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We present the formalism for connecting a second-order electroweak 2→
HIþHI

2 transition amplitudes in
the finite volume (with two hadrons in the initial and final states) to the physical amplitudes in the infinite
volume. Our study mainly focuses on the case where the low-lying intermediate state consists of two

scattering hadrons. As a side product, we also reproduce the finite-volume formula for 2!HI
2 transition,

originally obtained by Briceño and Hansen [Phys. Rev. D 94, 013008 (2016)]. With the available finite-
volume formalism, we further discuss how to treat with the finite-volume problem in the double beta decays
nn → ppeeν̄ ν̄ and nn → ppee.
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I. INTRODUCTION

Lattice QCD provides a well-established nonperturbative
approach to solve the quantum chromodynamics (QCD)
theory of quarks and gluons. Using the high-performance
supercomputers, the quarks and gluons are enclosed and
simulated in a discretized, finite-volume lattice. Controlling
the various systematic effects such as lattice discretization
effects, finite-volume effects, and unphysical quark mass
effects is required for the lattice QCD calculation to make
the high-precision predication from first principles. On the
other hand, in some cases, the study of the systematic
effects is much more than the reduction of the uncertainty.
It could lead to the new methodology to solve the
interesting physics problems. For example, the study of
the pion mass dependence from lattice QCD interplays with
the chiral perturbation theory, yielding a deeper under-
standing of the chiral dynamics of QCD. Another example
is the pioneering work on the finite-volume formalism
by Lüscher [1–3]. It allows us to connect the discrete
energy spectrum calculated from lattice QCD to the

infinite-volume scattering phase and has played an impor-
tant role in understanding the hadron spectra and hadron-
hadron scattering.
The finite-volume formalism generically includes three

topics.
(i) Finite-volume energy quantization relates the discrete

energy in the finite volume to the scattering phase in
the infinite volume. The best examples under well
investigation are the pion-pion scattering in the
isospin I ¼ 2 [4–14], I ¼ 1 (ρ resonance relevant)
[15–30], and I ¼ 0 (σ resonance and disconnected
diagrams relevant) [31–37] channels. Due to the good
signals provided by the pion-pion system, a lot of
attentions are paid to these scattering channels in the
past years. For more lattice calculations of scattering
amplitudes, we refer to a recent review [38].

(ii) The Lellouch-Lüscher relation [39] connects the
finite-volume matrix element with two hadrons in
either the initial or final state to the physical
matrix element in the infinite volume. Such exam-

ples include 0!J 2 decays, e.g., the timelike pion

form factor [21,28,30,40], 1!HI
2 and 1!J 2 decays1*xu.feng@pku.edu.cn
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1By using the current J, it means that the transition goes
through a quark bilinear vertex. By using HI , it indicates an

interaction term such as a four-quark operator, where the 1!J 1
subprocesses do not exist.

PHYSICAL REVIEW D 103, 034508 (2021)

2470-0010=2021=103(3)=034508(9) 034508-1 Published by the American Physical Society

https://orcid.org/0000-0002-0856-0649
https://orcid.org/0000-0003-1670-3467
https://orcid.org/0000-0002-2638-5047
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.034508&domain=pdf&date_stamp=2021-02-17
https://doi.org/10.1103/PhysRevD.94.013008
https://doi.org/10.1103/PhysRevD.103.034508
https://doi.org/10.1103/PhysRevD.103.034508
https://doi.org/10.1103/PhysRevD.103.034508
https://doi.org/10.1103/PhysRevD.103.034508
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


including K → ππ [41–45] and ππ → πγ� transition

[46–48], and 2!J 2 decays recently studied in
Refs. [49,50].

(iii) A finite-volume formula for long-distance electro-
weak amplitudes [51–53] relates the bilocal matrix
element in the finite volume to the physical one in
the infinite volume. This formalism is first devel-
oped to solve the finite-volume problem for KL-KS
mixing [54–57] and has been used for other second-
order electroweak processes such as rare kaon
decays [58–63]. Recently, the formalism is gene-
ralized in Ref. [64] to access more long-distance
observables.

