
 

Dislocations under gradient flow and their effect
on the renormalized coupling

Anna Hasenfratz * and Oliver Witzel †

Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

(Received 10 April 2020; accepted 26 January 2021; published 12 February 2021)

Nonzero topological charge is prohibited in the chiral limit of continuum gauge-fermion systems
because any unpaired instanton would create a zero mode of the Dirac operator. On the lattice, however, the
geometricQgeom ¼ hFF̃i=32π2 definition of the topological charge does not necessarily vanish in the chiral
limit even when the gauge fields are smoothed for example with gradient flow. Small vacuum fluctuations
(dislocations) not seen by the fermions may be promoted to instantonlike objects by the gradient flow. We
demonstrate that these artifacts of the flow cause the gradient flow renormalized gauge coupling to increase
and appear to run faster. In step-scaling studies such strong coupling artifacts contribute a term that might
not follow perturbative scaling. The usual a=L → 0 continuum limit extrapolations can hence lead to
incorrect results. In this paper we investigate these topological lattice artifacts in the massless SU(3)
10-flavor system with domain wall fermions and the massless 8-flavor system with staggered fermions. For
both systems we observe that in the range of strong coupling Symanzik gradient flow exhibits more lattice
artifacts compared to Wilson gradient flow. We demonstrate how this artifact impacts the determination of
the renormalized gauge coupling and the step-scaling β function.
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I. INTRODUCTION

The nonperturbative determination of the renormaliza-
tion group (RG) β function of gauge-fermion systems is
essential to distinguish conformal and chirally broken
systems, predict anomalous dimensions of infrared fixed
points (IRFPs), determine the energy dependence of the
running coupling, or predict αs in quantum chromodynam-
ics (QCD). Lattice calculations often aim to achieve these
goals by calculating the step-scaling function, the lattice
analogue of the RG β function of the gradient flow (GF)
renormalized coupling g2GF [1–3]. While the GF coupling is
fairly simple to obtain numerically, it can exhibit large
lattice artifacts that complicates taking the continuum limit
of the step-scaling function [4–14]. The situation is
particularly difficult in systems near or inside the conformal
window where the coupling runs very slowly. Simulations
have to be pushed to strong bare coupling where vacuum
fluctuations can be large, introducing cutoff effects that are

not described by leading order perturbative predictions. In
particular it may be difficult to distinguish cutoff effects
from topological excitations. Especially on larger lattice
sizes needed to take the continuum limit, this issue can
become severe.
The geometric definition of the topological charge

Qgeom ¼ 1

32π2

Z
dx trðFμνðxÞF̃μνðxÞÞ ð1Þ

correctly separates the different topological sectors if the
gauge field configurations are sufficiently smooth [15,16].
The “admissibility condition” however is not satisfied on
configurations of typical lattice simulations. Cooling, smear-
ing, and most recently gradient flow transformations have
been used to suppress vacuum fluctuations and “reveal” the
topological structure of configurations [17–25]. Unfor-
tunately the predictedQgeom value may depend on the details
of the smoothing transformation. Small instantons may “fall
through the lattice” for some smoothing transformation,
while other transformations may promote certain vacuum
fluctuations, “dislocations,” to instantonlike objects [19]. In
simulationswith chirally symmetric fermions on latticeswith
(anti)periodic boundary conditions the index theorem offers
an alternative definition of the topological charge [26,27]

Qferm ¼ 1

2
trðγ5DÞ; ð2Þ
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the number of zero modes of the Dirac operator D. Qferm
depends on the lattice Dirac operator but it does not require
smoothing. The different definitions of the topological
charge are expected to agree in the continuum limit but
canbequite different on rough configurations [21,22,28–33].
There is a special situation where the topological charge

