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We study, by means of numerical lattice simulations, the properties of the reconfinement phase transition
taking place in trace deformed SUð3Þ Yang-Mills theory defined on R3 × S1, in which center symmetry is
recovered even for small compactification radii. We show, by means of a finite size scaling analysis, that the
reconfinement phase transition is first order, like the usual SUð3Þ thermal phase transition. We then
investigate two different physical phenomena, which are known to characterize the standard confinement/
deconfinement phase transition, namely the condensation of thermal magnetic monopoles and the change
in the localization properties of the eigenmodes of the Dirac operator. Regarding the latter, we show that
the mobility edge signalling the Anderson-like transition in the Dirac spectrum vanishes as one enters the
reconfined phase, as it happens in the standard confined phase. Thermal monopoles, instead, show a
peculiar behavior: their density decreases going through reconfinement, at odds with the standard thermal
theory; nonetheless, they condense at reconfinement, like at the usual confinement transition. The
coincidence of monopole condensation and Dirac mode delocalization, even in a framework different from
that of the standard confinement transition, suggests the existence of a strict link between them.
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I. INTRODUCTION

Yang-Mills (YM) theories defined on the manifold
R3 × S1, where one of the directions is compactified,
undergo a phase transition as soon as the length Lc of
the compactified direction becomes smaller than a critical
length. If the compactified dimension is interpreted as the
Euclidean time direction, then the length Lc is just the
inverse of the temperature T of the system, and the phase
transition is the well-known finite temperature deconfine-
ment phase transition [1–4].
The deconfinement phase transition is associated with

the spontaneous breaking of center symmetry [4–6], i.e.,
the invariance of the compactified theory under gauge
transformations which are periodic up to an element of the

gauge group center along the compactified direction. The
order parameter that signals the spontaneous breaking of
center symmetry is the Polyakov loop, i.e., the holonomy of
the gauge field along the compactified direction:

Pðx⃗Þ ¼ P exp

�
ig
Z

Lc

0

A4ðx⃗; τÞdτ
�
; ð1Þ

where P denotes path ordering. Indeed, it is well known
that TrP transforms nontrivially under center transforma-
tions, and a nonzero value of hTrPi signals the finiteness of
the free energy of an isolated static color charge, i.e.,
deconfinement.
The relation between center symmetry and other non-

perturbative phenomena occurring in Yang-Mills theories,
including the confining mechanism itself, is an open issue
which still needs to be clarified. A useful theoretical tool, in
this respect, is represented by trace deformation, which was
introduced in Refs. [7,8]. For the case of the gauge group
SUð3Þ that will be studied in this paper, it consists in adding
a term proportional to jTrPðx⃗Þj2 to the YM action density.
The rationale behind this choice is that such a term is
invariant under center symmetry and, if its coefficient is
chosen with the appropriate sign, it disfavors nonvanishing
values of the trace of the Polyakov loop. Such a term
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compensates analogous ones that appear in the finite
temperature effective potential [9], and its practical effect
is that of increasing the deconfinement temperature or,
equivalently, of reducing the critical length of the com-
pactified direction. This opens the door to the possibility of
studying confinement and other nonperturbative low-
energy properties in a finite temperature setup in which
semiclassical methods can provide solid predictions [8].
The confinement mechanism at high temperature in the

deformed theory, in what we will call the “reconfined
phase,” could clearly be different from the one of the
original, undeformed YM theory: in the deformed case
confinement is essentially enforced explicitly by a term in
the Lagrangian, rather than emerging as a dynamical
property of the theory. In spite of this, a number of lattice
studies showed that the standard confined phase at T ¼ 0 in
YM theory and the reconfined high-temperature phase of the
deformedYMtheory are remarkably similar, not only froma
qualitative point of view but also quantitatively. Numerical
simulations performed with gauge group SUðNÞ both for
N ¼ 3 [10] andN ¼ 4 [11] showed that the θ dependence in
these two phases is the same, i.e., the values of the
topological susceptibility and the coefficient of the θ4 term
in the effective action are the same in standard T ¼ 0 YM
theory and in the reconfined, finite-T phase of the deformed
YM theory. Very recently, it was shown that also the mass of
the lowest glueball state is the same in these two phases [12].
In previous studies the main focus was on the inves-

