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With the aim of clarification of color correlations among quarks, we investigate the color correlation
between a static quark and an antiquark (static qq̄) below and above the phase transition temperature Tc

through the entanglement entropy (EE). By a quenched lattice QCD calculation on an anisotropic lattice
adopting the standard Wilson gauge action in the Coulomb gauge, we compute a reduced density matrix ρ
defined in the color space and the entanglement entropy SEE constructed from ρ. The spatial volume is
L3 ¼ 243, and the temporal extents are NT ¼ 12, 13, 14, 15, 16, 18, 20 and 24, with a gauge coupling
β ¼ 5.75 and a renormalized anisotropy ξ ¼ 4.0, which corresponds to temperatures between 180 and
370 MeV. From an analysis of ρ and SEE, the color correlation between qq̄ pairs is obtained as a function of
the interquark distance R and the temperature T. Below Tc, the R-dependence of the color correlation
resembles that at T ¼ 0: the quark’s color correlation gradually decreases as R increases due to the color
screening by in-between gluons. Above Tc, due to the deconfinement phase transition, the color correlation
among quarks is found to quickly disappear. Further, we investigate the color screening effect via the
screening mass defined by ρ and discuss the differences in the screening properties between the small and
large R regions.

DOI: 10.1103/PhysRevD.103.034504

I. INTRODUCTION

Color confinement is one of the important nonperturba-
tive features of quantum chromodynamics (QCD), which is
the fundamental theory of the strong interaction. In the
confinement phase, no colored state can be isolated in
vacuum; hence, all the hadronic states are colorless. This
color confining feature of QCD has been studied and
confirmed using several approaches [1], and it may be
explained by a linear potential among quarks arising in the
large-separation limit (in the quenched QCD), which has
been extensively investigated by analyses of interquark
potentials for a variety of situations including multiquark
systems [2–4]. At the same time, above the phase transition
temperature Tc, the confining potential among quarks
vanishes, and colored states are allowed, which has also
been confirmed in lattice QCD calculations [5,6]. Such
confining potential may be illustrated by the flux-tube
formation among quarks. A color flux tube that has a

constant energy per unit length is formed among (totally
color singlet) quarks, leading to the linearly rising potential
[2,7] in the large separation limit.
To cast light on the color structure of a confined quark

pair, in Ref. [8], we computed the color correlation between
a static quark and antiquark (qq̄) pair by means of an
entanglement entropy (EE) defined by the reduced density
matrix ρ in the color space at zero temperature. EEs defined
by the reduced density matrix are known to quantify
correlations (i.e., entanglements) between degrees of free-
dom in purely quantum systems, and they have been used
in many physical systems [9–20]. Based on the EE as well
as the reduced density matrix ρ, color correlation was
obtained as a function of the interquark distance R [8].
When totally color singlet quark and antiquark are located
near each other, the qq̄ pair forms a pure color singlet
representation j1i that yields the minimum EE (maximum
color correlation). As the qq̄ separation R is enlarged, an
octet color representation j8i is randomly mixed in, and as a
result, the quark color correlation is weakened, indicating
that even in the confined phase a color screening between a
qq̄ pair occurs in the large R region. If the color charge of
the quark part and that of the gluon part are separately
considered, such a color screening effect can be understood
as a color leak from quarks to gluons. The color charge
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flows from a qq̄ pair into in-between gluons (e.g., flux
tubes) as quark separation is increased [21,22]. This color
transfer from the quark part to the gluon part is observed as
a screening effect on quark color correlation.
An investigation based on a color density matrix ρ and an

EE S enables a model-independent analysis of the color
structure of quarks. In this paper, we extend our previous
work for zero-temperature systems in Ref. [8] to finite-
temperature systems and investigate the color correlation
between a qq̄ pair below and above Tc. We define the
reduced density matrix ρ for a static qq̄ pair in terms of
color degree of freedom (d.o.f.) at finite temperatures and
compute an EE S from the reduced density matrix ρ. The
reduced density matrix defined in the subspace of qq̄ color
configurations is computed by integrating the gluons’
degrees of freedom, which can be achieved simply by
averaging the density matrix components over gauge
configurations. Through the analysis of S and ρ [8], we
investigate the dependence of the color correlation on the
interquark distance R and the temperature T below and
above Tc.
In Sec. II, we present the formalism necessary to

compute the reduced density matrix ρ of the qq̄ system
and its EE S. The details of the numerical calculations and
the ansatz for ρ are shown in Sec. II. The results are
presented in Sec. III, and Sec. IV is devoted to a summary
and concluding remarks.

