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Finite volume corrections to forward Compton scattering off the nucleon
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We calculate the spin-averaged amplitude for doubly virtual forward Compton scattering off nucleons
in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory at complete one-loop
order O(p*). The calculations are carried out both in the infinite and in a finite volume. The obtained results
allow for a detailed estimation of the finite-volume corrections to the amplitude which can be extracted on

the lattice using the background field technique.
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I. INTRODUCTION

Recent years have observed a rapidly increasing interest
in calculations of nucleon structure functions on the lattice.
Different algorithms, which enable one to extract these
quantities from lattice measurements, have been proposed.
For example, in Ref. [1] a method for a direct calculation of
the quark and gluon distribution functions on Euclidean
lattices by Lorentz boosting of the nucleons was suggested.
A lattice calculation of the Euclidean four-point function,
describing the virtual Compton amplitude, and its relation
to the leptoproduction cross section has been considered
[2-5]. A similar method has been applied to the study of the
hadronic tensor with charged vector currents in Ref. [6].
In the present paper we shall concentrate on an alternative
proposal which is based on the use of the background field
technique (or the Feynman-Hellmann method) for meas-
uring the forward doubly virtual Compton scattering
amplitude off nucleons; see Refs. [7—13]. This amplitude
is directly related to the moments of the structure functions.
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For a review of the present status of lattice studies of the
structure functions, see, e.g., Ref. [14].

In Refs. [7-13] a comprehensive theoretical assessment
of the feasibility of the extraction of the Compton ampli-
tude has been carried out. Here, one has to note that a
similar technique has been already successfully used for the
extraction of the magnetic moments and polarizabilities of
certain hadrons [15—17]. The study of Compton scattering,
however, implies another level of sophistication. Namely,
whereas the static characteristics of the nucleon can be
measured in constant background magnetic and electric
fields, the dependence of the forward Compton amplitude
on the photon virtuality, ¢g*> = —Q?, cannot be studied
similarly. Therefore, one has to use periodic background
fields (in space), which enable one to consider nonzero
values of the photon three-momentum, while the time
component of the photon momentum ¢ stays zero. Several
subtle issues had to be addressed in this context,
for example, a consistent realization of the periodic back-
ground field on a finite lattice [18], or the zero-frequency
limit [13]. It must also be mentioned that, according to
Ref. [19], the interpretation of the lattice measurements,
which are done in a finite volume, might be ambiguous
for both constant and periodic fields. More precisely, the
quantity that is obtained as a result of such a measurement
(for instance, the polarizability) could be different from
what one has previously identified as a finite-volume
counterpart of the polarizability. This point of view has
been countered in Ref. [13], where it has been argued that
the finite-volume lattice results allow for a unique
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interpretation in terms of well-defined physical quantities
(at least when the photon virtuality is not zero). Since this
issue is important in the context of the problem considered
here, we shall briefly address it later.

It should be stressed that the measurement of the
forward Compton amplitude on the lattice is a useful
endeavor by itself, even beyond its relation to the nucleon
structure functions. Indeed, let us point out that the
forward Compton amplitude represents an important
building block in many long-standing fundamental prob-
lems that have recently come under a renewed scrutiny. In
particular, the knowledge of this amplitude is needed for
the evaluation of the Lamb shift in muonic hydrogen [20],
as well as the proton-neutron mass difference. The study
of the latter problem has a decades-long history [21,22],
but still continues to attract quite some interest that is
reflected in a string of recent publications [23-28]. To a
large part, this upsurge of interest can be related to the
fact that the present lattice studies are in a position to
address the calculation of the purely electromagnetic
proton-neutron mass shift in QCD plus QED, and hence
the results of phenomenological determinations can be
directly confronted with lattice data. Further, in
Refs. [27,28], under the assumption that the high-energy
behavior of the Compton amplitude is fully determined by
Reggeon exchange (the so-called Reggeon dominance
hypothesis), a sum rule has been derived that involves
this amplitude in a particular kinematics (a variant of this
sum rule has been known in the literature already for
50 years [29]). Notably, the latter enables one to express
the Compton amplitude through the experimentally mea-
sured electroproduction cross sections. Calculations on
the basis of the above sum rule have been performed
recently [28], where the uncertainties emerging from the
use of all presently available experimental input have been
thoroughly analyzed. A direct evaluation of the Compton
amplitude on the lattice would allow one to compare the
outcomes of these two different theoretical calculations.
Should it happen that the results are very different, this
could be attributed to the failure of the Reggeon domi-
nance hypothesis, i.e., to the existence of so-called fixed
poles in the Compton amplitude. At present, we are not
aware of any mechanism within QCD that would lead to
such poles. Hence, their discovery would challenge our
understanding of the asymptotic behavior of QCD and
stimulate a quest for new mechanisms, which are respon-
sible for this behavior.

One of the most important questions, which so far has
not been addressed in the context of the extraction of the
Compton amplitude from lattice data, is the issue of the
finite-volume corrections to the physical quantities of
interest. It is very important to estimate, prior to performing
any calculations on the lattice, how large lattices should be
used to suppress the unwanted finite-volume artifacts. Note
that, even though on general grounds these artifacts are

exponentially small, due to possible large prefactors they
might still be substantial for the presently used lattice sizes.
The systematic study of this problem that is carried out in
what follows within the framework of baryon chiral
perturbation theory (BChPT) at order O(p*) is intended
to fill this gap."

The layout of the paper is the following. In Sec. II we
collect all definitions and input, which will be needed later.
This concerns both purely infinite-volume calculations as
well as the finite-volume setting used on the lattice for the
extraction of the Compton amplitude. Further, the calcu-
lation of the Compton amplitude is carried out in the
infinite as well as in a finite volume. Namely, Sec. III
contains the full expression of the infinite-volume Compton
amplitude at O(p*) in BChPT. Also, a comparison to the
results available in the literature is carried out. The
expression of the finite-volume amplitude at the same
order is given in Sec. IV. In Sec. IV B, the results of the
numerical estimations of the finite-volume artifacts are
discussed. Section V contains our conclusions.

I1. BASIC DEFINITIONS AND NOTATIONS

A. Doubly virtual Compton scattering in forward
direction in the infinite volume

In this paper we follow the notations of Ref. [24]. In order
to render the paper self-contained, below we collect all
formulas that will be used in the infinite-volume calcula-
tions. The Compton scattering amplitude is defined as

T;w(p/’ S/, q/

i

2 / d*xe*(p, s'|Tj*(x)j*(0)|p,s), (1)

P.5.q)

where (p’,s’) and (p,s) are the four-momenta and spin
projections of incoming and outgoing nucleons, respectively,
and ¢ and ¢’ are the momenta of the (virtual) photons in the
initial and final states, respectively. Further, j# denotes the
electromagnetic current. The state vectors of the nucleon are
normalized as

(p'.s'Ip.s) = 2p°(2x)*5) (p' = p)dys. (2)

We define the unpolarized forward scattering amplitude as
an average over the nucleon spins:

R
T"(p.q) = EZT"”(p,s,q p.s.q). (3)

Using Lorentz invariance, current conservation, and parity,
this amplitude can be expressed through two invariant
amplitudes:

'For brevity, we shall often refer to the calculations up-to-and-
including order p* as to the calculations at O(p*).
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T"(p.q) =T (v.¢*)K{" + To(v.¢*)KY’,
K =q"q"— 9" ¢*,
|
K5 =—{(p"¢"+p*¢")p-a-9"(p- q)*—p"'p'q*},

(4)

where v = p - ¢/m and m is the nucleon mass.

At this place we mention that the choice of the invariant
amplitudes is not unique. In the literature, another choice
is often made, using the set 7, T, with T = ¢*T, + 12T,
and 7, = —12T,. This alternative choice, however, pro-
duces kinematic singularities, which complicate the dis-
cussion of the asymptotic behavior of these amplitudes. As
aresult, the issue with the fixed poles may become obscure.
For further details on this subject we refer the reader to
Refs. [24,28] and also to [30,31]. Further, in Refs. [27,28],
another set of invariant amplitudes 7 = T + % T,, T, has
been introduced instead of 7', T,. The advantage of using
this set consists in the fact that the leading asymptotic
behavior of T at large values of Q2 is governed by spin-0
operators, whereas the contribution from the spin-2 oper-
ators in the operator product expansion cancels in this
particular linear combination. A thorough discussion of this
question is given in Ref. [28]. Here, we only mention that
the set 7, T, is obviously free from the kinematic singu-
larities, as well as the set Ty, T5.

Further, the invariant amplitudes can be split into the
elastic and inelastic (or, equivalently, into the Born and
non-Born) parts. Again note that such a splitting is not
uniquely defined and the definition of Ref. [24] differs from
the ones used in Refs. [32,33].2 Here we would like to
mention only that the definition, which will be used in the
following, unambiguously follows from the requirement
that the elastic amplitude vanishes in the limit v — o0, for
fixed g°, and thus obeys an unsubtracted dispersion relation
in the variable v. Under this requirement, the elastic part is
given by

Te| (I/ q2) _ 4m2q2{G%(q2) - Glzl/l(qz)}
b (4m*? — g*)(4m* = ¢%)
_4m*{Am’GL(q) - ¢°Gy(4%)}
(4m*? - q*)(4m* - ¢*)

TS (v, ¢%) = (5)

where G and G, denote the electric and magnetic (Sachs)
form factors of the nucleon.

The inelastic invariant amplitudes are defined as 71" =
T,—T%, with i=1, 2. The amplitudes 7" obey
dispersion relations in the variable v:

2See, e.g., Refs. [28,34] for a general discussion of the issue of
nonuniqueness of the Born part of the Compton scattering
amplitude.

T (0, 2) = T 0, 7) + 2% ~ 13)
Vavv,(V, ¢%)

[Se]
X
Ah (V2 =) (02 =% —ie)’

, w© /dV'V,(V, ¢?)
) =2 [ "L
Uth

(6)

V21t —je

Here, one has already taken into account the fact that,
according to Regge theory, the dispersion relations for
T'rel and T require one subtraction and no subtractions,
respectively. The lower integration limit is equal to
v = (W3, —m? = ¢?)/(2m), with Wy, = m + M, where
M, is the pion mass. The quantities V;, V, denote the
absorptive parts of 71", 71® They can be expressed through
the experimentally observed total (transverse, longitudinal)
electroproduction cross sections o7(v, %), 6, (v, ¢*).

The choice of the subtraction point v is arbitrary. In the
literature, the choice vy = 0 is often used. The quantity
Sel(g?) = T'"®(0, ¢%) is usually referred to as the sub-
traction function. Analogously, one can define the full
subtraction function that includes the elastic part as well:
Si(q%) = $5(¢%) + S (%) = T1(0,¢%). At ¢* =0 the
inelastic part of the subtraction function is given by

K'2 m

Se(0) = - a2 - P (7)
where x and f,, denote the anomalous magnetic mo-
ment and the magnetic polarizability of the nucleon,
respectively, and a~ 1/137 is the electromagnetic fine-
structure constant.

Recently, a different subtraction function was introduced
in Refs. [27,28]. The subtraction point has been chosen at

vy = iQ/2, where Q = \/—g*. The new subtraction func-
tion is expressed through the amplitude 7

S(q*) = T (v, ¢). (8)
At Q% = 0 one has

K m

S(0) = —— + 5= (ag = u)- 9)

4m?  2a

The two subtraction functions are closely related to each
other. Namely, the difference S1"®(¢?) — S(g?) is given
through a convergent integral over the experimentally
measured electroproduction cross sections. Hence, it suf-
fices to calculate one of these subtraction functions. Since
the choice vy =0, in contrast to vy =iQ/2, can be
implemented on the lattice in a straightforward manner
[12,13], we stick to this choice.
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B. Extraction of the subtraction function on the lattice

Below, we shall collect all formulas which are needed for
the extraction of the subtraction function on the lattice with
the use of the background field method. More details are
contained in the original papers [12,13]. Here, we consider
the nucleon placed in a periodic magnetic field on the lattice
with a spatial size L (the temporal size of the lattice is
assumed to be much larger and is effectively set to infinity).
The configuration of the magnetic field is chosen as

B = (0,0,—eBcos(wnx)), n=(0,1,0), (10)
where e denotes the proton charge. Because of the periodic
boundary conditions, the available values of @ are
quantized,3

2zn
=—. 11
w== (11)
The energy levels of a nucleon in the magnetic field depend
on the projection of the nucleon spin along the z axis. In
Ref. [13] it has been shown that the spin-averaged level shift
in the magnetic field with a given configuration is given by

SE L (B 2T“( )+ O(B%) # = (m,0)
= -_— _— = (m
4m \ w L\P- 94 ’ p 7

q" = (0,0,w,0). (12)

Note that here T}!(p, q) denotes the 11-component of the
full Compton scattering amplitude in a finite volume [in
other words, T}!(p, q) includes both inelastic and elastic
parts]. Further, g> = —w”. Hence, placing a nucleon in the
periodic magnetic field enables one to extract the amplitude
at nonzero (albeit discrete) values of g> < 0. The other
variable is v = p - ¢/m = 0 in the given kinematics. Thus,
in order to obtain a nonzero value of v, one has to put the
nucleon in a moving frame.

Note also that due to the lack of Lorentz invariance on a
finite hypercubic lattice, the decomposition of this ampli-
tude into invariant amplitudes in a form given in Eq. (4)
does in general not hold. However, all quantities in Eq. (12)
are well-defined in a finite volume. For example, in
perturbation theory, T'!(p, q) is given by a sum of all
diagrams at a given order, where all momentum integra-
tions are replaced by finite-volume momentum sums. In the
infinite-volume limit one has

lim 73! (p.q) = T"(p.q) = —a?$1(¢*).  (13)

*In fact, this is one of the possible realizations of the external
field on the lattice. An alternative implies the quantization of the
magnitude of the field, rather than its frequency [18]. However, as
was demonstrated in Ref. [13], the present realization provides an
optimal framework for the extraction of the subtraction function
at nonzero values of the momentum transfer.

The finite-volume corrections in the above formula are
suppressed by a factor of exp(—M,L), multiplied by
powers of L. As already mentioned in the Introduction,
despite the exponential factor, the corrections can still be
sizable for the present-day lattices. Last but not least, let us
stress once more that, for all values of L, Eq. (12) enables
one to extract a perfectly well-defined quantity T}!'(p, q),
which in the infinite volume limit yields the quantity S, (g?)
that we are after. This demonstrates explicitly that in this
setup one could avoid any ambiguous interpretation of the
results as mentioned in Ref. [19].