tigation of the reconfined phase, far from the reconfining
phase transition. In this paper we want to investigate, by
lattice simulations, the properties of the deformed theory in
the deconfined phase and around the transition, studying
in particular the possible similarities or differences with
respect to the standard deconfined/confined transition in
YM theory. More precisely, after a finite size scaling
analysis aimed at clarifying the location and the order of
the phase transition, we will concentrate on two aspects that
are tightly connected to the mechanisms of confinement
and chiral symmetry breaking: monopole condensation and
Dirac mode localization. As we will show, some aspects are
similar to what happens around the usual confinement/
deconfinement transition, but not all of them; this could
help to highlight some features of confinement and of the
deformed YM theory.
The study of monopoles in lattice YM theories originates

from the idea that color confinement can be a consequence
of the condensation of magnetic degrees of freedom (dual
superconductor scenario) [13,14]. Several strategies have
been pursued in order to test this scenario, which go from the
computation of the expectation value of a magnetically
charged operator [15–23] to the extraction of the effective
action of the monopoles [24,25]. Another possibility, which
is the onewewill follow in thiswork, is to study the behavior
at the transition of thermal monopoles [26–37], i.e., the
monopoles whose currents wrap around the compactified

direction [26–28]. By studying the space-time configura-
tions of these monopole currents it is possible to extract an
effective chemical potential μ for the monopoles [32,37],
whose condensation is signaled by the vanishing of μ.
Systematic numerical investigations of the spectrum of

the Dirac operator in lattice gauge theories appeared only
recently, due to the high computational complexity of this
task (see the reviews in Ref. [38] for results at zero
temperature, and in Ref. [39] for the nonzero temperature
case). The existence of a relation between the localization
properties of the Dirac modes and the confinement proper-
ties of gauge theories is however by now a well established
fact in a variety of models, including QCD with different
fermionic discretizations [40–43], and other QCD-like
theories [44–49]. In the deconfined phase in the trivial
center sector of the Polyakov loop (i.e., the real sector),1 the
lowest-lying Dirac modes are localized (i.e., their typical
space-time size does not grow with the lattice volume), up
to a temperature-dependent critical point in the spectrum,
λc, known as “mobility edge.” At the mobility edge, a
continuous phase transition (Anderson transition) takes
place in the spectrum [49–51], and Dirac modes become
delocalized above λc. As the temperature is decreased, λc
approaches zero, and eventually vanishes in the confined
phase, where all the low-lying Dirac modes are extended. In
particular, this scenario has been tested numerically for
SUð3Þ YM using both the staggered Dirac operator [45]
and the overlap Dirac operator [46]. It has been argued
[52–54] that the presence or absence of localized modes is
related to the different behavior of the Polyakov loop in the
deconfined and confined phases of the theory. Since in the
reconfined phase the Polyakov-loop expectation value
vanishes, one would expect only delocalized Dirac modes.
On the other hand, the reasons for its vanishing are different
than in the usual confined phase, and it is worth checking
whether this plays a role or not.
The paper is organized as follows. InSec. IIwe describe the

numerical setup and the lattice observables which are inves-
tigated in this study. Section III containsournumerical results:
we first present a finite size scaling analysis of the transition
between the deconfined and the reconfined phases of the
deformed SUð3Þ theory; then we study the properties of
thermal monopoles and the localization properties of the
low-lying Dirac modes around the transition. Finally in
Sec. IV, we draw our conclusions and present some outlooks.