II. FORMALISM

A. Reduced 2-body density matrix
and entanglement entropy

In this paper, we consider the SU(3) Yang-Mills theory
on the lattice at finite temperature and follow the formalism
shown in Ref. [8]. The reduced two-body density operator
ρ̂ðRÞ in a qq̄ system with the interquark distance R is
defined as

ρ̂ðRÞ ¼ TrGðjqð0Þq̄ðRÞihqð0Þq̄ðRÞjÞ; ð1Þ

where jqð0Þq̄ðRÞi denotes a quantum state in which an
antiquark is located at the origin, while the other quark lies
at x ¼ R. TrG denotes the partial trace over the gluonic
d.o.f. The reduced density matrix components ρðRÞij;kl
with i, k (j, l) being the quark’s (antiquark’s) color indices
are expressed as

ρðRÞij;kl ¼ hqið0Þq̄jðRÞjρ̂ðRÞjqkð0Þq̄lðRÞi: ð2Þ

Here, ρðRÞ is an m ×m square matrix with dimension
m ¼ N2

c, and we directly compute ρðRÞij;kl using lattice
QCD techniques shown in the next section.
The von Neumann EE SVNðRÞ for a qq̄ pair separated by

R is constructed from the reduced density matrix ρðRÞ as

SVNðRÞ≡ −TrρðRÞ log ρðRÞ: ð3Þ

Another kind of entropy, the Renyi EE [23] SRenyi−αðRÞ of
the order α is defined as

SRenyi−αðRÞ≡ 1

1 − α
log TrðραÞ: ð4Þ

When computing SVN, one needs to diagonalize ρ or
approximate the logarithmic function, and to avoid such
numerically demanding processes, throughout this paper,
we adopt Renyi entropy [23] at α ¼ 2 for EE. Note that in
the limit when α → 1, it goes to von Neumann entropy as
SRenyi−α → SVN. Since the EEs, whose color indices are all
contracted, are invariant under unitary transformations,
they enable representation independent analysis of the
qq̄ pair color correlation.
Here, we briefly explain the relationship between the qq̄

color correlation and the EE. LettingQ denote the quark and
antiquark’s color d.o.f. andG denote the gluon’s color d.o.f.,
the qq̄ pair’s color correlation is defined in the subsystemQ.
A pure state in the entireQþ G system, which is created by
a color singlet operator, can be written as

X
α

jαiQ ⊗ jᾱiG: ð5Þ

Here, α denotes all the possible color representations of the
qq̄ pair, and ᾱ represents the color representation of the
gluon field which is determined so that jαiQ ⊗ jᾱiG forms a
color singlet state. When the quark’s and antiquark’s colors
are strongly correlated forming a color-singlet combination
j1iQ with no color charge leak fromQ toG, the subsystems
Q and G are decoupled in the color space; hence, the whole
state can be expressed as a direct product of Q and G,

j1iQ ⊗ j1iG: ð6Þ

In this strongly correlated limit, the EE SEE goes to zero,
since the two subsystems Q and G demonstrate no entan-
glement with each other. At the same time, when the qq̄
pair’s color charge flows into in-between gluons, and the qq̄
color correlation decreases, the entire state cannot bewritten
in a separable form, and S becomes a positive finite
value (S > 0).