can be predicted based on theoretical considerations. In
systems where the index theorem is satisfied and the
fermion mass vanishes, the zero modes of the Dirac
operator are suppressed andQferm ¼ 0 [26]. Any prediction
of Qgeom ≠ 0 therefore signals a lattice artifact. On rough
configurations e.g., in the strong coupling regime of near-
conformal systems, this can occur frequently. To demon-
strate the issue, we show in Fig. 1 Monte Carlo time
histories for our massless ten flavor domain wall simu-
lations [10,14] at the strong bare coupling β ¼ 4.02 on
ðL=aÞ4 ¼ 324 lattices. Although the average number of
conjugate gradient (CG) iterations per molecular dynamics
time step fluctuates by less than �15%, we observe even
after gradient flow time of t=a2 ¼ 32 nonzero predictions
of the topological charge using Wilson flow (center) and
Symanzik flow (bottom). The stability of the updating
algorithm implies that the simulation does not encounter
any zero modes of the fermion Dirac operator. Since on the
same configuration, Wilson and Symanzik flow determine
rather different values for the topological charge and
combined with the observation that the number of CG
iterations shows no substantial increase, we conclude that
any nonzero value of the topological charge reported
by either Wilson of Symanzik flow is a lattice artifact.

We investigate the consequences of such lattice artifacts on
the GF renormalized coupling and the step-scaling func-
tion. We find that the gradient flow coupling g2GF receives a
positive contributions from topological objects. This trans-
lates to a positive contribution to the discrete lattice β
function, consistent with the findings of Ref. [34]. We
observe that different flow kernels may identify different
topological charge on the same configurations. Among the
commonly used gradient flow choices, Wilson flow tends
to have the least topological artifacts, Symanzik flow more
and Iwasaki flow much more, similarly to observations in
cooling [19]. This is not surprising as gradient flow and
cooling are closely connected [25].
In this paper we reanalyze data from simulations per-

formed at strong coupling where the gauge fields are rough
and dislocations frequent. Such simulations are necessary to
explore the step-scaling function of (near) conformal sys-
tems. This phenomena might also affect scale setting
[3,35,36] in strongly coupled beyond the Standard Model
systems (see e.g., [37–50]) or even QCD simulations at
coarse lattice spacings necessary to achieve a large physical
box needed e.g., to study multiparticle interactions [51].
We consider two different systems to illustrate the issue.

In both cases we study two different gradient flow kernels,
Wilson and Symanzik flow. We start with our recent
10-flavor SU(3) domain wall simulations where we first
observed the effect of nonzero topological charge [10]. An
accompanying paper discusses the step-scaling function of
this most likely conformal system and provides further
details [14]. Next we analyze configurations generated for
an older study of the SU(3) 8-flavor system with staggered
fermions [6]. We chose these two systems because both
simulations have been pushed toward very strong coupling
where the contamination from topological modes can be
significant. Our results demonstrate these lattice artifacts
are more severe for Symanzik than for Wilson flow. In
Sec. V we demonstrate how a small modification of the
flow kernel results in a gradient flow that is better at
smoothing out local dislocations resulting in fewer con-
figurations with nonzero topological charge. The lattice
discretization errors of such a modified gradient flow will
need to be explored in the future. We also consider filtering
to the Qgeom ¼ 0 sector as proposed in Ref. [34] and
successfully applied by the Alpha collaboration [7]. Finally
we briefly summarize our findings.

II. TOPOLOGY AND THE STEP-SCALING
FUNCTION

The GF gauge coupling at energy scale μ ¼ 1=
ffiffiffiffi
8t

p
is

defined as g2GFðt;L; βÞ ¼ N t2hEi where hEi is the energy
density and t the GF time. β ¼ 6=g20 is the bare coupling, L
refers to the linear size of the system, and the normalization
factor N is chosen to match g2

MS
at one-loop [1–3]. Lattice

studies show that at large flow time g2GFðtÞ exhibits only
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FIG. 1. Monte Carlo time histories of average number of CG
iterations per molecular dynamics time step (top) and topological
charge determinations after flow time t=a2 ¼ 32 using Wilson
flow (middle) and Symanzik flow (bottom) for our strong
coupling ðL=aÞ4 ¼ 324 ensemble with Ls ¼ 16 and β ¼ 4.02.
Measurements are performed every five trajectories. For further
details see Sec. III A. The vertical dashed line separates data from
two independent Monte Carlo streams.
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mild, approximately linear or weaker, dependence on t,
suggesting that the energy density hEi decreases ∝ 1=t or
faster. While GF removes vacuum fluctuations and instan-
ton pairs, some dislocations/instantons can survive the
flow and become (quasi-)stable. At large flow time
Qgeom approaches integer values and hQ2

geomi is frequently
used to define the lattice topological susceptibility
χT ¼ hQ2

geomi=V where V is the volume of the system
[23,24,32,33].
In the continuum the action of a single instanton is

SI ¼ 8π2. Due to discretization effects on the lattice this
value depends on the instanton size and the lattice action,
but at large flow time smooth instantons increase the energy
of the configuration by ≈SI [22]. The absolute value of
the topological charge hjQji is expected to scale with the
square root of the volume times χT .