II. NUMERICAL SETUP

The action of trace-deformed SUð3Þ YM reads

Sdef ¼ SYM þ h
Z

jTrPðx⃗Þj2d3x; ð2Þ

1This is the center sector that would be selected by dynamical
fermions. In the pure gauge case it is selected “by hand” when
studying the localization properties of the Dirac modes.
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where SYM is the standard YM action, x⃗ denotes a point on
a hyperplane perpendicular to the compactified direction
(i.e., the spatial coordinates of a point at a fixed time) and h
is the deformation coupling. Since each configuration is
weighted in the Euclidean path integral by e−S

def
, positive

values of the parameter h disfavor nonvanishing values
of TrPðx⃗Þ.
A possible discretization of the action in Eq. (2) is the

following:

Sdef ¼ SðWÞ
YM þ h

X
n⃗

jTrPðn⃗Þj2; ð3Þ

where SðWÞ
YM is the usual Wilson action [55] with bare

coupling β, and n⃗ is the lattice analogue of the variable x⃗ in
Eq. (2). In our numerical simulations we used the lattice
action Eq. (3), updating the spatial links with standard
heatbath and overrelaxation algorithms [56–58], imple-
mented for SUð3Þ using the Cabibbo-Marinari procedure
[59]; instead, temporal links were updated with a
Metropolis algorithm [60], since they appear nonlinearly
in the deformation term.

A. Thermal monopoles

The identification of Abelian magnetic monopoles in
non-Abelian gauge theories goes through a procedure
known as Abelian projection [61], which consists in a
partial gauge fixing which breaks the gauge symmetry
SUðNÞ down to Uð1ÞN−1. In this work we used a variant of
what is usually called maximal Abelian gauge (MAG).
Standard MAG consists in the maximization of the sum of
the squared moduli of the diagonal elements of all link
matrices [62]: it is not affected by significant lattice artifacts
(see, e.g., the discussion in Ref. [37]) and satisfies the Dirac
quantization condition [63,64]. However, this procedure
presents some drawbacks: for example, it leaves a residual
permutation symmetry between the different Uð1Þ sub-
groups, thus preventing an unambiguous identification of
the different monopole species when using more than two
colors. For this reason a variation of the original MAG was
put forward in Ref. [65], and we will follow the specific
implementation proposed in Ref. [37], to which we refer for
further details about the gauge fixing algorithm.
Once the gauge is fixed, it is possible to extract the

Abelian components aðiÞμ of each link (with i ¼ 1;…; N − 1
denoting the monopole species) and compute the associated

DeGrand-Toussaint current mðiÞ
μ [66], which is defined as

mðiÞ
μ ¼ 1

2π
ϵμνρσ∂̂νθ̄

ðiÞ
ρσ ; ð4Þ

where ∂̂ν is the forward lattice derivative, while θ̄ðiÞρσ is

derived from the plaquette θðiÞρσ computed using the Abelian

fields aðiÞμ as follows:

θðiÞμν ¼ θ̄ðiÞμν þ 2πnðiÞμν ; θ̄ðiÞμν ∈ ½0; 2πÞ; nðiÞμν ∈ Z: ð5Þ

In the lattice setup nðiÞμν is the analogue of the Dirac string

piercing a plaquette, and this decomposition of θðiÞμν is
needed to identify violations of the Abelian Bianchi
identity (hence monopoles): the flux across any closed

surface of the magnetic current constructed using just θðiÞμν
would indeed identically vanish.

Due to the topological conservation law, ∂μm
ðiÞ
μ ¼ 0,

monopole currents form closed loops, and we identify
thermal monopoles (antimonopoles) with the monopole
currents which have a nontrivial positive (negative) wind-
ing number in the temporal direction. Such currents are
interpreted as the paths of real (instead of virtual) mag-
netically charged quasiparticles populating the thermal
medium [26–29]. Moreover, in analogy with the path-
integral formulation for a system of identical particles,
currents which close after wrapping k times around the
thermal circle are interpreted as a system of k thermal
monopoles undergoing a cyclic permutation [32,37]: as for
a system of identical bosons, the occurrence of such cycles
is the relevant observable which can be used to investigate
the possible condensation of the thermal particles [32].
In our study of thermal monopoles we measured the

density of k-cycles ρk, defined as

ρk ≡ Nwrap;k

Vs
; ð6Þ

where Vs ¼ L3 is the spatial volume and Nwrap;k is the
number of monopole currents wrapping k times around the
thermal circle. From such quantities, the total density of
thermal monopoles can be derived:

ρ ¼
X
k

kρk: ð7Þ

B. Dirac operator discretization
and spectrum computation

To investigate the localization properties of fermionic
modes we employed the staggered discretization of the
continuum Dirac operator, which is defined as follows:

aDstðn;mÞ

¼ 1

2

X4
μ¼1

ημðnÞðUμðnÞδnþμ̂;m − Uμðn − μ̂Þ†δn−μ̂;mÞ; ð8Þ

where ημðnÞ are the staggered phases, UμðnÞ is the link
variable at site n in direction μ, and a is the lattice spacing.
Since Dst is anti-Hermitian, its eigenvalues are purely
imaginary. To fix the notation, we then write the eigenvalue
equation as aDstψn ¼ iaλnψn, λn ∈ R, where n labels
the discrete modes of Dst in a finite volume. Since Dst
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anticommutes with ð−1Þ
P

μ
nμ , its spectrum is symmetric

with respect to λ ¼ 0, so that it suffices to consider λn ≥ 0.
For each choice of the bare parameters we have

computed the lowest part of the spectrum and the corre-
sponding eigenvectors on a set of uncorrelated configura-
tions, making use of the ARPACK routine [67].
Diagonalization was carried out after two steps of stout
smearing on the gauge configuration, with stout parameter
ρ ¼ 0.15 (see Ref. [68] for details).

III. NUMERICAL RESULTS

We have performed simulations for a fixed value of
Nt ¼ 6 and β ¼ 6.0, changing only the deformation cou-
pling h, or the spatial extent for finite size scaling purposes:
this is sufficient for a first assessment of the properties of
the reconfining transition, even if no continuum extrapo-
lation is possible. Using the interpolation formula for the
Sommer parameter r0 of Ref. [69] and the phenomeno-
logical value r0 ¼ 0.5 fm, we infer that our setup corre-
sponds to a temperature T ¼ 1=ðNtaðβÞÞ ≃ 360 MeV,
meaning that at h ¼ 0 the system is in the deconfined
phase: indeed, for Nt ¼ 6 the critical coupling for decon-
finement is βc ¼ 5.8941ð5Þ [70].

A. The reconfinement transition

In this section we study the reconfinement transition, by
identifying the critical value hc such that for h > hc (at
β ¼ 6.0 on Nt ¼ 6 lattices) the system is in the reconfined
phase, and by investigating the order of the reconfinement
transition.
To identify hc we monitor the behavior of the suscep-

tibility of the modulus of the Polyakov loop,

χP ¼ VsðhjTrPj2i − hjTrPji2Þ; ð9Þ
where Vs ¼ L3 is the spatial volume of the lattice and we
used the shorthand

TrP≡ 1

Vs

X
n⃗

TrPðn⃗Þ: ð10Þ

For each spatial size L, data for χP have been produced
using several values of h and analyzed using the multiple
histogram method [71]. The final results of this analysis are
reported in Fig. 1: the susceptibility develops a peak that
gets higher and narrower when increasing L, signaling the
presence of a phase transition. Since the breaking pattern at
reconfinement is the same Z3 → Id of the standard decon-
finement phase transition, the universality argument of
Refs. [5,6] predicts a first order phase transition also in
this case.
Finite size scaling (FSS) for first order phase transi-

tions in a translation invariant setup predicts the follo-
wing scaling behavior for the susceptibility of the order
parameter:

χPðhÞ ¼ Lγ=νfðL1=νðh − hcÞÞ; ð11Þ

with effective critical exponents γ ¼ 1 and ν ¼ 1=3
[72–75]. We thus first of all verified that the height of
the peaks of the susceptibility scales as expected with the
volume, fitting the maxima with the functional form

