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We investigate the prospect of detecting the dark matter (DM) candidate in the three-loop radiative
neutrino mass generation model extended with large electroweak multiplets of the Standard Model (SM)
gauge group, at the future imaging atmospheric Cherenkov telescope known as the Cherenkov Telescope
Array (CTA). We find that the addition of such large electroweak multiplets leads to a sizable Sommerfeld
enhanced annihilation of the DM with an OðTeVÞ mass, into the SM gauge bosons, which results in
continuum- and line-like spectra of very high-energy (VHE) gamma rays, and therefore becomes
observable for the CTA. We determine the viable models by setting the upper limit on the SUð2ÞL
isospin of the multiplets from the partial-wave unitarity constraints and the appearance of a low-scale
Landau pole in the gauge coupling. Afterwards, by considering the continuum VHE gamma rays produced
from the DM annihilation at the Galactic Center, we probe the parameter space of the model using the
sensitivity reach of the CTA.
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I. INTRODUCTION

In recent years, the Imaging Atmospheric Cherenkov
Telescopes (IACTs) have not only opened new avenues
for ground-based very high-energy gamma-ray astronomy
[1–3] but have also offered a testing ground for the dark
matter (DM) of the Universe [4,5]. The parameter space
of the DM, which has electroweak quantum numbers and
mass in theGeV–TeV range, has been probed by the currently
operating major IACTs: the High Energy Stereoscopic
System (H.E.S.S.) [6–10], the Major Atmospheric Gamma
Imaging Cherenkov Telescope (MAGIC) [11,12], and the
Very Energetic Radiation Imaging Telescope Array System
(VERITAS) [13]. The Cherenkov Telescope Array (CTA),

which is an ongoing international development project for a
next-generation IACT, will have the capability to observe
gamma rays with energies from 20 GeV to at least 300 TeV
over a large area andwide range of view (up to 10°)withmore
than 100 telescopes located in the Northern and Southern
Hemispheres. This will allow theCTA to achieve a sensitivity
about a factor of 10 better than current instruments such as
H.E.S.S., MAGIC, or VERITAS [14–30]. The DM charged
under the Standard Model (SM) gauge group and with the
mass in the multi-TeV range can produce highly energetic
diffuse or monochromatic gamma rays (based on the anni-
hilation channels), which will be within the observational
reach of the CTA. Therefore, in this paper, we have explored
the detection possibility of the TeV DM candidate of the
three-loop radiative neutrino mass model, known as the
Krauss-Nasri-Trodden model, at the CTA.
The Krauss-Nasri-Trodden (KNT) model [31] is one of

the early models of radiative neutrino mass generation (for
a comprehensive review, please see Ref. [32]) which ties
the origin and smallness of the neutrino mass with the DM
of the Universe. The additional beyond-Standard-Model
(BSM) fields of the model are two single charged singlet
scalars, Sþ1 ; S

þ
2 , and three SM singlet right-handed neu-

trinos,NRi
; i ¼ 1; 2; 3, with masses that lie in the GeV–TeV
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range. There is a Z2 symmetry, fSþ2 ;NRi
g→f−Sþ2 ;−NRi

g,
which not only omits the tree-level Dirac mass term,
LLNRi

H, where LL and H are the SM left-handed lepton
doublet and Higgs doublet, respectively, but also stabilizes
the lightest singlet right-handed neutrino NR1

to play the
role of DM. Besides this, the KNT model can be gener-
alized [33] by replacing Sþ2 with Φ, having integer isospin
and hypercharge Y ¼ 1, and NRi

with Fi, having integer
isospin and Y ¼ 0 under the SM gauge group, which leaves
the three-loop neutrino mass topology invariant. In the
generalized KNT model, the lightest neutral fermion
component, F0

1, is the viable DM candidate. Such replace-
ments in the KNT model with large electroweak multiplets
have been studied for triplet [34], 5-plet [35], and 7-plet
[36] cases. In Ref. [37], it has been shown that for most of
the DM mass range from 1 to 50 TeV, the Sommerfeld
enhanced annihilation cross section to SM gauge bosons
in the 5-plet and 7-plet cases are already within reach of
H.E.S.S. and the future CTA, because more charged
component fields of the fermion multiplet contribute to
the enhancement and thus lead to a larger annihilation cross
section. Therefore, to probe viable DM candidates in the
class of generalized KNT models, we are left with only the
minimal model with a singlet fermion and the next-to-
minimal triplet model where DM is the neutral component
of a fermion triplet.
The DM of theminimal KNTmodel, being a singlet under

the SM gauge group, has different DM parameter space [38]
than the triplet or 5-plet and 7-plet models, which have
dominant gauge interactions controlling the viable DM
parameter space. For this reason, in our CTA sensitivity
study, we have addressed the triplet DM, because it shares
the same region of parameter space as the 5-plet and 7-plet,
and we have left the singlet case for a separate analysis.
The article is organized as follows: In Sec. II, we present

the model and calculate the possible upper bound on the
SUð2ÞL isospin of the electroweak multiplets in the gener-
alized KNT model. In Sec. III, we describe the Sommerfeld
enhanced DM annihilation cross section and the gamma-ray
flux originating from the DM annihilation in the triplet KNT
model. Section IV delineates the working principle of the
CTA, its instrument response functions, and possible sources
of background, and lastly gives the observation region we
consider in our study. In Sec. V, we outline our methods to
determine the expected gamma-ray counts from the DM
signal and backgrounds, and we use the likelihood analysis
to set the upper limit on the DM annihilation cross section
in the KNT model. Finally, we conclude in Sec. VI. In
Appendix A, we present the detailed calculations relevant for
our partial-wave unitarity constraints.

II. THE MODEL

The BSM fields in the generalized KNT model, charged
under SM gauge group SUð3Þc × SUð2ÞL ×Uð1ÞY , are

complex scalars∶ Sþ1 ∼ ð0; 0; 1Þ; Φ ∼ ð0; jϕ; 1Þ;
and dreal fermions∶ F1;2;3 ∼ ð0; jF; 0Þ; ð1Þ

where jϕ and jF are integer isospins of SUð2ÞL. For
example, the triplet model would contain Φ ∼ ð0; 1; 1Þ
and F1;2;3 ∼ ð0; 1; 0Þ.1
The generalized KNT Lagrangian that has the additional

Z2 symmetry is given by

L ⊃ LSM þ ffαβLc
α:LβS

þ
1 þ giαFi:Φ:eαR þ H:c:g

−
1

2
Fc
iMFij

Fj − VðH;Φ; S1Þ þ H:c:; ð2Þ

where c denotes the charge conjugation, and the dot sign, in
shorthand, refers to appropriate SUð2Þ contractions. Also,
Lα and eRα

are the left-handed (LH) lepton doublet and
right-handed (RH) charged leptons, respectively, and the
greek α stands for the flavor index, i.e. α ¼ e, μ, τ.
Moreover, fαβ and giα (where i is the generation index
of the fermionic multiplets, i ¼ 1, 2, 3) are the Yukawa
couplings appearing in Eq. (2), which can be considered as
the components of a complex antisymmetric matrix F and a
general complex matrix G, respectively.H is the SM Higgs
doublet. Finally, VðH;Φ; S1Þ denotes the scalar potential.
We have seen that the generalized KNT model contains

SUð2ÞL fermionic and scalar multiplets of integer isospins.
In the case of the minimal KNT model [31], the Yukawa
term of Eq. (2), giαFi:Φ:eαR , boils down to the term
containing three real Majorana fermions, Fi ≡ Ni which
are SM singlet, and a single-charged SUð2ÞL singlet scalar,
Φ≡ Sþ2 . Therefore, in the generalized KNT model, one
would require three real SUð2ÞL fermionic multiplets Fi to
embed the minimal KNT model’s fermions as one of the
component fields in those multiplets. This requires Fi to
have integer isospin and zero hypercharge. Now, the SM
invariance of the Yukawa term forces the SUð2ÞL scalar
multiplet Φ to have integer isospin equal to that of the
fermionicmultiplets—i.e., jϕ¼ jF—andhyperchargeY ¼ 1.
As we can see, the single-charged scalar of the minimal KNT
model is now a component field of the complex scalar
multiplet.
The mass splittings in fermionic component fields are

zero at tree level and only receive Oð100 MeVÞ splittings
due to the radiative correction after the electroweak
symmetry breaking [39–41]. On the other hand, the mass
splittings among component fields of the scalar multipletΦ
are controlled by the λHϕ2ðΦ†:HÞ:ðH†:ΦÞ term of the
scalar potential after electroweak symmetry breaking.
The splittings Δm allowed by the electroweak precision
observables only lead to Δm2

ij=M
2
0 ∼ 10−3 if the invariant

1We consider the electric charge to be Q ¼ T3 þ Y, where T3

and Y are the diagonal generators of SUð2ÞL and Uð1ÞY ,
respectively.
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mass of the scalar multiplet is M0 ¼ 10 TeV, and for
M0 > 10 TeV, the ratio becomes even smaller, as shown in
Ref. [42]. Therefore, the component fields of both scalar
and fermion multiplets are almost degenerate at the TeV
scale. Consequently, such near degeneracy of fermion
component fields does not diminish the Sommerfeld
enhancement of DM annihilation.
As we have seen, the large isospin multiplets of the

SUð2ÞL are allowed in the generalized KNT model, so
one could ask for the upper bound on the electroweak
quantum numbers for such large multiplets. In the follow-
ing Secs. II A and II B, we have used the arguments from
the partial-wave unitarity and appearance of the low-scale
Landau pole to set an upper limit on the isospin in the
generalized KNT model.