It is found by Ref. [53] that the above three finite-volume
formulas can be derived in a uniform way in the framework
of quantum field theory using the techniques of Kim et al.
(KSS) [65].
In this work, we present the derivation of the finite-

volume formula for long-distance electroweak amplitudes
with two hadrons in both the initial and final states

(2→
HIþHI

2). We consider the scattering process with two
channels, which are mixed by the electroweak interaction.
We label these two channels by α and β. The master
formula is given as

dðϕþ δð0Þα Þ
dE

ΔEα þ Δδα

¼ 1

4
cotðϕþ δð0Þβ ÞjhE; in; βjHIjE; in; αij2;

at E ¼ Eð0Þ
α ; ð1Þ

where Eð0Þ
α is discrete energy for the initial/final state

without non-QCD correction. ΔEα is the energy shift when
turning on the second-order electroweak interaction, and it

is equal to the 2→
HIþHI

2 finite-volume matrix element
calculated on the lattice. ϕ is a known, kinematic function,
originally introduced by Lüscher in Eq. (6.12) of Ref. [2].

δð0Þα is the strong scattering phase for the initial/final state,

and δð0Þβ is the scattering phase for the low-lying two-hadron
intermediate state. Here, we consider the case that the
lowest intermediate state consists of two interacting
hadrons. Δδα is the shift in the total scattering phase with
the existence of the non-QCD interaction. It is equivalent to

the infinite-volume 2→
HIþHI

2 matrix element as we explain
later. The derivation is performed using the perturbative
approach proposed by Lellouch and Lüscher [39] together
with the coupled-channel finite-volume energy quantiza-
tion condition [66,67]. The derivation of Eq. (1) is

performed under the assumption that there are no 1!HI
1

subprocesses, which significantly simplifies the analysis.
As a side product, we also obtain the finite-volume formula

for the 2!HI
2 transition with HI carrying the vanishing

momentum. For the more general cases of 2!J 2, we refer to
Refs. [49,50].
We find that the KSS approach [65] treats the finite-

volume problem in a thorough and fundamental way
using the Poisson summation formula. Many new deve-
lopments of the finite-volume formalism have made
progress along the direction proposed by KSS. On the
other hand, the approach invented by Lellouch and
Lüscher [39] creates another possibility that one can
obtain the finite-volume formalism in a relatively simple
way as the finite-volume information is already incorpo-
rated inside Lüscher’s quantization condition, and it is not
necessary to investigate it again using Poisson summation
formula.
The paper is organized as follows. In Sec. II, we discuss

the discrete energy shift in the finite volume due to the

existence of the 2→
HIþHI

2 transition. In Sec. III, we discuss
the infinite-volume scattering amplitude relevant for the

2→
HIþHI

2 transition. In Sec. IV, the energy shift is related
to the scattering amplitude using the coupled-channel
quantization condition, and thus, the finite-volume
formalism Eq. (1) is obtained. In Sec. V, we discuss the
possible solutions to the finite-volume problems in the
double beta decays.

II. 2→
HI +HI2 TRANSITION IN THE

FINITE VOLUME

We consider the full Hamiltonian including both QCD
and non-QCD interactions as

HL ¼ HL
0 þHL

I ; ð2Þ

where HL
0 stands for the pure strong interaction and HL

I
indicates the non-QCD ones, induced by, e.g., an electro-
magnetic or weak interaction. The superscript L reminds us
that all the interactions are constrained by a finite volume.

For simplicity, we assume that the 1!HI
1 subprocesses do

not exist.
When the interaction HI is turned on, it is possible that

two independent strong scattering (or bound) channels are
mixed by the non-QCD interaction. For example, we can

consider a transition process of α!HIβ!HIα, where the two-
particle state αmixes with β. To specify this character of the

2→
HIþHI

2 transition, we assign two low-lying eigenstates of
the Hamiltonian HL

0 as jαiL and jβiL, which satisfy the
normalization conditions,

LhαjHL
0 jαiL¼Eð0Þ

α ; LhβjHL
0 jβiL¼Eð0Þ

β ; LhβjHL
0 jαiL¼0;

