet H has hypercharge 1.
The constants A and V0 can be computed from the entries

of DF. More precisely, under the genericity hypothesis that
ϒ is invertible and that any matrix commuting with both
ϒνϒ

†
ν and ϒeϒ

†
e (resp. ϒuϒ

†
u and ϒdϒ

†
d) is scalar, we

find that

A ¼ Trðϒeϒ
†
e þϒνϒ

†
ν þ 3ϒuϒ

†
u þ 3ϒdϒ

†
dÞ

V0 ¼ k gϒνϒ
†
νk2 þ k gϒeϒ

†
ek2 þ 3k gϒuϒ

†
uk2 þ 3k gϒdϒ

†
dk2

þ 2
k gϒeϒ

†
ek2k gϒνϒ

†
νk2

k gϒνϒ
†
ν − gϒeϒ

†
ek2

sin2θl

þ 6
k gϒuϒ

†
uk2k gϒdϒ

†
dk2

k gϒuϒ
†
u − gϒdϒ

†
dk2

sin2θq; ð37Þ

where the angles θl and θq are defined up to sign by

ReTrð gϒνϒ
†
ν
gϒeϒ

†
eÞ ¼ k gϒνϒ

†
νkk gϒeϒ

†
ek cosðθlÞ

ReTrð gϒuϒ
†
u
gϒdϒ

†
dÞ ¼ k gϒuϒ

†
ukk gϒdϒ

†
dk cosðθqÞ; ð38Þ

the norm of a matrix A ∈ MNðCÞ is the Hilbert-Schmidt

norm kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðA†AÞ

p
and Ã ¼ A − TrðAÞ

N 1N .
Remark: The tildes and the sine terms are not present in

the traditional formalism of Euclidean Connes-Lott theory.
Their presence can be traced back to the use of the
J-symmetrized background.
In order to normalize gauge kinetic terms as usual one

has to set the coupling constants to the special values

g2w ¼ g2s ¼
5

3
g2 ¼ n

96
: ð39Þ

Similarly we introduce the Higgs field
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ϕ ¼ 4

ffiffiffiffi
A
n

r
H; ð40Þ

so that the kinetic term is jDμϕj2. This fixes the values of
the Higgs quartic coupling to

λ ¼ V0n
32a2

: ð41Þ

Since the Higgs potential is obtained via (32) as a square,
its minimum is zero and the Higgs field does not contribute
to the cosmological constant. Moreover the minimum is
obtained for jHj ¼ 1, the vev of ϕ therefore satisfies

vffiffiffi
2

p ¼ 4

ffiffiffiffi
A
n

r
: ð42Þ

Let us now look at the fermionic action. It is given by

SfðDω;ΨÞ ¼
1

2
ðΨ; DωΨÞ ð43Þ

where Ψ belongs to the subspace KPhys of K determined
by (30). Alternatively [38], one can take for Ψ a generic
element of K and use the action

SfðDω;ΨÞ0 ¼
1

2
ðπΨ; DωπΨÞ ð44Þ

where π ¼ ð1þJÞð1þχÞ
4

is the projector on KPhys. Either way
we obtain all the usual terms of the SM. Let us compute
some of them in order to show the peculiarities of
the calculations of a NCG model. This will also yield
the precise interpretation of the matrices ϒ and M entering
DF. Seeing Ψ as a field with values in S ⊗ KF, one
sees that

Ψ¼
X
p

ψp
R ⊗ pR þ JMψ

p
R ⊗ pc

R þψp
L ⊗ pL − JMψ

p
L ⊗ pc

L

ð45Þ

where p runs through the orthonormal basis of elementary
fermions. One then just has to plug (34) and (45) into (43).
The result for the gauge term in the electron sector is for
instance

2ðeR; γμeRÞ
�
1

2
gBμ

�
þ ðeL; γμeLÞ

�
1

2
gBμ

�
ð46Þ

which can be used to check the consistency of the charge
assignments and convention for the covariant derivative.
Now the Yukawa and Majorana terms are

1

2
ðΨ; 1⊗̂ðDF þΦðq − 1Þ þΦðq − 1ÞoÞΨÞ ¼

X
i;i0

ððνiL; ανi0RÞðϒνÞii0 þ ðνiL; βei0RÞðϒeÞii0 − ðeiL; β�νi0RÞðϒνÞii0

þ ðeiL; α�ei0RÞðϒeÞii0 þ ðuiL; αui0RÞðϒuÞii0 þ ðuiL; βdi0RÞðϒdÞii0
− ðdiL; β�ui0RÞðϒuÞii0 þ ðdiL;α�di0RÞðϒdÞii0 Þ

þ 1

2

X
i;i0

ðJMνiR; νi0RÞðmÞii0 þ H:c: ð47Þ

where we recall H ¼ ð βα�Þ is related to the Higgs field
ϕ ¼ ðϕþ

ϕ0 Þ by (40). However since the minimum of the Higgs
potential corresponds to q ¼ 1 by construction, we see that
ϒν, ϒe, ϒu, ϒd are exactly the Dirac mass matrices of
fermions. We also see thatm=2 is the Majorana mass matrix
of right-handed neutrinos.
Remark: From (37) one can then infer the following

interpretation for A and V0: A is the sum of the Dirac
masses of fermions squared, while the first four terms of V0

are variances of fermion masses.
The unification of the gauge couplings which is pre-

dicted by the approach holds at some energy scale μunif . At
this energy the bosonic Lagrangian is given by (32), and the
prediction (39), (41), and (42) are supposed to hold. There
is also a relation between the W-bosons and fermions

masses at the unification scale. Charge eigenstates W�
μ are

introduced as usual and their tree-level mass is

mW ¼ 1

2
vgw: ð48Þ

From this we obtain:

m2
W ¼ 1

4
v2g2w

¼ 1

4

n
96

32nTrðϒeϒ
†
e þϒνϒ

†
ν þ 3ϒ†

uϒu þ 3ϒ†
dϒdÞ

¼ 1

12

X
squaredmasses of fermions; ð49Þ
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where in the second line we have used (42). In particular we
obtain the bound

mt ≤ 2mW: ð50Þ

We note that this prediction is different from the one
obtained with the spectral action, which is [44]
mt ≤

ffiffiffiffiffiffiffiffi
8=3

p
mW .