1 Therefore the
instanton contribution to the energy density is

hEQi ∝
SIhjQji

V
∝

ffiffiffiffiffiffiffiffiffi
χTV

p
=V ¼

ffiffiffiffiffiffiffiffiffiffiffi
χT=V

p
: ð3Þ

If instanton–anti-instanton pairs are present, this value is
even larger.
In step-scaling studies the GF flow time is tied to the

system size as t ¼ ðcLÞ2=8, where the constant c defines
the renormalization scheme. The finite volume discrete β
function of scale change s is defined as [4]

βc;sðg2c;L; βÞ ¼
g2cðsL; βÞ − g2cðL; βÞ

log s2
; ð4Þ

where g2c refers to the gradient flow renormalized coupling
at the corresponding flow time g2GFðt;L; βÞ. In volumes
V ¼ L4 the contribution of the instantons to the discrete β
function therefore is N t2hEQi ∝ hjQji ∝ ffiffiffiffiffi

χT
p

L2. We may
separate the Q ¼ 0 and Q ≠ 0 contributions to the β
function and write

βc;sðg2c;L; βÞ ¼ βc;sðg2cÞQ¼0 þ CL2; ð5Þ

where βc;sðg2cÞQ¼0 is the step-scaling function in the Q ¼ 0

sector and the mass square dimension quantity C ∝ ffiffiffiffiffi
χT

p
is

independent of the system size L. In the continuum limit,
CL2 takes a finite value and simply shifts the finite volume
step-scaling function βc;s.
When the simulations are performed with chirally

symmetric fermions in the m ¼ 0 chiral limit and on
periodic volumes, any nonvanishing value for CL2 signals
a lattice artifact, the consequence of the GF promoting
vacuum fluctuations (dislocations) to topological objects.
In this case instead of CL2 ∝ hjQji, the correction to the

finite volume β function depends on the square root of the
number of dislocations that does not scale with any known
power of the lattice spacing. While this lattice artifact
vanishes in the continuum limit as the bare coupling is
tuned to the perturbative fixed point, it can alter the lattice
predictions at strong coupling. For example, at the infrared
fixed point of a conformal system βc;sðg2cÞQ¼0 ¼ 0 but
CL2 > 0 suggests an incorrect positive β function. In the
vicinity of the IRFP small changes of the bare coupling can
lead to a large change in the lattice spacing a. At the same
time vacuum fluctuations creating dislocations might not
change much, and the number of dislocations increase with
the square root of the number of lattice sites, i.e., CL2 ∝ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL=aÞ4

p
could increase as 1=a2.

Even on Q ¼ 0 configurations, βc;sðg2cÞQ¼0 has cutoff
effects. These are typically removed by an a2=L2 → 0

extrapolation at fixed renormalized coupling g2c [4–10,13].
If the data does not follow a2=L2 dependence, higher order
ða=LÞ4 terms can be included [11,12]. However, in the
vicinity of an IRFP and if CL2 increases as a decreases, a
continuum extrapolation of βc;sðg2c;L; βÞ in a2=L2 → 0 is
not viable. This reflects the nonperturbative nature of
dislocations and shows that this effect cannot be removed
by perturbatively motivated extrapolations. This lattice
artifact can be a substantial contribution to βc;sðg2c;L; βÞ
resulting in a misleading continuum extrapolation. A clean
way to avoid the issue is to choose a flow kernel where
topological objects are not generated even on coarse
lattices.
To simplify the notation we will from now on refer to

Qgeom simply by using Q.