We conclude this section by briefly specifying the scope
and aims of the present paper. It is clear that the extraction
of the Compton amplitude on the lattice can be carried out
only in a restricted kinematical domain. For instance, if the
variable v lies above the pion production threshold
v = (2m)~' (Wi, — m?> — ¢*), then the extracted matrix
element does not possess an infinite-volume limit. This
can be seen immediately since, in the infinite-volume limit,
the corresponding amplitude is complex, whereas the
amplitude extracted from an Euclidean lattice is always
real. Hence, in order to arrive at the infinite-volume
amplitude, one has either to take into account the proper
Lellouch-Liischer factor in analogy with Ref. [35] (see also
Refs. [36-42]; a first step in this direction has been made in
Ref. [43]) or to use an approach that resembles the optical
potential method of Ref. [44] (see also Refs. [45,46]). All of
this is very complicated and not even needed to achieve the
goals we have stated in the beginning. Indeed, given the
subtraction function, which is obtained from the Compton
amplitude at v = 0, one may restore the whole Compton
amplitude by using dispersion relations. The whole uncer-
tainty related to the fixed poles then resides in the subtraction
function, and the rest is uniquely determined by analyticity,
unitarity, and the experimental input.

C. Effective Lagrangian

In this paper the forward Compton scattering amplitude
will be calculated in BChPT at order p*, both in the infinite
and in a finite volume. Below we specify the effective
Lagrangian with the pions and nucleons, which is needed
for such a calculation. The leading-order effective
Lagrangian of pions interacting with external sources has
the form [47]:

£<2) _ F2 D U(D* i F2 T T
P = (DU + U+ U, (14)

where y = 2B(s +ip), D,U = 0,U —ir,U + iUl,, and
the 2 x 2 matrix U represents the pion field. The parameter
B is related to the quark condensate, F is the pion decay
constant in the two-flavor chiral limit, and s, p, lﬂ =
u —a, and r, = v, + a, are external sources. The nota-
tion (---) denotes the trace in flavor space.

v,—a
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The full order four effective Lagrangian of nucleons interacting with pions and external fields is given in Ref. [48]. Below
we specify only those terms, which contribute in our calculations,”

£”N2£1+£2+£3+£4+"'7

o

L= ‘i’iy”D Y-mPY+ ‘%“i’y"ySu v,
L3 = erly )P =25 () (WD, D}¥ + Hee) + 5 (i) P
Sm

Cyq = Cq .= ~ C7 =
+ if‘{l[uﬂ, )oY + f%w,;q! + g%ﬂvwgyw TE.
ld7

Ly = (’d6 (D, F+]D”‘P—|—Hc> + ( YD, ( ;D>]DDT+H.C.> 4+,
2m 2m
Ly= 634‘I’[D* [D;. <F+>]]0””‘P—%“P[D‘ Dy Fiu)lo ¥ + egg¥(F), ) (F )W

e — —
- (4 2 W(F ) (F ) g, D + H.c.) + eq PE L (FH)¥
m

6222 @FL <FH“>9!11/DWT + H-C-> + 693@<F/TVF+W>‘I‘
m

|
A TN
§ &

(F+ Ftia)g D*¥ 4+ H.c. > - %@<F’Zl><){+>6ﬂ”‘lj

_ 6106 y<)(+>0'm/lp (;101; li;<FI”F—ia + FLF+1(1>gaDD;wlP =+ HC>
m
WS Fi 4 FL P 4 (15)

where

i
ot =S (' =),
< 1
X=X-=-(X),
L)
DY =0,¥ + (T, —iv,))¥.
1
r,= 5 [ Ou + ud,u’ —i(u'r,u+ ul,u®)),
D = DFD¥ 4 DYD¥,
u, = ifu'O,u — ud,u’ —i(u'r,u—ul,u"),

+ _ t
Fiy = uFpu" £ u'Fg,u,

Fruyy = Oyr, = 0,1, —i[r,. 1],
Fru=0,,-0,, - l[l”, L],
ye=uyu" +uytu. (16)

In the above expressions, ¥ denotes the nucleon field, u = /U contains pion fields, U,(,s) is the part of the vector current that
is proportional to the unit matrix in the flavor space, m and g, denote the nucleon mass and the axial-vector coupling

*Note that our definitions of the low- energy constants agree with those of Ref. [48] except for ¢4 and ¢y, which are related as

co = cEMMS /4pm and ¢ = (cEMMS 4 (EMMS) /25 (here ¢fMMS and ¢EMMS denote the corresponding couplings of Ref. [48]); see
Ref. [49]. Here, FMMS denotes the authors of Ref. [48] (Fettes-Mei3ner-MojZis-Steininger). EOMS stands for extended on-mass-shell.
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constant in the chiral limit, and ¢;, d;, and e; are the low-
energy constants at O(p?), O(p?), and O(p*), respec-
tively. It is assumed that the above Lagrangian is used
to generate Feynman diagrams, which will be evaluated
by using the EOMS renormalization scheme. Acting in
this manner, there is no need to explicitly display the
counterterms of the effective Lagrangian that remove the
power-counting breaking contributions from the loop
diagrams. Hence, the numerical values of the finite parts
of the low-energy constants (LECs) correspond to the
EOMS scheme.

To obtain the expressions that correspond to diagrams
with external photons, we need to substitute s = M,

p=a,=0,v,=—er;A,/2, and v,(f) = —eA,/2, where
A, is the electromagnetic field. We work in the isospin
limit m, = m, = /M, and M?> = 2B is the pion mass at
leading order.

III1. INFINITE VOLUME
A. The workflow

We calculate doubly virtual Compton scattering on the
proton and on the neutron separately up-to-and-including
O(p*). There are tree and one-loop diagrams contribut-
ing to this process at the given accuracy. Standard power-
counting rules of low-energy chiral effective field theory
apply to these diagrams [50,51]. More specifically, we
are assigning chiral order —2 to pion propagators,
nucleon propagators count as of order —1, the interaction
vertices originating from the effective Lagrangian of the
order N count also as of order N, and the integrations
over loop momenta are assigned order 4. While the
power-counting rules are directly applicable to the tree
diagrams, the loop diagrams of our manifestly Lorentz-
invariant formalism contain pieces that violate the count-
ing rules. However, power-counting violating terms are
polynomials in the quark masses and external momenta
and thus can be systematically absorbed in the redefini-
tion of the parameters of the effective Lagrangian. In our
calculations, we use dimensional regularization supple-
mented with the EOMS scheme [52,53]. In this scheme,
the polynomials in quark masses and external momenta
which break the power counting up to a given chiral
order, are dropped from each diagram. This naturally
guarantees that the renormalized one-loop diagrams
satisfy power counting.5 Note that, in contrast to the
results of the heavy baryon formalism [56,57], our
expressions for loop diagrams contain an infinite number
of higher-order terms.

In the calculations of the diagrams we used the
programs FeynCale [58,59] and X-package [60]. We have
verified that the sum of all tree and one-loop diagrams

>The terms which break power counting can also be systemati-
cally removed by using the heat kernel method; see Refs. [54,55].

satisfies current conservation. This guarantees that the
whole unpolarized amplitude is parametrized in terms of
two invariant functions 7'} and T,. However, this does not
apply to the individual diagrams. In order to extract the
contributions of separate diagrams to 7| and T,, we
single out the contributions to the coefficients of the
structures g*q* and —g’p*p’/m?, since these appear
exclusively in K and K%, respectively; see Eq. (4).
The individual contributions, which are listed below,
should be interpreted in this sense. Finally, using the
Lehmann-Symanzik-Zimmermann scheme, we add these
contributions and multiply the result with the residue of
the nucleon propagator at the pole corresponding to the
one-nucleon state. Acting in this manner, one gets the full
expressions of T;(v,q?) and T,(v,q*?) we are inter-
ested in.

Next, we need an algorithm for the separation of the
elastic contributions from 7'y and 7,. For instance, let us
first extract the s-channel pole. To this end, we multiply
the full expressions for Ty (v, %), T»(v. ¢*) by 2mv + ¢*
and then substitute v = —g?/(2m). Apparently, as a
result of this procedure, one obtains the residue of
the s-channel pole. In order to determine the residue of
the wu-channel pole, we multiply the amplitudes by
2mv — ¢*. Finally, adding both pole terms together, we
arrive at the elastic amplitudes T$'(v, ¢*) and TS (v, ¢%).
These vanish in the limit when v — co and g? stays fixed.
This exactly coincides with our definition of the elastic
amplitudes.

B. The amplitude in the infinite volume

The invariant amplitudes 7’| and T, up-to-and-including
O(p*) are given as sums over the contributions of the
diagrams shown in Figs. 1-4:

1

FIG. 1. Tree diagram contributing at O(p). Solid and wiggly
lines denote nucleons and photons, respectively. The crossed
diagram is not shown.

A,

FIG. 2. Tree diagrams contributing at O(p?). Solid and wiggly
lines denote nucleons and photons, respectively. The filled circles
are vertices from the second-order Lagrangian L£,. Crossed
diagrams are not shown.
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- 5

2

29

FIG. 3. Tree and loop diagrams contributing at O(p?

). Solid, dashed, and wiggly lines denote nucleons, pions, and photons,

respectively. Filled circles and squares represent vertices from £, and L5, respectively. Crossed diagrams are not shown.

3
Ti(v.q%) = Zy (T} (v.q?)+ ) T q")

a=2

> i=1,2.
a=33

—l—ZT“uq —|—ZT"1/q
(17)

The different terms in the above equation are the contri-
butions at O(p), O(p?), O(p?), and O(p*), respectively.
The enumeration of the contributions corresponds to the
one of the diagrams shown in Figs. 1-4. Here, we remind
the reader that, under the individual contributions to the
invariant amplitudes 7, and 7,, we understand the scalar
factors that multiply the structures ¢*g* and —g°p* p*/m?,
respectively. Further, Z, is the residue of the nucleon
propagator at the pole,

_ﬁ

Zy = L (2m?(2M?By(m*, M, m) + By (m?, M, m))
+M230(m M, m) +A0(m))

+—A00( )+ 0(p). (18)

which counts as Zy = 1 + O(p?). For this reason, one has
to take this factor into account only together with the tree-
level diagrams at O(p) and O(p?). Note also that, to this

accuracy, one may replace ga.m, F by their physical values
ga>m, F,. The loop functions which enter the above
expression are tabulated in the Appendix A. The derivative
in the function B, (denoted by the prime) is taken with
respect to the first argument.

In Appendixes B and C we list the individual contribu-
tions to T,(v,q*) and T,(v,q?) for v=0. The full
expressions for a generic v are much more complicated,
and we do not display them here explicitly. These can be
extracted from the Mathematica notebook [61]. Note also
that the expressions, given in these Appendixes, should be
understood as 2 x 2 matrices in the isospin space, folded by
the isospin wave functions of a proton or a neutron (not
shown separately). For example, the factor 1 + 73 is equal
to 2 and O for the proton and the neutron, respectively.

C. Numerical input

In order to make numerical predictions, one has to fix the
values of the LECs that enter the amplitudes. It should be
noted that, albeit these LECs do not depend on the quark
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masses by definition, such a dependence sneaks in when
these are determined through the fit of the amplitudes
calculated in a given chiral order to the experimental data.
In certain cases, such remnant quark mass dependence can
be numerically significant and, in addition, lead to the
different results when different schemes, say, the infrared
regularization (IR) or the EOMS scheme, are used. This
fact should be kept in mind once input from different fits is
used in the amplitudes.

The LECs that appear in the amplitudes fall into
different groups. We shall use g4 = 1.2672 and F, =
92.3 MeV throughout the paper, and M,,m will be
identified with the charged pion and the proton masses,
respectively. The order p?> LECs c; are studied in the
most detail, and rather precise values for these are
available in the literature. Moreover, different fits (see,
e.g., Refs. [62-64]) yield results which are compatible
with each other at an accuracy that is sufficient for our
purposes. The recent and very precise determination of

C1234 from zN input has been performed in Ref. [65]
using the matching of the chiral representation to the
solution of the Roy-Steiner equations:

¢ =(=1.11£0.03) GeV~!, ¢, =(3.13£0.03) GeV~!,
3= (=5.61£0.06) GeV~!, ¢, = (4.26+0.04) GeV~!,
(19)

In the following calculations, we shall use these values.
Owing to the fact that the quoted uncertainties are so
small, one may neglect their impact on the total uncer-
tainty and safely stick to the central values.

Turning to the LECs ¢ 7, we note that these appear in the
amplitudes in combination with the O(p*) LECs:

Ce = Cg — 4M26106, C7=1c¢7— 4M2€105’ (20)

034507-8



FINITE VOLUME CORRECTIONS TO FORWARD COMPTON ...

PHYS. REV. D 103, 034507 (2021)

where M? = M2 at this order. These are exactly the
contributions which appear in the anomalous magnetic
moments of the proton and the neutron, x, = 1.793,
k, = —1.913, and can be fitted to the latter. A consistent
extraction of these couplings has been performed in
Ref. [66], which gives the results for the IR and EOMS
schemes separately (no errors are attached to their results).
Here, we quote the result for the EOMS scheme only, as
this is used in our calculation:

G = 1.26 GeV™!, ¢; =-0.13 GeV~l. (21)
Next, the O(p?) LECs dg ; and O(p*) LECs es, 74 enter the
expression of the electric and magnetic radii of the proton
and the neutron, and can be fitted by using experimental
data on the nucleon electromagnetic form factors. This was
done in Ref. [66], where the values of these LECs are given,
again separately for different schemes and with no uncer-
tainties attached:

dg = —0.69 GeV=2,  d; =—0.50 GeV~2,  (22)

and

esy = 0.19 GeV~3, ey = 1.59 GeV3.  (23)
Note that the values for dg, d; are consistent with the earlier
determination in Ref. [67].

Let us now turn to the last group of the O(p*) LECs,
which are related to the nucleon polarizabilities. At order
p?, the polarizabilities are predictions free of LECs [68].
The O(p*) LECs that contribute to the amplitudes at
g* = 0 can be related to the polarizabilities, and we use
(experimental or lattice) input for the latter. This allows one
to determine four linearly independent combinations of
the O(p*) LECs which, according to Ref. [49], can be
defined as

ef = 2eq + gy + €117 £ €9y,
ey = 2eg9 + €93 + €115 £ €gy. (24)

In Ref. [49] the results of three different fits for e, e} are
presented. In the following, however, we shall not use these
results.