B. Ansatz for reduced density matrix ρij;klðRÞ
In later sections, we perform an analysis of the EE as

well as the density matrix ρ based on the ansatz proposed in
Ref. [8]. For the reader’s convenience, here, we revisit the
ansatz that reproduces the lattice QCD data well. We denote
the density operator ρ̂s;s for the quark and antiquark
forming a pure color singlet state jsi ¼ PNc

i jq̄iqii in
the Coulomb gauge as
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ρ̂s;s ¼ jsihsj: ð7Þ

The density operator ρ̂ai;aiði ¼ 1 ∼ N2
c − 1Þ for qq̄ in an

adjoint state jaii ði ¼ 1 ∼ N2
c − 1Þ in color SU(Nc) QCD is

expressed as

ρ̂ai;ai ¼ jaiihaijði ¼ 1 ∼ N2
c − 1Þ: ð8Þ

We assume that random color configurations of the qq̄ pair,
without any color correlation between quark and antiquark,
are mixed with the maximally correlated color singlet
component as the interquark distance R is increased due
to QCD interaction. In our previous paper, we demon-
strated that this assumption is satisfied at T ¼ 0. In this
ansatz, the density operator ρ̂ can be written as

ρ̂ansatzðRÞ ¼ FðRÞρ̂0 þ ð1 − FðRÞÞρ̂rand: ð9Þ
Here, FðRÞ represents the fraction of the original (max-
imally correlated) singlet state and ½1 − FðRÞ� is that of the
mixed (random) components. The maximally correlated
state in which the qq̄ pair forms j1i gives FðRÞ ¼ 1, and at
the random limit, when the quarks’ colors are completely
screened, it is represented by FðRÞ ¼ 0.
The explicit forms of ρ̂0 and ρ̂rand are given as

ρ̂0 ¼ ρ̂s;s ð10Þ

ρ̂rand ¼ 1

N2
c
ρ̂s;s þ

1

N2
c
ρ̂a1;a1 þ

1

N2
c
ρ̂a2;a2 þ � � � ð11Þ

When Nc ¼ 3, this ansatz implies

� ρðRÞ81;81 ¼ ρðRÞ82;82 ¼ … ¼ ρðRÞ88;88 ≡ ρðRÞ8;8
ρðRÞα;β ¼ 0 ðfor α ≠ βÞ : ð12Þ

The first relation should be satisfied due to the color SU(3)
symmetry. The normalization condition Trρ ¼ 1 is trivially
satisfied in this ansatz as

ρðRÞ1;1 þ ðN2
c − 1ÞρðRÞ8;8 ¼ 1: ð13Þ

In Ref. [8], the density matrix ρðRÞα;β obtained by the
lattice calculation was found to satisfy Eq. (12) with good
accuracy for all R. Thus, we can perform analyses based on
ρansatzðRÞα;β instead of ρðRÞα;β, and, hereafter, we omit the
subscript “ansatz” in ρansatzðRÞα;β.
Taking into account the normalization condition, the inde-

pendent quantity at a given R in this ansatz is only ρðRÞ8;8 in
Eq. (12), which we obtain as the averaged value of the lattice
density matrix elements, ρðRÞ8;8 ¼ 1

N2
c−1

P
i ρðRÞ8i;8i . Then,

we can compute the fractionFðRÞ of the remaining correlated
qq̄ component as

FðRÞ ¼ ρðRÞ1;1 − ρðRÞ8;8 ¼ 1 − N2
cρðRÞ8;8: ð14Þ

C. Lattice QCD setup

We define a Polyakov line at the spatial point x as

PijðxÞ≡
�YNτ−1

τ¼0

U4ðx; τÞ
�
ij

; ð15Þ

where i, j denotes the color index, and τ is the temporal
position. U4ðx; τÞ is a Euclidean temporal link variable
at ðx; τÞ.
With a normalization factor N determined such that

Tr

�
1

N
P†
ijð0ÞPklðRÞ

�
¼

X
ij

�
1

N
P†
ijð0ÞPijðRÞ

�
¼ 1; ð16Þ

we obtain ρðRÞij;kl whose trace is unity (TrρðRÞ ¼ 1) as

ρðRÞij;kl ¼
�
1

N
P†
ijð0ÞPijðRÞ

�
: ð17Þ

Once we obtain ρðRÞ, Renyi entropy of the order α as a
function of R can be obtained as