We will suppose as in Ref. [7] that only one Dirac
neutrino mass mD is non-negligible with respect to the top
quark mass. Introducing the couplings yt and yν defined
such that the Dirac masses of the top quark and neutrino are

mt ¼
1ffiffiffi
2

p ytv; mD ¼ 1ffiffiffi
2

p yνv; ð51Þ

one obtains from (42) and (37)

v2 ≈
32

n
ð3m2

t þm2
DÞ;

where we have neglected all masses except for mt and mD.
Plugging in (51) and introducing

ρ ≔ yν=yt; ð52Þ

we get the relations

yt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
16ð3þ ρ2Þ

r
; yν ¼ ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

16ð3þ ρ2Þ
r

: ð53Þ

In order to obtain λ at unification scale, let us observe
that for a matrix A ∈ MNðCÞ, one has TrðÃ2Þ ¼
TrðA2Þ − 1

N TrðAÞ2. If the spectrum of A is dominated by
an eigenvalue M2 we have the approximation TrðA2Þ≃
TrðAÞ2 ≃M4, so that

TrðÃ2Þ ≃ N − 1

N
M4: ð54Þ

Using this observation and Eqs. (37) and (41), we obtain
the approximation

λ ¼ nðN − 1Þð3þ ρ4Þ
32Nð3þ ρ2Þ2 : ð55Þ

Together with (39), (53), and (55) can be used as initial
values [45] for a run down of the renormalization group
equations to the experimentally accessible energy scales.
We see that there are two free parameters n and ρ, and a
starting energy μunif, which is tied to n by (39). Since the
gauge couplings never exactly come together under the SM
RGE, we cannot define a precise value for μunif. Instead we
will use the following strategy: we give a value to n and set
μunif so as to minimize the error on gauge couplings at the
Z mass scale. To estimate this error we use the relative
standard deviation

RSDg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ððgðmZÞ − gÞ2 þ ðgwðmZÞ − gwÞ2 þ ðgsðmZÞ − gsÞ2Þ

p
gþ gw þ gs

; ð56Þ

where giðmZÞ are the running coupling obtained by running
down the RGE from energy scale μunif , and gi are the
experimental values atmZ. We keep only the values of n for
which RSDg can be lowered to less than 5 percent. This
leaves the interval [22, 35] for n, corresponding to energies
going from 1012 GeV to the Planck scale. The relative
standard deviation of gauge couplings will then be (at
1-loop) the same function of n for all the models studied in
this paper.
Once μunif is found for a given n, we set ρ so as to

minimize the RSD of the top and Higgs masses computed
according to the formula:

RSDm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ððmtð172Þ − 172Þ2 þ ðmhð125Þ − 125Þ2Þ

p
172þ 125

:

ð57Þ
Note that in order to measure how well the model fits the
experimental data we do not use the predicted pole masses

of the top and Higgs but the running masses computed at
their respective experimental values (for instance, the top
mass in Table I is the running mass mtð172Þ). The figures
should be close if the model is good. Note also that we
calculated mt from (51) and the Higgs mass from

TABLE I. Relative standard deviations of gauge couplings at
mZ energy scale. RSD of top and Higgs masses computed at
scales 172 and 125 GeV respectively. μunif chosen to minimize
RSDg and ρ to minimize RSDm.

n 24 26 28 30 32

log10ðμunif=GeVÞ 18.27 16.75 15.45 14.32 13.34
ρ 1.84 1.85 1.85 1.86 1.86
RSDg 0.032 0.020 0.015 0.020 0.031
RSDm 0.131 0.141 0.151 0.162 0.173
Top mass 161 162 163 163 164
Higgs mass 161 164 168 172 175
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m2
h ¼ 2λv2; ð58Þ

using v ¼ 246.66 GeV and ignoring renormalization of v.
We explored the parameter space using 1-loop RGE and
found no value of ρ for which RSDm were less than ten
percent. Worse, the Higgs mass is always off by more than
30 percent. Examples of results are shown in Table I. Note
that if instead of calculating the RSD of masses we fix ρ to
fit the top mass perfectly (which happens for ρ ≈ 1.5), then
the Higgs mass is way too large (close to 170 GeV).
One could argue that instead of (39) one should use as

initial values for the gauge couplings those which are run
up from the Z scale, setting RSDg to 0 by construction (this
is the strategy used in Refs. [12] and [44]). Hence, at one
loop, the values of gw, gs, and g at μunif are switched to

ḡ ¼ ðgðmZÞ2 − 2kb1ðlogðμunifÞ − logðmZÞÞÞ−1=2
ḡw ¼ ðgwðmZÞ2 − 2kb2ðlogðμunifÞ − logðmZÞÞÞ−1=2
ḡs ¼ ðgsðmZÞ2 − 2kb3ðlogðμunifÞ − logðmZÞÞÞ−1=2;

where k ¼ 1=16π2, b1 ¼ 41=6, b2 ¼ −19=6, b3 ¼ −7, and
the couplings at mZ are the experimental values. This can
be justified by embedding the SM in a larger (unspecified)
extension with a threshold happening just at μunif . Hence
some threshold correction δ would change g into gþ δ ¼ ḡ
and so forth. However this does not change the results
significantly as far as RSDm is concerned (see Table II). We
conclude that the model is not satisfactory for empirical
reasons. We will see in Sec. VII that it also suffers from a
theoretical inconsistency.