A. Partial-wave unitarity constraints

To set the partial-wave unitarity constraints on the
electroweak quantum numbers of large multiplets in the
KNTmodel, we have looked into the tree-level scattering of
the component fields of the fermion multiplets into the SM
gauge bosons, FF → VV, i.e., into WW, ZZ, γγ, γZ, as
shown in Fig. 1. Similar analysis with SM gauge bosons as
the final states was done in Ref. [43]. Moreover, the upper
bound on the isospin for the scalar multiplet using the same
final states was addressed by Ref. [44].
Let us consider the 2 → 2 scattering amplitude in

momentum space with initial and final two-particle states
jii and jfi, respectively, as

hfjTjii ¼ ð2πÞ4δ4ðPf − PiÞT fið
ffiffiffi
s

p
; cos θÞ; ð3Þ

where s is the center-of-mass energy. Here T captures the
interaction part of the S matrix, S ¼ 1þ iT. From Eq. (3),
by using the Jacob-Wick expansion [45–47], the corre-
sponding partial-wave amplitude of total angular momen-
tum J is

aJfi ¼
β1=4ðs;m2

i1
; m2

i2
Þβ1=4ðs;m2

f1
; m2

f2
Þ

32πs

×
Z

1

−1
dðcos θÞdJμiμfðθÞT fið

ffiffiffi
s

p
; cos θÞ; ð4Þ

where dJμiμf is the Jth Wigner d function, with μi ¼ λi1 − λi2
and μf ¼ λf1 − λf2 defined in terms of the helicities of the

initial ðλi1 ; λi2Þ and final ðλf1 ; λf2Þ states. In addition,
βðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx is the Kallen
function. Moreover, a factor of 1=

ffiffiffi
2

p
should be multiplied

at the right-hand side of Eq. (4) for any identical pairs of
particles in either the initial or final states.
The unitarity condition on the Smatrix, S†S ¼ 1, implies

that

1

2i
ðaJfi − aJ�if Þ ≥

X
n

aJ�fna
J
ni; ð5Þ

where the inequality arises because the sum over n is
restricted to two-particle states only. If we consider elastic
scattering, for which f ¼ i, we have from Eq. (5)

ImaJii ≥ jaJiij2 þ
X
k≠i

jaJinelki j2; ð6Þ

where the sum over k ≠ i is taken over all of the
possible two-particle inelastic channels. By writing jaJj2¼
ðReaJÞ2þðImaJÞ2, we have

ImaJiið1 − ImaJiiÞ ≥ ðReaJiiÞ2 þ
X
k≠i

jaJinelki j2: ð7Þ

Now that aJii lies on the unitary circle, the left-hand side of
Eq. (7) is bounded by 1=4, and we can have in the absence
of any inelastic channel

ReaJii ≤
1

2
: ð8Þ

Therefore, the maximal possible bound one can set on the
real part of an inelastic channel k is

ReaJinelki ≤
1

2
: ð9Þ

In practice, one can consider the full transition matrix at
tree level that connects all possible two-particle states and
impose the bound Eqs. (8) or (9) on the largest eigenvalue
of the matrix, jReaJfij.
Now, the tree-level scattering of the component fields

of the fermion multiplets into SM gauge bosons can be
classified into coupled channels based on the electric

(a) (b) (c)

FIG. 1. Partial-wave unitarity constraints on scattering processes FF → VV.
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charge conservation. That leads to three charge sectors
for 2 → 2 channels:

Qtot ¼ 0∶ FðQÞ
i Fð−QÞ

i → WþW−; ZZ; γγ; γZ;

Qtot ¼ 1∶ FðQþ1Þ
i Fð−QÞ

i → WþZ;Wþγ;

Qtot ¼ 2∶ FðQþ2Þ
i Fð−QÞ

i → WþWþ:

In practice, one can determine the largest eigenvalue
associated with each coupled-channel transition matrix
with Qtot ¼ 0, 1, 2 and impose the bound in Eq. (9),
but, as the coupled-channel transition matrix for Qtot ¼ 0
constrains more channels into SM gauge bosons compared
to the charged sectors Qtot ¼ 1, 2, we consider it to
determine the possible upper limit on the SUð2Þ isospin.
Finally, for the Qtot ¼ 0 sector, the bound given in Eq. (9)
implies that the isospin of the fermionic multiplet in the
KNT model (see Appendix A for detailed calculation)
has to be

jF ≤ 8 ðone generationÞ and

jF ≤ 7 ðthree generationsÞ: ð10Þ

One could also include the elastic channels FiF̄i → FiF̄i
in the coupled-channel matrix. But the helicity amplitude,
with helicity transition 0 → 0, in the t channel via photon
exchange has a singularity at θ ¼ 0. Such presence of
the Coloumb singularity in the elastic channel renders
the partial-wave unitarity analysis somewhat ineffective.
Therefore, to put a more concrete bound on the electroweak
quantum numbers, one has to look into the appearance of
the low-scale Landau pole in the SM gauge couplings in the
presence of large electroweak multiplets.

B. Appearence of the Landau pole in gauge coupling

The beta functions of the SM gauge couplings are
modified when the larger electroweak fermionic or scalar

multiplets are added to their matter content. If the isospin
and the hypercharge of the ith fermionic and jth scalar
multiplets are ðjFi

; YFi
Þ and ðjSj ; YSjÞ, respectively, then

the one-loop beta functions for the SUð2ÞL and Uð1ÞY
gauge couplings g and gY , respectively, become

βg ¼
g3

16π2

�
−
19

6
þ 4

3

X
i

κFi
TðFiÞ þ

1

3

X
j

ηSjTðSjÞ
�
;

ð11Þ

βgY ¼
g3Y
16π2

�
41

6
þ 4

3

X
i

κFi
DðFiÞY2

Fi
þ 1

3

X
j

ηSjDðSjÞY2
Sj

�
:

ð12Þ

Here, − 19
6

and 41
6

within the parentheses are the SM
contributions to the g and gY beta functions, respectively.
κFi

¼ 1; 1
2
if the ith fermionic multiplet contains Dirac or

Weyl fermions; ηSj ¼ 1; 1
2
if the jth scalar multiplet contains

complex and real scalars, respectively. In addition, the
Dynkin index TðRÞ of the fermionic or scalar multiplet R
with isospin j is given by TðRÞ ¼ jðjþ 1Þð2jþ 1Þ=3, and
its corresponding dimension2 is given as DðRÞ ¼ 2jþ 1.
As the last two terms of Eq. (11) give a positive contri-
bution to the beta function of g, for large enough isospin,

FIG. 2. Left: the DM relic densities Ωh2 of a triplet without SE (red) and with SE (blue). The horizontal band represents the 5σ band
with the central value Ωh2 ¼ 0.12 measured by Planck. Right: the spin-independent cross section of triplet DM, F0

1, and nucleon
interaction (orange horizontal line). The shaded region is excluded by XENON1T (2018) data [53].

2The Dynkin index TðRÞ for representation R is defined, for
example, in Refs. [88,89], as C2ðRÞDðRÞ ¼ TðRÞDðAdjÞ, where
DðRÞ and DðAdjÞ are the dimensions of the representation R
and adjoint representation, respectively, and C2ðRÞ is the Casimir
invariant associated with representation R given by C2ðRÞI ¼P

a T
a
RT

a
R, where T

a
R are the generators in representation R, and I

is an identity matrix of order DðRÞ. For SUð2Þ representation R
with isospin j, the dimension is DðRÞ ¼ 2jþ 1, the Casimir
invariant is C2ðRÞ ¼ jðjþ 1Þ, and the expression for TðRÞ
follows.
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they can overcome the negative SM contribution and make
it positively large. As a consequence, such a large positive
beta function will lead to the appearance of the Landau pole
for the SUð2ÞL gauge coupling at a scale much lower than
the Planck scale. As we have not observed nonperturbative
weak interaction at energy scales a few orders above the
electroweak scale, the appearance of such a low-scale
Landau pole puts a severe constraint on the size of the
electroweak multiplet.
For the KNT model, the additional three fermionic

multiplets with SUð2Þ isospin j and hypercharge Y ¼ 0,
and one scalar multiplet with isospin j and hyper-
charge Y ¼ 1, will contribute to Eq. (11), and depending
on the mass scale MX, where the multiplets are integrated
in during the renormalization group running, we tabulate
the Landau pole for g in Table I (see Appendix B for
details).
The additional BSM fields of the KNT model which

contribute to the neutrino mass generation radiatively
at three loops can have masses ranging from the electro-
weak to the TeV scale, and here they are denoted by a
common mass MX for simplicity. Therefore, if we
consider that the masses of these KNT fields are not
too heavy compared to the EW scale—i.e., MX ≃MZ—
we can see from Table I that the Landau pole of the SUð2Þ
coupling g appears atOðTeVÞ for the 5-plet (j ¼ 2) and at
440 GeV for the 7-plet (j ¼ 3). In contrast, if masses of
the KNT fields are at the OðTeV–100 TeVÞ range—i.e.,
MX ≫ MZ—and if we consider their contributions to
RG running of the SUð2Þ coupling below MX to be
negligible, the Landau poles for the 5-plet and 7-plet can
be pushed to higher energies by integrating in the KNT
multiplets at higher MX, but not as high as the Planck
scale, as we can see for the triplet case (j ¼ 1). As the
presence of KNT multiplets with j ≥ 1 eventually leads
to the appearance of the Landau pole for SUð2Þ gauge
coupling g at high energy, we want to know how the KNT
mass scale MX or integrating in these BSM multiplets
at higher energies in our simplified RG running of g
would affect the scale of its corresponding Landau pole.
But the KNT model’s full parameter space contains
masses of these additional BSM fields ranging from
the EW to the multi-TeV scale; therefore, from a
conservative point of view we can consider the MX to

be close to the EW scale.3 Since we have not seen the
signature of new physics in the electroweak scale at
energies accessible by the LHC, the appearance of the
low-scale Landau pole of the SM gauge coupling for
electroweak multiplets with j ≥ 2 has made the singlet
(j ¼ 0) and the triplet a viable BSM addition for the
KNT model.
One could improve the analysis of the size of the

electroweak multiplet and the Landau pole by using the
two-loop beta functions of the gauge couplings as done in
Refs. [48,49]. However, we refrain from using the two-loop
beta functions, because first, we do not know the UV
completion of the KNT model and second, the KNT
Yukawa coupling giα enters into the two-loop beta func-
tions of the gauge couplings, and eventually the two-loop
Landau pole will also depend on these couplings. For this
reason, the size of the electroweak multiplets will not be
connected to the appearance of the low-scale Landau pole
in a straightforward way as in the one-loop case. However,
even if we consider the UV completion of the model with
large electroweak multiplets in a Grand Unified Theory
(GUT) setup, it would require either enormous representa-
tions of the minimal GUT like SOð10Þ or a much bigger
GUT group, where the model can be embedded in its