III. SU(3) WITH Nf = 10 FLAVORS

A. Details of the simulations

For this part of our study we utilize existing gauge field
configurations generated with ten degenerate and massless
flavors of three times stout-smeared [52] Möbius domain
wall (DW) fermions [53–55] (b5 ¼ 1.5, c5 ¼ 0.5) with
Symanzik gauge action [56,57]. The configurations are
generated using GRID [58,59] and we choose symmetric
volumes with V ¼ L4 where the gauge fields have periodic,
the fermions antiperiodic boundary conditions in all four
space-time directions. The bare input quark mass is zero and
for the domain wall fermions we choose the domain wall
heightM5 ¼ 1 and the extent of the fifth dimensionLs ¼ 16.
Configurations are generated using the hybrid Monte Carlo
update algorithm [60] choosing trajectories of length two
molecular time units (MDTU) and we use configurations
saved every 10 MDTU. Our statistical data analysis is
performed using the Γ-method [61] which estimates
and accounts for integrated autocorrelation times. For the
L=a ¼ 32 ensembles at strong coupling considered here
autocorrelations range from three to five measurements.

1If the distribution of the topological charge is Gaussian
nQ ∝ e−Q

2=c, hjQji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hQ2i=π

p
.

DISLOCATIONS UNDER GRADIENT FLOW AND THEIR EFFECT … PHYS. REV. D 103, 034505 (2021)

034505-3



Due to the finite extent of the fifth dimension, DW
fermions exhibit a small, residual chiral symmetry breaking
which conventionally is parametrized by an additive mass
term amres. We determine amres numerically using the ratio
of midpoint-pseudoscalar and pseudoscalar-pseudoscalar
correlator. At strong coupling amres depends on the bare
coupling β and increases from amres ¼ 2 × 10−5 at β ¼
4.15 to 6 × 10−4 at β ¼ 4.02. To demonstrate that amres is
sufficiently small and not the origin of nonzero topological
charges, we compare results for β ¼ 4.05 from ensembles
with Ls ¼ 16 and Ls ¼ 32 below.

B. Effects of nonzero topological charge

We illustrate the effects ofQ ≠ 0 instantonlike objects on
the gradient flow coupling in Fig. 2 where we show the
flow time dependence of the topological charge Q and the
GF coupling g2GF on six individual configurations. We use
the clover operator to approximateFF̃ in Eq. (1). The upper
panels in each subfigure show the flow time evolution of
the topological charge both with Wilson (W) and Symanzik
(S) flows. The lower panels show the renormalized g2GF
coupling evaluated with both the Wilson plaquette (W) and
clover (C) operators for both flows.2 The six configurations
were chosen to illustrate the difference between Q ¼ 0 and
Q ≠ 0. They are part of our Nf ¼ 10 DW ensemble at
β ¼ 4.02, the strongest bare coupling we consider, on 324

volumes [14]. The topological charge shows large fluctua-
tions at small flow time but settles to a near-integer value by
t=a2 ≳ 5.0. We observe occasional changes inQ for t=a2 >
5 but these tend to be quick as topological objects are
annihilated by the flow.
At large flow time we expect different flows and

operators to converge. That is indeed the case at trajectory
#700 and #575 (top left and top right in Fig. 2) where, as
shown in the upper panels, Wilson and Symanzik flows
find the same topological charge at large flow time. Both
Wilson and Symanzik flows as well as Wilson and clover
operators predict consistent g2GF at large flow time, as is
shown on the lower panels.
At trajectory #2965 and #2100 (middle of Fig. 2) Wilson

flow predicts Q ¼ 0 but Symanzik flow identifies topo-
logical charge Q ¼ 2 and -2, respectively. With Wilson
flow, g2GF shows a flat, slowly decreasing behavior with
flow time, similar to what is observed at trajectory # 700
with Q ¼ 0. Symanzik flow, however, shows g2GF increas-
ing roughly linearly with the flow time, similar to trajectory
# 575,Q ¼ −1, although the slope is larger, consistent with
two topological objects on the configurations. Different
operators are still consistent within each flow.
At trajectory #2255 (bottom left) and #845 (bottom right)

the topological charge with Wilson flow is Q ¼ 0 but with

Symanzik flow we see a rapid change at larger flow time. At
trajectory #2255 this corresponds to Q ¼ −1 → Q ¼ 0