VI. THE CHAMSEDDINE-CONNES MODEL

In Ref. [13] Connes and Chamseddine performed the
RGE analysis at one loop of the Euclidean NCSM with the
spectral action, extended with a real scalar added by hand.
The general agreement with the experimental values of
the top and Higgs masses was an important step for the
subsequent development of the theory. For this reason, we
are going to briefly reanalyze this model and use it as a
benchmark. We do not enter into any detail, referring
instead to Refs. [13] or [44].
Connes and Chamseddine set themselves in the case

where there is effectively only one family of right-handed

neutrinos. Their model depends on two parameters: the
unification scale μunif and ρ ≔ yt=yν. They found that for
any μunif in the allowed zone there exists a ρ which gives a
good fit for the Higgs mass. However, they remarked that
for such a ρ the predicted top mass was off by a few
percents and argued that the 2-loop effects could correct
this. Instead of fitting the Higgs mass first and looking at
the error on the top mass, we give in Table III the interval
to which ρ must belong in order to obtain RSDm < 0.05,
as well as the minimum of RSDm when ρ varies in this
interval. We see that the agreement with experimental
values is never much better that 5%. However, the mass
of the real scalar has been estimated [44] to be at least of the
order 1012 GeV. Hence it must decouple from the RGE
under this energy, giving rise to a threshold effect. We see
from Tables IV and V that the model gives better results
(RSDm around 3%) when this threshold effect is taken
into account.

VII. THE B−L-EXTENDED NC
STANDARD MODEL

A. Formulation of the model and prediction
of the couplings at high energy

The model presented in Sec. III is not consistent with the
viewpoint of algebraic backgrounds since with the latter
it can be shown that the B − L symmetry must be gauged
[22]. In order to fulfill this requirement we extend the
algebra by a factor of C. The extended SM triple and
background Sext

SM and Bext
SM, respectively, are hence defined

exactly as before except for the following modifications:

TABLE II. Same as Table I when the gauge couplings are
corrected by an unknown threshold effect.

n 24 26 28 30 32

log10ðμunif=GeVÞ 18.27 16.75 15.45 14.32 13.34
ρ 1.09 1.07 1.07 1.03 1.02
RSDm 0.076 0.077 0.077 0.078 0.079
Top mass 159 160 161 161 161
Higgs mass 139 141 141 143 143

TABLE III. Results of the run down of the Chamseddine-
Connes model with no threshold.

log10ðμunif=GeVÞ 18.27 16.75 15.45

RSDm < 0.05 [1.38, 1.47] ½1.34; 1.39� [1.31, 1.32]
best fit 0.048 0.049 0.050

TABLE IV. Results of the run down of the Chamseddine-
Connes model with a threshold at 1012 GeV under which the real
scalar decouples.

log10ðμunif=GeVÞ 18.27 16.75 15.45

RSDm < 0.05 [1.42, 1.62] [1.38, 1.54] [1.34, 1.48]
best fit 0.031 0.032 0.033

TABLE V. Results of the run down of the Chamseddine-
Connes model with a threshold at 1014 GeV for the real scalar.

log10ðμunif=GeVÞ 18.27 16.75 15.45

RSDm < 0.05 [1.42, 1.59] [1.37, 1.52] [1.35, 1.47]
best fit 0.024 0.026 0.028
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(i) AF is replaced with Aext
F ¼ C ⊕ C ⊕ H ⊕ M3ðCÞ,

(ii) πF is replaced with πextF defined by

πextF ðλ; λ0; q; aÞ ¼ diagðq̃λ; q̃; 12 ⊗ ðλ0 ⊕ aÞ
⊗ 1N; 12 ⊗ ðλ0 ⊕ aÞ ⊗ 1NÞ ð59Þ

(iii) Ω1
F is replaced with ðΩ1

FÞext containing the 1-forms

ωext
F ¼

0BBB@
0 ϒ†q̃1 z1M† 0

q̃2ϒ 0 0 0

z2M 0 0 0

0 0 0 0

1CCCA;

q1; q2 ∈ H; z1; z2 ∈ C: ð60Þ
Let us note that Bext

SM only satisfies weak C1. The choice of
(60) for the bimodule of finite 1-forms is such that DF is
still a regular Dirac operator for the extended background.
This can serve as a first justification, but it should be noted
that ðΩ1

FÞext can also be found as a solution of the following
two constraints [41]: the extended background must (1) sat-
isfy weak C1, and (2) satisfy C1 when the algebra elements
are restricted toAF. Moreover this solution is almost unique:
ϒ andM must have the form given by Eqs. (26) and (28), the
only remaining freedom being in the form (27).
Within the extended background we can fluctuate around

the same Dirac operator as before, or make the simpler
choice D ¼ DM⊗̂1 (for the same result). With the latter
choice, the elements of the extended configuration space
are [46]

Dþ iγμ⊗̂
�
XtX þ 1

2
gBμtY þ 1

2
gwWa

μtaW þ 1

2
gsGa

μtaC

þ gZ0Z0
μtB−L þ 1⊗̂ðΦðqÞ þΦðqÞo þ σðzÞ

�
ð61Þ

with z a complex field,

σðzÞ ¼

0BBB@
0 0 z�M† 0

0 0 0 0

zM 0 0 0

0 0 0 0

1CCCA; ð62Þ

and the B−L generator is tB−L ¼ diagðτR; τL; τ�R; τ�LÞ ⊗ 1N
with

τR ¼ τL ¼ −i12 ⊕
i
3
12 ⊗ 13: ð63Þ

Inserting (61) into (32) yields (for N ¼ 3)

nLb ¼ −40g2BμνBμν − 24g2wWμνaWμνa − 24g2sGμνaGμνa

− 64g2Z0Z0
μνZ0μν − 64ggZ0Z0

μνBμν

þ 16AjDμHj2 þ 8BjDμzj2 − 8V0ðjHj2 − 1Þ2
− 8W0ðjzj2 − 1Þ2 − 16KðjHj2 − 1Þðjzj2 − 1Þ ð64Þ

where A and V0 keep the same meaning as in (37) and the
other constants are

b ¼ Trðm†mÞ
W0 ¼ kgmm†k2;
K ¼ ReTrð gϒ†

νϒν
gm†mÞ; ð65Þ

The covariant derivative of z is

Dμz ¼ ð∂μ þ 2igZ0Z0
μÞz ð66Þ

which shows that z has B − L charge 2. Table XIII
summarizes all the other charges. Normalizing the gauge
kinetic terms to