In order to carry out the comparison with the results from
the literature, we perform a numerical evaluation of the
subtraction functions SM®(¢?) and S(g?) which, using
Egs. (7) and (9), can be written as

K.'2 m

STG) = = 4 (S79(4?) - S99(0)),
K2 m _ _
S(¢*)= _W+Z(QE —Pu)+(S(¢*)=5(0)).  (25)

In other words, in order to minimize the uncertainty, we
aim at a description of the g>-dependence of the sub-
traction functions only; their values at g*> = 0 are con-
sidered as input. Stated differently, up-to-and-including
order p*, the ¢?-dependence of the subtraction functions
S1(g*) and S(g?) (but not their normalization at g> = 0)
is determined by the LECs, which are rather well
known from the fit to the data on the low-energy zN
scattering and nucleon electromagnetic form factors.
Thus, the ¢?-dependence can be determined very accu-
rately from BChPT.

The experimental values for the electric and magnetic
polarizabilities are summarized in the recent paper by
Melendez et al. [69] (see, e.g., Refs. [70-73] for some
earlier work):

proton : ap + fy, = 14.0 £ 0.2,
neutron : ay + fy; = 15.2 04,

abl — Bl =75+009,
al — B, =7.9+3.0.
(26)

For the difference proton-neutron one gets

ag—n +ﬁ11:/[_n = —1.20 £ 0.45,

ap " —pyt=-04+31, pYT=-04+16. (27)
All quantities are given in units of 10™* fm?.

In Ref. [24], using Reggeon dominance, the isovector
electric and magnetic polarizabilities have been predicted
with an accuracy that supersedes the experimental preci-
sion. For instance, the value for the electric polarizability,
extracted from the recent Review of Particle Physics [74],
is given by af " = —0.6(1.2). On the other hand, using
Reggeon dominance and the experimental value for af, " +

b " from Ref. [69], which was determined by using the
Baldin sum rule, one gets

™ =—17404, bt =0.5 0.6,
™ — T = 222409, (28)

Finally, recently a very accurate lattice calculation of the
magnetic polarizability has become available [75]:

b =279 +£0.22713, = 2.06 + 02677,
P = 0.80 £ 0.28 = 0.04, (29)

One can combine this with the experimental result for
ay " + i7" from Eq. (27) in order to get a more accurate
estimate:

Al — BT = —2.80 4 0.72, Do — (.80 + 0.28.

(30)
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FIG. 5. The subtraction function Silne'(qz) for proton minus neutron, at order p> and p* in the left panel and right panel, respectively.
Here, Q% = —¢>. The light blue, dashed and dark blue bands show the results of Models A, B, and C, respectively. The result of Ref. [24],
which is obtained with the use of the Reggeon dominance hypothesis, is shown by the gray band. GeV units are used everywhere.

To summarize, we now have three sets of polarizabilities,
referred to as Model A [Eq. (27)], Model B [Eq. (28)], and
Model C [Eq. (30)]. These correspond to the purely
experimental input, the Reggeon dominance hypothesis
and the combination of the lattice results with experimental
data. Below, we shall evaluate the difference of the
subtraction functions for the proton and the neutron’ using
the input from the three distinct models:

Model A : ST®(0) = (0.8 +:2.7) GeV~2,

) =(
5(0) = (0.2 £2.6) GeV~2,
Model B : SM®(0) = (0.7 + 1.0) GeV~2,
5(0) = (=1.7 £ 0.8) GeV~2,
Model C : SMe(0) = (-1.2 £ 0.5) GeV~2,
5(0) = (=22 £ 0.6) GeV~2. (31)

D. The subtraction function

The main goal of the present paper is to evaluate the
finite-volume corrections to the Compton amplitude.
However, having the expression of the infinite-volume
amplitude at hand, one may compare it to the known results
from the literature. For instance, here we shall discuss
the comparison to the subtraction functions S™®'(¢?) and
S(g?) for proton minus neutron, obtained from the exper-
imental input by using the Reggeon dominance hypothesis
in Refs. [24,28], respectively. Note that the experimental
input, used in these papers, leads to a very large uncertainty

®In order to ease the notations, we do not attach the superscript
p — n to the subtraction functions, corresponding to the differ-
ence proton minus neutron. From the context it is always clear
which subtraction function is meant.

at small values of Q% which comes mainly from the
resonance region above the A resonance. On the other
hand, the results of the chiral perturbation theory become
generally unreliable at higher values of Q. Thus, combin-
ing both calculations, one can get a coherent picture of
the Q?-dependence of the subtraction function in a wide
interval and check the consistency of the Reggeon domi-
nance hypothesis: Should it turn out that there is an
apparent mismatch between the low-Q? and high-Q?
regions, this might cast doubt on the above hypothesis.

In order to reduce the error, which stems from the poor
knowledge of the higher-order LECs, in our calculations
we have attempted to evaluate the Q>-dependence of the
subtraction functions by subtracting their values at the
origin. Eventually, the latter quantity is expressed in terms
of the electric and magnetic polarizabilities [see Eq. (25)].
The polarizabilities can be fixed from the different inputs,
leading to what we term Models A, B, and C [see Eq. (31)].
The corresponding results in the interval 0 < Q% < 0.3 GeV?
are displayed in Fig. 5 for the function S®!(¢?) and in
Fig. 6 for the function S(g?). Note that the uncertainty,
which is displayed here, comes entirely from the poor
knowledge of the polarizabilities. In other words, we
assume that the uncertainties coming from other LECs
are much smaller and do not contribute significantly to the
error (it is clear that even attaching a reasonable uncertainty
to other LECs and adding uncertainties in quadrature, the
changes will barely be visible due to the huge uncertainty
in the polarizabilities). Note also that, in this scheme, the
subtraction functions at O(p?) are no more considered as a
parameter-free prediction, but contain polarizabilities
as input.

From Figs. 5 and 6 one may conclude that the results
obtained in BChPT and by using the Reggeon dominance
are reasonably consistent with each other within the error
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FIG. 6. Results for the subtraction function S(g?) for proton minus neutron. The notations are the same as in Fig. 5. The gray band
shows the result of Ref. [28], obtained with the use of the Reggeon dominance. GeV units are used everywhere. The data point at the
origin shows the prediction of the S(0) in Model B with Reggeon dominance; see Eq. (31).

bars. In case of the subtraction function S(g?) this can be
seen more clearly, since the results of the calculations,
based on the Reggeon dominance, are available for all
values of Q% down to Q2 = 0; see Ref. [28] [in the case of
Sinel(4?), the calculations extend down to Q% = 0.5 GeV?;
see Ref. [24]]. Note, however, that the uncertainty in
different models, considered in the present paper, lead to
very large error bars in these plots. This concerns, espe-
cially, the results of Model A, which completely overlap
with the results of Models B and C, thus bringing no
independent constraints. What is more important in our
opinion is that the amplitudes calculated in the effective
field theory show a smooth behavior in the vicinity of
Q? = 0; stated differently, no rapid variations are observed.
Note also that the convergence is quite poor, and the picture
changes significantly when going from O(p?) to O(p*).
Still, we do not observe any apparent disagreement to the
Reggeon dominance. Also, it should be noted that both the
O(p?) and the O(p*) contributions are part of the complete
one-loop amplitude, so a true test of convergence could
only be achieved by going to the two-loop level. This,
however, is beyond the scope of this paper.

We finish this section by briefly mentioning related
calculations in the literature. Our result for the polar-
izabilities fully agrees with that of Ref. [76], where the
calculations were done in the relativistic BChPT at O(p?).
Next, our subtraction function S"®(g?) coincides with the
one from Ref. [33] at order p>. Moreover, in the recent
paper [77], these calculations were extended up-to-and-
including order p* However, at O(p*), the contribution
from the A-resonance comes into play, and this renders the
direct comparison more complicated (note, however, that
for proton minus neutron the leading contribution of the A
drops out, as already noted in Ref. [78]). For this reason, in
this paper we restricted ourselves to O(p?) and verified that

the sum of the polarizabilities ap + f,, is algebraically
reproduced in our calculations, for both the proton and the
neutron. Further, expanding our result in inverse powers of
m, one should reproduce the nonanalytic pieces of the
heavy baryon ChPT (HBChPT). The result of Ref. [79] is
written down in a form of expansion in Q. However, the
coefficient of the expansion at O(Q*), which is given in
Eq. (12) of that paper, cannot be obtained from our result in
this way. Moreover, since the difference stems from the
O(p?) part of the relativistic amplitude, one could use
Ref. [77] for a check, expanding their amplitude in powers
of Q7. The result of this expansion reproduces our result.
Note also that in Ref. [80], where the calculations were
carried out within HBChPT at O(p*), the polarizabilities
were extracted from the real Compton scattering amplitude
that corresponds to the O(Q?) term in the expansion of the
virtual amplitude. At this order, there are no disagreements.
Finally, note the calculation of the subtraction function,
carried out in Refs. [81,82] in the framework of HBChPT.
In particular, the contribution of the A-resonance has been
studied. Here, we do not present an explicit comparison to
these papers.

Another group of the papers deals with the calculation of
the subtraction function by using dispersion relations and
experimental input (see, e.g., Ref. [83]), or modeling it,
taking into account the constraints at Q> = 0 and at Q2
tending to infinity [23,25,26]. This work has been dis-
cussed in great detail in Refs. [24,28], to which the
interested reader is referred.

IV. FINITE VOLUME CORRECTIONS

A. Analytic expression for the finite-volume amplitude

The diagrams that contribute to the Compton amplitude
are the same in the infinite and in a finite volume. The only
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difference consists in replacing the three-dimensional
integrals with the sums over discrete lattice momenta
(we take that the effects related to a finite size of a lattice
in the temporal direction are already taken into account
during the measurement of the energy levels). Assuming
periodic boundary conditions, in the loop integrals one has
to replace

/ d*k / d*k /dko 1 3
— = -
(2z)*  Jv (2r)*i 2mi L3 4

27

k=—n,
L

n =27 (32)

Some of the loop integrals in the infinite volume diverge. In
a finite volume, this divergence can be dealt with using
dimensional regularization in the same manner as in the
infinite volume. The counterterms that remove the diver-
gences are the same in both cases. In the following, we shall
use this fact and write down the finite-volume sums in a
dimensionally regularized fashion, without specifying how
this is done. These sums will be further split into the
infinite-volume parts and the corrections. The regulariza-
tion is relevant only for the first parts, where the standard
prescription can be applied. The finite-volume corrections
are ultraviolet finite and can be calculated in four
dimensions.

A closely related question concerns the presence of the
power-counting breaking terms in the covariant BChPT.
It must be stressed that there are no such terms in the finite-
volume part of the amplitude, as all such terms are
suppressed by a factor exp(—mL) containing the nucleon
mass. On the contrary, in the infinite-volume part these
terms are present and can be dealt with, e.g., by using the
EOMS prescription, as described above. The reason for this
is, of course, that the breaking of the power-counting rules
is a high-energy phenomenon that emerges for loop
momenta of the order of the nucleon mass. On the other
hand, the large-L behavior is governed by the momenta of
the order of the pion mass. This region does not contribute
to the breaking of the power counting.

In order to carry out the calculations, one needs the
expression of the nucleon Z-factor in a finite volume. This
quantity is defined in the rest frame of the nucleon, where
the nucleon propagator is given by

Su(p) =i / e (OTY(x)B(0)[0).  p* = (p°.0).
(33)

In the above expression, the integration is carried out in a
finite box. Further,

1
S =— , 34
7) m— VOPO -Z.(p) o

where %; (p) denotes the self-energy of the nucleon in a
finite volume and

2. (p) = AL(po) +7°P°BL(p°). (35)

The finite-volume mass of the nucleon is implicitly given
through the solution of the equation that contains the scalar
functions A, (p°), B, (p°):

_ %_AL(mL) _°

_TOLNVTL) g A —m' B
mpy 1B, (m,) m—Ap(mg) —myBy(my)+

(36)

This equation can be solved by iteration, expressing my,
order by order through the infinite-volume parameters.
Further, the Z-factor in a finite volume is given by the
residue of the nucleon propagator at the pole p° = m;.
It can also be expressed in terms of the functions
A (p°),B.(p°) and the derivatives thereof with respect
to the variable p°:

Zy, = (1+ A (my) + B(my) + myB'(mp))™!
=1-A;(my) =By (my) —myB'(my) +---. (37)

The explicit expression for this quantity is given by

3mgf21fj’(()1’1>(m,M; m)
- 2F?
3IM* g (3M? - 8m2)f3<1_1)(m, M;m)
4F?(M? — 4m?)
3G Ay (m)(4m? + 3M?)
4P (4m? - MP)
35 A1) (M) (M? = 2m?) 602;‘(()?) (M)
F?(4m* — M?) FPm

L=

(38)

The loop functions are specified in Appendix D. Their
derivatives have been reduced again to loop functions,
utilizing the algebraic identities that are specified in
Refs. [49,84].