SRenyi−αðRÞ ¼ 1

1 − α
log TrðρðRÞαÞ: ð18Þ

In this study, we adopt the standard Wilson gauge action
that exhibits a temporal anisotropy, and perform quenched
calculations for reduced density matrices of static qq̄
systems at finite temperatures. The gauge configurations
are generated on the spatial volume L3 ¼ 243, with the
gauge coupling β ¼ 5.75 and the renormalized temporal
anisotropy ξ ¼ 4.0 [24]. This leads to a spacial cutoff a−1σ
of 1.1 GeVand a temporal cutoff a−1τ of 4.4 GeV [25]. The
temporal extents Nτ employed in this work are Nτ ¼ 12,
13, 14, 15, 16, 18, 20 and 24, which correspond to the
temperatures of 183–367 MeV. All the gauge configura-
tions are gauge-fixed with the Coulomb gauge condition.
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FIG. 1. The expectation value of a Polyakov loop hTrPi plotted
as a function of the temperature T.
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The deconfinement transition was investigated using an
anisotropic lattice and found to occur at T ¼ Tc ¼
285 MeV [26]. Since a precision study of the transition
temperature Tc is not within the scope of the present work,
we conclude this section simply by showing the expect-
ation value of a Polyakov loop hTrPi, an order parameter in
quenched QCD, obtained in our setup in Fig. 1.

III. LATTICE QCD RESULTS

A. Entanglement entropy

We adopt Renyi entropy of α ¼ 2 for the evaluation of
the color correlation between qq̄ pairs. The SRenyi−2ðRÞ is
obtained by taking the logarithm of the trace of the squared
reduced density matrix ρðRÞ as

SRenyi−2 ¼ − log TrðρðRÞ2Þ: ð19Þ
Taking into account the normalization condition
TrðρðRÞÞ ¼ 1, the maximum of SRenyi−2 is reached when
all the N2

c diagonal elements are equal to 1=N2
c in the

diagonal representation of ρðRÞ. Based on the representa-
tion invariance of S, the maximum value of S is

max ½SRenyi−2ðRÞ� ¼ 2 logNc: ð20Þ
In the upper panel in Fig. 2, SRenyi−2ðRÞ values calculated

from the ρðRÞ obtained on the lattice are plotted. At small R
values, SRenyi−2ðRÞ exhibits smaller values indicating that
the qq̄ pair forms a pure color singlet state and is strongly
correlated at R → 0. SRenyi−2ðRÞ rises with increasing R and
reaches a maximum value (2 logNc) at a large R value,
indicating that the qq̄ color configuration approaches a
random configuration without color correlation in the large
R range. This tendency is observed at all temperatures.
Below Tc ¼ 285 MeV, SRenyi−2ðRÞ values are more or

less similar to each other, indicating that the thermal effect
on the color correlation in the confined phase is not apparent
in the investigated temperature range. At T ¼ Tc, the qq̄
color correlation is quickly quenched due to the deconfine-
ment transition, which can be observed as a sudden increase
in the SRenyi−2ðRÞ across Tc. Above Tc, SRenyi−2ðRÞ for
R ≥ 0.6 fm take almost the maximum value and reveal a
vanishing qq̄ color correlation. In contrast, SRenyi−2ðRÞ at
R < 0.6 fm have a T dependence, and it shows that the color
correlation still exists between the qq̄ pair at short distances
even in the deconfined phase.
To take a brief look at the thermal effect on the qq̄

color correlation, we plot SRenyi−2 as a function of RT in the
lower panel in Fig. 2. It is found that the EEs above Tc
(¼285 MeV) lie on a common curve, except for those for
T ¼ 293 MeV just above Tc, which is considered to be
transient region. This indicates that the color screening
effect above Tc caused by thermal fluctuations depends on
R normalized by 1=T, which would be related to the Debye
screening length in the deconfined phase. We discuss the

color screening mass in a quantitative way in later sections.
It is interesting that the EEs obtained below but near Tc also
lie on a common curve.
To investigate the T dependence of EE in more detail at

each distance R, we plot the EEs as a function of T (Fig. 3).
Below Tc, the SRenyi−2ðTÞ values for R < 0.6 fm are less
than 30% of the maximum value, revealing the strong

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

S
R

en
yi

(R
)

q−q distance R [fm]

T=367 MeV
T=338 MeV
T=314 MeV
T=293 MeV
T=275 MeV
T=244 MeV
T=220 MeV
T=183 MeV

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  50  100  150  200  250  300
S