−
1

4
jBμνj2 −

1

4
jWa

μνj2 −
1

4
jGa

μνj2 −
1

4
jZμν

0j2 − κ

2
Zμν

0Bμν;

ð67Þ

we obtain

g2w ¼ g2s ¼
5

3
g2 ¼ 8

3
g2Z0 ¼ n

96
; κ ¼

ffiffiffi
2

5

r
: ð68Þ

To deal with the kinetic mixing term we perform the
standard triangular transformation [47] to obtain new fields
B̃ and Z̃0

�
B

Z0

�
¼
 
1 − κffiffiffiffiffiffiffi

1−κ2
p

0 1ffiffiffiffiffiffiffi
1−κ2

p

!�
B̃

Z̃0

�
: ð69Þ

Rewriting the covariant derivative (or Dirac operator) in
terms of the tilded fields introduce new couplings constants
g0 and g̃ defined such that

1

2
gBμtY þ gZ0Z0

μtB−L ¼ 1

2
gB̃μtY þ Z̃0

μ

�
1

2
g̃tY þ g0tB−L

�
;

ð70Þ

which yields

g0 ¼ gZ0ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p ; g̃ ¼ −
κgffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p : ð71Þ

From (68) we obtain g̃
g0 ¼ − 4

5
which exactly the same value

as that coming from SOð10Þ unification [48].
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Let us turn to the scalar sector. Introducing the normal-
ized Higgses

ϕ ¼ 4

ffiffiffiffi
A
n

r
H; ξ ¼

ffiffiffiffiffiffi
8B
n

r
z; ð72Þ

the scalar Lagrangian becomes jDμϕj2 þ jDμξj2 − Vðϕ; ξÞ,
where the potential is

Vðϕ; ξÞ ¼ m2
1jϕj2 þm2

2jξj2 þ λ1jϕj4 þ λ2jξj4
þ λ3jϕj2jξj2 þ μ ð73Þ

with

λ1 ¼
V0n
32A2

; λ2 ¼
W0n
8B2

; λ3 ¼
Kn
8AB

m2
1 ¼ −

V0 þ K
A

; m2
2 ¼ −2

W0 þ K
B

;

μ ¼ 8
V0 þW0 þ 2K

n
: ð74Þ

Once again, the minimum of the potential is obtained for
jzj ¼ jHj ¼ 1 directly from (64), and this gives the vev’s:

v ¼ 4

ffiffiffiffiffiffi
2A
n

r
; v0 ¼ 4

ffiffiffiffi
B
n

r
: ð75Þ

The fermionic action gets new terms coming from the Z0
and z-fields. The latter is

1

2
z
X
i;i0

ðν̄iR; νi0RÞmii0 þ H:c: ð76Þ

and we recover the Majorana mass matrix 1
2
m when z ¼ 1.

Let us now look for a set of initial conditions for the
RGE. In order to do that we have to choose a scenario for
the hierarchy of Majorana masses. In this respect it is
interesting to note from (74) and (65) that the initial value

of λ2 and λ3 are proportional to kgmm†k2 and kgmm†k
respectively. This means that m cannot be too close to the
identity matrix since in that case λ2 and λ3 would be only
radiatively generated and be too small to have a sizable
impact on the Higgs mass (this argument is supported
by numerical simulations). We will thus use the opposite
scenario in which one Majorana mass mM dominates the
others. As far as the Dirac masses are concerned, we will
continue to suppose as in Sec. V that one Dirac mass mD is
dominant and non-negligible with respect to the top mass.
Let us define the Majorana and Dirac Yukawa coupling

matrix YN and Yν by

m ¼
ffiffiffi
2

p
YNv0;

ϒν ¼
1ffiffiffi
2

p Yνv: ð77Þ

Performing a unitary change of basis in the left and right
neutrino spaces, we can always suppose thatϒν is diagonal,
and thus of the formϒν ¼ diagðmD; 0; 0Þ. In the same basis
we have Yν ¼ diagðyν; 0; 0Þ and yν is related to n and ρ by
the same formula (53) as in Sec. V.
Now from (65) we obtain

B ≈ ðmMÞ2 ð78Þ

and from (75) we find

m ¼ 4mM

ffiffiffi
2

n

r
YN ð79Þ

Sincem is symmetric, its singular value decomposition can
be written

m ¼ UΣUT ð80Þ

whereU is a unitary matrix. The fact that Σ≈diagðmM;0;0Þ
will allow us to suppress many degrees of freedom in U,
retaining only its first column ða; b; cÞT . Thus we have

m ≈mM

0B@ a2 ab ac

ba b2 bc

ca cb c2

1CA ð81Þ

and the only remaining freedom we have is to multiplyU to
the right by an orthogonal matrix commuting with Σ,
yielding a global change of sign of ða; b; cÞ. Now from (79)
we obtain

YN ≈
1

4

ffiffiffi
n
2

r 0B@ a2 ab ac

ba b2 bc

ca cb c2

1CA; ð82Þ

where ða; b; cÞ is a point of the complex 2-sphere, uniquely
defined up to a global sign. Using the spherical coordinates
with origin (1,0,0) we can parametrize it by

a ¼ cos θeiα;

b ¼ sin θ cosφeiβ;

c ¼ sin θ sinφeiγ ð83Þ

with α ∈ ½0; π½; β; γ ∈� − π; π�, θ;φ ∈ ½0; π=2½.
To obtain the other initial values we observe that we can

write
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W0 ≈
2

3
ðmMÞ4;

K ≈
3jaj2 − 1

3
ρ2m2

t ðmMÞ2; ð84Þ

where K is obtained by direct computation. From (74) we
then obtain the initial conditions

λ1 ¼
ð3þ ρ4Þn
48ð3þ ρ2Þ2 ; λ2 ¼

n
12

; λ3 ¼
ð3jaj2 − 1Þρ2n
24ð3þ ρ2Þ :

ð85Þ

Equations (53), (68), (82), and (85) now form a complete
set of initial values [49] for the RGE. The latter, which we
have computed with the PyR@TE 3 software [50] are given in
the Appendix A. When the run down is performed we
obtain predictions for the top quark mass and the lightest
scalar of the model, which is identified to the SM Higgs.
The formula for the top mass is the same as in the SM, but
the mass of the Higgs gets a correction. Indeed, the masses
of the two Higgses satisfy [51,52]:

m2
h1=h2

¼ λ1v2 þ λ2v02 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1v2 − λ2v02Þ2 þ ðλ3vv0Þ2

q
:

ð86Þ

Using v2 ≪ v0 (see Eq. (94) below) one finds

m2
h1
≈ 2v2

�
λ1 −

λ23
4λ2

�
; ð87Þ

which replaces Eq. (58). In the next sections we present the
results of the run down and compare the predictions of the
top and SM Higgs mass with their experimental values.