Finally, note that Lorentz symmetry is broken in a cubic
box and one can no more use the decomposition of the
Compton amplitude into two scalar amplitudes. This is, in
fact, not needed, because the energy shift of a nucleon in
the periodic field is directly given by the 11-component of
the Compton tensor [12,13]. Putting together all contribu-
tions, one can write

T (neutron) = 7"

T!! (proton) = 71

The individual contributions are given by

034507-12



FINITE VOLUME CORRECTIONS TO FORWARD COMPTON ... PHYS. REV. D 103, 034507 (2021)

O(p): neutron O(p?): neutron

7V =o0. (40) 7% =o0. (42)
O(p): proton O(p?): proton

7 =o. (41) T = 2m(2c6 + ¢7). (43)

O(p?): neutron

~ 2g5m? - ~

7= m*(2¢q — ¢7)* + ;2 {_4M2D(]11,1.1,1)(m’M’m’M;p’q»p +4) _4MZC%21J~1)(M’m’M; —P-q)
—4M2C | 1 (m. M. m;—p. q) + M>q*Cpoy 1y (m. M. m:;=p. q) = ¢*C(y.1.1)(m. M. m;—p. q)
- 4[5’(121.1)(’”» m;q) — MzB(l,z)(m» M;p) - MZB(ZJ)(W M; p) + ng(z,l)(m m;q) — le(2)(’7’1)}- (44)

O(p?): proton
T = m?(2c6 + ¢1)* + 2% (dg + 24
ngﬁ >11 A1 2711
+ 2 4C(1’1’1>(m,M, m;—p, Q) - 8C(1,1,1)(M7 m,M;—p, Q) -8M C(z_l,l)(M, m,M;—p, Q)
- 4M28(121.1,1)(m7M’ m;—p.q) + M*q*Cpy 1) (m. M, m;—p. q) = (q* = 2M*)C 1) (m. M, m;—p, q)

. 3 3 ~
— 4B}y, (m,m; q) + Wpalg(l,l)(M’ m; p 4 q) = 2M> By 5)(m, M; p) = M*B3.1)(m, M; p)

+ ¢*Ba.1)(m,m; q) + 2By.1)(m, m; q) — B(y.1)(m, M; p) + By (M, m; p + q) — «21(2)("1)}

392 H Saff M2 Ha
+ F2—22 {—paqﬁ3<f1>(M, m;p +q) = pappBl (M, m;p + q) + — PaB{i1y (M. m;p +q)
~. ~ ~ m2 ~
- 2’"2%3‘(11,1)(1‘47 m;p+q)— m2M28(1,1)(m’M§ p)+ mZMzB(u)(M’ m;p+q) + T’A(l)(m)}' (45)

O(p*): neutron

7';4) = 8m(2eg9 + €93 + €115 — €91)q*

mg;

TR {=4(2¢6 + c7)g*m* D} |, 1y (m, M, m, M; p,—q, p — q) = 8m*(2c — ¢4)C{{ | 1) (m, M, m; p, q)
— 8m?(2¢6 — 07)8(111,1.1)(M’ m, M;=p,q) +4(2c + ¢7)q*M*m*Cpp 1 1) (m, M, m; p, q)

—2(4cem?*M? — c7(q*(M? = 2m?) + 2m2M2))a(1,,,1)(m,M, m;p,q)

+ (2¢6 — 07)%([3?1,1)(”[, m;p+q) — 3?1,1)(M’ m;p = q)) +4m*q*(2c6 + C7)B(2,1)(m7 m; q)

— (c7(g% +4m® = M?) + 2¢6(¢* + M?)) By 1) (M, m; p + q)

+ 4c7m2f)’(1,1)(m, M; p) = 2(4cgm® — c(q* + 2’"2))[3(1,1)(% m;q)

=2(2¢6 - 07)8(111,1)(M» M; q) 4+ 2(2¢c6 — C7)P(IB?1,1)(Ma m;p +q) — (2¢6 — 07);‘(1)(’")}

4 7 1 - Hlla 1o
2 { 0o = o (B 01 :0) + 320, 00)) = copap (4B 01,0 0) -+ 38 0)

T (26, — )M (4B, (M. M ) + Ay (M))}. (46)
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O(p*): proton

~ (4
T;) = 8m(2eg + 93 + €115 + €91)g” + 4m((2esy + €74)q> —4(2e105 + €106)M?)

mg ] )
+ F—QA {4(67 - 2C6)q2m2D(111,],1,1)(m7 M? m, M’ p7 _47 p - q) + 16C7m2C(111,1_1)(m7 M’ m; p7 q)

—8m?(2c6 + ¢7)C{} 1y (M. m. M; = p. q) + 2(2c6 + c7)m*M*¢*Ca 1 1)(m. M. m; p. q)
+ (264> (M? = 2m?) + ¢(q*(M? = 2m?) + 8m>M?))C (1 1.1)(m, M, m; p, q)

1 - - -
- Z(2C6 + 07)%(8((11,1)(1‘4’ m;p—q)— B{(ll.])(M? m;p+q)) —3(2cs + C7)PaB((I1,1)(M7 m; p)

+8(ce + ¢7)palBly 1y (M. m; p + q) = 6(2¢6 + ¢7)M? palB(y 1 (M, m; p)
+ (4eg(m? = M?) + 2¢9m?) By 1) (m, M; p) + (¢7(8m? + ¢*) + 2¢6¢%)B1.1) (m, m3 q)

1

—2(2¢c6 + C7>B(111,1)(M» M;q) - 5 (2¢ + ¢7)(4m? — M* + QZ)B(LU(M, m;p +q)

3

+2(2¢6 + C7)m2q25’(2_1)(m, m;q) + 3 (2¢6 + ¢7)

~ Tc ~
lef))(]’l)(M, m; P) + <3C6 + 77)./4(1)("1)}

2
mgy |9 o 3 -
+ {— (2¢6 + c7)PadpBiY ) (M, ms p = q) = 7 (2¢6 +¢1)Bpapy +9pagy + 4444p)B( (M. m; p + q)

F2q2 4

1 R
T3 (c6(32m* — 6M?) + 3¢, (16m* — M?))q,3(, 1) (M, m; p — q)

4

oM? 3 8
+ (c6<<— - 4m2> 9a + 6M2pa) + §C7(8M2pa + (3M2 - 16m2))qa> B((xl,l)(M’ m; p + C])

+3(2¢6 + C7)m2(2M2(B(1,1)(M, m;p+q)— B(l,l)(M7 m; p)) + ,Zlm(m))}

4 7 1~ Hlla o
s { o= o (B 0. :0) + 320, 00)) = copap (4B 01,0 0) + 38 )

5 . 3 - 5
+ (2¢1 - 03)M2m2(43%21,1)(M’ M;q) + Ap)(M)) + ?C2qaqﬂA(1ﬂ)(M) + m*ce Ay (M)

T eomA (Bl (M. M: g) + Ay (M)) = com?Bl,, (M. M: q>}.

Note that in the above expressions, we have replaced
my, emerging from the kinematics, by the infinite-
volume nucleon mass, m. Up to the chiral order we
are working, this is a perfectly valid procedure.
Finally, the expressions for the various finite-volume
sums, which enter the above formulas, are listed in
Appendix D.

B. Numerical results

In this section, we evaluate the finite-volume corrections
to the 11-component of the Compton tensor, which enters
the expression of the energy shift in the periodic back-
ground field. The quantity, which will be calculated here, is
given by

(47)

AT (pa)=T"(p.q)
™(p.q)

(48)

We calculate this quantity for the physical value of the pion
mass and for several different values of g2, separately for the
proton and the neutron. Having explicit expressions for the
amplitude, it is straightforward to carry out the calculations
for unphysical quark masses as well, if needed. It should be
stressed that we are mainly interested in the order-of-
magnitude estimate of the correction, which is needed to
answer the following question: How large should the box size
L be so that one can safely neglect the finite-volume artifacts?

The results at O(p?) can be obtained directly from
Egs. (40)—(47), since these contain no unknown LECs.
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At O(p*), however, the LECs e, defined in Eq. (24),
appear. We fit these to the magnetic polarizability f,,:

Model A : ¢ = (0.42 4 0.10) GeV~3,
¢; = (0.56 £ 0.34) GeV~>,
Model C : e; = (0.53 £0.06) GeV~,
¢; = (091 £0.07) GeV™> (49)

(note that we do not have separate inputs for the proton and
neutron for Model B). For further calculations, we use the
following values of the O(p*) LECs:

Q* = 0.001M?2, proton

0.05
olp*) —
0.04 O(p") v |
0.03
4

0.02

0.01

Q* = 0.1M2, proton

o) —
0.04 O(p*) v |

0.03

0.02

0.01

Q* = M2, proton

o) —
0.04 L O(p*) |
0.03 ,

<
0.02 ,
0.01 ,

0 . . . ! I
3 35 4 45 5 55 6

M,L

0.05 :
ol T
0.04 O(p") v |
0.03
<]

ef = (046 +0.14) GeV=3, ¢; = (0.60 +0.38) GeV3.

(50)
This choice covers Model A, as well as Model C.
The finite-volume corrections to the Compton amplitude
are shown in Figs. 7 and 8 for the following values of the
variable Q7

02 =0.001M2, 0.01M2, 0.1M2, 0.5M2, M2, 2M>2.
(51)

These figures contain our main result, answering the
question about the feasibility of the extraction of the

Q* = 0.01M?2, proton

0.02

0.01

Q* = 0.5M2, proton
0.05

-
0.04 O(p") v |
0.03

<]

0.02
0.01
0
3 35 4 45 5 55 6
M.L
Q? = 2M?, proton
0.05 .
ol ——
0.04 O(p") |
0.03 ]
<]
0.02 ]
0.01 ]
0 ! ! . i

3 35 4 45 5 55 6
M, L

FIG.7. The finite-volume effect in the proton amplitude versus the dimensionless variable M, L. The uncertainty in the knowledge of
e, does not translate into a large uncertainty in the final results, and the width of the red band is barely visible by eye.
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Q% = 0.001M2, neutron

0.04 L

0.03 |

0.02 L

0.01 |

3 35 4 45
M.L

Q* = 0.1M2, neutron

0.05 ‘ A
oY) —

0.04 L

0.03 |

0.02 L

0.01 t

0.04 L

0.03 |

0.02 L

0.01 |

3 35 4 45
M.L

Q% = 0.01M?2, neutron

0.04 +

0.03 |

0.02 +

0.01 |

3 35 4 45 5 55 6
M,L

Q* = 0.5M2, neutron

0.05 ‘ :
olp) ——

0.04 +

0.03 |+

0.02 +

0.01 +

0.04

0.03

0.02

0.01

FIG. 8. The same as in Fig. 7 for the neutron.

subtraction function on the lattice. It is seen that, for both
the proton and the neutron, the finite-volume corrections
are encouragingly small for ML > 4 (the fact that they are
slightly smaller for the proton than for the neutron stems
from the presence of the large second-order pole term
proportional to the combination 2c¢4 + ¢, in the infinite-
volume proton amplitude). Further, it is very comforting to
see that the convergence of the result at fourth order is
reasonable. Moreover, the uncertainty caused by the poor
knowledge of the O(p*) LECs is indeed moderate in the
final results (for example, in case of the proton, it is hardly
visible by the bare eye). Taking this fact into account, one
might wonder whether the uncertainty in the LECs at lower
orders might play a more significant role. Following our
expectation, a 20%—-30% error in a final result generously

covers the effect coming from these LECs. Another easy
way to estimate the uncertainty of calculations (not limited
necessarily to the poorly determined LECs) is to compare
the results at O(p?) and O(p*). Taking into account the fact
that the present study was primarily intended to serve as a
rough estimate of the size of the exponentially suppressed
corrections to the amplitude, we did not try to investigate
this question further.

Finally, note that the relative correction stays almost
constant from Q2 ~ 0 to Q% ~ 2M?2 and, possibly, even for
higher values of 0?. In other words, the finite-volume
artifacts do not hinder an accurate extraction of the
amplitude at large Q2. Here we remind the reader that
an accurate measurement of the inelastic part on the lattice
becomes more difficult as Q2 — 0, because the elastic
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contribution dominates in this limit [12,13]. Hence, the
finite-volume artifacts do not further restrict an interval in
Q?, where an accurate calculation of the subtraction
function is possible.

V. SUMMARY

(i) Using baryon chiral perturbation theory and the
EOMS renormalization scheme of Refs. [52,53],
which guarantees that the renormalized expressions
satisfy the standard power counting, we have evalu-
ated the doubly virtual spin-averaged Compton
scattering amplitude off nucleons up to O(p*) in
the infinite volume. We have further calculated
finite-volume corrections to the so-called subtraction
function at the same chiral order.

(ii) The inelastic parts of the infinite-volume subtraction
functions SM®(¢?) and S(g?) show a rather regular
behavior at small values of ¢ that is of the order of
the pion mass squared. None of the loop diagrams
up-to-and-including order p* leads to a rapid varia-
tion of the calculated subtraction functions at small
scales. Note that in these calculations we have fixed
the numerical values of some of the O(p*) LECs
through the proton and neutron magnetic polar-
izabilities which, at present, are not known to high
accuracy (especially, the one for the neutron).

(iii) The main result of this work is the calculation of the
finite-volume corrections in the Compton scattering
amplitude. These calculations are interesting, first
and foremost, in view of the perspective of a
measurement of the subtraction function on the
lattice using periodic external fields. Note also that,
since the cubic lattice does not preserve Lorentz
invariance, the definition of the subtraction function
in a finite volume is ambiguous. On the other hand,
what is extracted from the nucleon mass shift,
measured on the lattice, is a particular component
of the second-rank Compton tensor T'}!, which is a
well-defined quantity and which tends to S;(g?)
(modulo an overall kinematic factor) in the infinite-
volume limit. The numerical results quoted in this
work refer to this quantity.

(iv) At this stage, we do not know, on the one hand, how
the other subtraction function S(g?) can be measured
on the lattice. On the other hand, the two subtraction
functions are related to each other: Their difference is
a convergent integral containing experimentally mea-
sured electroproduction cross sections.

(v) Our results show that the exponentially vanishing
finite-volume corrections to the quantity 7! amount
up to 2%—-3% percent or less at M ;L ~ 4 for both the
proton and the neutron. This means that one can
extract the infinite-volume subtraction function with

a good accuracy already using reasonably large
lattices. We also note that the convergence of our
results is rather good, and the poor knowledge of the
O(p*) LECs does not pose a real obstacle as the
resulting uncertainty is very small.