TABLE I. Appearance of the Landau pole for SUð2ÞL gauge coupling with the isospin j in the generalized KNT
model. Here, MX is the mass scale where the additional electroweak multiplets are integrated in.

Mass scale, MX

SUð2Þ Isospin, j MZ ¼ 91.1876 GeV 103 GeV 104 GeV 105 GeV

1 4.6 × 1016 GeV 2 × 1018 GeV ≫Mp ≫Mp
2 9.4 × 103 GeV 1.2 × 105 GeV 1.5 × 106 GeV 1.7 × 107 GeV
3 440 GeV 5.1 × 103 GeV 5.4 × 104 GeV 5.8 × 105 GeV

3In the case of the KNT model, the radiatively generated
neutrino mass is directly proportional to the charged lepton
masses and the loop function, F ðM2

Fi
=M2

Φ;M
2
S1
=M2

ΦÞ, which
becomes smaller when M2

Fi
=M2

ϕ → 0 and ∞, and inversely
proportional to MΦ. Here MFi

and MΦ are the common masses
of the fermion and scalar multiplets, respectively [as the mass
splittings among the component fields are of Oð100 MeVÞ], and
MS1 is the mass of the singly charged scalar singlet. Therefore,
for a fixed Mϕ around TeV, the fermion mass MFi

≪ MZ or
MFi

≫ OðTeVÞ would lead to the smaller neutrino masses,
which would have been incompatible with the experimental
bound. So, the low-energy neutrino constraints allow the masses
of the KNT fields to range from close to the EW scale to the
OðTeVÞ range. On the other hand, allowing for the neutral
component of the lightest fermion multiplet to satisfy the DM
relic density constraint via the thermal freeze-out mechanism sets
the masses of the fermion and scalar multiplets in the TeV range.
But one can invoke nonstandard DM production mechanisms
in the KNT model, which can again relax this TeV mass-range
requirement. For this reason, we consider the mass scaleMX from
close to the EW scale to OðTeVÞ scales.
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fundamental or adjoint representations, both of which are
not theoretically appealing.

III. GAMMA-RAY FLUX FROM DARK
MATTER ANNIHILATION

A. Sommerfeld enhanced DM annihilation

In the triplet KNT model, the lightest neutral component
of the fermion triplet, F0

1, is the viable DM candidate. The
Sommerfeld enhancement of the DM annihilation to SM
gauge bosons takes place when the DM is nonrelativistic,
vDM ≪ c, and the SM gauge bosons follow mW;Z ≪ mDM.
In this limit, the exchange of W and Z bosons between
triplet component fields will lead to Yukawa potentials, and
γ exchange will lead to a Coulomb potential, which in turn
significantly modifies the wave function of the incoming
DM states and enhances the annihilation cross sections.
The calculation of the Sommerfeld enhanced DM annihi-
lation cross section is a well-studied subject, so here we
follow the prescriptions given in Ref. [50]. Nevertheless,
we briefly review them to set up our notation.
As the Sommerfeld enhancement is considered for

2 → 2 processes, we first define two-particle states which
consist of incoming component fields of fermion triplets.
For the DM (co)annihilation channels where the final states
consist of W�, Z, and γ bosons, the only relevant two-
particle states are CP-even states with total electric charges
Q ¼ 0;�1;�2. In the case of DM annihilation in the
Galactic halo at present times, only two-particle states with
Q ¼ 0 are applicable.
In general, if the three fermionic triplets of the KNT

model are almost mass degenerate, MF1
∼MF2

∼MF3
, the

two-particle states will contain component fields not only
from one multiplet but also from different ones. But, as
the hierarchical mass spectrum of Fi is consistent with the
best-fit experimental values of the neutrino mixing angles
and mass-squared differences [51], it allows us to have
MF1

≪ MF2;3
and allows MF1

to be in OðTeVÞ. It enables
us to define a two-particle state vector made out of
component fields of F1 as follows:

Q ¼ 0∶ jΨi ¼ ðF0
1F

0
1; F

�
1 F

∓
1 ÞT; ð13Þ

Q ¼ �1∶ jΨi ¼ jF0
1F

�
1 i; ð14Þ

Q ¼ �2∶ jΨi ¼ jF�
1 F

�
1 i: ð15Þ

The modification of the wave function which generates
the Sommerfeld enhancement is determined by solving the
radial Schrodinger equation with effective potential

d2Ψjj0;ii0

dr2
þ
��

ðMF1
vÞ2 − lðlþ 1Þ

r2

�
δjj0;kk0

−MF1
Vjj0;kk0

�
Ψkk0;ii0 ¼ 0; ð16Þ

where r is the magnitude of the relative distance between
two component fields in their center-of-mass frame, and
the kinetic energy of the incoming DM states—i.e.,
jii0 ¼ F0

1F
0
1i—is E ¼ MF1

v2, The wave function Ψjj0;ii0

gives the transition amplitude from jii0i states to jjj0i states
in the presence of effective potential, V. The double indices
ii0, jj0, and kk0 run over the states of the two-particle state
vector defined in Eq. (13).
We primarily focus on the S-wave annihilation, so we set

l ¼ 0 and have

d2Ψjj0;ii0

dr2
þ
�
k2jj0δjj0;kk0 þMF1

�
fjj0;kk0αae−namWr

r

þQ2
kk0αem
r

δjj0;kk0

��
Ψkk0;ii0 ¼ 0: ð17Þ

Here, k2jj0 ¼ MF1
ðMF1

v2 − djj0 Þ is the momentum
associated with the two-particle state jjj0i, and djj0 ¼
mj þmj0 − 2MF1

denotes the mass differences between
DM and other states of the multiplet. Qkk0 is the electric
charge associated with state jkk0i. Also, αW ¼ α and
nW ¼ 1 for W-boson exchange, and αZ ¼ α= cos2 θW
and nZ ¼ 1= cos θW for Z-boson exchange. Finally,
fjj0;kk0 is the group theoretical factor associated with SUð2Þ.
Now, by using dimensionless variables defined as

x ¼ αmF1
r, ϵϕ ¼ ðmW=mF1

Þ=α, ϵv ¼ ðv=cÞ=α, and ϵdii0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dii0=mF1

p
=α, we rewrite the coupled radial Schrodinger

equations as

d2Ψjj0;ii0

dx2
þ
�
k̂2jj0δjj0;kk0 þ

fjj0;kk0n2ae−naϵϕx

x

þQ2
kk0sin

2θW
x

δjj0;kk0

�
Ψkk0;ii0 ¼ 0; ð18Þ

where the dimensionless momentum k̂2jj0 ¼ ϵ2v − ϵ2djj0 .

At large x, Ψjj0;ii0 behaves as Ψjj0;ii0 ∼ Tjj0;ii0e
ik̂jj0x, where

Tjj0;ii0 is the transition amplitude provided the effective
potential is dominated by Yukawa potential. Now, if the

annihilation matrix for final state f is given by ΓðfÞ
jj0;ii0, the

annihilation cross section is

σF0
1
F0
1
→f ¼ cðT†:ΓðfÞ:TÞF0

1
F0
1
;F0

1
F0
1
; ð19Þ

where c ¼ 2 for the jF0
1F

0
1i state, as it consists of identical

fields. The Sommerfeld enhancement factor is then given
by SF0

1
F0
1
→f ¼ σF0

1
F0
1
→f=σ

0
F0
1
F0
1
→f

, where σ0 is the tree-level

annihilation cross section.

B. Dark matter constraints and parameter space

The relic density of DM in the Universe measured by
the Planck Collaboration as ΩDMh2 ¼ 0.120� 0.001
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(68% C. L.) [52] sets an important constraint for KNT
triplet DM. In the case of F0

1, the standard thermal freeze-
out scenario involves the SM gauge interactions and the
KNT Yukawa interactions given by giα terms in Eq. (2).
The DM (co)annihilation into the SM final states,

controlled by the SM gauge interactions, take place via
S-wave and P-wave channels. Moreover, the S-wave DM
(co)annihilation cross sections receive non-negligible
Sommerfeld enhancement. In contrast, the DM annihilation
into charged leptons that involves the KNT Yukawa
coupling giα has S-wave and P-wave channels. However,
both of them are suppressed, by the light charged lepton
mass and the velocity of the DM, respectively. Because
of the large multiplicity and unsuppressed Sommerfeld
enhanced S-wave contribution, the DM (co)annihilation
controlled by gauge interaction is more dominant compared
to that into charged leptons involving the KNT Yukawa
coupling. Therefore, essentially the gauge interaction
determines the relic density of the triplet KNT DM in
the thermal freeze-out, which is calculated using non-
relativistic approximation described in Ref. [37] (and
references therein).
Another constraint comes from the DM direct detection.