B. The gauge couplings

The running of the gauge couplings presents interesting
peculiarities (Fig. 1) which need to be discussed.
One notes the extreme stability of κ and the almost

perfect equality of the two normalized Abelian couplings at
all scales. An explanation of the first phenomenon is the
following: let us change the ðtY; tB−L; taW; tbCÞ basis to an
orthogonal one. This is done just by removing the orthogo-
nal projection of tB−L onto tY , defining the new basis vector

tZ0 ≔ tB−L − ðtB−L; tYÞ
tY

ktYk2
¼ tB−L −

2

5
tY: ð88Þ

Since the curvature is linear in the Abelian fields,
this change of basis also removes the kinetic mixing,
and is equivalent to (69) at the level of fields components.
Though (69) is meaningful in any B − L model and scale-
dependent, (88) is scale-independent. This shows that the

value κ ¼
ffiffi
2
5

q
is stable under RGE. This feature is shared

by any theory in which the gauge couplings are unified, as
shown in Ref. [53]. It is also proved in the latter paper that
the normalized couplings of the Abelian fields associated
with the diagonalizing basis, here

ffiffiffiffiffiffiffiffi
5=3

p
g1 and

ffiffiffiffiffiffiffiffi
8=3

p
gZ0 ,

are equal at all scales since their beta functions coincide.
By (71) and the constancy of κ, we obtain that g0 and g̃ are
also equal at all scales when correctly normalized.

C. The Yukawa and scalar sectors
in first approximation

In this section we present the results of the running down
of the RGE with the initial conditions (53), (82), and (85)
with a ¼ 1, b ¼ c ¼ 0. This amounts to consider only one
species of right neutrinos (which by definition will be
the τ). Note also that we will not consider any threshold
correction. We hence make the same simplifying assump-
tions as in the Chamseddine-Connes model. Although
crude, this approximation will allow us to get a feel of
the general properties of the B − L extension. In particular,
it can be seen from Table VI that, in stark contrast with the
NC SM, compatibility with the experimental values of the
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FIG. 1. The normalized gauge couplings
ffiffiffiffiffiffiffiffi
5=3

p
g, gw, gs,ffiffiffiffiffiffiffiffi

8=3
p

gZ0 and κ as functions of log10ðμ=GeVÞ for n ¼ 24.

TABLE VI. The sixth line shows the intervals of ρ for which
RSDm falls below 5 percent. The two last lines show the values of
yν and yMτ at the Z-scale for ρ ¼ 1.5.

n 24 26 28 30

log10
ðμunif=GeVÞ

18.27 16.75 15.45 14.32

best RSDm 0.001 0.008 0.017 0.024
ρbest 1.47 1.46 1.44 1.43
RSDm < 0.05 [1.35, 1.58] [1.35, 1.56] [1.35, 1.53] [1.35, 1.51]
yνðmZÞ 0.50 0.53 0.56 0.59
yMτ ðmZÞ 0.48 0.51 0.53 0.55
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top and Higgs masses can be achieved for any allowed
value of n, as long as ρ satisfies

1.35 ≤ ρ ≤ 1.58: ð89Þ

These bounds are roughly the same as in the Chamseddine-
Connes model, but the RSDm is much improved, as can be
seen by comparing Tables III and VI.
We can also obtain some information on the masses at

experimentally accessible scales. At any energy μ we have
the relations

mM
τ ¼

ffiffiffi
2

p
yMτ ðμÞv0ðμÞ

mD
τ ðμÞ ¼

1ffiffiffi
2

p yνðμÞvðμÞ: ð90Þ

From the seesaw formula mlight ≈ ðmD
τ Þ2=mM

τ we also get

mlightðμÞ ≈
yνðμÞ2vðμÞ2

2
ffiffiffi
2

p
yMτ ðμÞv0ðμÞ

ð91Þ

For all the values of n and ρ which are allowed by the
experimental values of the SM gauge couplings and top and
Higgs masses, we have (see Table VI)

yMτ ðmZÞ ≈ yνðmZÞ ≈ 0.5 ð92Þ

and with v ¼ 246.66 GeV (neglecting the running of v
from the Fermi scale) this yields

mlightðmZÞ ≈
104

v0ðmZÞ
: ð93Þ

Now from the bound mlight ≤ 0.2 eV at the Z scale on light
neutrino masses [54] and one obtains

v0ðmZÞ ≳ 5 × 1014 GeV: ð94Þ

This makes v0=v very large. Consequently the mixing
angle θ0 which rotates to the mass eigenstates of the Z
and Z0-bosons, given by [52]

tanð2θ0Þ ¼ 2g̃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2w þ g2Y

p
g̃2 þ 16g02ðv0vÞ2 − g2w − g2Y

ð95Þ

is vanishingly small at the Z-scale. In this regime the
Z0-boson mass is given by [Ref. [52], formula (46)]