χmax
P ¼ aL3b; ð12Þ

where a and b are fit parameters. The best fit value
b ¼ 0.98ð3Þ is indeed consistent with the theoretical
expectation b ¼ 1.
We then verified that the data are well described by the

scaling ansatz in Eq. (11), using the critical exponents
appropriate for a first order phase transition: the corre-
sponding collapse plot is shown in Fig. 2 and fully supports
the transition being first order. By varying hc in this scaling
plot we estimated hc ¼ 0.100ð2Þ: for hc outside this
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FIG. 1. Polyakov loop susceptibility χP as a function of h for
several spatial volumes, β ¼ 6.0 and Nt ¼ 6.
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FIG. 2. Finite size scaling of the Polyakov loop susceptibility
χP according to Eq. (11), after fixing ν ¼ 1=3, γ ¼ 1 and
hc ¼ 0.1.
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interval the peaks of the data corresponding to L ¼ 36 and
L ¼ 54 data sets become clearly separated from each other.

B. Thermal monopole condensation

Let us discuss first the results obtained for the total
density of thermal monopoles, defined in Eq. (7). We
consider, in particular, the dimensionless quantity ρ=T3,
which is reported as a function of h in Fig. 3. The behavior
of ρ=T3 presents a significant difference with respect to
what happens when approaching the usual confinement/
deconfinement transition [32,37]: in that case, ρ=T3 grows
as one moves from the deconfined towards the confined
phase, and decreases at high T, where it approximately
follows the behavior predicted by the perturbative analysis
[76,77], ρ=T3 ≈ 1=ðlogðT=ΛeffÞÞ3, where Λeff is some
effective energy scale.
On the contrary, what we observe from Fig. 3 is that

ρ=T3 steeply decreases approaching the reconfined phase,
has a big negative jump in correspondence of the first order
phase transition, and then continues a slow decrease also
in the reconfined phase. Results in the reconfined phase
suggest the approach to a constant value in the large-h
limit; indeed, a best fit of results in the reconfined phase to a
function

ρ

T3
¼ ρh¼∞

T3
þ Ae−h=h̄ ð13Þ

returns ρh¼∞=T3 ¼ 0.095ð1Þ and h̄ ¼ 0.20ð5Þ, with
χ2=d:o:f: ¼ 2.8=2.
The fact that ρ=T3 decreases approaching reconfinement

may seem at odds with the possibility that monopoles
condense at the transition. However, this is emblematic of a

possible misinterpretation of the meaning of condensation,
which is not necessarily related to an increase in the overall
density, but rather to the appearance of a nonzero density of
particles in the zero-momentum state. For a boson gas,
such condensation is signalled in the path-integral formu-
lation by a critical behavior of the density of k-cycles ρk as
a function of k, and this is indeed a possible criterion
proposed to study thermal monopole condensation [32,78].
Therefore we now turn to this kind of analysis, which will
finally show that, in fact, monopoles condense at hc, in
spite of the decrease of ρ=T3.
In the path integral representation of the partition

function of bosonic particles, quantum effects can be
associated with particle paths undergoing a permutation
around the thermal circle, hence to trajectories wrapping
multiple times around the temporal direction, which re-
present the cycle decomposition of the corresponding
permutation [79–82]. In particular, the densities ρk are
expected to behave as follows:

ρk ∝
e−μ̂k

kα
; ð14Þ

where μ̂≡ −μ=T, with μ the chemical potential, and α is a
coefficient depending on the details of the system, for
instance α ¼ 5=2 for noninteracting nonrelativistic bosons.
At high temperatures μ̂ is large and paths with multiple
wrappings are rare, since one approaches Boltzmann
statistics. On the contrary, μ̂ decreases at low temperatures
and its vanishing signals the occurrence of a critical
phenomenon like Bose-Einstein condensation (BEC).
Once BEC is reached, μ̂ ¼ 0 and ρk follows a power-law
behavior.
Results obtained for the ratio ρk=ρ1 for different values

of h are reported in Fig. 4: it is already quite clear from this
figure that the density of monopole trajectories having