The spin-independent cross section for the Majarana DM
contained in the electroweak multiplet of integer isospin j
does not depend on the DM mass, and is given by [39]

σSI ¼ j2ðjþ 1Þ2 πα
2M4

Nuclf
2

4m2
W

�
1

m2
W
þ 1

m2
h

�
; ð20Þ

where MNucl is the mass of the target nucleus, f para-
metrizes the nucleon matrix element as hnjPq mqq̄qjni ¼
fmnn̄n, and from the lattice result, f ¼ 0.347131 [54]. On
the other hand, the spin-dependent cross section is sup-
pressed by the mass of the DM which is of the OðTeVÞ.
Therefore, we can see that the constraint from the DM

relic density sets the mass of the DM in the triplet KNT
model as 2.55 TeV (without SE) and 2.94 TeV (with SE), if
the standard thermal freeze-out mechanism is considered.
But, as pointed out in Ref. [42], the nonthermal decay of
the scalar ϕþ can produce the DM F1 within the KNT
model, although some fine-tuning in the mass splittings and
couplings is needed to get the correct relic density for a
wider range of DM masses. However, the fine-tuning can
be avoided if the KNT model is coupled to an extended
dark sector which would assist the nonthermal production
of the DM. For this reason, we probe the DM in the KNT
model with mass up to 100 TeV that already includes the
mass set by the relic density constraint for the thermal
freeze-out scenario in our CTA sensitivity study.

C. Gamma-ray flux from DM annihilation

The gamma rays from the DM annihilation consist of the
prompt gamma rays and the secondary gamma rays. The
prompt gamma rays are produced directly from the DM

annihilation, or the decays of the SM final states originated
in the annihilation. On the other hand, the secondary
gamma rays come from the inverse Compton scattering
(ICS) of e� produced in DM annihilation, again directly or
from decays of the SM final states, with the ambient photon
background—i.e., mainly coming from cosmic microwave
background photons, dust rescattered light, and starlight.
As our analysis focuses on the diffuse prompt gamma-ray
flux coming from the Sommerfeld enhanced DM annihi-
lation into gauge bosons (WþW−) with energy in the TeV
range, we neglect the effect of secondary gamma-ray
emission from DM annihilation for simplification.
The differential prompt gamma-ray flux from the DM

annihilation for a given DM mass, mF1
, in the generalized

KNT model is

dΦ
dEγ

¼ hσvi
8πm2

F1

X
f

Bf
dNf

dEγ

Z
ΔΩ

Z
LOS

ρ2DMðrÞdsdΩ; ð21Þ

where hσvi is the corresponding velocity-averaged anni-
hilation cross section for mF1

, dNf=dEγ is the gamma-
ray spectrum per annihilation for the annihilation channel,
F0
1F

0
1 → f, and Bf is the corresponding branching ratio.

The integration over the solid angle ΔΩ and line of sight
(LOS) s of the squared DM mass density ρDM is called
the astrophysical J factor. Here, r is the distance between
the Galactic Center (GC) and the point in space charac-
terized by Galactic coordinates ðb; lÞ, and it is given as
rðs; θÞ ¼ ðr2⊙ þ s2 − 2r⊙s cos θÞ1=2, where r⊙ is the dis-
tance between the Earth and Galactic Center, and θ is the
angle between the line of sight and the axis connecting
the Earth and the GC, as shown in Fig. 3. In addition, θ
and the Galactic coordinates ðb; lÞ are related as cos θ ¼
cos b cos l.

FIG. 3. The line of sight (LOS) s for a gamma ray arriving at
the Earth which originated at a point with distance r from the
Galactic Center (GC).
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1. Gamma-ray spectrum from DM annihilation

As mentioned already, the dominant DM annihilation
channels in the triplet KNT model are those with the SM
gauge bosons as final states. Hence, two types of gamma-
ray spectra arise from SM gauge boson final states:
(i) continuum spectra coming from WþW− and ZZ, and
(ii) linelike spectra from γγ and γZ at Eγ ¼ MF1

and

Eγ ¼ MF1
− M2

Z
4MF1

, respectively. Besides, the DM annihila-

tion to γ þ X can also give linelike spectra at the end point
of photon energy. The sensitivity studies for IACTs
involving the continuum and linelike photon spectra require
different strategies. In our study, we focus on the continuum
spectra given by the WþW− final states as a representative
channel. We have used PPPC4DMID [55] to calculate the
gamma-ray spectra coming from the WþW− final states,
which include the electroweak (EW) corrections [56] that
become dominant atOðTeVÞ energies. From Fig. 4, we can
see the decrease in the gamma-ray spectra per annihilation
with the mass of the DM.
In passing, let us make some remarks on the EW

corrections implemented in the PPPC4DMID. At energies
much higher than the electroweak scale, the dominant
EW corrections for a typical 2 → 2 process arise from
the Sudakov double logarithms, which are of the form

δðLÞDL ∼ ð α
4πÞL log2L s

M2
W
at Lth loop order [57–59]. Here, α is

SU(2) coupling, and for the nonrelativistic DM, the center-
of-mass energy is s ∼ 4M2

DM. As we can see from Fig. 5,
the magnitudes of these EW corrections at one loop and
two loop grow with the DM mass, and it indicates that for
the DM mass close to or beyond 100 TeV, one needs to
properly resum these Sudakov EW double logarithms and
incorporate them into the PPPC4DMID. In addition,
several studies have been undertaken [60–67] to precisely
determine the indirect detection signatures in current and
upcoming IACTs for both the linelike and continuum
photon spectra coming from TeV-scale or more massive
DM annihilation. Besides, the improved estimates of the
QCD uncertainties in Monte Carlo event generators might
be relevant for the gamma-ray searches of the DM [68].

2. Astrophysical J factor

The astrophysical J factor plays an essential role in
determining the gamma-ray flux from DM annihilation,
and therefore, one needs precise information of the DM
density profile in the Milky Way, especially around the GC,
which is the focus of this work. The N-body cosmological
simulations are often used to parametrize the DM density
profile of the Milky Way. The two most frequently used
DM density profiles, that assume spherical symmetry, are
the Navarro-Frenk-White (NFW) profile and the Einasto
profile,

ρNFWðrÞ ¼ ρs
rs
r

�
1þ r

rs

�
−2
; ð22Þ

ρEinðrÞ ¼ ρs exp

�
−
2

α

��
r
rs

�
α

− 1

��
; ð23Þ

where ρs and rs are the characteristic density and scale
radius, respectively. The NFW profile behaves like r−1 at
the GC, whereas the Einasto profile does not and is smaller
in magnitude. The α is the shape parameter that determines
the steepness of the Einasto profile in the neighborhood
of the GC. The numerical values of these parameters are
ðρs; rsÞ ¼ ð0.184 GeV cm−3; 24.42 kpcÞ for the NFW pro-
file, and ðρs; rs; αÞ ¼ ð0.033 GeVcm−3; 28.44 kpc; 0.17Þ
for the Einasto profile.
The value of the J factor is subject to considerable

uncertainties, because there is no adequate observational
data and precise simulation of our Galaxy with all its
baryonic and DM content. Moreover, the DM density
profile depends on the nature of the DM itself (for a
review, please see Ref. [69]). Therefore, the J factors used
in different studies vary significantly [70–72]. Hence, we
have used the NFW profile, because of its cuspy nature at
the GC, as the representative in our CTA sensitivity study to
detect the DM of the KNT model.

FIG. 4. Gamma-ray spectrum per annihilation determined using
PPPC4DMID for the DM annihilation channel into WþW−.

FIG. 5. The growing nature of the magnitude of the EW
correction δDL with the DM mass MDM at one- and two-loop
order necessitates the resummation of EW double logarithms.
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IV. DARK MATTER DETECTION WITH THE CTA

A. TeV DM at the CTA

Gamma rays, being electrically neutral, do not deviate
from their paths due to the Galactic magnetic field when
propagating through the Galaxy. Moreover, gamma rays
with energies ranging from 100 GeV to 100 TeV have
minimal absorbance in the interstellar medium. So, when
these very high-energy (VHE) gamma rays enter the Earth’s
atmosphere, they undergo collisions with atmospheric
molecules and generate an air shower of secondary par-
ticles known as an extensive air shower. These shower
particles descend to Earth with almost the speed of light,
and due to the Cherenkov effect, these ultrarelativistic
charged particles create a faint blue light in the air, which
typically lasts for a few nanoseconds. Most of this
Cherenkov light is emitted at altitudes ranging between
5 and 15 km, and it propagates down to the ground level as
a quasiplanar, thin disk of Cherenkov photons orthogonal
to the shower axis. It may cover about 50 000 m2 of an area
on the ground. By placing arrays of IACTs within the
projected Cherenkov light pool, it is possible to detect the
air shower, provided that the mirror area of the telescope is
large enough to catch enough photons. However, it is
challenging to reconstruct the exact geometry of the air
shower in space with the observation from a single tele-
scope. Hence, multiple telescopes are deployed to take the
image of a separate shower from different points, which
leads to a stereoscopic reconstruction of the shower
geometry. The images captured by IACTs after removing
the background contributions show the track of the air
shower, which points back to the celestial origin of the
incident gamma rays, and eventually make it possible to
determine the location of its source in the sky along with its
spectral and spatial properties. As we have seen in Sec. III,
when the DM of the triplet KNT model has a mass in the
OðTeVÞ range, its Sommerfeld enhanced annihilation into
SM gauge bosons can produce the VHE gamma rays of
either broad or narrow spectral features. Therefore, the
IACTs are ideally suited to detect such TeV DM in the
Galaxy.
There are three major currently operational IACTs:

H.E.S.S., MAGIC, and VERITAS, which have performed
well within their capabilities and have discovered many
hundreds of VHE gamma-ray sources. However, the
decisive point of the scientific performance of the CTA
will be its ability to survey the sky over broad energy ranges
from 20 GeV to 300 TeV with better angular resolution,
energy reconstruction, and sensitivity, which is 1 order of
magnitude better than existing IACTs. Besides this, to
provide full sky coverage, the CTAwill be installed at two
different sites: one in the Northern Hemisphere at La Palma
(Canary Islands, Spain) and another in the Southern
Hemisphere at Paranal (Chile). The southern observatory
(known as CTA South) will study the GC, and its northern

counterpart (known as CTA North) will survey extraga-
lactic objects. As the search for the DM at the GC will be a
key focus of the CTA [27], we have chosen to study the
detection possibility of the TeV DM of the triplet KNT
model and to probe its parameter space.