ð3Þ
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and Eð0Þ
α and Eð0Þ

β are the corresponding energy eigenvalues.
These two states are independent when turning off the non-
QCD interactions but mix with each other when turning on
these interactions. In the finite volume, the spectra of QCD
Hamiltonian are discrete, and it allows for multiple nearly
degenerate states. Here, we focus on only one of them and
classify all the other states as jnαiL and jnβiL, where jnαiL
and jnβiL have the same quantum number as jαiL and jβiL,
respectively. We introduce the projectors,

Q ¼
X
n¼α;β

jniLLhnj; P ¼ 1 −Q; ð4Þ

to construct a two-state subspace.
The eigenvalue equation for the full Hamiltonian is

given by

ðHL
0 þHL

I ÞjniLI ¼ EnjniLI : ð5Þ

In the notation of the eigenstate jniLI , the subscript I is used
to indicate the existence of the non-QCD interaction.
Acting P and Q on the above equation, we have

HL
0PjniLI þ PHL

I ðQþ PÞjniLI ¼ EnPjniLI ;
HL

0QjniLI þQHL
I ðQþ PÞjniLI ¼ EnQjniLI : ð6Þ

This results in

PHL
I QjniLI ¼ ðEn −HL

0 − PHL
I PÞPjniLI ;

QHL
I PjniLI ¼ ðEn −HL

0 −QHL
I QÞQjniLI : ð7Þ

Inserting PjniLI ¼ PðEn −HL
0 − PHL

I PÞ−1PHL
I QjniLI into

the second line of Eq. (7), we have

QHL
I PðEn −HL

0 − PHL
I PÞ−1PHL

I QjniLI
¼ ðEn −HL

0 −QHL
I QÞQjniLI : ð8Þ

By neglecting the OðH3
I Þ terms, we obtain the equations,

ðH̃0 þ H̃IÞQjniLI ¼ EnQjniLI ; ð9Þ

with

H̃0 ¼ HL
0 þQHL

I Q; H̃I ¼ QHL
I PðEn −HL

0 Þ−1PHL
I Q:

ð10Þ

The existence of the nonzero solutions for equations,

LhαjH̃0 þ H̃IjαiLLhαjαiLI þ LhαjH̃0 þ H̃IjβiLLhβjαiI
¼ Eα

LhαjαiLI ;
LhβjH̃0 þ H̃IjαiLLhαjαiLI þ LhβjH̃0 þ H̃IjβiLLhβjαiI

¼ Eα
LhβjαiLI ; ð11Þ

requires that the secular equation holds

�����
LhαjH̃0 þ H̃IjαiL − Eα

LhαjH̃0 þ H̃IjβiL
LhβjH̃0 þ H̃IjαiL LhβjH̃0 þ H̃IjβiL − Eα

����� ¼ 0:

ð12Þ

For the general case with Eð0Þ
α ≠ Eð0Þ

β , the solution of Eα is
given by

Eα ¼ Eð0Þ
α þ ΔEα;

ΔEα ¼
jLhβjHL

I jαiLj2
Eð0Þ
α − Eð0Þ

β

þ
X
nβ≠β

jLhnβjHL
I jαiLj2

Eð0Þ
α − Eð0Þ

nβ

: ð13Þ

The energy shift ΔEα is exactly the finite-volume long-
distance matrix element obtained from a lattice QCD
calculation.
Here, we obtain Eq. (13) using the second-order degen-

erate perturbation theory. In fact, Eq. (13) is the standard
result from the second-order perturbation theory, and we
expect the derivation could be simpler using the common
perturbation theory.

III. 2→
HI +HI2 TRANSITION IN THE INFINITE

VOLUME

Now we consider the 2→
HIþHI

2 transition in the infinite
volume. For simplicity, we only discuss the case that the
low-lying intermediate state is given by a two-particle
scattering state or a one-particle bound state. For the
former, the transition amplitude involves the input of a
2 × 2 scattering S matrix. For the latter, a single-channel S
matrix is relevant.