MZ0 ðmZÞ ≃ 2g0ðmZÞv0ðmZÞ≳ 3.7 × 1014 GeV ð96Þ

and from (87)

mh2ðmZÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ2ðmZÞ

p
v0ðmZÞ ≳ 4 × 1014 GeV: ð97Þ

These values are of course well out of reach of accelerators,
so that we obtain without surprise compatibility with the
LEP bounds [55,56]

jθ0j < 10−3

MZ0

g0
> 7 TeV: ð98Þ

The masses of the Z0 and the new scalar show that the
model should get a threshold correction at 1014 GeV. This
will be done in Sec. VII D below.
One notes that the allowed interval for ρ tends to narrow

down as n grows, and that the agreement becomes less and
less good. The best fit is obtained for n ¼ 24, which is a
particularly interesting value [57] since it is the dimension
of K0 and could be interpreted as a natural normalization
of the trace in (32). We find it remarkable that this value
which is the most aesthetically appealing not only falls in
the allowed range but yields the best fit for the Higgs and
top masses. This also sets all gauge couplings to 1=2 and
corresponds to the energy 1018.27 GeV, which is quite close
to the Planck scale.
Besides compatibility with experimental values, there

are also two interesting theoretical constraints which are the
perturbativity bounds [48]

λ1;2;3 <
ffiffiffiffiffiffi
4π

p
ð99Þ

and the stability bounds

λ1;2 > 0; Δ ≔ 4λ1λ2 − λ23 > 0: ð100Þ

The first one is satisfied at all scales and for all values of
ðn; ρÞ already allowed by the experimental constraints (see
Fig. 2 for an example of running of the quartic couplings).
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FIG. 2. Running of the quartic couplings for n ¼ 24, ρ ¼ 1.47.
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The stability bounds are satisfied at all scales and for all n
as soon as ρ ≤ 1.45. It is intriguing that the value ρ ¼ 1.45
for which the minimum of Δ is exactly 0 is so close to the
value fitting best the Higgs and top masses which is 1.47.
Note however that ρ has to be > 1.5 in order for Δ to take
on negative values of non-negligible magnitude (see Fig. 3
for a plot with ρ ¼ 1.47).

D. The full parameter space
and threshold corrections

In this section we explore the full parameter space for YN
and we also include the threshold corrections. The nota-
tions used in this section are summarized in Table XIV.
Up to now we ran down one and the same RGE, defined

in the MS scheme, from the GUT scale to the Z scale. The
latter procedure is suspicious because of the Appelquist-
Carazzone decoupling theorem, which is not manifest in
the mass independent MS renormalization scheme. Hence
the couplings to the very massive ξ, Z0 and νR particles are
to be suppressed by hand when the energy scale falls below
a threshold which, according to the previous analysis,
should be at least of the order 1014 GeV.
The 1-loop RGE are thus supplemented by the tree-level

matching conditions [58]:

λ ¼ λ1 −
λ23
4λ2

; ð101Þ

which can be obtained from the continuity of the Higgs
mass [formulas (58) and (87)]. Since there is no shift in the
W mass, and in the limit v2 ≪ v0 the shift in the Z0 mass is
negligible, the matching conditions for g1 and g2 are trivial.
Up to a set of Lebesgue measure zero, the parameter

space Y for YN is the product of the spherical positive

octant O [containing the moduli ðjaj; jbj; jcjÞ and para-
metrized by ðθ;φÞ] with a 3-torus T of phases ðα; β; γÞ. Let
us now explore this parameter space.
We start with the numerical observation that ðα; β; γÞ

have almost no impact on the Higgs, top quark and light
neutrinos masses. To see this we first fix a value of ρ and a
point in O and run down the RGE for a random sample of
103 points in T equipped with the uniform law. We then
compute the standard deviations of RSDm and the light
neutrino mass ml for this sample. The results are displayed
in Table VII.
We can understand this behaviour from the 1-loop

RGE (see Appendix A). First we see that Yt and Yν do
not depend on YN at all. As for the quartic couplings,
we see that they depend on YN only through TrðYNY�

NÞ,
TrððYNY�

NÞ2Þ, and TrðYνY�
NYNY

†
νÞ. However these 3 traces

are independent on the phases at μunif , so that the depend-
ency only appears indirectly from radiative corrections
which will stay small between μunif and the threshold at
1014 GeV where they are set to zero. From now on we will
consider only the case α ¼ β ¼ γ ¼ 0 for simplicity.
As it shows on Table VIII, RSDm is also independent of

φ. This again can be understood from the RGE. Let δ be an

angle and Rδ be the rotation matrix Rδ ¼
�
1
0
0

0
cos δ
sin δ

0
− sin δ
cos δ

�
.

Clearly Rδ commutes with Yν at μunif , and one has

RδUΣUTR−1
δ ¼ RδUΣUTRT

δ

¼ ðRδUÞΣðRδUÞT ð102Þ

from which we infer that RδYNða;b;cÞR−1
δ ¼YNða0;b0;c0Þ,

where ða0; b0; c0ÞT is the image of ða; b; cÞT by the rotation
Rδ. Let us replace Yν with RδYνR−1

δ ¼ Yν and YN with
RδYNða; b; cÞR−1

δ ¼ YNða0; b0; c0Þ at the unification scale.
Since a ¼ a0 this does not change the initial conditions
for the quartic couplings. Let us call Y 0

νðμÞ and Y 0
NðμÞ the

running matrices with these new conditions. Since the beta
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FIG. 3. The running of Δ ¼ 4λ1λ2 − λ23 for n ¼ 24 and
ρ ¼ 1.47. Though this is difficult to spot, Δ does fall below 0
around 1011 GeV.

TABLE VII. This table exemplifies the near independence of
RSDm and ml on the complex phases ðα; β; γÞ for 103 random
points in the 3-torus and some fixed values of ðρ; θ;φÞ. The
energy scale is set to 1018.27 GeV, corresponding to n ¼ 24.