(vi) As pointed out in Refs. [12,13], the large elastic
part renders the extraction of the subtraction
function at low ¢”> problematic. Having the fi-
nite-volume corrections well under control might
help one to carry out the analysis at lower values of
g*. On the other hand, the observed g*-behavior of
the quantity A is very mild up to —¢> = 2M2, and
one may try to push the upper limit in ¢> higher,
allowing for the extraction of the subtraction
function in a larger interval of ¢*>. Such an
extrapolation, however, comes with a grain of salt,
since it implicitly assumes a good convergence
of chiral perturbation theory at higher values of ¢°.
In general, one might consider the results for
—q*> < 0.1M? relatively safe. Beyond this value,
areliable calculation should include an estimate of
the higher-order corrections that is very difficult
and clearly lies beyond the scope of the present
paper. Note also that the finite-volume corrections
(which are the main output of this paper) are quite
small, so even a large uncertainty in their calcu-
lation does not critically affect the extraction of the
Compton tensor on the lattice. As seen from Figs. 5
and 6, in the calculation of the infinite-volume
quantities, such as the subtraction functions, the
situation is quite different. Here, the modification
from O(p?) to O(p*) is rather significant for higher
absolute values of ¢°.
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APPENDIX A: DEFINITION OF THE LOOP INTEGRALS

The one-loop integrals appearing in our calculations are defined as follows:

One factor in the denominator:
d"k
_ = A s
/kz—m2+ie o(m)

d'k (M)

—m* + i€]

[ e o At N
Two factors in the denominator:
/ =M+ ie][([gi P —mr i DolpM.m)
/ [k? — M? + ie]M[(CZﬁ- k)? — m? 4 ie]V B(M v (M. m).
/ [k — M? + ie][i;klf:k)z —m+ie] P'Bi(p*:M.m),
/ kK2 — M2 + ie]Mi}Zd—C: k2 —m? iV "B (p% M. m),
/ I =M+ ieﬁ"(l;k:k;)z S ig ¢ BonlpH M)+ " By (p% M. m).
/ [k — M + ie]; F(Zkfl)z —m’ +ie]" Bl (p M)+ prp B (25 M),
/(k e if;zﬁfzk_yi)z M tid 00" "By (% M. M) = (g9 + " + ¢°9) By (% M. M),
/(k —M2+EIZ)];I§/]€<U5(IQ]<;—M2+1'6] (0" + d* g + ¢ ¢") By (4% M, M) + "¢ 4“a" BY31) (4 M, M)
+ (a9 + ¢ + '+ g+ @t
+4°4°9"") By (% M, M). (A2)

Three factors in the denominator:

d"k

:C 27 - 27 2;M7 5 5
/[kZ—M2+i€][(p+k)2—m%+ie}[(q+k)2—m§+ie] o(p™. (P = @)% 47 M. my. o)

/ d"k (M.N.K)
(kK2 = M?* +ielM[(p + k)?> — m} + ie]N[(q + k)* — m3 + ie]X
/ d" k¥

[k = M? +ie][(p + k) — m} + ie][(q + k)* — m3 + ie]

= q"Cy(p%. (p — @)% ¢ M. my,my) + p*C(p*, (p — 9)*, ¢*s M, my, my),
/ d"kkt

(k2 = M? + ie]"[(p + k)? = mi + ie]"[(q + k)* = m3 + ie]"

= g (2, (p = @)% M my my) + prCM N (02 (p = q)2, 2 ML my, my),
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dkk k¥
/ [k — M? + ie][(p + k)* — m} + ie][(q + k)* — m3 + ie]
= ¢*“Coo(P* (P = @)% ¢*s M, my,my) + " 4" Coa(p*, (p = @), ¢*s M, my, my)
+ P Cu(p* (p = q)* ¢*s M, my,my) + (p*q* + p*q*)Cra(p?, (p — @)% ¢* M, my, my),
A" kk kY
/ [k = M? + ie]M[(p + k)* = mi + ie]"[(q + k)* — m5 + ie]®

M .N.K M.N.K
= ¢ C ™M (P2, (p = @)% B Momy,my) + ¢ Co N ) (02, (p = )% 4% M my, my)

M ,N K M ,N K
WENE (02 (p = @)% 5 M, my,my) + (PP + p*a")C ™ ) (02, (p — @)% s Mymy,my). (A3)

+ ptpC

APPENDIX B: TREE-LEVEL EXPRESSIONS—INDIVIDUAL DIAGRAMS

Below we list the tree-order contributions to the quantities 7', (0, ¢?) and T',(0, ¢*), coming from the individual diagrams

in Figs. 1-4. At the order we are working, one may safely replace m by m, M by M,, and F by F, everywhere.
O(p) contributions:

1

Ti =0, Ty =2m*(? +1)—. (B1)
q
O(p?) contributions:
7 =2 2cg+ )P+ 1), TP =0 (B2)
1 = q2 6 T C7)\T ) 2 — Y
O(p?) contributions:
15 =0,
5 m’ 3
Ty = —4?(616 +2d;)(73 + 1),
m2
TS = e (4cqcet® + 42 + c2),

6 m’ 3 2, 2
TS = —? (4cycer +4cg + ¢3),

T{ = (ds +2d;)(7* + 1),
7 —0. (B3)

O(p*) contributions:

T3 = 8m(2eg9 + €93 + €115 + €91 ),

TP = dm(2egy + €94 + €117 + Tegn).

2m
T = 7 (23 4+ 1)((2es4 + e74)g* — 4(2e105 + €106)M?),

T§4’35 _ O,
T?6'37 — O,
36,37 _ 3 3
T2 = 2m(c7(d61' + 2d7) + 2C6(2d7T + dﬁ)) (B4)
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APPENDIX C: ONE-LOOP EXPRESSIONS—INDIVIDUAL DIAGRAMS

Below one finds the one-loop contributions to the amplitudes 7 (0, ¢*) and T,(0, ¢*):
O(p?) contributions:

2.2
m=gy

81’ F?
@.1.1)

{M?*(4 (ngzl 1)(mz, m> + g%, ¢*: M, m,M)+C§2 b l)(mz, m* +q*, ¢>; M, m,M))

TS — —

+C (m m? + q*, ¢> M, m,M)) + 4Cyy(m*, m?> + ¢*, ¢*; M, m, M)

+ Co(m*,m* + ¢*, ¢*; M, m, M) + 4Cy(m*, m* + ¢*, ¢*s M, m, M)}, (C1)
m*g;
27T2F2q2

2(.3 _ 1
P DB 4G 0 M m)~CE o 4 M. m. M)

+ 3t

+C121“(m +q*m* g* M, m,M)

211
(

TS = (M2CT D (m2, m? + @2, %5 M, m, M)+Cyy (m2, m? + ¢, 4% M, m, M),
T =

(m? + ¢*, m?, ¢ MmM)—|—2C12211(m2+q2,m2,q2;M,m,M)

+ CP Y (m2, g2 om? + M m,m)
m>, m*+q¢*,¢*>;M,m,M) + C 211(m2+q2,m2,q2;M,m,M)

211

2” (m + @ m* ¢ M, m,M)) + (mz,qz,m2+q2;M,m,m)

M (m2 m? + ¢ g M.m, M)+C(211)(m +q*,m? q* M, m,M))

+4C22(m LG om? + @? M, m,m) — 2Cy, (m?,m? + g%, g* M, m, M) + 2Cp (m? + g*,m?, ¢*; M, m, M)
+4C (M + > m?, g M, m, M) +2Cy(m? + ¢*,m?, ¢*>; M, m, M) + Cy(m?, g*, m*> + ¢*; M, m, m)
— Co(m>,m> + @*, ¢*>; M, m,M) + Co(m*> + ¢>, m*,g*; M, m, M) + 4C,(m?, ¢*>, m*> + q*; M, m, m)
—3Cy(m*, m* + q*, ¢*; M, m, M) + 3Cy(m?> + ¢*>,m?>, ¢*>; M,m, M) + 3C,(m* + ¢*, m*, ¢*>; M, m, M)},

m4(T3—1)g 2,1,1 2,1,1
Tg:—SﬂTzzA(ZMzc( >(m g%, m* + ¢%; Mmm)—|—4M2C( )(mz,qz,mz—l—qz;M,m,m)

+ ZMZC(21 1)(mz, q*.m?* + g* M, m,m) — ZMZC(21 1)(mz, m? +q¢*, ¢>; M, m, M)
-+ ZMZC(2 b 1)(mz +q* m? ¢* M, m, M) + 2M2C§2’1’1)(m2, g, m?* + g*; M, m, m)
- ZMZC(IZ'H)(mZ, m* +q*, ¢*; M, m, M) + ZMZC(IZ'I’I)(m2 +q*m* g* M, m,M)

+ (2M2 _ qz)céll,l)(mz G m*+ @ M, m.m) — qzcgll»l)(mz,qz,mz + g% M, m,m)

211 (2,1,1)

J(m2,m* + ¢, ¢ M. m M) — C
—|—2C22(m LGP m? + @M, m,m) + 4C,(m?, g2 m? + g3 M m,m) + 2C (m?, ¢>, m? + ¢* M, m, m)
—Cy(m*,m* + @, ¢*M,m,M) + C,;(m* + ¢*>, m?, ¢*>; M, m, M) + 2C,(m?, ¢*, m*> + g*; M, m, m)
+2C (m*, ¢*,m* + ¢ M, m,m) — Cy(m*,m* + ¢*, ¢*>; M, m, M) + C,(m* + ¢*, m*, ¢* M, m, M)),

25 3\ 2
10 =" =0 B (2 m) + B (g2 m) + MCE (2. g2 M m.m)
+ PV (m2, 2 m? + @2 M om.m)},
_m (T =3)g;
3271'2F2 2
+2(C5V (m2, o m? 4 @M m,m) + CY (m2, 2 m? o+ gP M, m, m))

+ Cﬁﬁz 1)(mz, q>.m* + ¢*; M, m,m) + C(gl’z’l)(mz, q>.m* + g* M, m, m)

(m2 +q*m*, ¢ M, m,M)

(—4m 2M2(C(1 - 1)(mz, q*.m* + g* M, m, m)

+20 2V (m2, 2 m? + %M, m.m)) + Bo(m? + ¢*; M. m) + B, (m® + ¢* M, m)),
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TINZ —

112
T2 =

T}3’14 _

13,14
T2 =

15 _
TP =
15 _
Ty =

Ti® =
Ti =
TV =

17 _
T, =

18,19 _
T, =

18,19
S =

29-32 _
1] =

29-32 _
T5 =

m* (7 = 1)ga (Cop(m?, ¢*,m* + ¢*s M, m,m) + Cy(m*, ¢*, m* + ¢*s M, m, m))
A’ F?

’

m2(13_1)g/% 2 2 2 2 2 2 2 2 2
_78ﬂ2F2q2 (Bo(m* + g*; M, m) + By(m* + g*; M, m) — 2m*(Cs(m*, ¢*, m* + q*; M, m, m)
+ 2C12(m27 qZ,mZ + qz;M’m’m) + Cll(mzv qZ’mZ + qz;Mvm7m) + CZ(mza q27m2 + qz;M, m, m)
+ Ci(m?, ¢*.m* + ¢*; M, m.m))),

m*ga 2Cp (m*,m* + ¢*, ¢*s M, m, M) + Cy(m*,m* + ¢*, ¢*s M, m, M)

4P ’
m* g4
—76‘ 2, 2+ 2, 2;M7 7M )
271'2F2q2 ll(m m q-.4 m )
0,
0,
0,
m’g;
- Bo(m* + ¢*; M, m) + By (m* + ¢*; M, m)),
87:2F2q2( O(m q m) l(m q m))
09
3m?(7* + 1)g2
— 5 (2m? 4 ¢*)(M*B,(m* + ¢*: M, m) + 2((m* + ¢*)By (m* + ¢*; M, m)
327°F*(q*)
+ Boo(m* + ¢*; M, m))) + M*(=(4m* + ¢*))Bo(m* + q*; M, m) = 2(3m* + ¢*)Ay(m)),
2053 4 1) 2
—M{Bo(m2 + q* m, M) + 2B, (m? + ¢g*;m, M) + M*Cy(m*, m*> + ¢*, ¢*; M, m, M)

872 F2g?
+ 2M? + ¢*)Co(m*, m* + ¢*, > M, m, M) + 2¢°Cyr(m*, m* + ¢*, ¢*; M, m, M) },
m*(2 + 1)g3
4ﬂ2F2(q2)2
+ (¢* =2M*)Cy(m*, m* + ¢*, ¢*; M, m, M) + ¢*Cyy (m*, m* + q*, ¢*; M, m, M)) + Boy(q*s M, M)),

(m*(Bo(m* + q*sm. M) + By (m* + g*;m. M) — B\ (m*; M. m)

+ @ Cp(m?, %, m* + s M, m, m)),
—% (=q*(Bo(m* + q*: M, m) + B, (m* + ¢*; M. m)
—2m?(Cy(m?, ¢*, m* + ¢*>; M, m, m) + 2C,(m?, ¢*, m*> + ¢*; M, m, m)
+ C(m?, ¢*,m?> + ¢*; M, m,m))) —4m>M?(Co(m?, ¢*, m* + ¢*; M, m, m)
+ Cy(m?, g* m?* + g*s M, m,m) + Cy(m?, ¢, m* + ¢*s M, m, m)) + Ay(M)),
0,
w22+ 1)(Ao(M) = 2Boo(g%s M, M)

AP (g2)?
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O(p*) contributions:

7389 — _ (2¢6 + c7)g*m(z® = 3) (4m? ( 12.1)

6472 F?
— By(m? + ¢*; M, m) — B, (m? + ¢*; M, m) + 2By(q*; m,m) + 2B, (¢*; m, m)
+2M?(Coy(m?, g*, m* + g*; M, m, m) + Co(m*, g*, m*> + ¢*>; M, m,m))},
THY _ g,

D (g2im,m) + M2CS D (2, 2 m? + g2 M, m.m))

3.2 2er —
T = _n gA§6C2F207T ){4 2C21 V(g m? m? + g% m,m, M) +8(12C(21 V(g2 m2 m? + ¢*m, m, M)

+4q2C(2 8 1)(qz m?, m* + q*;m,m, M) — 4q2C(2 B 1)(qz,mz +q*,m*;m,m,M)

—i—4q2C(21 l)(m + @ ¢ m*m, M, M) + qzC21 l>(qz,mz,m2 +q*m,m,M)
2C(21 1)(q m? + g*,m*;m,m, M) —|—c12C(211)(m2 +q* ¢ m*m, M, M)
—|—4c]2C(2 L 1)(q ,m*, m? + g*m,m, M) —|—4c]2C(12’1’1>(c]2,m2,m2 +q*m,m,M)
—4PCT (@2 m? 4 P omm, m, M)+ APCT (m? 4 g2 gP o mPm, ML M)
+ Co(g>. m*,m* + q*sm,m, M) — Co(g*. m* + >, m*;m,m, M) + 2C5(q>. m*, m* + q*;m, m, M)
+2C(¢*, m*>, m* + ¢*>;m,m,M) = 2C,(q*, m*> + ¢*,m*, m,m, M)},

m39§x(2C6 - C7T3)
16F2 2 2

T2 — (—=4B>Y (m2;m, MYm? — 4BV (m? + g2 m, MYym? = 2BV (m2; m, M)m?

—ZB (m +q* m,M)m? —|—4(]2C(2“)(q2,m2 m? + g%, m, m, M)m*
4q2C211 (q>.m* + q*, m*; m, m, M)m? —|—4q2C(21U(mz—I—qz,qz,mz;m,M,M)m2

2

—|—8c]2C21 m?, m?* + q*;m,m, M)m? SqZC(z”)(q2 m? + g*,m*;m,m, M)m

+quczl (2.1.1)

(4%,
(

m? + ¢, g%, m*; m, M, M)m? —|—4q2C

1)
b (qmm—l—q m,m, M)m?
1)

—4412C21 (q*, m* + %, m*; m, m, M)m? —|—4q2C(211)(m +q% ¢*,m*;m,M,M)m?