B. CTA instrument response function

The instrument response function (IRF) can be consid-
ered as the area times the probability that a photon with a
given set of input parameters is detected as an event with a
set of observables (reconstructed parameters). For the CTA,
the IRF is the product of effective area (Aeff ), the point
spread function (PSF), energy resolution and dispersion,
and the background rate as a function of energy. The key
features of these quantities are as follows.
The effective area is the area within which the CTA can

observe air showers. It depends on the energy of the
primary gamma ray and the offset angle ϕ (the angle
between the array’s normal direction and the actual source
position). Moreover, the point spread function (PSF) of
CTA IRFs represents the spatial probability distribution of
reconstructed event positions for a point source. Besides, in
short, the energy dispersion of the CTA gives the resolution
between the actual and reconstructed gamma-ray energies
of events recorded by it. Finally, the background rate is the
residual cosmic-ray background rate per solid angle (here,
square degrees) as a function of reconstructed gamma-ray
energy in the CTA.
As the CTA is not constructed yet, the CTA consortium

has carried out several Monte Carlo simulations [73–75] to
compute the results. We specifically make use of South_
z20_50h in the CTA-Performance-prod3b-v2-FITS.tar.gz
IRF (southern site with zenith angle 20° and exposure time
50 hours) throughout our entire study. Let us point out a
few factors for choosing this IRF. Due to its privileged
location, the CTA southern site is most favorable for
surveying the γ sources in the GC with energy ranges
from 20 GeV to 300 TeV. Since our study is focused on the
DM signal from the GC, we consider the IRFs designed for
the southern site. Since it is assumed that the total operation
time of CTA per year will be 1000 hours, we therefore
expect that a longer exposure period is necessary to probe a
possible a DM source region. From Fig. 6, we can see the
variation of the effective area that will enter into our
computation of gamma-ray counts due to DM or back-
ground in the CTA, with respect to gamma-ray energy and
offset angle.

C. CTA backgrounds

In this section, we summarize the dominant background
sources at the CTA considered for our study of detecting the
DM signal from the KNT model.
(1) Cosmic rays: The cosmic rays (CRs) are highly

energetic protons and nuclei. Apart from the VHE
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gamma rays, CRs also trigger air showers, which
are 103 times larger than those of γ rays, and will act
as the dominant background for the CTA. The CRs,
during their flight from their origin, undergo de-
flection due to Galactic magnetic fields; only par-
ticles with sufficiently high energies can reach the
Earth’s atmosphere. While entering the Earth’s
atmosphere, CR protons undergo inelastic collisions
with atmospheric air molecules, causing mixed
hadronic and electromagnetic air showers.4 How-
ever, because of the large transverse momentum
transfer due to hadronic interactions, the shower
components are broad and exhibit irregular patterns
compared to those of electromagnetic showers
initiated by the primary gamma ray.
The shape of the captured image induced by the

Cherenkov light from the air shower initiated by
VHE gamma rays can be well approximated by an
ellipse. But the image gathered from the CR-induced
air shower has a distorted elliptical shape, which can
allow one to discriminate between events generated
due to gamma rays and those generated by cosmic
rays. Nevertheless, a small fraction of images remain
indistinguishable from the signal gamma rays, which
constitute the irreducible background for the CTA.

(2) Galactic diffuse emission: Other than CR, Galactic
diffuse emission (GDE) acts as a potential back-
ground for the CTA, which originates from the
interaction of CR with interstellar molecules and
atomic gas filling the Galactic plane. Observation
of Fermi-LAT found that up to energy scales
of 100 GeV, the GDE is dominated by π0 decay,
inverse Compton scattering, and bremsstrahlung
radiation [78]. The contribution due to GDE

becomes significant when the region of interest
becomes close to the GC, which is relevant for
our case, since we are studying the possible DM
sources near the GC.
Modeling TeV-range GDE for existing ground-

based IACTs is a challenging task due to the
uncertainties associated with the estimated back-
ground in the telescopes’ field of view. It is also
impossible to find a signal-free region in the sky by
a priori consideration [76]. Besides, the data avail-
able from current experiments is limited in order to
have a proper modeling of GDE at the 100 TeV
energy scale. As a consequence, we have taken a
simplified approach following Refs. [18,20,26] and
left more realistic GDE modeling for a future work.
We incorporate the GDE in our analysis using
the P7V6 model of the Fermi team,5 which fits
extremely well for the 50 MeVand 500 GeV energy
range, and we use a power-law extrapolation of
P7V6 data to 100 TeV. The H.E.S.S. observation of
GDE from the Galactic ridge for Galactic coordi-
nates jbj < 0.3° and jlj < 0.8° [77,79] is not taken
into account, as it falls within the region that we have
excluded from our study.

D. Region of interest

Our observation method is based on the Multi-RoI
morphological analysis [20,26]. We assume that all tele-
scopes are pointing toward the GC with Galactic longitude
l and latitude b with coordinates (0,0). The region of
interest (RoI) is divided into five concentric circles spaced
1° apart, such that the outermost circle has radius 5°, as seen
in Fig. 7. The expected number of photon counts for signals
(DM) and backgrounds (CR, GDE) in each circular RoI has
been computed simultaneously. It is known that the central

FIG. 6. Energy and offset angle dependency of the effective area of IRF for CTA southern site with zenith angle 20° and exposure time
50 hours (S_z20_50h).

4There is a certain minimum threshold energy required in order
to trigger the Cherenkov light shower by VHE-γ and CRs. For
electrons, muons, pions, and protons, the threshold energies are
21 MeV, 3.4 GeV, 5.6 GeV, and 38 GeV, respectively.

5https://fermi.gsfc.nasa.gov/ssc/data/access/lat/Background
Models.html.
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part of the GC is populated with several astrophysical
sources, including Sagittarius A* (SgrA*), emitting
gamma-rays. In order to exclude photon counts coming
from this region, we disregard the central part of the GC by
introducing a rectangular patch with 0.3° < b < −0.3° and
−5° < l < 5° within the RoI. The corresponding value of
the J factor, considering the NFW profile, is shown
in Fig. 7.

V. ANALYSIS AND RESULTS

A. Expected gamma-ray counts at the CTA

In this section, we obtain the expected counts for the dark
matter, cosmic rays, and Galactic diffuse emission using the
methods described below.
The expected differential count for each RoI i and energy

bin j for the source X is calculated using the relation

dΓX
γ;i

dE0
γ
¼

Z
Ω0

i

dp̂0
Z

dEγ

Z
dp̂AeffðEγ; p̂ÞPSFðp̂; p̂0Þ

× EdispðE0
γ; Eγ; p̂Þ

dϕX
γ

dEγdΩ
ðEγ; p̂Þ; ð24Þ

where the differential gamma-ray flux for the component X,
dϕX

γ

dEγdΩ
, is weighted by the effective area AeffðEγ; p̂Þ, point

spread function PSFðp̂; p̂0Þ, and energy dispersion
EdispðE0

γ; Eγ; p̂Þ. Here, ðEγ; p̂Þ and ðE0
γ; p̂0Þ denote the

energy and direction of the actual and reconstructed gamma
rays, respectively. The PSFðp̂; p̂0Þ, which is a probability
distribution function of the angular separation between the
actual and reconstructed gamma rays, is mostly relevant
for a point source in the sky, but the sources we are
considering—i.e. DM, CR, or GDE—are extended, so the
PSF can be well approximated by a delta function.
Moreover, the energy dispersion Edisp is important if we

are looking for a specific energy of the gamma ray, which
applies to the linelike spectrum from DM annihilation. But,
in our case, the resulting gamma-ray spectrum from DM
annihilation has a continuum spectrum, so again weighting
the differential gamma-ray flux with a Gaussian-like energy
dispersion function is not important. Finally, the photon
count is obtained using

μXij ¼ Tobs

Z
ΔEj

dEγ

dΓX
γ;i

dEγ
; ð25Þ

where Tobs is the total observation time, and the integration
region ΔEj denotes the jth energy bin.
In our analysis, we divide our photon counts into 20

logarithmically spaced energy bins corresponding to the
photon energy range, Eγ ¼ 30 GeV −MF1

, where the DM
mass MF1

again varies from 1 TeV to 100 TeV, using five
RoIs as described in Sec. IV D. Also, the observation time
is set to Tobs ¼ 100 hr. For the DM annihilating into
WþW− final states, the associated photon count is com-
puted using Eqs. (21), (24), and (25) for the NFW profile.
Again, we compute the expected photon count for the