ðρ; θ;φÞ (2,0.1,0.2) (2.1,0.7,0.8)

st. dev. of RSDm 3.8 × 10−5 6.8 × 10−5

st. dev. of ml (in eV) 2.2 × 10−5 1.3 × 10−4

TABLE VIII. This table shows the independence of RSDm and
ml on the longitude φ for 100 random points with ðn; ρ; θÞ fixed.
ðn; ρ; θÞ (24,2,0.1) (26,2,0.5) (28,2.3,1)

best RSDm 0.03083 0.11157 0.13939
worst RSDm 0.03083 0.11157 0.13939
st. dev. of ml (in eV) 2.4 × 10−16 2.3 × 10−16 2.6 × 10−16
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functions for YN and Yν are covariant with respect to
unitary changes of basis, at any energy scale we have
Y 0
νðμÞ ¼ RδYνðμÞR−1

δ and Y 0
NðμÞ ¼ RδYNðμÞR−1

δ . Now the
beta functions for the quartic couplings are invariant under
the change ðYν; YNÞ → ðY 0

ν; YNÞ, and since the initial
conditions are the same, we obtain that the scalar masses
are invariant under rotations of the vector ða; b; cÞT around
the first axis. The conclusion we can draw from this study is
that among the 5-dimensional parameter space of YN only
jaj ¼ cos θ is really relevant. This parameter has a direct
interpretation in terms of the matrices entering DF through
the formula

jaj2 ¼ jhϒν; mij
kϒνkkmk ≔ cos ϵ: ð103Þ

which defines the angle ϵ between the matrices ϒν and m.
Because of this interpretation we will now express the
results in terms of ϵ rather that θ. Table IX shows the
minimum, maximum and best fit values of ϵ as functions of
ρ for n ¼ 24. We see that ϵmin which is constantly equal to
zero at first starts growing rapidly when ρ ≈ 2.15 and meets
ϵmax around ρ ¼ 2.35 so that no value of ϵ is accepted for
larger values of ρ. This behavior is similar for the other
values of n, with a lower value of ϵmax, so that the model
predicts the bound

ϵ < 0.24 ð104Þ

The intervals of ρ for which there exists an accepted value
of ϵ are given in table X for different values of n. They yield
the prediction of the model for the parameter ρ, namely

1.88 ≤ ρ ≤ 2.36: ð105Þ

We also see from this table that as n grows the starting
energy is closer to the threshold, and the effects of the new
fields become less important, resulting in a worse fit to the
experimental values. At the limit when n ¼ 30, we are
almost at the threshold and we see that no value of ρ is
accepted.
In Table XI we also display the results obtained when we

correct the initial values of the SM gauge coupling with a
threshold effect, as described in Sec. V. We see that this
improves RSDm for n ¼ 24 but does not affect much the
allowed values for ρ.
Remark: We see that the model is quite sensitive to

neutrino physics, and it would be interesting to connect it
with some parameters on which there exist experimental
bounds, like the entries of the PMNS matrix.
In the flavour basis the Dirac and Majorana mass

matrices are ϒf
ν and mf. By unitary change of bases in

the Left and Right neutrino spaces we can diagonalize ϒf
ν .

Since we assumed thatϒν were diagonal, we can thus write

ϒν ¼ V†
Lϒ

f
νVR;

m ¼ VT
RmfVR: ð106Þ

From (80) we thus obtain mf ¼ V�
RUΣUTV†

R. Using the
seesaw approximation, the masses of the light neutrinos
are then the singular values of M ¼ ϒf

νðmfÞ−1ðϒf
νÞT .

Here we have

M ¼ VLϒνV
†
RðVRU�Σ−1U†VT

RÞV�
RϒνVT

L

¼ VLϒνU�Σ−1U†ϒνVT
L

≔ VLΔVT
L ð107Þ

TABLE IX. ϵmin;max are respectively the minimum and maximum values of ϵ for which RSDm < 0.05. ϵbest is the
value of ϵ for which RSDm is minimized. Here n ¼ 24.

ρ 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35

ϵmin 0 0 0 0 0 0.07 0.12 0.16 0.22
ϵbest 0 0 0 0.07 0.12 0.15 0.18 0.20 0.22
ϵmax 0.11 0.15 0.18 0.20 0.22 0.23 0.24 0.24 0.22
best RSDm 0.038 0.026 0.019 0.023 0.028 0.034 0.039 0.045 0.050

TABLE X. Interval of ρ for which there exists ϵ such that
RSDm < 0.05. The masses of the Higgs and top are given for the
best fit parameters. Threshold at 1014 GeV.

n 24 26 28 30

log10ðμunif=GeVÞ 18.27 16.75 15.45 14.32
RSDm < 0.05 [1.88, 2.25] [1.99, 2.35] [2.12, 2.36] ∅
best fit 0.0267 0.0290 0.0354
ρbest 2.02 2.13 2.23
Higgs mass
(in GeV)

127.8 126.4 129.7

Top mass (in GeV) 166.7 165.9 165.3

TABLE XI. Same as table X except that the gauge couplings are
corrected by a threshold effect.

n 24 26 28 30

log10ðμunif=GeVÞ 18.27 16.75 15.45 14.32
RSDm < 0.05 [1.91, 2.35] [1.98, 2.35] [2.10, 2.37] ∅
best fit 0.019 0.027 0.037
ρbest 2.05 2.13 2.23
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where Δ is diagonal and we identify VL as the PMNS
matrix. We see that cos ϵ can be written as

cos ϵ ¼ jhV†
Lϒ

f
ν ; VT

Rm
fij

kϒf
νkkmfk ð108Þ

Let us conclude this section with the observation that the
field ξ, decoupling above the electoweak vacuum instability
scale ∼108 GeV, is not able to cure this problem anymore.
As can be seen on Fig. 4, λ1 takes small negative values just
below the threshold. The figure is drawn for particular
values of the parameters, but the phenomenon is general.

E. 2-loop effects

When we use the beta functions at 2 loops we must first
lower a little the unification energy as a function of n to
have the best fit of the gauge couplings at the Z energy. The
results of the run down in the first approximation regime
(no threshold, a ¼ 1, b ¼ c ¼ 0) is then quite similar to the
one found in Sec. VII C as can be seen from Table XII. The
fit of the top and Higgs masses is a little less good but stays
of the same order as the fit of the gauge couplings, which is
enough. In order to take into account the 2-loop effects in

the more general regime, we should have to go to 1-loop
matching conditions, which goes beyond the scope of this
paper. However, we expect from the present section that
these corrections would be small in front of the effects
induced by the threshold itself and by the parameter ϵ.