around t ≈ 26. Correspondingly g2GF changes from a linearly
increasing flow time dependence to a flat/decreasing form.
At trajectory #845 the change is Q ¼ 0 → Q ¼ −1, sug-
gesting that the configuration at flow time t=a2 < 12 had an
instanton–anti-instanton pair. The instanton is annihilated by
the flow at t=a2 ≈ 13, leaving the anti-instanton unpaired.
The renormalized coupling g2GF follows the expected behav-
ior. Its linear rise with the flow time slows at t=a2 ≈ 13 but
remains linear, similar towhat is observed at trajectory #575.
Any non-vanishingQ is an artifact of the gradient flow in

simulations with massless chirally symmetric fermions.
The panels of Fig. 2 verify that on Q ≠ 0 configurations
g2GF receives a contribution that increases approximately
linearly with flow time and jQj. Next we investigate what
fraction of the configuration ensembles is affected by this
lattice artifact. In Fig. 3 we show the flow time evolution of
the topological charge defined by Eq. (1) on a subset of our
Nf ¼ 10, 324 configurations at bare coupling β ¼ 4.02,
4.05, 4.10 and 4.15. Each panel includes 100 configura-
tions, separated by 10 MDTU, analyzing Wilson flow data
on the left, Symanzik flow data on the right. The vertical
lines indicate flow times t=a2 ¼ 8.0 and 11.52 which
correspond to c ¼ 0.25 and 0.3 in step-scaling studies.
At small flow time, vacuum fluctuations dominate Q. At

the weaker couplings, β ¼ 4.15, 4.10, most vacuum fluc-
tuations die out by t=a2 ≳ 2, and while Q may not exactly
be integer, it is close to an integer (0;�1;�2;…). It is well
known that different gauge actions suppress/promote dis-
locations differently [21,22]. The gradient flow has a
similar dependence of the flow action. With Wilson flow
most configurations have Q ¼ 0. Symanzik flow sustains
Q ≠ 0 longer, and one of the 100 β ¼ 4.10 configurations
remains at Q ¼ −1 even at t=a2 ¼ 32, our maximal flow
time. The picture changes rapidly toward strong coupling.
At our strongest gauge coupling β ¼ 4.02 even Wilson
flow has several Q ≠ 0 configurations at t=a2 ≈ 10, some
surviving even at t=a2 ¼ 32. Symanzik flow enhances this
lattice artifact even further. The topological charge distri-
bution of Symanzik flowed configurations resemble QCD
at finite mass however here Q ≠ 0 signals only lattice
artifacts.
At large flow time it is possible to filter configurations

according to different topological sectors [7]. Analyzing
only those with Q ¼ 0 and contrasting the predictions with
the full data set provides information on the effect of
Q ≠ 0. In Fig. 4 we compare the finite volume step-scaling
βc;sðg2cÞ functions defined in Eq. (5) with and without
topological filtering. The plots show βc;s predicted by the
lattice volumes L=a ¼ 16 → 32 on the β ¼ 4.02 configu-
ration set as the function of c ¼ ffiffiffiffi

8t
p

=L with Wilson flow
(left) and Symanzik flow (right), using theWilson plaquette
operator to predict the energy density. While in the Wilson

2The first letter shorthand notation indicates the gradient flow
(W or S), the second letter the operator (W or C).

ANNA HASENFRATZ and OLIVER WITZEL PHYS. REV. D 103, 034505 (2021)