(2,1,1)

—|—8(]2C211 (m? + g2, ¢*, m*; m, M, M)m? —|—8q2C (m2+q2,q2,m2;m,M,M)m2
(

—|—4612C21 Dim? + q*. q>.m*;m, M, M)m? —|—2A(() )(m) —3By(m*;m, M) + By(m?> + g%, m, M)
—3B,(m*;m. M) + B,(m> + ¢*;m. M) + (M? = 2m?)B{*") (m?, m, M)
+ (=2m? + M? - 2)Béz'l)(m2 +q*m,M) + MzBiz'l)(mz;m,M) + MzB<12‘1)(m2 +q*m,M)

3qu Nm? + ¢*ym. M) — 24123521’1)(m2 +q¢*mM)— Z(Bgf)’l)(mz;m,M)
+ Béo’ (m? + % m, M) + ¢*Co(q*. m*, m* + ¢*;m.m. M) — ¢*Co (g%, m® + g% m*m, m, M)
+2¢*Co(m? + ¢, ¢*>,m*; m, M, M) + ¢*C»(q*>, m*>, m* + ¢*>; m,m, M) — ¢*C,(q*>, m*> + ¢>, m*>;m,m, M)
+2¢°Cy(m? + ¢%, >, m*>; m, M, M) + 2¢>C,(m* + ¢*, ¢*, m*, m, M, M)),

7442 _ _m9/21<206 —c77)
! 1672 F?
+ M?Cy(m?, ¢*, m*> + g*; M, m, m) + 2(M? — 2m?)C,(m?, ¢*, m> + ¢*; M, m, m)},

{=Bi(m* + q*:M.m) + By(q*sm,m) + 2B,(g* m.m)

3.2 3
m’g(2cq — c77
T4 — gAg(ﬂZ;“ZqZ ™) (=Bo(m?* + g% M, m) — B,(m®> + ¢*; M, m) + By(m*; M, m) + B,(m* M, m)

- ¢*(Co(m?, >, m* + g*; M, m,m) + Cy(m?, g*>, m*> + ¢*>; M,m,m) + C,(m?, >, m*> + ¢*; M, m, m))),

034507-22



FINITE VOLUME CORRECTIONS TO FORWARD COMPTON ... PHYS. REV. D 103, 034507 (2021)

T34 _ _9/24"1(206(73 +3) + ;377 + 1))
! 128722 F2 4>
— By(m*; M, m) + ¢*(4(Cpy(m?>, m*> + ¢*, ¢*>s M, m, M) + Cy(m*, m*> + ¢*, ¢>s M, m,M))
+ Co(m*,m* + ¢, ¢*; M, m,M))) + ¢*(4(By,(¢*; M, M) + B, (q*; M, M)) + Bo(¢*; M, M))
—240(M)},
m3A (2ce(73 +3) + (373 + 1
T;3’44 — _ gA( 6( 2>2 27( )) (Bo(m2 4 qZ’m’M) +B](m2 4 qZ,m’M) +B](m2;M, m)
3277 F*q
—4Am>Cy (m>,m® + ¢*, ¢ M, m, M) — ¢*Cy(m*, m* + ¢*. ¢*>; M, m, M)),

2m(2¢6(37° — 1 3-73
pisar _ Gam(2c( 164712;2:;267( D) MEBy (2 M. m) + (6m + ¢2)By (m? + ¢ M. m)

+ (4m® + ¢*)Bo(g*s m, m) + M?*(4m* + ¢*)Co(m*, ¢*, m* + g*; M. m, m)
+8m*q*(Cor(m?, ¢*, m* + g* M, m,m) + Cy(m*, ¢*, m* + q*s M, m, m)) — Ag(m)},

{4m?(By(m* + ¢*>; m, M) + 2B, (m* + ¢*,m, M)

32
4547 Mgy 3 2 2 2. 2.
T, =32 () (ce(z” = 1) 4+ ¢7)(g*(3By(m* + g°; M, m) — By (m*; M, m)

—4m?(Copr(m?, g*,m?> + @*; M, m, m) + 2C,(m?, ¢*>, m* + ¢*; M, m, m)

+ Cy(m?, ¢* o m? + ¢ M, m,m)) + ¢*(Co(m?, >, m*> + q>; M, m, m)

+ Cy(m?, q* m* + g M m,m) + Cy(m?, ¢*,m* + ¢* M, m,m))) + (M* = %) Bo(m*; M, m)

+ (M? +2¢%)Bo(m* + q*s M, m) + 2m* (B, (m* + q*s M, m) + By (m* M, m)) + 2A¢(m) — 2A(M)),

: (2¢6 = 3cq)gam(z> + 1)
T4 = 647[2;2612 {M>By(m*; M, m) + (6m> + ¢*) By (m* + q*; M, m)

+ (4m* = ¢*)By(q*s m,m) = 2¢*By (q*; m, m) + 2¢*((4m* — M*)Cy(m?*, ¢*, m* + q*; M, m, m)
+4m?Cay(m?, g%, m*> + ¢g*; M, m, m)) + M*(4m? — g*)Co(m?, ¢*, m*> + ¢*; M, m, m) + Ay(m)},

46,48 (2¢6 =3c)m’ (@ + 1)z, 2 2. 2.
50" = — () (¢*(3B{(m* + g*; M, m) — B;(m*; M, m)

—4m?(Cyp(m?, g*, m* + ¢*; M, m, m) + 2C,(m?, g*. m*> + ¢g*; M, m, m)

+ Cri(m?, % m* + g M, m,m)) + ¢*(Co(m?, ¢*, m* + ¢*; M, m, m) + Co(m?, ¢*, m*> + q*s M, m, m)
+ Ci(m*, g% m + g*s M, m,m))) + (M? = ¢*)Bo(m*s M, m) + (M* + 2¢°)Bo(m* + ¢*; M, m)
+2m*(By(m* + ¢*s M, m) + By (m*; M, m)) + 2Aq(m) — 24(M)),

>
P2 = —716:;%‘2612 (2¢6 + ¢77°) (M?(Bo(m® + g% M, m) + Bo(m*; M, m)) + ¢*B, (m* + ¢ M, m) + 2A¢(m)),
T4-52 — 0,
psae _ m(er + 2¢673) Boo(q*: M, M)

1 472 F2 J
T3 — 0,

3(2¢6 + c7)g*m(7® + 1
T = - es 27)2 2( 2 ) {2m? 4+ ¢*)(M?B,(m? + ¢*; M, m) + 2((m* + ¢*)By,(m* + ¢*; M, m)
647°F*(q*)
+ Boo(m* + q*s M, m))) + M*(=(4m* + ¢*))Bo(m* + ¢*; M, m) = 2(3m* + ¢*)Ag(m)},

T3 — 0,
75556 _ cym(® 4 1)Boo(q*: M. M)

! 82 F2g? ’
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73556 — 0,
7558 — (2 + 1) (cem®Ag(M) 4 3c2A00(M))
8722 F?’mq?
75758 _ _3eum( + 1)Ag (M)
2 277.'2F2(q2)2 ’
75960 _ _m(c7 + 2¢613)A0 (M)
1 872 F2g

’

’

T§9,60 _ 0,
T =0,
6 _ M
2 47Fm (¢%)?

e = 2Fz{ 2, M*(4(B3Y (g2 M, M) + BPV (g2 M. M) + BEY (g2 M, M)

+ e (M2(4(BTY (g2 M, M) + BEY (g2 M M) + BSY (q2 M, M) + 4By, (% M, M)
2.1
+ Bo(g% M, M) + 4B, (¢ M, M)) + c»(BSG" (% M, M) + 4(BS (6% M, M) + BSS!) (4% M, M)},

7 (2eym*MPAg(M) — Ao (M) (c3dm? + cr(m* + ¢%))).

2com01)
S :ﬂzequoooo( M. M),
76566 _ _C3m(30((]2;M, M) —4By(q*; M. M))
= A2 F2 ’
65.66 __ Com
T2 - 2F2 2B00(q M M)
T8 =0,
Ccom
T67 2 A(M C3
T Ao(M). (©3)

Contributions of tree diagrams to the elastic parts of T1(0, ¢*) and T,(0, ¢*):

Tl

lel —

0’

1
Tée|72m ( 3+1>?,

1
T2 ol — m(2C6 + C7)(T3 + 1)?,
T% e? - 0
Tia = (2 + 1)(2d; + do),
1
T3g = —4m* (2 +1)(2d; + do) 3
2 2
q- +4m
Tha = (Gesr’ +erf
1
Tg o = —m*(2c67° + c7)2—2,

((2es4 + €74)q* —4(2e105 + €106)M?)

7> ’

T34235 = 2m(73 + 1)

Lel

34-35 __
T2 el T 0.
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1el

2
T36-37 — 2q_m (2¢57 + ¢7)(dg7® + 2d7),

T35 = =2m(2¢°° + ¢7)(de7” + 2d7).

Contributions of O(p?*) one-loop diagrams to the elastic parts of T,(0, ¢*) and T,(0, ¢*):

71819 _ _m (@ +1)g;
1.el 871'2F2q2
+ (M + @) Cy(m? m?, s M, m, M) + 2q° Coy (m?, m?, ¢*s M, m, M)},

71819 _ m* (7 +1)g5
2.el 47[2F2(q2)2

{Bo(m?*;m, M) + 2B,(m*;m, M) + M>Cy(m*,m*, q*>; M, m, M)

{m?*(By(m*;m, M) + B,(m*; m,M) — B,(m*, M, m)

+(q* =2M*)Cy (m*, m?, % M.m, M) + q*Cyy(m*, m* ¢*s M. m.M)) + Boo(q*; M. M) }.

T%fgﬁ =0,
720-23 _ _mz(r3 + 1)g2 (M2By(m?; M, m) — 2m?B,(m*; M, m) + Ag(m) + Ag(M))
2.el 8752F2(q2)2 ’
23 1 12
Tff‘élzs = W{Bl(mz;M, m) — By(q*;m,m) + M*(—Cy(m?, >, m*; M, m, m))

+ ¢*Co(m?, g*, m*; M, m,m)},

m* (> + 1) g3
Tya = —W{Zmz(q2(czz(mz,qz,mz;M,m,m) +2C 5 (m?, q*, m* M, m, m)

+ Cy (m?, ¢*,m*>; M, m,m)) — 2M?*(Cy(m?, >, m*; M, m, m) + C,(m?, g*, m*, M, m, m)

+ Ci(m?, ¢*, m*; M, m,m))) + Ay(M)},

=
T29-32 _ m?(2® + 1)(Ay(M) — 2By (q*: M, M))
2el 42 (P)R

Contributions of O(p*) one-loop diagrams to the elastic parts of T,(0, ¢*) and T,(0, ¢*):

T _ _mgi(erT + 2¢)

L= ey {4m?(By(m*;m, M) — Bo(m?*; M, m) + 2B, (m*;m, M)

+ P (4(Cp(m* . m*, ¢*s M, m, M) + Cy(m* . m*, ¢*; M, m,M)) + Co(m*, m*, ¢*s M, m, M)))

+ q*(4By1(¢*; M. M) +3By(q* M, M) + 8B, (q*; M, M)) — 2Ay(M)},

T34 _ m>gi (c77° +2¢6)Cyy(m*, m?, ¢*; M, m, M)
2el = 22F ’

2
TH4T — % {c7(8m? (3B, (m*; M, m) + 2By(q*; m,m) + 2M>*Cy(m?, >, m*; M, m, m)

lel — 6471'2

+4q*Cypr(m?, g, m*; M, m,m)) + M*(323 — 1)By(m?*; M, m) + (37> — 1)Ay(m))
+ 2c¢(4m? (v = 1)(3B,(m?; M, m) + 2By(q*; m, m) + 2M>Cy(m?, g*, m*; M, m, m)
+4q*Cor(m?, g, m*; M, m,m)) + M*(1 = 32%)By(m*; M, m) + (1 — 37%)Ay(m))},
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T454T _ mga(ce(7® — 1) + ¢7)
2.el 4ﬂ,’2F2 (q2)2
+2C 1 (m?, ¢, m*; M, m,m) + Cy (m?, ¢*,m*, M, m,m))) + M>By(m*; M, m) + Ay(m) — Ag(M)},
74648 _ _ (2¢6 = 3cy)m(® + 1)
1.el 647T2F2q2
+4g*Crr(m?, g*,m*; M, m,m)) + M*By(m*, M, m) + Ay(m)},
aeas _ (2¢6 = 3c)m* (2 +1)
2.el 1672'2F2(q2)2
+ Ci(m?, ¢*,m*>; M, m,m)) — B;(m*; M, m)) — M*Bo(m?; M, m) — Ay(m) + Ag(M)},
MR+ 2e0) OBy (% M)+ Agm)

{2m2(B1(m2;M, m) — qz(czz<m2, q*, m*;M,m, m)

2
I {2m? (3B, (m*; M, m) + 2By(q*; m, m) + 2M>*Cy(m?, >, m*; M, m, m)

2
94 12m?(q*(Cy(m?, ¢*, m*; M, m, m) + 2C,(m?, g*, m*; M, m, m)

1.el 87[2F2q2 ’
Tg?eTsz =Y
75362 _ m(cq + 2c673)Boo(q*; M, M)

lel — 222 .

4r-F°q

5362
T2,e| -
75556 _ cam(7® + 1)Byo(g*; M, M)

lel — 22 ,

8n°F-q

5556
T2,e| - O’
75758 _ (7> + 1) (cem>Ag(M) + 3crA0(M))

Lel 872 F?mq? ’
758 _ 3cym (7 + 1)Ag (M)

2.el 27r2F2(q2)2 ’
75960 _ _ m(c7 + 2c673)Ag(M)

lel = 22 ,

8n°F-q

59,60

e =0 (C6)

APPENDIX D: FINITE-VOLUME SUMS

d'k {1k KK} gy, o
/\/(Zﬂ)" (k* —m>)M - A(M) (m*),

d'k {1,k* k"'k” k”k’“ka,k”k”kakﬁ} > 5}
’ k) = B SHL UV UV UL Q , ’ i
/V(zn)" (= mM (k= p)? —md)N — ") (my,my; p)
d"k {1, k", K"k} ol
= C o~ > ’ ; ’ ’
/v 2n) (= (k= ) = mB) (k= g = m)F = COnr (1 2. 133 . )
d'k {1k Kk} Py
E ID ’”7” b 9 9 ; 9 bl . D]
// (277:)” (k2 — m%)M«k - ]9)2 — m%)N«k _ q)Z _ m%)R((k _ r)z — mﬁ)s (M,N,R,S)(ml my, M3, My; P, q r) ( )

Here, [, denotes an integral in the finite volume, which really is a sum. The calculation of these sums by using the Poisson
formula is considered in Appendix E.
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APPENDIX E: EVALUATION OF THE FINITE-
VOLUME SUMS USING POISSON’S FORMULA

The calculation of finite-volume sums with the use of
Poisson’s formula is nowadays a standard procedure. For a
detailed introduction, we refer the reader, e.g., to Ref. [85],
and list only the final results here.