GDE using Eqs. (24) and (25) from our simplified gamma-
ray flux for the GDE, which is a power-law extrapolation
up to 100 TeV from the Fermi P7V6 model:

dϕGDE

dEγ
¼ 1.0064× 10−6

�
Eγ

GeV

�
−2.333

GeV−1 cm−2 s−1 sr−1:

ð26Þ

The expected gamma-ray count associated with CRs is
evaluated using ctools version 1.6.2 [80], which is a
software toolkit designed for data analysis of the CTA and
other IACTs. The ctools consist of a set of binary
executable C++ and Python tools for performing the

FIG. 7. Left: The annular region of interest (RoI), with circles of radius 1° to 5°, and where the rectangular region 0.3° < b < −0.3°
and −5° < l < 5° is excluded from each annular ring because of the large astrophysical background. Right: J factor corresponding to
each annular region of interest determined for the NFW DM profile. Here, the blue points indicate the J-factor values for each annular
ring. On the other hand, the red points are the J-factor values after subtracting the contribution from the central rectangular patch.
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necessary data analysis, where each of these tools needs
a set of parameters like telescope pointing direction,
radius of the field of view, pixelation, time period of
observation, datebase calibration, etc. Equipped with IRF
South_Z20_50h, we use four components of the
ctools in our analysis: ctobssim, ctbin, ctcube-
mask, and csresspec, following the sequence

ctobssim→ ctbin→ ctcubemask→ csresspec:

Although csresspec inspects the spectral fit residual in
ctools, we use it to extract the count per energy bin.
Besides this, ctcubemask of ctools 1.6.2 does not
have an option to carry out rectangular masking of the
region 0.3° < b < −0.3° and −5° < l < 5°. To perform
this task, we exclude the region from longitude −5° to 5°
using overlapping circles of radius 0.3°. The output from
ctools of the expected gamma-ray counts due to the
cosmic rays from the first four RoIs are shown in Fig. 8.
In addition, as seen in Fig. 9, for both the first (inner-

most) and fifth (outermost) RoIs, the Sommerfeld enhance-
ment in the DM annihilation allows its count rate to be
comparable with the CR count. Moreover, we can see that

in the case of CR and GDE, at low energy, the expected
count rates are smaller in the fifth RoI than that in the first
RoI. On the contrary, when the gamma-ray energy becomes
higher, the count rate in the fifth RoI becomes larger
compared to the first RoI. In Fig. 6, one can see that for low
energy, the effective area of the CTA is small and increases
with the gamma energy. Besides this, the incident gamma
ray at a large angle with respect to the CTA telescope
axis needs to have comparatively higher energy to initiate
Cherenkov light that is detectable at the CTA. For this
reason, we see a low count rate at low energy in the fifth
RoI. On the other hand, with increasing angle towards the
outer RoIs, the combination Ωi × Aeff becomes large at
higher energies, and therefore shows higher gamma-ray
counts at high energies for the CRs and GDE. In the case of
DM, the expected count rate is proportional to the J factor,
which slightly decreases towards the outer RoI, as seen in
Fig. 7. For that reason, we see that the expected count rate
for DM is large to some extent in the first RoI compared to
the fifth one.
The impact of the Sommerfeld enhancement on the DM

annihilation is seen again in Fig. 10, where we consider the
total expected count rate in each RoI for the DM, CRs, and

FIG. 8. Expected gamma-ray counts due to the CR background determined by the ctools from the first four RoIs, where the energy
range is from 30 GeV to 30 TeV.

FIG. 9. Expected count rates from DM, CRs, and GDE with
respect to the gamma-ray energy Eγ at the CTA for the first
and fifth RoIs. Here, the SE annihilation cross section hσvi ¼
2.6 × 10−23 cm3 s−1 for a DM mass MF1

¼ 3 TeV is used to
calculate the expected count rate for the DM.

FIG. 10. Total expected count rates from DM, CRs, and GDE at
each RoI. Here, the total expected count rate at the ith RoI is

given by

P
j
μij

Tobs
. Moreover, as the SE annihilation cross sections

for DM masses 3 TeV and 30 TeV are σv ¼ 2.6 × 10−23 cm3 s−1

and σv ¼ 1.3 × 10−26 cm3 s−1, respectively, the total expected
count rates for 3 TeV DM are comparable to CR counts.
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GDE. In this case, the variation of the expected count
rate with respect to gamma-ray energy at each RoI is
averaged out.

B. Likelihood analysis

In this section, we combine the expected gamma-ray
counts coming from DM, CRs, and GDE backgrounds at
the CTA, and determine its prospect to detect the DM in the
triplet KNT model.
We divide our photon counts into 20 logarithmically

spaced energy bins and five RoIs in a procedure similar to
those in Refs. [18,26] using the binned Poisson likelihood
analysis. The counts are labeled with μXij, where X indicates
the source—DM, CRs, or GDE—and the lower indices
indicate the count in the ith energy bin and the jth RoI. The
number of expected counts is then given by

μij ¼ μDMij þ RCR
i μCRij þ RGDE

i μGDEij ; ð27Þ

where we have introduced the rescaling parameters
fRCR;RGDEg. We may now write the likelihood function
as the product of the independent Poisson distributions
associated with each energy bin and RoI:

Lðμ;RCR;RGDEjnÞ ¼
Y
ij

μ
nij
ij

nij!
e−μij ; ð28Þ

where nij represents the number of observed counts.
However, we do not simulate individual Poisson realiza-
tions of the observed counts nij, but instead obtain an
Asimov dataset [81]. In this procedure, the entire observed
count is considered to be the sum of CR and GDE
backgrounds only, and it can be found by setting μDMij →0

and RCR=GDE
i → 1 in Eq. (27).

Furthermore, we account for the systematic uncertainties
in the signals by introducing a new set of Gaussian
distributed nuisance parameters αij, with mean 1 and
standard deviation σα. This approach results in a modifi-
cation of Eq. (28) so that the new likelihood function is

Lðμ; θjnÞ ¼
Y
ij

ðαijμijÞnijffiffiffiffiffiffi
2π

p
σαnij!

e−αijμije
−
ðαij−1Þ2

2σ2α ; ð29Þ

containing the nuisance parameters we denote collectively
by the set θ ¼ fα;RCR;RGDEg.
We separate our analysis into three distinct parts:
(1) First, we consider neglecting systematic uncertain-

ties completely, as well as neglecting the photon
count from GDE (α → 1; σα → 0; μGDEij → 0).

(2) Next, we consider the effect of including GDE
while still neglecting systematic uncertainties
(α → 1; σα → 0).

(3) Finally, we consider systematic uncertainties re-
stricted to 1% (σα → 0.01).

We now use maximum-likelihood estimates of the nuisance
parameters separately in each of the above three cases to
evaluate the test statistic

λðmF1
; hσviÞ ¼ −2 log

�
Lðμ; θ0MLEjnÞ

LðμMLE; θMLEjnÞ
�
; ð30Þ

where the subscript MLE indicates maximum-likelihood
estimates of the underlying parameters, and we suppress
the implicit dependence on the DM mass mF1

and cross
section hσvi in μ for notational clarity. (Recall that
μDMij ∼ hσvi.) λ is asymptotically equivalent to a χ2 dis-
tribution with one degree of freedom [since μ in Eq. (30) is
still a free parameter]. We bind the rescaling factors in
Eq. (27) so that 0.5 ≤ RCR

i ≤ 1.5 and 0.2 ≤ RGDE
i ≤ 5 (in

accordance with Ref. [18]), and we require α ≥ 0 in order
to keep probabilities non-negative in Eq. (29). While we
formally maximize the likelihood function, in practice we
minimize the negative log-likelihood function:

− logLðμ; θjnÞ

¼ −
X
ij

�
nij logðαijμijÞ − αijμij −

ðαij − 1Þ2
2σ2α

�
; ð31Þ

where we neglect constants and terms involving nij, which
ultimately cancel in evaluating λ and hence do not affect
our analysis. Furthermore, we reduce the set of nuisance
parameters by first analytically maximizing logL with
respect to αij:

∂ logL
∂αij ðμ; θjnÞ ¼ 0; ð32Þ

which, upon imposing the above mentioned constraint
αij ≥ 0, gives

αij ¼
1

2

	
1 − σ2ijμij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4σ2αnij − 2σ2αμij þ σ4αμ

2
ij

q 

;

ð33Þ

which we substitute back into Eqs. (29) and (31). Note that
αij → 1 in the limit σα → 0. With the explicit dependence
on α eliminated from the likelihood function in Eq. (29), we
may regard the nuisance parameters as the reduced set
θ ¼ fRCR;RGDEg. At this stage, we wish to find an upper
limit of the 95% confidence interval for hσvi. Towards this
end, we numerically calculate λ: first, we find the denom-
inator in Eq. (30), thereby obtaining μMLE; next, we modify
the numerator by gradually increasing hσvi until λ reaches
2.71. [Recall that χ21 ∼ Z2 with Z ∼ Nð0; 1Þ, and hence for
finding the upper limit of the 95% confidence interval, we
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require Z2 ≈ 1.6452 ≈ 2.71.] We subsequently use this
value of hσvi for the 95% upper limit in the exclusion
line for one particular fixed mass mF1

. We then repeat this
method for masses ranging from 1 TeV to 100 TeV, thereby
obtaining an exclusion line for hσvi. Finally, we repeat this
entire process in the three distinct scenarios mentioned
above—i.e., with the following backgrounds: CRs alone;
CRs and GDE; as well as CRs, GDE, and 1% systematic
uncertainties. All of these results are illustrated in Fig. 11.