034505-4



-2

0

2
Q

trajectory 700 Wilson flow
Symanzik flow

0 5 10 15 20 25 30

flow time t/a 2

5

10

15

20

g
2 G

F

WW
WC
SW
SC

-2

0

2

Q

trajectory 575 Wilson flow
Symanzik flow

0 5 10 15 20 25 30

flow time t/a 2

5

10

15

20

g
2 G

F

WW
WC
SW
SC

-2

0

2

Q

trajectory 2965

Wilson flow
Symanzik flow

0 5 10 15 20 25 30

flow time t/a 2

5

10

15

20

g
2 G

F

WW
WC
SW
SC

-2

0

2

Q

trajectory 2100 Wilson flow
Symanzik flow

0 5 10 15 20 25 30

flow time t/a 2

5

10

15

20
g

2 G
F

WW
WC
SW
SC

-2

0

2

Q

trajectory 2255 Wilson flow
Symanzik flow

0 5 10 15 20 25 30

flow time t/a 2

5

10

15

20

g
2 G

F

WW
WC
SW
SC

-2

0

2

Q

trajectory 845 Wilson flow
Symanzik flow

0 5 10 15 20 25 30

flow time t/a 2

5

10

15

20

g
2 G

F

WW
WC
SW
SC

FIG. 2. The flow time history of the topological charge (upper panels) and the gradient flow coupling (lower panels) on six selected
gauge field configurations of our ten flavor ðL=aÞ4 ensembles with L=a ¼ 32, Ls ¼ 16 at bare coupling β≡ 6=g20 ¼ 4.02. We show
both Wilson (green) and Symanzik (red) flow and determine the gradient flow coupling for the Wilson-plaquette (W, solid lines) and
clover (C, dashed lines) operator.
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flow analysis filtering on the topology has only a minimal
effect, the Q ¼ 0 subset with Symanzik flow predicts a
significantly slower running step-scaling function.3 This is
consistent with the observation we made in connection with
Fig. 2 where we pointed out thatQ ≠ 0 configurations have
faster running gauge coupling g2GF. This effect weakens at
weak gauge coupling and does not change the continuum
limit if the ensembles used in the a2=L2 extrapolation are at
sufficiently weak coupling. In the strong coupling regime
where the data are contaminated by dislocation artifacts, we
expect that the a2=L2 or a4=L4 extrapolated step-scaling
functions overestimates the running of the gauge coupling,
especially with Symanzik flow. In the accompanying paper
[14] we show details of our analysis.
We close our discussion with Fig. 5 where we compare

g2c for c ¼ 0.300 as predicted by configurations with
jQj ¼ 0, 1 and 2 on our β ¼ 4.02 data set. As expected
based on Eq. (5) and Figs. 2 and 4, g2c increases with jQj.
On the right side panel of Fig. 5 we show the relative weight
of the different topological sectors. In the case of Symanzik
flow we analyze 371 measurements in total, 211 with
jQj ¼ 0, 143 with jQj ¼ 1 and 17 with jQj ¼ 2 but do not

show one measurement with jQj > 2. In the case of Wilson
flow we analyze 353 configurations with jQj ¼ 0 and 19
with jQj ¼ 1. Differences between WW and SW determi-
nations of g2c indicate cutoff effects which are only
supposed to disappear after taking the continuum limit.
Measuring the total topological charge Q does not give

information on possible instanton–anti-instanton pairs.
However the change of the slopes of g2GF observed in
Fig. 2 suggests that most Q ≠ 0 configurations have only
isolated instantons and not many pairs. Our analysis
filtering on the topological charge is similar to the sugges-
tion of Ref. [7] and could be considered as an alternative
method to predict the running coupling and the step-scaling
function.

C. Finite value of Ls

Stout smeared Möbius domain wall fermions with Ls ¼
16 have a small residual mass, amres < 10−3 even at our
strongest gauge coupling. We check for possible effects due
to nonvanishing residual mass by generating a second
ensemble at bare coupling β ¼ 4.05 with Ls ¼ 32. The
numerical cost of generating an Ls ¼ 32 trajectory is more
than five times greater compared to the simulation with
Ls ¼ 16. Thus we have fewer Ls ¼ 32 trajectories (about
1=3) than for Ls ¼ 16. In Fig. 6 we show the flow time
histories for the topological charge Q for the first 100
configurations of each ensemble. While Wilson flow
identifies very few configurations with nonzeroQ on either
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FIG. 3. Dependence of the topological chargeQ on the flow time t=a2 for ðL=aÞ4 ¼ 324 ensemble with Ls ¼ 16 and at bare couplings
β ¼ 4.15, 4.10, 4.05, and 4.02. Each panel shows the flow time histories for the first thermalized 100 configurations of each ensemble.
The left (right) panels show the flow time histories using Wilson (Symanzik) gradient flow. Lattice artifacts in the form of nonzero
topological chargesQ increase in the strong coupling limit (decreasing β) and are more pronounced for Symanzik than for Wilson flow.