A. Process of 2!HI2!HI2

We first consider the scattering state by turning off
the non-QCD interactions. In the infinite volume, we use
jE; in; αi to describe the incoming scattering state and
hE; out; αj for the outgoing scattering state. The low-lying
intermediate scattering state is described by jE; in; βi. For
simplicity, here we only consider the S-wave scattering.
The relevant normalization condition is assigned as

hE0; in; βjE; in; αi ¼ 2πδðE − E0Þδαβ: ð14Þ

The scattering S matrix is defined as
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� hE0; out; αjE; in; αi hE0; out; βjE; in; αi
hE0; out; αjE; in; βi hE0; out; βjE; in; βi

�

¼ 2πδðE − E0ÞS;

S ¼
�
e2iδ

ð0Þ
α 0

0 e2iδ
ð0Þ
β

�
: ð15Þ

Without non-QCD interactions, there is no mixing between

α and β states. Thus, S is a diagonal matrix with δð0Þα and

δð0Þβ the scattering phases for pure strong interaction. We use
jα0i and jβ0i to stand for the excited states, which have
the same quantum number as jE; in; αi and jE; in; βi,
respectively. We assume that the threshold energy Eth
for these excited states are above the energy region we
are interested in.
When turning on the non-QCD interactions, the scatter-

ing state for full Hamiltonian H ¼ H0 þHI is given by

jE; in; αiI ¼ jE; in; αi þGðþÞ
E HIjE; in; αiI; ð16Þ

where

GðþÞ
E ¼ 1

E −H0 þ iε
¼ PV

1

E −H0

− iπδðE −H0Þ ð17Þ

is the standard Green’s function. With non-QCD inter-
actions, we parametrize the Smatrix following Refs. [66,67],

SI ¼
�

ce2iδα iseiδαþiδβ

iseiδαþiδβ ce2iδβ

�
; ð18Þ

where the real values c and s satisfy the relation
c2 þ s2 ¼ 1. This parametrization makes the derivation of
the finite-volume formalism very straightforward. (In some
other cases, e.g., in the K → ππ decay where I ¼ 0 and
I ¼ 2 ππ states mix due to the existence of electromagnetic
interactions [68], it is simpler to use the parametrization
proposed by Ref. [69].)
It is useful to relate the Smatrix to the T matrix using the

relation S ¼ 1þ iT. After turning on the non-QCD inter-
action, the change of the T matrix is given by

ΔT ¼ −i
�
ce2iδα − e2iδ

ð0Þ
α iseiδαþiδβ

iseiδαþiδβ ce2iδβ − e2iδ
ð0Þ
β

�
: ð19Þ

On the other hand, the matrix of ΔT can be constructed
using the scattering state through

ΔT¼−
�hE;out;αjHIjE;in;αiI hE;out;βjHIjE;in;αiI
hE;out;αjHIjE;in;βiI hE;out;βjHIjE;in;βiI

�
:

ð20Þ

We can make the perturbative expansion of ΔT. Up to
OðH2

I Þ, we find

ΔT ¼ −

0
B@ e2iδ

ð0Þ
α ðKα − ijJj2=2Þ eiδ

ð0Þ
α þiδð0Þβ J

eiδ
ð0Þ
α þiδð0Þβ J� e2iδ

ð0Þ
β ðKβ − ijJj2=2Þ

1
CA;

ð21Þ

where

Kα ¼ PV
Z

dE0

2π

jhE0; in; βjHIjE; in; αij2
E − E0

þ
XZ

β0

jhβ0jHIjE; in; αij2
E − Eβ0

;

J ¼ eiδ
ð0Þ
β −iδð0Þα hE; in; βjHIjE; in; αi: ð22Þ

Here, we have used the simplified symbol ⨋β0≡P
β0
R∞
Eth

dEβ0
2π . Under the symmetry of the time reversal

invariance, J is a real quantity. By exchanging α and β
for Kα, one gets the expression for Kβ.
Equating Eqs. (19) and (21), we obtain

s ¼ −J; Δδα ≡ δα − δð0Þα ¼ −
Kα

2
;

Δδβ ≡ δβ − δð0Þβ ¼ −
Kβ

2
: ð23Þ

B. Process of 2!HI1!HI2

For the 2→
HIþHI

2 process with a deeply bound intermedi-
ate state, the first example comes from ππ → K → ππ in L.
Lellouch and M. Lüscher’s work [39]. Later, H. Meyer
extended it to the case of ππ → W → ππ [40], where a
massive gauge boson W is introduced and annihilated with
an auxiliary vector field to obtain a finite-volume formula
for the timelike pion form factor. In Ref. [51], N. Christ
used again the ππ → K → ππ transition amplitude to obtain
a finite-volume correction for the KL-KS mass difference.