The following notations are used:

(1 — X —

/Dxnf X1y enesXp)
/ dxl/1 x}

—x,)dx; - - dx,,

The full list of the finite-volume sums entering the
amplitude at O(p*) is given below. Note that in the
expressions, which contain only nucleon propagators,
the finite-volume corrections are extremely small [propor-
tional to the factor exp(—mL)] and can therefore be
neglected. We shall indicate these quantities by writing
~0 at the end. Also, note that the structure of the integrands,
which appear in the infinite and in a finite volume, is in
general different. This is related to the fact that Lorentz
invariance is used in the infinite volume to reduce tensor
integrals to scalar ones. Some factors in the denominator
get canceled during this procedure. One cannot apply the
same trick in a finite volume.
One factor in the denominator:

e, : _
/ ot f (X1 e X, L= = =), d"k 1
0 /V(zn)"ikz — 4;;2LZ (L)
(El) (E3)
where n* = (0,n) is a unit spacelike vector, whose o
components take integer values. Further, K,(z) denote I d"k 1 Z Ko(In|mL) ~
the modified Bessel functions of the second kind. 2T o i (kK> — m2)2 872 o 0
The finite-volume sums, which are displayed in
Appendix D, contain an infinite-volume piece and finite- (E4)
volume correction. The ultraviolet divergences are con- o
tained only in the former, while the latter is ultraviolet _ / Z K, (In|ML),
convergent and vanishes exponentially for large values of (2z)"i k2 M2 4L !
L. In order to ease the notation, we list only the finite-
volume corrections. The following notation is used: (ES)
s d'k d'k d'k I, = 7 d"k 1 K
= - . E2) l= o([m[ML),  (E6)
[/ (2]1’)"1 [/ (27[)11[ / (2].[)71[ ( ) %4 (27[) l (k2 - Mz) 8 872 ;
|
[ d'k Kk ML
I = K>(In|ML)g"™ Ki(In|ML)n* E7
5 //(271’)"1/{2 _M2 47T2L2 Z{ 2 ‘ | )g +i=3 | |3 3(| | )I’l n } ( )
[ dk KK M 1 ML
I = K (mML)g" —K n|ML)n* . ES8
6 ‘/‘/(Zﬂ)nl’(kz—MZ)z 8”2L;{| | 1(| | )g + 2(| | )I’l n } ( )
Two factors in the denominator:
[ d'k 1 1 1 .
I, = = dxell™™a g (In|L ~0,
7 /‘,(2ﬂ)"i(k2—mz)((k—q)z—mz) 87[2;/0 xe 0(| | \/f_])
g=m>—x(1-x)q> (E9)
[ d'k 1 1 . [n|
I — d iLxpn K. (InlL ,
8 /‘,(27r)”i(k2—m2)((k—p) M2 167[2;/ xXxe \/g 1(| | \/‘a)
g= (1 =x)m*+xM? — x(1 — x)p? (E10)

034507-27



J. LOZANO et al.

PHYS. REV. D 103, 034507 (2021)

||
\|
Zw
==
|
B
e

|

<
N

|
=

N ~
0o
o

>
’.:

o d'k 1
Iy = - dx(
10 /V(zn)"i(k2—m2)2((k—q)2— 2) 16:#%%/ X

g=m*—x(1-x)g*

[ d'k 1
v ()i (k2

g=m*(1 —x) +M?>x—x(1-x)(p+q)*

I =

1anp| | n
—x)e /s Ky (In[L\/g),

- et LK (nlLy5) ~o.

dxe 1=+ K (In|L/g),
-M?*)((k=p—q)*—m?) 37[2;/

[ d'k 1 T
I, = d than L )
o= |, B I == 8,,2; [ dwetmiknizys)

g=M?>—-x(1-x)q>

[ d"k 1
113:/\/(271')"1'(](2—mz)((k—p)z—Mz 872'22/ dxellmp g (|n|L\/_)

g=m*(1 —x) + M*x —x(1 —x)p?

T odk ke L Vg
I, = dxe'l-mp ¢ L H—K L s
14 /‘/(271.)111'(](2_m2>((k_p)2_M2 8”2;/ xe {xp 0(|l’l| \/§)+ln |Il‘ 1(|n| \/g)}
g=m

2(1=x) + M?x — x(1 — x)p?

L[ d% e
o= ), e e

— o> [ et 0 {1+ grKo(niL ) + it YT K (L)

n#0
g=m>(1—x) +M>x—x(1-x)(p+q)>.

. [ dk 1%
o= |, GepitE = =

:_#nz [ el 1 - Bl ) - i Kal(alL V) |,

g=m*(1—=x)+ M*x—x(1 —x)p?

w [ d% Kt kv
= |, Gk =

1 .
= 16”22/ dx(1 )e’Lmq{x 9y ——

n#0

n|L
V9

|f (In[Ly/5) - g,wKo<|n|L¢§>},

g=m>—x(1-x)g>.
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w [ dk 1%
hs = / @a)yi (R = M) (k= p— ) — )

=g [ anet s {4 o+ 9o+ g KoL)~ K (I
Fillp+ e+ 1+ 0) K (nlL g - L ol )
g=m*(1=x)+M*x—x(1-x)(p+q)* (E20)

o :7 d"k Kk
P v @a)ti(k - MP)((k - q)* = M?)
\/_

1 .
—ae> | dxe’“"q{xzqﬂqvko<|n|w§> o @+ K (L)

*{ ‘ K1<|n|Lf>—Wnﬂnvmnwg)},

g=M?—-x(1-x)g* (E21)

y [ d'k Ktk
e T
N R (G '7 e ), (v

— (9" +iL(1 = x)(g"n" + n"q"))Ko(In|L/9)

g=M?>—-x(1-x)qg> (E22)

Iﬂvaﬂ . i d"k kﬂkykakﬁ
(27r)" (K2 = M) ((k = q)* = M?)
1 )
g O | dexe O (1= (1= (1= ) 4 ),
n#0

Lin|
I7" = ¢ ¢'q"q" ==K (In|L\/g),
VY Vo

]/f”“ﬁ = (¢"q*q*n” + perm)(—iL)Ko(|n|L\/g),

TP — (g4 g¥ g + perm) (=K, (In|L\/9)) + (¢*g*nn” +per1n)< |\|[K1(|n|Lf)>
TP = (gint g + perm) (%ngl(|n|L\/§)) + (g"n*n®n’ 4 perm) <FK2(|“|L\/§)>’

3/2
27 = (g -+ perm) (0 K nlLv) ) + (o perm) (s KanlLy) ) + et (2 Kl v )

g=M>-x(1-x)¢*. (E23)

In the above equations, “perm” stands for all permutations of the indices y, v, a, f.
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Three factors in the denominator:

[ d"k 1 . n2
I = D anr_K L
5= | R G = Z,,#o/ nett g Kallnlb Vo,
g = (x; + x3)m* + x;M? — x X, p* — X1 X39° — Xx3(p + q)*. (E24)
[ d'k 1
I, = — D anr L
» /v(2n)"i(k2—m2>((k+p)2—M2)((k—q)2— 167;2;/ Ki(nlLVg),

9= (x; + x3)m* + ;M? — x5, p* — x1%39% — Xx3(p + ¢)*

(E25)
w [ d% Kk
Pe= / @2)"i (K = m) (k= p)2 = M) ((k = ) — m?)

N 167122/

n#0
L./g
- () .

= xq" + x3p,
9= (x; + xp)m?

lm{| AL K, (8ILy/G) + L (Y + nr)Ko(In| L) — #*Ko((n|LyE)

+X3M2 —x3x1p2—x2)€1612 _x2x3(p q)2

(E26)
w [ dk Kk
= a1 (2 = MO ((k+ p)? — ) (k- q)?
iLnr J 4 H Kyt u n
W;/%xe [ Kol ) + i+ K )

_ M2)

~ L Kl e KoL)

uw = x3q/4 - x2p;u
9= (x1 +x3)M? + xym? — x1,p* = X153 — X33(p + q)

. (E27)
1"” _7 'k 73
= )y )i (@ = w2k + p)? = M((k = q)F = )
n2
32”22/1))6 e’L“‘”xl{?r r,Ky(m|Ly/g) +i(r,n, + n,r )|\/1K1(|n|L\f)
0 1 K (BILVE) = KoL) .
= x3q" — x,p¥,

g = (x| +x3)m?

+ 20, M? = xx,p% = x1x3¢° = X223(p + q)*. (E28)
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o _7 d"k KrkY
27 (27r)"i (k> = M*)((k+ p)> —m?

)((k=q)* = M?)

. L
= § Dryeitnr L i ML & (0|2 /5) + iL(rn + nor)Ko(InlL

n#0

— Ky(|nlLG) - ﬁf K1<|n|w§>},

= x3q" — x,p¥,

9= (x1 +x3)M? + xym? — x1x,p% = X139 — Xx3(p + q)*. (E29)
I :7 'k ks
v (27)"i (k* = m?)((k + p)* = M?)((k — q)* = m?)
1 / ‘ In|L ,
=—— Dx e’L“'{r”r’“—K n|L\/g) + iL(r'n* + n*r*)Ky(|In|L\/g
e 2 | P N KLy KollnlLy5)
gL
- Kol(nlL V) - SR (IS
" = x3q" — x,p¥,
9= (x; +x3)m* + x2M? — x1,p% = x1539% — X23(p + q)*. (E30)
Four factors in the denominator:
o 7 "k Kk
» (2”)" (k> = m?)((k - P)2 - M?)((k—=q)* —=m*)((k—p —q)* — M?)
n|
D{ % Ky(lLyg) + it + ) L (nlL )
~ 322 nZ;é()/ g NG
~ 7 LRl - i Ko(nlL Vi) .
= (xy + x4) P + (X3 + x4)q"
g = (x1 +x3)m* 4+ (x5 + X )M* + ((x3 + x4) p + (X3 + x4)q)* = X20* — X3¢ — x4(p + 9)*. (E31)

[1] X. Ji, Phys. Rev. Lett. 110, 262002 (2013).

[2] K. F. Liu and S.J. Dong, Phys. Rev. Lett. 72, 1790 (1994).

[3] K. E. Liu, Phys. Rev. D 62, 074501 (2000).

[4] J. Liang, T. Draper, K.-F. Liu, A. Rothkopf, and Y.-B. Yang
(XQCD Collaboration), Phys. Rev. D 101, 114503 (2020).

[5] H. Fukaya, S. Hashimoto, T. Kaneko, and H. Ohki, Phys.
Rev. D 102, 114516 (2020).

[6] J. Liang et al. (yQCD Collaboration), Proc. Sci.,
TICE2019 (2020) 046 [arXiv:2008.12389].

[7] R. Horsley, R. Millo, Y. Nakamura, H. Perlt, D. Pleiter, P. E.
L. Rakow, G. Schierholz, A. Schiller, F. Winter, and J. M.
Zanotti (QCDSF and UKQCD Collaborations), Phys. Lett.
B 714, 312 (2012).

[8] A. Chambers et al. (CSSM and QCDSF/UKQCD Collab-
orations), Phys. Rev. D 90, 014510 (2014).

LAT-

[9] A. Chambers, R. Horsley, Y. Nakamura, H. Perlt, D. Pleiter,
P. Rakow, G. Schierholz, A. Schiller, H. Stiiben, R. Young,
and J. Zanotti, Phys. Rev. D 92, 114517 (2015).

[10] A. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. Rakow,
G. Schierholz, A. Schiller, K. Somfleth, R. Young, and J.
Zanotti, Phys. Rev. Lett. 118, 242001 (2017).

[11] K. U. Can, A. Hannaford-Gunn, R. Horsley, Y. Nakamura,
H. Perlt, P. E. L. Rakow, G. Schierholz, K. Y. Somfleth, H.
Stiiben, R. D. Young, and J. M. Zanotti, Phys. Rev. D 102,
114505 (2020).

[12] A. Agadjanov, U.-G. MeiBner, and A. Rusetsky, Phys. Rev.
D 95, 031502 (2017).

[13] A. Agadjanov, U.-G. MeiBner, and A. Rusetsky, Phys. Rev.
D 99, 054501 (2019).

[14] H. W. Lin et al., Prog. Part. Nucl. Phys. 100, 107 (2018).

034507-31


https://doi.org/10.1103/PhysRevLett.110.262002
https://doi.org/10.1103/PhysRevLett.72.1790
https://doi.org/10.1103/PhysRevD.62.074501
https://doi.org/10.1103/PhysRevD.101.114503
https://doi.org/10.1103/PhysRevD.102.114516
https://doi.org/10.1103/PhysRevD.102.114516
https://arXiv.org/abs/2008.12389
https://doi.org/10.1016/j.physletb.2012.07.004
https://doi.org/10.1016/j.physletb.2012.07.004
https://doi.org/10.1103/PhysRevD.90.014510
https://doi.org/10.1103/PhysRevD.92.114517
https://doi.org/10.1103/PhysRevLett.118.242001
https://doi.org/10.1103/PhysRevD.102.114505
https://doi.org/10.1103/PhysRevD.102.114505
https://doi.org/10.1103/PhysRevD.95.031502
https://doi.org/10.1103/PhysRevD.95.031502
https://doi.org/10.1103/PhysRevD.99.054501
https://doi.org/10.1103/PhysRevD.99.054501
https://doi.org/10.1016/j.ppnp.2018.01.007

J. LOZANO et al.

PHYS. REV. D 103, 034507 (2021)

[15] M. J. Savage, P. E. Shanahan, B. C. Tiburzi, M. L. Wagman,
F. Winter, S. R. Beane, E. Chang, Z. Davoudi, W. Detmold,
and K. Orginos, Phys. Rev. Lett. 119, 062002 (2017).