3We define the integer topological charge as the integer part of
ðjQgeomj þ 0.5Þ where Qgeom is the value predicted by the clover
FF̃ operator. At large flow time Qgeom is close to an integer, apart
from the regions where the topological charge undergoes a rapid
change.
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ensembles, the same ensembles exhibit more nonzero
topology under Symanzik flow. Surprisingly, the relative
number of configurations with nonzero Q more than triples
under Symanzik flow when Ls increases from 16 to 32.
This observation again indicates that nonvanishing
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FIG. 5. On the left: renormalized coupling g2c as predicted by
Symanzik (red/orange/yellow triangles) and Wilson (green
squares) flows and Wilson operator on configurations with
jQj ¼ 0, 1, and 2 at c ¼ 0.300 (GF flow time t ¼ 11.52). The
panel on the right shows the relative fraction of configurations at
each jQj sector when using Symanzik and Wilson, respectively.
In total 371 (372) configurations enter the presented results for
Symanzik (Wilson) flow.
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topology is an artifact of the flow and not due to the small
residual mass.
Next we determine the renormalized coupling g2c for the

renormalization scheme c ¼ 0.300 on both ensembles
where we again separate configurations according to the
value of jQj. The outcome is shown in Fig. 7. On both
ensembles Wilson flow (green squares) predominantly
finds zero topological charge and identifies too few
configurations with jQj ¼ 1 to reliably estimate an uncer-
tainty on g2c. Hence we show the values for jQj ¼ 0 with
statistical error bar but indicate only the central values at
jQj ¼ 1. The prediction on the Ls ¼ 16 ensemble (open
symbol) is in perfect agreement with the Ls ¼ 32 ensemble
(filled symbol). For Symanzik flow (red/orange/yellow
triangles) we find several configurations with jQj ¼ 0
and 1 plus one configuration with jQj ¼ 2 on the Ls ¼
16 ensemble and several configurations in all three sectors
for Ls ¼ 32. The g2c values clearly resolve a dependence on
Q. At the same time, we observe good agreement for g2c
predicted at the same value of Q on ensembles with
different Ls. The latter strongly implies that the effect of
choosing Ls ¼ 16 vs Ls ¼ 32 is negligible within our
statistical uncertainties. The relative distribution of the jQj

sectors for Symanzik flow are shown in the small panel on
the right of Fig. 7. For Ls ¼ 16 in total 372 measurements
are analyzed and 90% haveQ ¼ 0. For Ls ¼ 32we analyze
112 measurements but only 70% have jQj ¼ 0. Since
jQj > 0 predict larger g2c, the average of the renormalized
coupling increases with increasing Ls. However, this is an
artifact of the flow and implies larger lattice artifacts for
larger Ls.

IV. SU(3) WITH Nf = 8 FLAVORS

A. Details of the simulations

In this part of our study we utilize existing gauge field
configurations generated with eight degenerate and mass-
less flavors of staggered fermions with nHYP smeared
links [62,63] and gauge action that combines plaquette and
adjoint plaquette terms [6]. The configurations have sym-
metric volumes, V ¼ L4, where the gauge fields have
periodic boundary conditions and the fermions antiperiodic
boundary conditions in all four space-time directions. Apart
from the boundary conditions this is the same action used in
the large scale studies of Refs. [43,64].
Staggered fermions have a remnant U(1) chiral sym-

metry that protects the fermion mass from additive mass
renormalization. On the other hand taste breaking of
staggered fermions split the eigenmodes of the Dirac
operator. Smooth, isolated instantons have four near-zero
eigenmodes for the four staggered species, but they are split
into two positive, two negative imaginary eigenvalue pairs.
The determinant of the Dirac operator is not exactly zero,
topologically nontrivial configurations are not prohibited.
In the continuum limit taste symmetry is recovered and
Q ≠ 0 configurations should be suppressed. Therefore it is
reasonable to consider all Q ≠ 0 as lattice artifact—either
from the action or from the flow.