0.60 0.2 0.4 0.8 1
h
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0.18

0.2

ρ/
T

3
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broken

FIG. 3. ρ=T3 computed using different values of the deforma-
tion parameter h on a 543 × 6 lattice at β ¼ 6.0. The two
determinations reported for the transition point hc ¼ 0.1 have
been obtained by dividing the sample of configurations into two
subsamples according to the realization of center symmetry
(broken/unbroken).
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FIG. 4. hρk=ρ1i approaching the reconfined phase. The lattice
used is a 543 × 6 at β ¼ 6.0.
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multiple wrappings increases as the coupling h grows, i.e.,
approaching the reconfined phase.
Next we performed a best fit of ρk=ρ1 to Eq. (14), in

order to extract the chemical potential μ̂ as a function of h.
As in Refs. [32,37], statistics are not precise enough to
obtain an independent determination of α, since different
choices, including α ¼ 5=2, lead to acceptable best fits;
however, the analysis of Refs. [32,37] shows that this does
not affect the determination of a possible point where μ̂
vanishes. Results obtained for μ̂ fixing α ¼ 5=2 are shown
in Fig. 5. The dimensionless chemical potential decreases
as the systemmoves towards the reconfined phase, however
it seems not to reach the value μ̂ ¼ 0 at the critical hc. This
can still be compatible with a monopole condensation
scenario if the chemical potential has a jump, rather than
vanishing continuously, at hc. This would be consistent
with the presence of a first order transition, which would be
stronger, at least for what concerns monopole condensa-
tion, than in the standard case of the thermal phase
transition, where instead μ̂ does not show any appreciable
jump at the transition [37]. In order to check this hypoth-
esis, however, one should verify that the behavior of ρk
right in the reconfined phase is compatible with a power-
law behavior, i.e., with a vanishing value of μ̂.
In order to clarify this point we performed simulations

at h ¼ hc, dividing the configurations into two different
subsamples: the “symmetric” configurations where center
symmetry is unbroken (i.e., TrP ≃ 0), and the “broken”
configurations where center symmetry is broken (i.e.,
TrP ≠ 0); in order to make the division sharper and better
defined, these additional simulations were performed
adopting a larger spatial size, in particular a 723 × 6 lattice.
The increase in the relative occurrence of trajectories with a
high number of wrappings in the symmetric configurations,
clearly visible in Fig. 4, is suggestive of a sudden change in
the behavior of ρk as h crosses the critical value. We have

then fitted the two sets of configurations using Eq. (14)
with α ¼ 5=2. While a nonzero value of μ̂ is returned by the
fit for the broken configurations, a value compatible with
zero is obtained for the symmetric ones. This supports the
monopole condensation scenario in the reconfined phase. It
should however be noted that since the present quality of
the data does not allow to determine the power-law
exponent independently, other possibilities are not entirely
excluded.

C. Localization properties of Dirac modes

In this section we study the localization properties of the
eigenmodes of the Dirac operator on the lattice. As it is
known from Refs. [45,46], in the deconfined phase of
undeformed SUð3Þ YM (i.e., at h ¼ 0) in the trivial center
sector of the Polyakov loop, the lowest Dirac modes are
localized in a finite spatial region of the lattice, for
eigenvalues below a critical mobility edge, λc, in the
spectrum. Higher modes, above the mobility edge, are
instead delocalized on the whole space. Approaching the
confined phase from higher temperatures, the spectral range
where modes are localized shrinks, i.e., λc decreases,
eventually vanishing at a temperature compatible with
the deconfinement temperature. Here we want instead to
investigate what happens when the system approaches the
reconfined phase in the trace-deformed theory, starting
from the deconfined phase: using the same setup described
above, we have studied the spectrum of the staggered
Dirac operator in a range of deformation couplings h
starting from h < hc and reaching the transition region.
Configurations were restricted to the trivial center sector,
by multiplying the temporal links on the last time slice by
the appropriate center element if necessary.
The simplest observable sensitive to the localization

properties of the Dirac modes is the so-called participation
ratio (PR), which essentially measures the fraction of lattice
volume occupied by a mode. For our purposes it is
convenient to use a gauge-invariant definition of the PR.
We have then set