Here, we include the process of 2!HI
1!HI

2 simply for the
completeness of the discussion.
If β is a deeply bound state, it is not necessary to

introduce a 2 × 2 S matrix. The correction to the T matrix
due to the non-QCD interaction is given by

ΔT ¼ −hE; out; αjHIjE; in; αiI: ð24Þ

Using Eq. (16) and inserting the jβi and jβ0i states into ΔT,
one can obtain
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ΔT ¼ −e2iδ
ð0Þ
α

�jhβjHIjE; in; αij2
E − Eβ

þ
XZ

β0

jhβ0jHIjE; in; αij2
E − Eβ0

�
: ð25Þ

It results in

Δδα ≡ δα − δð0Þα ¼ −
K̂α

2
;

K̂α ¼
jhβjHIjE; in; αij2

E − Eβ
þ
XZ

β0

jhβ0jHIjE; in; αij2
E − Eβ0

:

ð26Þ

IV. FINITE-VOLUME FORMALISM

In this section, we present the finite-volume formalism,
which connects the matrix elements that can be calculated
in the finite volume using lattice QCD to the infinite-
volume transition amplitudes.

We first discuss the 2!HI
2!HI

2 transition. The coupled-
channel finite-volume energy quantization condition
has been first established by Refs. [66,67] in 2005
using quantum mechanics. Later, there have been a
number of papers studying the generalization of
Lüscher’s quantization condition to multiple channels
[69–73]. For example, in Ref. [69], the quantization
condition is extended to quantum field theory using
the KSS approach [65].
When turning on the non-QCD interaction, we adopt the

quantization condition from Refs. [66,67],

ðe−2iðϕþδαÞ − cÞðe−2iðϕþδβÞ − cÞ þ s2 ¼ 0; at E ¼ Eα;

ð27Þ

where the angle ϕ is a known function of a discrete, finite-
volume energy E [2]. [By multiplying a factor of e2iδαþ2iδβ ,
Eq. (27) can reproduce Eq. (34) in Ref. [66].] When turning
off the non-QCD interaction, we have

e−2iðϕþδð0Þα Þ − 1 ¼ 0; at E ¼ Eð0Þ
α : ð28Þ

Comparing Eqs. (27) and (28) and using the relation
s2 ¼ jhE; in; βjHIjE; in; αij2 given in Eq. (23), we obtain
the master formula given in Eq. (1). We copy it here for the
sake of an easier read,

dðϕþ δð0Þα Þ
dE

ΔEα þ Δδα

¼ 1

4
cotðϕþ δð0Þβ ÞjhE; in; βjHIjE; in; αij2;

at E ¼ Eð0Þ
α ; ð29Þ

where ΔEα is the finite-volume matrix element defined in
Eq. (13), and Δδα is the infinite-volume matrix element
defined in Eq. (23). It is not surprising that the finite-
volume correction formula takes the form of Eq. (29) as the
initial/final state receives a correction of the Lellouch-

Lüscher factor dðϕþδð0Þα Þ
dE , and the intermediate state receives a

correction of the factor cot ðϕþ δð0Þβ Þ as first obtained by
Refs. [52,53]. It is known that the energy quantization
condition can be used for a shallow bound state through the
analytical continuation [74,75]. Thus, the master formula
derived here can be extended from a scattering state to a
shallow bound state.

In the limit of Eð0Þ
β → Eð0Þ

α , both ΔEα and cot ðϕþ δð0Þβ Þ
in Eq. (29) become singular. By equating the residue of the
poles, we obtain

h0αjLhβjHL
I jαiLj2h0β ¼

1

4
jhE; in; βjHIjE; in;αij2;

at E ¼ Eð0Þ
α and Eð0Þ

β → Eð0Þ
α ; ð30Þ

where hi ¼ ϕþ δð0Þi and h0i ¼ dhi=dE for i ¼ α, β. We
thus reproduce the finite-volume correction formula for

the 2!J 2 transition matrix in the special case that there

are no 1!J 1 subprocesses, which is originally studied
by Ref. [49].