B. Effects of nonzero topological charge

Our discussion and analysis here follows that of Sec. III
with domain wall fermions. The strongest gauge coupling
of the simulations with one level of nHYP smearing is
β ¼ 5.0, and the largest volume has L=a ¼ 30. In Fig. 8 we
show the evolution of the topological charge with Wilson
and Symanzik flow on 50 thermalized consecutive con-
figurations at β ¼ 5.0, 5.4 and 5.8. Similar to the DW
result, we observe the emergence of more Q ≠ 0 configu-
rations at strong coupling.We also observe rapid changes in
Q at large flow time, and again more jQj > 0 with
Symanzik than with Wilson flow. In Fig. 9 we compare
the renormalized GF coupling in the c ¼ 0.300 renormal-
ization scheme for the different topological sectors. As in
Fig. 5, we see a clear increase in g2c as jQj increases. Since
the fraction of Q ≠ 0 configurations is much larger with
Symanzik than Wilson flow, this implies that step-scaling
studies using Symanzik flow may overestimate βc;sðg2Þ at
strong gauge coupling.
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(filled symbols). In case of Wilson flow (green squares) only a
value for configurations with jQj ¼ 0 can be determined, whereas
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our statistical errors. For Symanzik flow, however, each jQj sector
predicts a statistically different value of g2c. The relative distri-
bution of the jQj sectors for Symanzik flow are shown in the
small panel on the right. For Ls ¼ 16 in total 372 measurements
are analyzed, for Ls ¼ 32 112.
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We note however the investigation in Ref. [6] studied this
system using only Wilson flow. It would be very interesting
to reanalyze the existing configurations not only with
Symanzik flow, but also with a flow that suppresses the
topology even further than Wilson flow.

V. GRADIENT FLOW WITH IMPROVED
TOPOLOGY SUPPRESSION

The flow kernel of Symanzik flow is a combination of a
1 × 1 plaquette and a 2 × 1 rectangle term, with coefficients
c1×1 ¼ 5=3 and c2×1 ¼ −1=12. Wilson flow is performed
only with the plaquette term i.e., c1×1 ¼ 1, c2×1 ¼ 0.
Apparently the negative c2×1 term increases the probability
of Q ≠ 0 in Symanzik flow. This suggests that a positive
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c2×1 term might lead to a better suppression of this lattice
artifact. To test the idea we implemented an alternative
gradient flow (A) where we set the coefficients to

c1×1 ¼ 2=3 and c2×1 ¼ 1=24 ð6Þ

and demonstrate its effect on the topological charge Q
using our Nf ¼ 10 domain wall ensemble at bare coupling
β ¼ 4.02. In Fig. 10 we show how the suppression of the
topological charge is improved with respect to Wilson and
Symanzik flow. Whether or not this alternative gradient
flow is a viable candidate to perform step-scaling studies at
strong coupling will however require further investigations
using multiple volumes and a range of bare coupling β.
Only that will allow to estimate discretization effects to be
removed by the continuum limit extrapolation.

VI. SUMMARY

In this paper we demonstrate that gradient flow mea-
surements on rough gauge field configurations can promote
lattice dislocations to instantonlike topological objects. The
number of these instantonlike objects depend on the
gradient flow kernel. In the case of step-scaling calculations
of the lattice β function, the simulations are carried out in
the chiral limit where a nonzero instanton number is
suppressed. Hence instantonlike objects created by the
gradient flow are lattice artifacts. Our investigations reveal
a clear correlation between a nonzero topological charge
seen by the gradient flow and an increase in the value of
gradient flow renormalized coupling. We further demon-
strate that this also results in an overestimate of the step-
scaling β-function. By investigating the Nf ¼ 10 system
simulated with domain wall fermions and the Nf ¼ 8

system studied with staggered fermions, we show that this
artifact is not related to the lattice actions used in the
simulations but an artifact of the gradient flow which arises
at (very) strong coupling. In both systems we also observe
that the effect is more pronounced when using Symanzik
compared to Wilson flow.
Since this effect becomes only noticeable at very strong

coupling, it may explain why it has not been reported earlier.
In the case of ourNf ¼ 12 simulations, we checked that both
step-scaling calculations using domain wall [10,13,65] or
staggered fermions [9] do not include ensembles exhibiting
more than one or two configurations where a gradient flow
finds nonzero topological charge. These simulations have
simply been performed at weaker coupling.

Similarly to step-scaling calculations, continuous β
function determinations [66–68] at (very) strong coupling
might also be affected by nonzero topological charge
occurring as part of the gradient flow. Our studies of the
Nf ¼ 2 and 12 systems, however, do not extend into the
problematic range and are therefore not affected.
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