PRn ¼
1

VsNt

hX
n⃗;t
jψ†

nðn⃗; tÞψnðn⃗; tÞj2
i
−1
; ð15Þ

where ψ†ψ denotes the scalar product in color space. If
modes in a given spectral range are localized, their PR
(averaged over configurations) will tend to 0 as 1=Vs as the
volume is increased; if instead they are delocalized, their
PR will tend to a constant. Equivalently, one can look at the
average spatial “size” of the mode, VPR≡ Vs · PR, which
will tend to a constant or diverge like Vs for localized or
delocalized modes, respectively.
In Fig. 6 we show the VPR of the low Dirac modes for

different lattice setups. We have considered three values of
the deformation coupling, namely h ¼ 0.05, 0.07, 0.09,
which are less than the critical coupling hc, and two spatial
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FIG. 5. The dimensionless chemical potential μ̂ extracted at
different values of the deformation coupling h. The lattice used is
a 543 × 6 at β ¼ 6.0.
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volumes Vs ¼ 243; 303. After dividing the spectrum in small
bins, we averaged the VPR over configurations separately
within each bin. In Fig. 6 one can clearly distinguish two
regions. For the lowest modes the VPR does not change with
Vs, indicating that they are localized. Higher up in the
spectrum, instead, the VPR of the bulk modes grows with
Vs. Assuming the scaling law hVPRiλ ∼ CðλÞLαðλÞ, where
hVPRiλ is the VPR averaged locally in the spectrum, and α is

the fractal dimension of the corresponding modes, one can
obtain α by comparing the two available volumes. For the
bulk modes α ∼ 3, as expected for delocalized modes. This
scenario is exactly the same found in nondeformed, decon-
fined YM [45].
It is clear from Fig. 6 that the region where modes are

localized shrinks as h approaches the critical value hc. In
order to make this statement more quantitative, we have
identified the mobility edge λcðhÞ by comparing the fractal
dimension of the modes with the critical fractal dimension
αc ¼ 1.173þ0.032

−0.026 found at the mobility edge in the unitary
Anderson model [83]. The critical behavior at the mobility
edge is in fact expected to be universal and determined only
by the symmetry class of the system in the classification
of random matrix theory, which for the staggered Dirac
operator is the unitary one [84]. In Fig. 7 we show λcðhÞ as
obtained from λcðhÞ ¼ αc for the various choices of h. The
tendency of λcðhÞ to decrease as h → hc is evident.
A look at the lowest modes of the staggered operator in

the reconfined phase shows no evidence of localization.
More precisely, we looked at the low modes on a few
configurations at h ¼ 0.11 for Vs ¼ 243; 303, and found in
the lowest bin (aλ ≤ 0.01) PR ∼ 0.24 for L ¼ 24 and
PR ∼ 0.21 for L ¼ 30. To investigate this issue further,
we have generated configurations at the critical coupling
hc ¼ 0.1 and divided them in two subsamples, according to
the fate of center symmetry, as we have done for the
analysis of thermal monopoles. For both sets we have
computed the PR on two different spatial volumes, namely
Vs ¼ 543 and Vs ¼ 723. In Fig. 8 we show our results for
the symmetric configurations, corresponding to the recon-
fined phase. The independence of the PR of the system size
confirms the absence of localized modes in the reconfined
phase, all the way down to hc. Absence of localized modes
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in the reconfined phase can be expressed by setting
λcðh > hcÞ ¼ 0. It is not clear from Fig. 7 whether λc
approaches zero continuously or not as h → hc: in analogy
with what is observed for monopole condensation, it is
reasonable to suppose that there is a jump also in this case.
We would then expect to find localization, and so a nonzero
mobility edge, in the broken configurations at h ¼ hc.
Unfortunately, the analysis of these configurations still
suffers from sizable finite-size effects for the available
volumes, and we cannot make a conclusive statement.