VIII. CONCLUSION

The 1-loop RGE analysis of NCG particle models had
already been performed in the Euclidean context followed
by a Wick rotation using the spectral action [59] or Connes-
Lott action [60] (without right-handed neutrinos), but never
before in a genuinely Lorentzian framework as we did in
this paper. Despite different initial conditions, our con-
clusions were similar to the ones of these previous studies,
with in particular a large discrepancy between the predicted
and experimental values of the Higgs boson mass. In order
to remedy this situation, and also to comply with the new
framework of algebraic backgrounds, we introduced a
B − L-extension of the NC Standard Model, based on
the algebra C ⊕ C ⊕ H ⊕ M3ðCÞ and a generalization of
the Connes-Lott action. We explored the RG flow of this
model, including the corrections introduced by (1) the
decoupling of the particles with very high masses, and
(2) the relative positions of the Majorana and Dirac
neutrino mass matrices. We found these corrections to
be important (and dominant with respect to 2-loop effects)
and that there exists a region of the parameter space
compatible with the experimental values of the top quark,
Higgs boson, and light neutrino masses. Hence, the model
we analyzed is the first one coming from NCG which (1) is
Lorentzian right from the start, (2) is consistent with the
algebraic background point of view, (3) yields masses for
the top quark and Higgs boson which agree well with
the experimental values (improving significantly on the
Chamseddine-Connes model in this respect). The model is
predictive, since one has to start from a rather small region
of the parameter space to fit the top and Higgs masses.
The predicted parameters are the quotient of the Yukawa
couplings yν and yt, as well as the angle between the Dirac
and Majorana mass matrices for neutrinos. Another pre-
diction of the model is that the Majorana masses of the
heavy neutrinos are not too close together, thus ruling out
the scenario of a universal Majorana coupling which is
sometimes considered in the literature [52]. It would be
interesting to compare these predictions with the ones
coming from the spectral action in Euclidean signature.
This will be the subject of a forthcoming paper [61].
Let us conclude by saying that the model we have

explored in this paper is incomplete, as can be seen for
instance from the running of the gauge couplings. A
possible theoretical development would be to include the
finite algebra in the Clifford algebra of a 10-dimensional
space, with possible connections with SOð10Þ GUT. From
the phenomenological point of view, the most pressing
issue would be to relate the parameters in the neutrino
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FIG. 4. Running of λ1 for n ¼ 24, ρ ¼ 1.9, ϵ ¼ 0.

TABLE XII. Results of the run down of the 2-loop RGE.

n 24 26 28

log10ðμunif=GeVÞ 18.07 16.57 15.28
RSDg 0.033 0.020 0.013
best RSDm 0.011 0.018 0.026
ρbest 1.53 1.52 1.51
RSDm < 0.05 [1.41, 1.64] [1.42, 1.62] [1.42, 1.59]
mt 174.2 175.8 177.3
mHiggs 124.4 142.0 122.7
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sector which are predicted by the model we studied with
those accessible to current experiments.
The PyR@TE 3 model files and Scilab codes used in this

paper are available upon request to the authors [62].
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APPENDIX A: RENORMALIZATION GROUP
EQUATIONS FOR THE B−L

EXTENDED MODEL

We use the standard notation

βðXÞ≡ μ
dX
dμ

≡ 1

ð4πÞ2 β
ð1ÞðXÞ:

Down quarks and electrons Yukawa couplings are
neglected. The Yukawa coupling matrix of up quarks
and neutrinos are Yd, Yν, and YN , the latter being associated
with the Majorana mass term. The RGE are obtained from
PyR@TE 3 [50].

1. Gauge couplings

βð1ÞðgÞ ¼ 41

6
g3

βð1Þðg0Þ ¼ þ12g03 þ 41

6
g0g̃2 þ 32

3
g02g̃

βð1Þðg2Þ ¼ −
19

6
g32

βð1Þðg3Þ ¼ −7g33

βð1Þðg̃Þ ¼ þ 32

3
g2g0 þ 32

3
g0g̃2 þ 41

3
g2g̃þ 12g02g̃þ 41

6
g̃3:

2. Yukawa couplings

βð1ÞðYuÞ ¼ þ 3

2
YuY

†
uYu þ 3TrðYuY

†
uÞYu þ TrðYνY

†
νÞYu −

17

12
g2Yu −

2

3
g02Yu −

5

3
g0g̃Yu −

17

12
g̃2Yu −

9

4
g22Yu − 8g23Yu

βð1ÞðYνÞ ¼ þ 3

2
YνY

†
νYν þ 2YνY�

NYN þ 3TrðYuY
†
uÞYν þ TrðYνY

†
νÞYν −

3

4
g2Yν − 6g02Yν − 3g0g̃Yν −

3

4
g̃2Yν −

9

4
g22Yν

βð1ÞðYNÞ ¼ þYT
νY�

νYN þ YNY
†
νYν þ 4YNY�

NYN þ 2TrðYNY�
NÞYN − 6g02YN

3. Quartic couplings

βð1Þðλ1Þ ¼ þ24λ21 þ λ23 − 3g2λ1 − 3g̃2λ1 − 9g22λ1 þ
3

8
g4 þ 3

4
g2g̃2 þ 3

4
g2g22 þ

3

8
g̃4 þ 3

4
g22g̃

2 þ 9

8
g42

þ 12λ1TrðYuY
†
uÞ þ 4λ1TrðYνY

†
νÞ − 6TrðYuY

†
uYuY

†
uÞ − 2TrðYνY

†
νYνY

†
νÞ

βð1Þðλ2Þ ¼ þ20λ22 þ 2λ23 − 48g02λ2 þ 96g04 þ 8λ2TrðYNY�
NÞ − 16TrðYNY�

NYNY�
NÞ

βð1Þðλ3Þ ¼ þ12λ1λ3 þ 8λ2λ3 þ 4λ23 −
3

2
g2λ3 − 24g02λ3 −

3

2
g̃2λ3 −

9

2
g22λ3 þ 12g02g̃2 þ 6λ3TrðYuY

†
uÞ

þ 2λ3TrðYνY
†
νÞ þ 4λ3TrðYNY�

NÞ − 16TrðYνY�
NYNY

†
νÞ:
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