R
en

yi
(R

)

RT [MeV fm]

T=367 MeV
T=338 MeV
T=314 MeV
T=293 MeV
T=275 MeV
T=244 MeV
T=220 MeV
T=183 MeV

FIG. 2. The upper panel shows SRenyi−2lattice ðRÞ at each T obtained
from the reduced density matrix ρðRÞ plotted as a function of the
interquark distance R, and the lower panel indicates SRenyi−2lattice ðRÞ
plotted against RT.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 150  200  250  300  350

S
R

en
yi

(T
)

Temperature [MeV]

R=1 (0.2fm)
R=2 (0.4fm)
R=3 (0.6fm)
R=4 (0.8fm)
R=5 (1.0fm)

FIG. 3. SRenyi−2lattice ðRÞ at each R plotted as a function of the
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correlation between a qq̄ pair. For R ≥ 0.6 fm, SRenyi−2ðTÞ
reach greater than 50% of the maximum value, indicating a
reduced color correlation due to color leak to the in-
between flux-tube. At T ¼ Tc, the EEs for all R increase
suddenly, and the qq̄ color correlation is mostly lost after
the deconfinement phase transition. Taking into account
that the quarks’ color correlation is closely related to the
surrounding gluon configuration, the increase in EE at
T ¼ Tc reflects a drastic modification of the gluon con-
figuration at the phase transition. Above Tc, the EEs for
R < 0.6 fm do not reach the maximum value at T values
close to Tc, continuing to grow as T increases. This
indicates that, even in the deconfined phase, a thermal
effect on the qq̄ color correlation still exists. This behavior
can be understood based on the thermal effect on color
screening by the gluon medium, which will be discussed in
the context of the “color screening mass” in a later section.
While EEs show a sudden increase at the phase transi-

tion point for any R, the EE at the shortest distance
(R ¼ 0.2 fm) shows an especially clear change and
behaves like an order parameter, the expectation value of
a Polyakov loop (Fig. 1). In the limit R → 0, the qq̄ pair is
dominated by a strongly correlated color singlet state j1i
and no color leak to the system occurs due to the color
confinement, which leads to the small EE, amounting to
just 10% of the maximum value at T < Tc. After the
deconfinement phase transition, qq̄ pair is also able to form
a color nonsinglet (octet) state j8i even in the case of
R → 0. In this case, the color charge largely spread into the
surrounding gluon field and the color correlation is lost.
This sudden mixture of the color octet qq̄ states leads to
significant enhancement of EE above Tc.
It should be noted that below Tc, the T dependence of

SRenyi−2lattice ðRÞ is small for all R values, but the SRenyi−2lattice ðRÞ is
not entirely constant, as can be seen in Figs. 2 and 3. This
may indicate a thermal influence on the color correlation in
the confined phase. For a clarification of the thermal effects
in the confined phase, a further detailed analysis with high
statistics is needed.

B. Analysis using an ansatz

To investigate the qq̄ color correlations in more detail,
we compute FðRÞ defined in Sec. II B by adopting the
ansatz Eq. (14). The color screening effect by the in-
between gluon field is encoded in FðRÞ, which is the only
parameter in this ansatz that indicates the fraction of the
color-singlet component of the qq̄ pair. FðRÞ ¼ 1 for a pure
color singlet state (the maximally correlated qq̄ pair), and
FðRÞ ¼ 0 for the random color state of the qq̄ pair (the
uncorrelated qq̄ pair).
In Fig. 4, FðRÞ at each T is plotted as a function of the

interquark distance R. The lower panel in Fig. 4 shows the
logarithmic plot of FðRÞ. Below Tc, FðRÞ appears to
change its slope around R ¼ 0.6 fm at each T, as can be
seen in the lower panel. FðRÞ seems to linearly decrease in

the short-distance region (R < 0.6 fm), while decaying
exponentially at larger R values (R ≥ 0.6 fm). This change
in R dependence might indicate flux-tube formation
between qq̄ pairs at R ≥ 0.6 fm. In other words, a flux
tube is generated between qq̄ pairs with a large separation
R, and the in-between gluons forming the flux tube screen
the quarks’ color, leading to exponential decay of the
correlation. At the same time, in the small R region, the
quarks’ color is not screened by surrounding gluons, which
instead produce Coulomb-type interactions. To investigate
this in detail, here, we analyze the damping factor in these
two distinct regions of R, defining a “color screening mass”
in the next section. Above Tc, FðRÞ appears to exponen-
tially decay over all R regions. This damping behavior can
be understood as a medium effect in the deconfined phase,
where a qq̄ pair feels a screened Yukawa-type potential
over the entire R range; hence, FðRÞ provides exponential
damping with a constant damping factor.