For the 2!HI
1!HI

2 transition, the corresponding finite-
volume formula is given by

dðϕþ δð0Þα Þ
dE

ΔEα þ Δδα ¼ 0; ð31Þ

where ΔEα is given by Eq. (13) and Δδα is given
by Eq. (26).

V. APPLICATION TO DOUBLE BETA DECAYS

The observation of neutrinoless double beta (0ν2β)
decays would prove neutrinos as Majorana fermions and
the lepton number violation in nature. As a result, the study
of double beta decays attracts a lot of interests from both
experimental and theoretical sides. Current knowledge of
second-order weak-interaction nuclear matrix elements
needs to be improved, as various nuclear models lead to
discrepancies on the order of 100% [76]. A promising
approach to improving the reliability of the theoretical
predication is to combine the chiral effective field theory
(χEFT) [77–84] with lattice QCD and then provide well-
constrained few-body inputs to ab initio many-body
calculations [76]. Efforts have been invested to calculate
double beta decays in both pion [85–89] and nucleon
[90,91] sector from lattice QCD.
We start the discussion of the finite-volume problem for

the double beta decays in the pion sector, taking the
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π−π− → π−eν̄ → ee and π− → π0eν̄ → πþee as examples.
If we only consider the hadronic particles, the former

process is a 2!J 1!J 0 transition, and the latter is a 1!J 1!J 1
transition. However, one needs to pay attention to the finite-
volume effects caused by the massless neutrino in the
intermediate state. For the case of the π−π− → π−eν̄ → ee
transition, there are two sources of power-law finite-volume
effects [86]. One arises from the π−π− initial state and is
corrected by the inclusion of the Lellouch-Lüscher factor.
The other one originates from the massless neutrino and is
estimated as an OðL−2Þ effect by using the QEDL tech-
nique. In the study of the π− → π0eν̄ → πþee transition
[88], a novel method called infinite-volume reconstruction
[92] is used to treat the massless neutrino in the inter-
mediate state. This method reduces the usual power-law
finite-volume effect induced by the neutrino-pion loop to
an exponentially suppressed effect. With the finite-volume
corrections, Refs. [86,88] produce the lattice results for the
double beta decay amplitudes, which are well consistent
with the χEFT formula [79] and much more accurate than
the estimates from the phenomenological study [93]. In
an exploratory study [87], Detmold and Murphy make an
attempt to use a massive neutrino for π− → π0eν̄ → πþee
and then study the neutrino mass dependence. (In a recent
work [89], the authors use the massless neutrinos in their
latest results, where a power-law finite-volume effect is a
relevant issue.) We consider the massive neutrino a good
solution to the finite-volume problem, particularly in
0ν2β decay nn → ppee as we will explain below. A
similar idea to use the massive photon as an infrared
regularization scheme for lattice QCQþ QED can be
found in Ref. [94].

A. 2ν2β decay nn → ppeeν̄ ν̄

The pioneering lattice QCD calculation of nn → ppeeν̄ ν̄
has been performed by the NPLQCD Collaboration [90,91].
At the physical pion mass, it is well known that the 1S0 state
is a scattering state while the 3S1 is a shallow bound state
below the threshold and a scattering state above the thresh-
old. In general, one can treat the shallow bound state as a
two-body system. Note that the nn → ppeeν̄ ν̄ transition

involves the n → peν̄, a 1!J 1 subprocess. It limits the direct
usage of the finite-volume formalism developed in this work.
In Fig. 1, we show three examples of two-particle loop