[16] E. Chang, W. Detmold, K. Orginos, A. Parrefio, M.J.
Savage, B. C. Tiburzi, and S. R. Beane (NPLQCD Collabo-
ration), Phys. Rev. D 92, 114502 (2015).

[17] W. Detmold, B. Tiburzi, and A. Walker-Loud, Phys. Rev. D
73, 114505 (2006).

[18] Z. Davoudi and W. Detmold, Phys. Rev. D 92, 074506
(2015).

[19] J. Hu, F.J. Jiang, and B.C. Tiburzi, Phys. Rev. D 77,
014502 (2008).

[20] C.E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84,
020102 (2011).

[21] W. Cottingham, Ann. Phys. (N.Y.) 25, 424 (1963).

[22] J. Gasser and H. Leutwyler, Nucl. Phys. B94, 269 (1975).

[23] A. Walker-Loud, C. E. Carlson, and G. A. Miller, Phys. Rev.
Lett. 108, 232301 (2012).

[24] J. Gasser, M. Hoferichter, H. Leutwyler, and A. Rusetsky,
Eur. Phys. J. C 75, 375 (2015).

[25] F. Erben, P. Shanahan, A. Thomas, and R. Young, Phys.
Rev. C 90, 065205 (2014).

[26] A.W. Thomas, X. G. Wang, and R. D. Young, Phys. Rev. C
91, 015209 (2015).

[27] J. Gasser, H. Leutwyler, and A. Rusetsky, Phys. Lett. B 814,
136087 (2021).

[28] J. Gasser, H. Leutwyler, and A. Rusetsky, Eur. Phys. J. C 80,
1121 (2020).

[29] M. Elitzur and H. Harari, Ann. Phys. (N.Y.) 56, 81 (1970).

[30] H. Leutwyler, Proc. Sci., CD15 (2015) 022 [arXiv:1510
.07511].

[31] M. Hoferichter, Proc. Sci., CD2018 (2019) 028.

[32] D. Drechsel, B. Pasquini, and M. Vanderhaeghen, Phys.
Rep. 378, 99 (2003).

[33] J. M. Alarcén, V. Lensky, and V. Pascalutsa, Eur. Phys. J. C
74, 2852 (2014).

[34] S. Scherer, A. Korchin, and J. Koch, Phys. Rev. C 54, 904
(1996).

[35] L. Lellouch and M. Liischer, Commun. Math. Phys. 219, 31
(2001).

[36] M. T. Hansen and S.R. Sharpe, Phys. Rev. D 86, 016007
(2012).

[37] R. A. Bricefio and Z. Davoudi, Phys. Rev. D 88, 094507
(2013).

[38] R. A. Bricefio, M. T. Hansen, and A. Walker-Loud, Phys.
Rev. D 91, 034501 (2015).

[39] R. A. Bricefio and M. T. Hansen, Phys. Rev. D 92, 074509
(2015).

[40] V. Bernard, D. Hoja, U.-G. Meifiner, and A. Rusetsky,
J. High Energy Phys. 09 (2012) 023.

[41] A. Agadjanov, V. Bernard, U.-G. Meiiner, and A. Rusetsky,
Nucl. Phys. B886, 1199 (2014).

[42] A. Agadjanov, V. Bernard, U.-G. Meiner, and A. Rusetsky,
Nucl. Phys. B910, 387 (2016).

[43] R. A. Briceno, Z. Davoudi, M. T. Hansen, M. R. Schindler,
and A. Baroni, Phys. Rev. D 101, 014509 (2020).

[44] D. Agadjanov, M. Déring, M. Mai, U.-G. Meifner, and A.
Rusetsky, J. High Energy Phys. 06 (2016) 043.

[45] M. T. Hansen, H. B. Meyer, and D. Robaina, Phys. Rev. D
96, 094513 (2017).

[46] J. Bulava and M. T. Hansen, Phys. Rev. D 100, 034521
(2019).

[47] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142
(1984).

[48] N. Fettes, U.-G. MeiBiner, M. Mojzi§, and S. Steininger,
Ann. Phys. (N.Y.) 283, 273 (2000); 288, 249(E) (2001).

[49] D. Djukanovic, Ph.D thesis, University of Mainz, 2008.

[50] S. Weinberg, Nucl. Phys. B363, 3 (1991).

[51] G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995).

[52] J. Gegelia and G. Japaridze, Phys. Rev. D 60, 114038
(1999).

[53] T. Fuchs, J. Gegelia, G. Japaridze, and S. Scherer, Phys.
Rev. D 68, 056005 (2003).

[54] M. L. Du, E K. Guo, and U.-G. Meilner, J. Phys. G 44,
014001 (2017).

[55] M. L. Du, E K. Guo, and U.-G. Meiliner, J. High Energy
Phys. 10 (2016) 122.

[56] E.E. Jenkins and A.V. Manohar, Phys. Lett. B 255, 558
(1991).

[57] V. Bernard, N. Kaiser, J. Kambor, and U.-G. Meiflner, Nucl.
Phys. B388, 315 (1992).

[58] R. Mertig, M. Bohm, and A. Denner, Comput. Phys.
Commun. 64, 345 (1991).

[59] V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys.
Commun. 207, 432 (2016).

[60] H. H. Patel, Comput. Phys. Commun. 218, 66 (2017).

[61] See  Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.103.034507 for the re-
sults given in Appendices B and C for generic v.

[62] T. Becher and H. Leutwyler, J. High Energy Phys. 06 (2001)
017.

[63] U.-G. MeiBner, Proc. Sci., LAT2005 (2006) 009 [arXiv:hep-
1at/0509029].

[64] H. Krebs, A. Gasparyan, and E. Epelbaum, Phys. Rev. C 85,
054006 (2012).

[65] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G.
MeiBner, Phys. Rep. 625, 1 (2016).

[66] T. Fuchs, J. Gegelia, and S. Scherer, J. Phys. G 30, 1407
(2004).

[67] B. Kubis and U.-G. MeiBner, Nucl. Phys. A679, 698 (2001).

[68] V. Bernard, N. Kaiser, and U.-G. MeiBiner, Phys. Rev. Lett.
67, 1515 (1991).

[69] J. A. Melendez, R.J. Furnstahl, H. W. GrieBhammer, J. A.
McGovern, D.R. Phillips, and M. T. Pratola, arXiv:2004
.11307.

[70] J. A. McGovern, D.R. Phillips, and H. W. GrieBhammer,
Eur. Phys. J. A 49, 12 (2013).

[71] L. S. Myers et al. (COMPTON@MAX-Iab Collaboration),
Phys. Rev. Lett. 113, 262506 (2014).

[72] V.O. de Lebn et al., Eur. Phys. J. A 10, 207 (2001).

[73] M. 1. Levchuk and A.I. L'vov, Nucl. Phys. A674, 449
(2000).

[74] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.
Phys. 2020, 083C01 (2020).

[75] R. Bignell, W. Kamleh, and D. Leinweber, Phys. Rev. D
101, 094502 (2020).

[76] V. Bernard, N. Kaiser, and U.-G. Meifiner, Nucl. Phys.
B373, 346 (1992).

[77] J.M. Alarcon, F. Hagelstein, V. Lensky, and V. Pascalutsa,
Phys. Rev. D 102, 014006 (2020).

034507-32


https://doi.org/10.1103/PhysRevLett.119.062002
https://doi.org/10.1103/PhysRevD.92.114502
https://doi.org/10.1103/PhysRevD.73.114505
https://doi.org/10.1103/PhysRevD.73.114505
https://doi.org/10.1103/PhysRevD.92.074506
https://doi.org/10.1103/PhysRevD.92.074506
https://doi.org/10.1103/PhysRevD.77.014502
https://doi.org/10.1103/PhysRevD.77.014502
https://doi.org/10.1103/PhysRevA.84.020102
https://doi.org/10.1103/PhysRevA.84.020102
https://doi.org/10.1016/0003-4916(63)90023-X
https://doi.org/10.1016/0550-3213(75)90493-9
https://doi.org/10.1103/PhysRevLett.108.232301
https://doi.org/10.1103/PhysRevLett.108.232301
https://doi.org/10.1140/epjc/s10052-015-3580-9
https://doi.org/10.1103/PhysRevC.90.065205
https://doi.org/10.1103/PhysRevC.90.065205
https://doi.org/10.1103/PhysRevC.91.015209
https://doi.org/10.1103/PhysRevC.91.015209
https://doi.org/10.1016/j.physletb.2021.136087
https://doi.org/10.1016/j.physletb.2021.136087
https://doi.org/10.1140/epjc/s10052-020-08615-2
https://doi.org/10.1140/epjc/s10052-020-08615-2
https://doi.org/10.1016/0003-4916(70)90006-0
https://arXiv.org/abs/1510.07511
https://arXiv.org/abs/1510.07511
https://doi.org/10.1016/S0370-1573(02)00636-1
https://doi.org/10.1016/S0370-1573(02)00636-1
https://doi.org/10.1140/epjc/s10052-014-2852-0
https://doi.org/10.1140/epjc/s10052-014-2852-0
https://doi.org/10.1103/PhysRevC.54.904
https://doi.org/10.1103/PhysRevC.54.904
https://doi.org/10.1007/s002200100410
https://doi.org/10.1007/s002200100410
https://doi.org/10.1103/PhysRevD.86.016007
https://doi.org/10.1103/PhysRevD.86.016007
https://doi.org/10.1103/PhysRevD.88.094507
https://doi.org/10.1103/PhysRevD.88.094507
https://doi.org/10.1103/PhysRevD.91.034501
https://doi.org/10.1103/PhysRevD.91.034501
https://doi.org/10.1103/PhysRevD.92.074509
https://doi.org/10.1103/PhysRevD.92.074509
https://doi.org/10.1007/JHEP09(2012)023
https://doi.org/10.1016/j.nuclphysb.2014.07.023
https://doi.org/10.1016/j.nuclphysb.2016.07.005
https://doi.org/10.1103/PhysRevD.101.014509
https://doi.org/10.1007/JHEP06(2016)043
https://doi.org/10.1103/PhysRevD.96.094513
https://doi.org/10.1103/PhysRevD.96.094513
https://doi.org/10.1103/PhysRevD.100.034521
https://doi.org/10.1103/PhysRevD.100.034521
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1006/aphy.2000.6059
https://doi.org/10.1006/aphy.2001.6134
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1016/0146-6410(95)00041-G
https://doi.org/10.1103/PhysRevD.60.114038
https://doi.org/10.1103/PhysRevD.60.114038
https://doi.org/10.1103/PhysRevD.68.056005
https://doi.org/10.1103/PhysRevD.68.056005
https://doi.org/10.1088/0954-3899/44/1/014001
https://doi.org/10.1088/0954-3899/44/1/014001
https://doi.org/10.1007/JHEP10(2016)122
https://doi.org/10.1007/JHEP10(2016)122
https://doi.org/10.1016/0370-2693(91)90266-S
https://doi.org/10.1016/0370-2693(91)90266-S
https://doi.org/10.1016/0550-3213(92)90615-I
https://doi.org/10.1016/0550-3213(92)90615-I
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2017.04.015
http://link.aps.org/supplemental/10.1103/PhysRevD.103.034507
http://link.aps.org/supplemental/10.1103/PhysRevD.103.034507
http://link.aps.org/supplemental/10.1103/PhysRevD.103.034507
http://link.aps.org/supplemental/10.1103/PhysRevD.103.034507
http://link.aps.org/supplemental/10.1103/PhysRevD.103.034507
http://link.aps.org/supplemental/10.1103/PhysRevD.103.034507
http://link.aps.org/supplemental/10.1103/PhysRevD.103.034507
https://doi.org/10.1088/1126-6708/2001/06/017
https://doi.org/10.1088/1126-6708/2001/06/017
https://arXiv.org/abs/hep-lat/0509029
https://arXiv.org/abs/hep-lat/0509029
https://doi.org/10.1103/PhysRevC.85.054006
https://doi.org/10.1103/PhysRevC.85.054006
https://doi.org/10.1016/j.physrep.2016.02.002
https://doi.org/10.1088/0954-3899/30/10/008
https://doi.org/10.1088/0954-3899/30/10/008
https://doi.org/10.1016/S0375-9474(00)00378-X
https://doi.org/10.1103/PhysRevLett.67.1515
https://doi.org/10.1103/PhysRevLett.67.1515
https://arXiv.org/abs/2004.11307
https://arXiv.org/abs/2004.11307
https://doi.org/10.1140/epja/i2013-13012-1
https://doi.org/10.1103/PhysRevLett.113.262506
https://doi.org/10.1007/s100500170132
https://doi.org/10.1016/S0375-9474(00)00145-7
https://doi.org/10.1016/S0375-9474(00)00145-7
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.101.094502
https://doi.org/10.1103/PhysRevD.101.094502
https://doi.org/10.1016/0550-3213(92)90436-F
https://doi.org/10.1016/0550-3213(92)90436-F
https://doi.org/10.1103/PhysRevD.102.014006

FINITE VOLUME CORRECTIONS TO FORWARD COMPTON ...

PHYS. REV. D 103, 034507 (2021)

[78] V. Bernard, N. Kaiser, A. Schmidt, and U.-G. Meifner,
Phys. Lett. B 319, 269 (1993).

[79] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120
(2012).

[80] V. Bernard, N. Kaiser, U.-G. MeifBner, and A. Schmidt,
Z. Phys. A 348, 317 (1994).

[81] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).

[82] C. Peset and A. Pineda, Nucl. Phys. B887, 69 (2014).

[83] O. Tomalak, Eur. Phys. J. Plus 135, 411 (2020).

[84] G. Devaraj and R. G. Stuart, Nucl. Phys. B519, 483 (1998).

[85] J. Bijnens, E. Bostrom, and T. A. Lihde, J. High Energy
Phys. 01 (2014) 019.

034507-33


https://doi.org/10.1016/0370-2693(93)90813-W
https://doi.org/10.1140/epja/i2012-12120-8
https://doi.org/10.1140/epja/i2012-12120-8
https://doi.org/10.1007/BF01305891
https://doi.org/10.1103/PhysRevC.77.035202
https://doi.org/10.1016/j.nuclphysb.2014.07.027
https://doi.org/10.1140/epjp/s13360-020-00413-9
https://doi.org/10.1016/S0550-3213(98)00035-2
https://doi.org/10.1007/JHEP01(2014)019
https://doi.org/10.1007/JHEP01(2014)019