C. Color screening mass

The exponential damping of the qq̄ correlation FðRÞ
indicates the color screening effects of in-between gluons.
We fit FðRÞ with an exponential function as
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shows a logarithmic plot of FðRÞ.
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FðRÞ ¼ A expð−BRÞ; ð21Þ

and extract the “color screening mass” B. In particular,
since the behavior of FðRÞ appears to qualitatively change
at R ∼ 0.6 fm, we adopt two distinct fit ranges (R < 0.6 fm
and R ≥ 0.6 fm). In Fig. 5, the color screening masses
B<ðTÞ and B>ðTÞ extracted in the two ranges R < 0.6 and
R ≥ 0.6 fm are plotted as a function of the temperature T.
BelowTc,B>ðTÞ andB<ðTÞ show a smallT-dependence,

implying that the thermal effect on the color screening factor
is not high in theT range investigated in the present analysis.
B>ðTÞ is approximately 2 times larger thanB<ðTÞ, with this
discrepancy indicating that the surrounding gluon configu-
ration in the short (R < 0.6 fm) and long (R ≥ 0.6 fm) range
regions, which are responsible for the screening mass, differ
from each other in the confinement phase. While the gluon
field stemming from a qq̄ pair with a small separation R
yields a Coulomb type potential, it produces a linear
confinement potential forming an in-between flux tube in
the large qq̄ separation region. A color leak to the flux tube
leads to a mixture of random color components and yields a
large screening mass. At T ¼ Tc, both B>ðTÞ and B<ðTÞ
show a sudden increase to much higher values, and this
sudden change in the screening mass reflects the deconfine-
ment phase transition, in which the color flux configuration
around the qq̄ pair exhibits a drastic change. Above Tc,
B>ðTÞ andB<ðTÞ take more or less the same values, and the
ratio of B>ðTÞ to B<ðTÞ is close to one. This is naturally
expected, since the gluon field at T > Tc produces a
Yukawa-type potential for a qq̄ pair over the whole R.
B<ðTÞ seems to gradually increase aboveTc, which could be
related to the increase of the screening mass in the Yukawa-
type potential in the deconfined phase.
The jump at T ¼ Tc can be found in both B>ðTÞ and

B<ðTÞ also in the screening mass. B<ðTÞ is much smaller
than B>ðTÞ below Tc, and an increase in B<ðTÞ can be
clearly observed. This order-parameter-like behavior of the

color screening mass B<ðTÞ in the short range region can
again be understood as the sudden modification of the color
flux configuration around the quarks. When the interquark
distance R is sufficiently small at a lower temperature, the
color flux does not flow into a system around qq̄ due to the
color confinement, according to which only a color singlet
qq̄ state is physical. After the deconfinement transition
occurs, a qq̄ pair is able to even form a color-octet state,
with the color largely leaking from the quarks throughout
the system. This color leak leads to the sudden change of
the color flux configuration, significantly increasing the
color screening mass B<ðTÞ across Tc.
Finally, here,wemake a comparisonbetween the screening

masses obtained in our analysis and those estimated in
previous works [6,27,28]. In Ref. [6], the Debye mass mD
in an in-medium heavy quark potential was investigated,
and researchers found that mD=T ∼ 1.2 at T=Tc ¼ 1.5. In
Ref. [27], mD=T ∼ 2.5 was obtained from an analysis of the
color singlet qq̄ free energy F1. The Debye mass mE
estimated at 2-loop order shows that mE=T ∼ 2.5 in the
temperature rangewe investigated here. The “color screening
mass” B obtained in the current analysis amounts to B=T ∼
3.5 at T=Tc ¼ 1.5, which is significantly larger than the
values found in previous studies.While previous estimates of
the Debye mass [6,27] were based on the heavy quark
potential, our screening mass was extracted from the color
correlation function FðRÞ. The relationship between the
heavy quark potential and the color correlation function
leaves room for discussion. Another possible origin of the
deviationmay lie in the channel investigated.While the target
channel in Refs. [6,27] is a color singlet channel, our present
calculation contains “contaminations” from the color octet
states above Tc, which could have caused the difference.