diagrams relevant for the development of the finite-volume

formalism. For diagram (a), since it does not involve the

1!J 1 subprocess, the finite-volume formalism is con-
sistent with what we have derived. For diagram (b),
Briceno and Hansen have proposed a beautiful solution
to the three-propagator loop integral in Ref. [49]. For
diagram (c), where a four-propagator loop is involved,
the problem becomes much more challenging. First, the
loop integral is more singular than that in diagrams (a)
and (b). Second, it is unclear how to relate the finite-
volume effects, which originates from the singularities
of the four-propagator loop, to the on shell physical
amplitudes. In Ref. [95], Davoudi and Kadam provide
a finite-volume formalism based on pionless effective
field theory, where a nonrelativistic kinematic is assumed.
The relativistic field-theory solution for the finite-
volume problem in the nn → ppeeν̄ ν̄ still remains a
challenge.
For many interesting 2 → 2 → 2 quantities, including

the double beta decays, the Compton tensor of deuteron,
the neutrino-nucleus scattering, and the laser spectroscopy

of muonic deuterium, the 1!J 1 subprocess is unavoidable.
In this sense, the formalism derived in this work may be
considered as a first attempt for a simplified case, which
includes diagram (a) only. The development of the com-
plete finite-volume formalism, including especially the
diagram (c), is still an open and important problem. It
requires more investigations in the future.

B. 0ν2β decay nn → ppee

The finite-volume problem for a 0ν2β decay nn → ppee
is more complicated for two reasons. First, the neutrino,
proton, and neutron in the low-lying intermediate states
form a three-body system. Second, the massless neutrino
enclosed in a finite-size box results in an additional power-
law finite-volume effect. Although Ref. [92] developed
the infinite-volume reconstruction method to eliminate the
power-law finite-volume effects for the system with a
massless photon and a stable hadron in the low-lying
intermediate state, it is much harder to do this for a system
with a massless neutrino and two hadrons in the inter-
mediate state.
As pointed out by Ref. [81], a leading-order, short-range

contribution needs to be introduced in the χEFT study of
the nn → ppee decay. Such a short-range contribution
breaks down Weinberg’s power-counting scheme. New
local operators need to be introduced in the effective

(a) (b) (c)

FIG. 1. The examples of two-particle loop diagrams relevant for the development of the finite-volume formalism.
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action to account for this contribution. Our goal of the
lattice calculation is to calculate the low energy constants
for these new local operators. Fortunately, these low
energy constants are irrelevant with the ultrasoft region
where neutrino’s energy is much smaller than the pion
mass. Besides, the ultrasoft information from the nn →
ppee decay is not very useful for the heavy-nuclei 0ν2β
decay. In that case, the ultrasoft neutrino can feel the
complete nucleus instead of just the nucleons. One would
rely on the ab initio many-body theory to treat the nuclei
properly.
We thus propose to introduce a nonzero mass for

neutrino to remove the ultrasoft contribution. For simplic-
ity, the neutrino mass can be chosen the same as the pion
mass. Such a choice would unavoidably introduce the
unphysical effects. However, as far as the lattice QCD
calculation and the χEFT use the same unphysical neutrino
mass, the low energy constants can be determined in a clean
way. Compared to the other IR regulator, such as the QEDL
technique, introducing the massive neutrino is relatively
simple for χEFT. As far as the nonzero neutrino mass is
introduced, at the threshold of dibaryon, the three particles
in the intermediate state (two nucleons and one neutrino)
cannot be on shell simultaneously. Thus, one can effec-

tively treat the double beta decay as a 2!Heff
2 system with

Heff an effective Hamiltonian generated by two weak-
interaction operators. The formula in Eq. (30) can be
applied to this case.

VI. CONCLUSION

In this work, we derive the finite-volume formula, which

connects a 2→
HIþHI

2 transition amplitude in the finite
volume to the physical amplitudes in the infinite volume.
We discuss the cases with the low-lying intermediate state
consisting of two scattering hadrons or a single stable
hadron. Using the idea originally proposed by Lellouch and
Lüscher, the derivation is simple and straightforward. As a
side product, we reproduce the finite-volume formalism for

the 2!J 2 transition previously obtained by Ref. [49].
We discuss the application of the finite-volume formula

of the 2→
HIþHI

2 transition to the lattice QCD calculation of
the double beta decay. In the case of the nn → ppee decay,
we propose to use the massive neutrino to avoid the
complication of the finite-volume problem induced by
the long-range massless neutrino.
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