C. Results and discussion

In Fig. 11, we can see that the CTA can probe the DM
of the triplet KNT model with the mass up to 25.7 TeV.
The DM mass range 1.5 TeV ≤ MF1

≤ 4.25 TeV, where
the direct detection constraint sets the lower limit [Fig. 2
(right)], can be excluded from the CTA observation of
continuum gamma rays coming from DM annihilation at
the GC. However, the CTA sensitivity derived here is
subjected to several issues, which we discuss below.
In our study, one prominent uncertainty which influences

the expected gamma-ray count from the DM annihilation
at the CTA and may degrade its DM detection sensitivity is
the astrophysical J factor in Eq. (21). As the astrophysical J
factor depends on the DM density profile of the Milky Way,
the precise information of its density profile near the GC is
essential for reducing the uncertainty that translates into the
J factor used for calculating gamma-ray flux. We have used
the NFW profile, which is cuspy at the GC, to calculate the
corresponding J factors for our annular RoIs centered on
the GC. However, one could use joint profile likelihood
analysis, as was done, for example, in Ref. [66], to set
upper limits on both the DM annihilation cross section and
the J-factor values associated with the considered RoIs.
Also, the proper treatment of the background in RoIs

contributes to the CTA sensitivity for DM detection. In our
case, we consider the gamma rays from DM annihilation,
and the background CRs and GDE simultaneously from the

same region of the sky. One could have considered two
regions of the sky, one where the count from the DM signal
is expected to be high, known as the “ON” region, and an
adjacent DM-signal-free but background-dominated region
taken as “OFF.” The statistical significance of the DM
signal is determined in this scenario by contrasting the
counts from the ON and OFF regions. However, in such an
ON-OFF method, it is not always possible to define the
signal-free region beforehand for extended sources like
the DM, which could lead to systematic uncertainties in the
counts and eventually incorrect substantial significance.
The method we use is less prone to systematic uncertain-
ties, as all the counts are taken for the same region.
Moreover, our extrapolation of the GDE up to 100 TeV

from the Fermi P7V6 model given by Eq. (26) is simplified,
as the GDE can have nontrivial spatial and spectral
properties at such high energies. For this reason, we have
derived CTA sensitivity with and without the GDE. If we
consider only the CRs as the background, we get the most
stringent limit (the red dashed line in Fig. 11) on the DM
annihilation cross section into WþW− final states in the
triplet KNT model at the GC from our analysis. The
inclusion of the GDE reduces the sensitivity, as seen from
the green dashed line in Fig. 11. Finally, as expected, the
systematics of 1% further degrades the CTA sensitivity, as
illustrated by the blue dashed line in Fig. 11.

VI. CONCLUSION AND OUTLOOK

In this work, we have studied the sensitivity of the
upcoming Cherenkov Telescope Array to detect the DM
candidate, with mass in the TeV range, of the KNT model
annihilating into WþW− at the Galactic Center. In the
following, we summarize our key results in order.
As shown in Sec. II, the KNT model can be generalized

with large fermionic multiplets Fi of three generations
and the scalar multiplet Φ, all of them having the same
integer isospin j of SUð2ÞL, and hypercharges YFi

¼ 0 and
YΦ ¼ 1, respectively, without changing the topology of
three-loop neutrino mass generation. Here, we set the upper
limit on the value of the SUð2ÞL isospin for the KNT model
using the bounds from the partial-wave unitarity on the

coupled channels, FðQÞ
i Fð−QÞ → WþW−; ZZ; γγ; γZ. The

bound on the SU(2) isospin of the fermion multiplet is
jF ≤ 8 for one generation and jF ≤ 7 for three generations.
The inclusion of the elastic channels in the coupled-channel
analysis makes the partial-wave unitarity bound somewhat
ineffective because of the Coulomb singularity arising from

the photon exchange in FðQÞ
i Fð−QÞ

i → FðQÞ
i Fð−QÞ

i .
Therefore, a more refined bound on the SUð2Þ isospin

comes from the appearance of the low-scale Landau pole in
the gauge coupling in the presence of large electroweak
multiplets. From Table I, we can see that the j ¼ 3 case is
almost ruled out, and j ¼ 2 is already in tension with the
nonobservation of nonperturbative SUð2Þ coupling and the

FIG. 11. The projected upper limit on the annihilation cross
section for the triplet dark matter into the WþW− final state for
the NFW profile and 100 hours of observation at the CTA.
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new physics appearing at the LHC. It leaves the minimal
KNT with singlets and the triplet KNT with j ¼ 1 as the
only viable models within the class of such three-loop
radiative neutrino mass generation models.
However, the regions of parameter space associated with

the dark matter of the singlet and triplet KNT models are
different, because the DM of the singlet KNT does not have
any SM gauge interaction, and its thermal freeze-out and
annihilation at the present day are controlled by the KNT
Yukawa couplings, which directly connects them to the
neutrino mass generation and the related low-energy
constraints. For this reason, the viability of the singlet
KNT DM with OðTeVÞ mass is left for a future study. On
the other hand, the DM of the triplet KNT model, being
charged under the SM gauge group, can have a large
Sommerfeld enhancement, and its parameter space is
determined mostly by the gauge interactions when the
DM mass is in the TeV range.
Besides this, the SE annihilation of such heavy DM can

produce detectable VHE gamma rays at the IACTs. We
show that the DM of the triplet KNT model annihilating
intoWþW− at the GC can be probed up to 25.7 TeV by the
future CTA experiment considering the NFW profile and
100 hours of observation. However, there is some room for
improvement of our sensitivity analysis. The triplet KNT
model also has SE annihilation channels into γγ and γZ,
which would have a linelike signature in the gamma-ray
spectrum around Eγ ∼MF1

. Although the statistical analy-
ses related to the continuum and linelike gamma-ray
spectra have some differences, a proper combination of
both analyses can lead to a better CTA sensitivity. Also, the
consideration of the morphological analyses adopted in
Refs. [18,27,29] would result in an improved sensitivity of
the CTA to detect the triplet KNT DM.
In addition, one can consider the dwarf spheroidal

galaxies (dSphs) that are expected to contain up to
Oð103Þ times more mass in DM than in visible matter
and have a lower astrophysical gamma-ray background than
the GC. Such characteristics of dSphs make them an ideal
environment to search for the DM at the CTA [27].
Furthermore, the electrons produced from DM annihilation

(mostly as secondary) can generate synchrotron radiation in
the presence of the magnetic field, which could be observed
as a diffuse radio emission in present and future radio
observatories like the Square Kilometer Array (SKA) [84],
and the sensitivity to detect such radio signals from DM in
the dSphs is promising [82,83]. Therefore, a combined
sensitivity study of theCTAandSKA to detect theDM in the
dSphs will enable us to probe further the parameter space of
the generalized KNT model [85] and other variants [86,87]
of the three-loop radiative neutrinomass generation models.
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APPENDIX A: HELICITY AMPLITUDES AND
PARTIAL-WAVE UNITARITY

The helicity eigenstates of the fermion (u�) and anti-
fermion (v�) with respect to the 3-momentum

p⃗ ¼ ðp sin θ cosϕ; p sin θ sinϕ; p cos θÞ ðA1Þ

are given by

uþðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p �
cos

θ

2
; eiϕ sin

θ

2
;

p
Eþm

cos
θ

2
;

p
Eþm

eiϕ sin
θ

2

�
; ðA2Þ

u−ðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p �
− sin

θ

2
; eiϕ cos

θ

2
;

p
Eþm

sin
θ

2
;−

p
Eþm

eiϕ cos
θ

2

�
; ðA3Þ

vþðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p �
p

Eþm
sin

θ

2
;−

p
Eþm

eiϕ cos
θ

2
;− sin

θ

2
; eiϕ cos

θ

2

�
; ðA4Þ

v−ðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p �
p

Eþm
cos

θ

2
;

p
Eþm

eiϕ sin
θ

2
; cos

θ

2
; eiϕ sin

θ

2

�
; ðA5Þ
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where � denotes either along or opposite to the given
momentum direction. The incoming momenta of fermions
and antifermions are taken along the z axis (θ ¼ 0;ϕ ¼ 0)
and opposite to it (θ ¼ π;ϕ ¼ π), respectively.
The transverse (T) and longitudinal (L) polarization

4-vectors of the outgoing gauge bosons with respect to
the 3-momentum p⃗ are given by

ϵTðp̂; λÞ ¼
1ffiffiffi
2

p ð0;−λ cos θ cosϕþ i sinϕ;

− λ cos θ sinϕ − i cosϕ; λ sin θÞ; λ ¼ �1;

ðA6Þ

ϵLðp̂Þ ¼
1

MV
ðjp⃗j; E sin θ cosϕ; E sin θ sinϕ; E cos θÞ:

ðA7Þ
Therefore, if the outgoing gauge bosons are in the xz plane,
their corresponding polarization 4-vectors are given by
setting ðθ;ϕ ¼ 0Þ and ðπ − θ;ϕ ¼ πÞ, respectively.
In the high-energy limit,

ffiffiffi
s

p
→ ∞, the helicity-conserving

amplitude (jμij ¼ jμfj) can be expanded as

M ¼ M1
2
s
1
2 þOð1= ffiffiffi

s
p Þ; ðA8Þ

whereas the helicity-violating amplitude (jμij ≠ jμfj) can
be expanded as

M ¼ M1sþM0 þOð1=sÞ: ðA9Þ

As we are taking into account the high-energy tree-
level scattering, the above mentioned helicity amplitudes

between the initial states, jii ¼ jFðQÞ
i Fð−QÞ

i i, and final states,
jfi ¼ jVV 0i (with VV 0 ¼ WþW−; ZZ; γγ; γZ), are consid-
ered to be the matrix elements T fi of Eqs. (3) and (4). In the
subsequent paragraphs, we avoid writing the values of sub-
scripts i and f in M explicitly to have simplified notations.
We have checked that the cancellations among the s

channel, t channel, and u channel in FF → VV scattering
render the termsM1

2
andM1 to be zero, which is expected,

as Fi are the electroweak multiplets. In the following, we
tabulate only the M0 terms of the corresponding helicity
amplitudes.
For FðQÞFð−QÞ → WþW−, where W� are transverse, we

have

M0ðþ−;þ−Þ ¼ g2
�
2 tan

θ

2
fV−ðt3ÞVþðt3 − 1Þg− t3 sinθ

�
;

ðA10Þ

M0ð−þ;þ−Þ

¼ −g2
�
2 cot

θ

2
fVþðt3ÞV−ðt3 þ 1Þg þ t3 sin θ

�
; ðA11Þ

where the first two entries correspond to the fermion’s
helicity, � 1

2
, and the last two entries denote the gauge

boson’s helicity, �1. Also, t3 is the eigenvalue of the
diagonal generator, T3, of SUð2Þ associated with the

component field, FðQÞ
i , of the multiplet, Fi, and t3 takes

a value as t3 ¼ −jF;−jF þ 1;…; jF − 1; jF, if jF is the
isospin of the fermionic multiplet. Besides, as the hyper-
charge of the fermion multiplet is zero, the electric charge
of its component field followsQ ¼ t3. Moreover, V�ðt3Þ ¼
1ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt ∓ t3Þðt� t3 þ 1Þp

corresponds to SUð2Þ, raising

and lowering factors with isospin t and t3.
In addition, for the scattering FðQÞFð−QÞ → ZZ, where Z

is transverse, we have

M0ðþ−;þ−Þ ¼ M0ð−þ;−þÞ ¼
ffiffiffi
2

p
g2t23 cos

2 θw tan
θ

2
;

ðA12Þ

M0ðþ−;−þÞ ¼ M0ð−þ;þ−Þ ¼ −
ffiffiffi
2

p
g2t23 cos

2 θw cot
θ

2
:

ðA13Þ

Also, for FðQÞFð−QÞ → γγ scattering,

M0ðþ−;þ−Þ ¼ M0ð−þ;−þÞ ¼
ffiffiffi
2

p
g2t23 sin

2 θw tan
θ

2
;

ðA14Þ

M0ðþ−;−þÞ ¼ M0ð−þ;þ−Þ ¼ −
ffiffiffi
2

p
g2t23 sin

2 θw cot
θ

2
:

ðA15Þ

Finally, we have, for FðQÞFð−QÞ → γZ, where Z is
transverse,

M0ðþ−;þ−Þ ¼M0ð−þ;−þÞ¼ 2g2t23 sinθw cosθw tan
θ

2
;

ðA16Þ

M0ðþ−;−þÞ¼M0ð−þ;þ−Þ¼−2g2t23 sinθw cosθw cot
θ

2
:

ðA17Þ

Moreover, as we can see from Eqs. (A10)–(A17),
the helicity amplitudes have initial total helicity either as
μi ¼ 1 or μi ¼ −1, and final total helicity either as μf ¼ 2

or μf ¼ −2. Therefore the Wigner dmatrices of Eq. (4) will
involve dJ�1;�2 with J ¼ 2; 3;…, corresponding to these
helicity amplitudes. Since typically partial-wave ampli-
tudes with higher J values are smaller compared to those
with lower possible J values, we consider the partial-wave
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amplitudes with J ¼ 2 in our analysis. Hence, we have
used the following Wigner d matrices to calculate aJ¼2

fi :

d22;1 ¼ −d21;2 ¼ −
1

2
ð1þ cos θÞ sin θ;

d22;−1 ¼ −d2−1;2 ¼ −
1

2
sin θð1 − cos θÞ:

The coupled-channel matrix is written in the following
basis:

jψ sci ¼ ðWþW−; ZZ; γγ; γZ; F0
i F

0
i ;…;

FðQÞ
i Fð−QÞ

i ;…; FðjFÞ
i Fð−jFÞ

i ÞT; ðA18Þ

where i ¼ 1; 2; 3 is the generation index, and for more
than one generation of multiplets, the two-particle states

FðQÞ
i Fð−QÞ

i are repeated for each value of i in the above
basis. For example, for isospin jF ¼ 1 and one generation,
it is given by

aJ¼2 ¼

0
BBBBBBBBBBBBB@

0 0 0 0 g2

24
ffiffi
2

p
π

g2

48π

0 0 0 0 0 g2 cos2 θw
24

ffiffi
2

p
π

0 0 0 0 0 g2 sin2 θw
24

ffiffi
2

p
π

0 0 0 0 0 g2 cos θw sin θw
24π

g2

24
ffiffi
2

p
π

0 0 0 0 0

g2

48π
g2 cos2 θw
24

ffiffi
2

p
π

g2 sin2 θw
24

ffiffi
2

p
π

g2 cos θw sin θw
24π 0 0

1
CCCCCCCCCCCCCA

: ðA19Þ

As we are only considering FF → VV 0 scattering, the
matrix elements of Eq. (A19) are zero for VV 0 → VV 0 and
FF → FF channels. As the order of the coupled-channel
matrix increases when the isospin of the fermion multiplet
jF and the generation number i increase, we first determine
the largest eigenvalue of the corresponding coupled-chan-
nel matrix and identify the largest values of jF which
satisfy the bound in Eq. (9) for single and three generations.
In the case of high-energy scattering of FðQÞFð−QÞ →

FðQÞFð−QÞ with Q ≠ 0, the photon exchange at the t
channel would lead to the following helicity amplitudes:

MðtÞ
0

�
þ 1

2
;þ 1

2
;þ 1

2
;þ 1

2

�
¼ 2Q2e2cosec2ðθ=2Þ;

ðμi ¼ 0; μf ¼ 0Þ; ðA20Þ

MðtÞ
0

�
þ 1

2
;−

1

2
;þ 1

2
;−

1

2

�
¼ 2Q2e2cot2ðθ=2Þ;

ðμi ¼ 1; μf ¼ 1Þ: ðA21Þ

From Eqs. (A20) and (A21), we can see that only Wigner d
matrices dJ00ðθÞ and dJ�1;�1ðθÞ will be present in Eq. (4),
but then the integration over cos θ will be divergent because
of the integrand’s singularities at cos θ ¼ �1. This is the
Coloumb singularity appearing in the elastic channels,
which is mentioned in Sec. II A.

APPENDIX B: LANDAU POLE

The one-loop beta function for the SUð2Þ coupling given
in Eq. (11) is

βg ¼
g3

16π2

�
−
19

6
þ 4

3

X
i

κFi
TðFiÞ þ

1

3

X
j

ηSjTðSjÞ
�

¼ g3

16π2
bg; ðB1Þ

where bg is denoting the factor of g3=16π2 in Eq. (B1).
Therefore, the coupling gðμÞ at the energy scale μ is
given as

gðμÞ ¼ gðμ0Þ
1 − bggðμ0Þ2

8π2
lnð μμ0Þ

; ðB2Þ

where μ0 is the reference energy scale and gðμ0Þ is the
value of coupling at that scale. Moreover, we denote
bSMg ¼ −19=6 for the SM contribution only. Now, if bg
is positive, we have an energy scale called the Landau pole,
μ ¼ ΛLan > μ0, for which the denominator of Eq. (B2)
vanishes [provided gðμ0Þ ≠ 0], and we get

ΛLan ¼ μ0 exp

�
8π2

bggðμ0Þ2
�
: ðB3Þ

Now, for the generalized KNT model, there are three
generations of SUð2Þ fermion multiplets with isospin j
(where j is integer) and hypercharge Y ¼ 0, and one SUð2Þ
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scalar multiplet with isospin j and hypercharge Y ¼ 1.
Therefore, the factor bg is given by bg ¼ − 19

6
þ 13

9
jðjþ 1Þ

ð2jþ 1Þ. Consequently, the factor bg becomes positive
for isospin j ≥ 1. We consider the electroweak (EW)
scale at μEW¼MZ¼91.1876GeV with gðMZÞ¼0.65114
[48,90]. If the masses of the additional KNT multiplets—
which are, for simplicity, denoted by a common mass
parameter, MX—are comparable to the electroweak scale,
then the running of the SUð2Þ coupling from the electro-
weak scale, μ0 ¼ MZ, to the higher energy will involve
positive bg for isospin j ≥ 1, and correspondingly we
determine the Landau pole of g using Eq. (B3), which is
tabulated in the second column of Table I for j ¼ 1; 2; 3.

Now, if the KNT mass scale isMX ≫ MZ—i.e., in the TeV
range—the contributions from the KNT fields to the
running of the SUð2Þ from MZ to MX can be considered
negligible. In this case, we first determine gðμ ¼ MXÞ using
Eq. (B1), with bg ¼ bSMg from the EW scale μ0 ¼ MZ, that
is up to the energy scale MX, where the KNT fields’
contributions in the running become relevant. Afterwards,
we compute the Landau pole for isospin j using Eq. (B3),
with μ0 ¼ MX and gðμ0 ¼ MXÞ as inputs. We tabulate the
corresponding Landau poles for the isospin j ¼ 1; 2; 3
in the third, fourth, and fifth columns of Table I for
MX ¼ 103; 104, and 105 GeV, respectively.
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