IV. SUMMARY AND CONCLUDING REMARKS

In this study, bymeans of an EE defined by reduced density
matrices ρ in a color space, we have investigated the color
correlation of staticqq̄ systems at finite temperatures.Wehave
adopted the standard Wilson gauge action on an anisotropic
lattice and performed quenched calculations for density
matrices. The gauge coupling is β ¼ 5.75 and the spatial
volume is L3 ¼ 243. To directly evaluate the components of
ρij;kl, we have imposed theCoulomb-gauge on thegluon field.
The temperatureswe investigated range from183 to 367MeV.
Further, we have evaluated the qq̄ correlation as a function

of the qq̄ separation R based on the EE constructed from the
reduced density matrix ρ at finite temperatures. The Renyi
entropy SRenyi−α of the order α ¼ 2 is adopted for the
evaluation of EE. Below Tc ¼ 285 MeV, we have found
that the EE at each qq̄ separation R is barely affected by
temperature, showing similar behavior to that atT ¼ 0.When
a qq̄ pair is located nearby, it forms a strongly correlated
(color singlet) state j1i, and random color components
(a random mixture of j1i and j8i) appear, depending on R
in the large R region, leading to color screening between
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was performed with the functional form FðRÞ ¼ A expð−BRÞ.
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quarks. As the temperature increases, such qq̄ correlation is
quickly lost during the phase transition at T ¼ Tc leading to
an acute increase of the EE, which reflects the drastic
modification of the gluon configuration at the phase tran-
sition. While the EEs for R ≥ 0.6 fm reach almost the
maximum value above Tc, the EEs for R < 0.6 fm continue
growingasT increases, indicating that theqq̄ correlation has a
temperature dependence at T > Tc.
To understand theR dependence of theqq̄ color correlation

in detail, we have extracted the color correlation function
FðRÞ based on the ansatz for the reduced density matrix ρ, in
which ρ is written by a sum of the color-singlet (correlated)
state j1ih1j and randomuncorrelated elements j1ih1j, j8iih8ij
(i ¼ 1;…; N2

c − 1). In the analysis, we have extracted the
“color screening mass” B from the color correlation function
FðRÞ, which represents the strength of the color screening. In
particular, we have evaluated the short-range screening mass
B< and the long-rangemassB> defined in the rangesR < 0.6
and R ≥ 0.6 fm, respectively. Below the phase transition
temperature Tc, B< and B> differ in value, indicating the
qualitative difference in gluon field profile between these two
distinct ranges: one demonstrates a Coulomb-type gluon
configuration and the other demonstrates a one-dimensional
flux-tube profile. At the phase transition point T ¼ Tc, the
screening mass significantly and suddenly increases. Taking
into account that the color screening mass encodes the
surrounding gluon configuration around the qq̄ pair, the

enhancement of B at Tc should be related to the color flux
delocalization caused by the deconfinement transition.Above
Tc, B< and B> take similar values, consistent with the gluon
profile, which gives a Yukawa-type screened potential over
the entire R range.
The EE and the screening mass values have been found

to significantly change at the phase transition point,
indicating that the EE properly detects the significant
modification of the gluon configuration around the qq̄ pair
across the color deconfinement transition. In particular, the
EE and the screening mass for small R values behave like
order parameters of the color confinement. Though these
are not order parameters related to QCD symmetry, they
demonstrate a clear physical meaning and can be good
probes for the phase transition in finite T=μ systems.
In conclusion, the qq̄ color correlations have been found

to be well quantified by EEs at finite temperatures below
and above Tc. These findings encourage us to adopt EE for
the future study of the internal color structures of hadrons
including multiquark systems [4] or the color structures of
systems at finite T=μ.
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