IV. CONCLUSIONS

In this paper we have studied the reconfinement phase
transition of trace deformed SUð3Þ YM theory by means of
lattice simulations. In our analysis we have considered
three aspects of the phase transition: (i) the order of the
transition; (ii) the behavior of thermal monopoles; and
(iii) the localization properties of Dirac eigenmodes. All
results were obtained on a lattice with temporal size Nt ¼ 6
at β ¼ 6.0, corresponding to an extension in the compacti-
fied direction of approximately ð360 MeVÞ−1 (0.55 fm).
The order of the transition was determined with a FSS
study, which showed that the reconfinement phase tran-
sition is first order, exactly as the standard YM thermal
deconfinement transition. This result is not surprising,
because both in undeformed and deformed YM the
symmetry breaking pattern is the same, i.e., Z3 → Id.
What the deformation does is just suppressing local
fluctuations of the Polyakov loop (see Ref. [10]), forcing
the order parameter hTrPi to be equal to zero. It would be
interesting, in future studies, to extend this FSS analysis to
the case of a smaller compactification length, in order to see
how the critical value of the deformation coupling changes.
Moreover, a detailed study of the order of the possible
phase transition in trace deformed SUðNÞ with N > 3
would also be very interesting.

Some particular features emerged from the study of
thermal monopoles. We have showed that their normalized
density, ρ=T3, decreases approaching the reconfinement
transition and also beyond, reaching a plateau value in
the large-h limit. The fact that the trace deformation induces
a decrease in the monopole density is not completely
unexpected. Abelian magnetic monopoles are localized
around points where two eigenvalues of the corresponding
Higgs field vanish [61]: had we studied monopoles in the
Polyakov gauge, a decrease in the monopole density would
have been a consequence of the fact that the trace deforma-
tion induces a repulsion among the Polyakov loop eigen-
values. However, it is natural to expect that this might have
an indirect effect also on monopoles defined in other Abelian
projections, like MAG. In spite of the decreased density,
thermal monopoles show a behavior compatible with a
BEC-like condensation at reconfinement, as it happens at
the standard confinement/deconfinement phase transition. It
is interesting that there seems to be a significant jump in
observables related to thermal monopoles at the reconfine-
ment transition point: this is at odds with what is observed
around the standard thermal transition, and might indicate
that the transition is stronger in this case.
The localization properties of Dirac modes were studied

using the staggered discretization of the Dirac operator.
We found that the behavior of the low-lying modes at the
reconfinement transition is similar to that observed at the
usual confinement phase transition in the undeformed
theory. While the system is in the deconfined phase in
the trivial center sector, the lowest modes of the staggered
Dirac operator are localized both at zero and nonzero
deformation coupling, up to a critical point (mobility edge)
in the spectrum. Bulk modes above the mobility edge are
instead delocalized on the whole lattice. As the deformation
coupling grows at fixed compactification length and the
system moves towards the reconfined phase, the mobility
edge decreases, and localized modes eventually disappear
as the system crosses over into the reconfined phase. This is
exactly what happens in standard (undeformed) YM, with
the mobility edge decreasing when the temperature is
decreased, and localized modes disappearing when cross-
ing over to the usual confined phase [45]. It is not clear
whether λc vanishes continuously or discontinuously at the
reconfinement transition: while a discontinuous behavior
would be consistent with the first-order nature of the
transition, and with what we observed for the thermal
monopole observables, further studies are required to make
a conclusive statement. In future studies one could also
consider a different discretization of the Dirac operator, for
example the overlap discretization, as it has been done in
standard YM [46].
To summarize, we have demonstrated that two well

established phenomena, which are known to characterize
the confinement transition in SUð3Þ gauge theory, charac-
terize the reconfinement transition as well: condensation of
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thermal monopoles and delocalization of the lowest Dirac
modes. This indicates that important physical features of
the two transitions are similar, and at the same time
establishes a stronger link between the two phenomena
that we have analyzed. It is reasonable to hypothesize that
the presence of thermal monopole trajectories in a gauge
configuration has some reflection on the eigenmodes of the
Dirac spectrum, and that the delocalization of thermal
monopole trajectories, related to the appearance of larger
and larger numbers of wrappings, could be related to the
delocalization of the low-lying Dirac modes. On the other
hand, the density of monopoles seems to have little bearing
on it, as seen by contrasting the usual confinement

transition and the reconfining one. This is surely something
to be further investigated in future studies.
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