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The phase diagram of the Gross-Neveu model in 2þ 1 space-time dimensions at nonzero temperature
and chemical potential is studied in the limit of infinitely many flavors, focusing on the possible existence
of inhomogeneous phases, where the order parameter σ is nonuniform in space. To this end, we analyze the
stability of the energetically favored homogeneous configuration σðxÞ ¼ σ̄ ¼ const with respect to small
inhomogeneous fluctuations, employing lattice field theory with two different lattice discretizations as well
as a continuum approach with Pauli-Villars regularization. Within lattice field theory, we also perform a full
minimization of the effective action, allowing for arbitrary 1-dimensional modulations of the order
parameter. For all methods special attention is paid to the role of cutoff effects. For one of the two lattice
discretizations, no inhomogeneous phase was found. For the other lattice discretization and within the
continuum approach with a finite Pauli-Villars cutoff parameter Λ, we find a region in the phase diagram
where an inhomogeneous order parameter is favored. This inhomogeneous region shrinks, however, when
the lattice spacing is decreased or Λ is increased, and finally disappears for all nonzero temperatures when
the cutoff is removed completely. For vanishing temperature, we find hints for a degeneracy of
homogeneous and inhomogeneous solutions, in agreement with earlier findings.
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I. INTRODUCTION

Mapping the phase diagram of quantum chromodynam-
ics (QCD) at nonzero temperature T and quark chemical
potential μ is one of the major challenges in the field of
strong-interaction physics [1,2]. From the theoretical side,
the situation is complicated by the fact that perturbative
techniques are not applicable in the regime of interest, so
that nonperturbative methods must be applied. At μ ¼ 0,
precise and reliable results from lattice gauge theory with
realistic quark masses are available, which have revealed
that chiral symmetry, which is spontaneously broken in the
vacuum, gets approximately restored in a crossover tran-
sition around T ≈ 156 MeV [3–6]. While the range of
validity of present lattice QCD simulations is restricted to
chemical potentials μ≲ T (corresponding to μB ≲ 3T with
the baryon chemical potential μB ¼ 3μ), continuum

approaches to QCD, i.e., Dyson-Schwinger equations [7]
or the functional renormalization group [8], predict that at
higher chemical potentials there is a first-order phase
transition, ending at a chiral critical endpoint (CEP) at
μCEP ≈ ð1.4…2.0ÞTCEP. Qualitatively similar results were
also obtained quite some time ago within QCD inspired
models, like the Nambu-Jona-Lasinio (NJL) model [9] or
the quark-meson (QM) model [10,11]. In the chiral limit,
i.e., at vanishing bare quark mass, the crossover gets
replaced by a second-order phase transition, which is
joined to the first-order one at a tricritical point (TCP).
Most of these investigations have been performed

assuming that the order parameter (the quark condensate
hψ̄ψi) is homogeneous. Several model studies have
revealed, however, that, at least in the mean-field approxi-
mation, there are certain regions in the phase diagram
where spatially varying condensates are favored over
homogeneous ones (see Ref. [12] for a review). Such
inhomogeneous phases have been analyzed in detail in
models with 1þ 1 spacetime dimensions, like the 1þ 1-
dimensional Gross-Neveu (GN) model [13–15], but are
also found in 3þ 1 dimensions in the NJL and QM models
[16–19] as well as in a Dyson-Schwinger approach to
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QCD [20]. Typically, the inhomogeneous regions cover the
first-order boundary between the homogeneous phases and
reach up to the CEP. In the chiral limit the TCP is then
replaced by a Lifshitz point (LP), where three phases, the
homogeneous symmetry-broken, the restored and the
inhomogeneous phase, meet [21].
When considering inhomogeneous phases, the difficulty

arises that the determination of the ground state corresponds
to the functional minimization of the effective action with
respect to the condensate hψ̄ψiðxÞ with arbitrary spatial
shape. Obviously this is a very hard problem, which, until
now, has only been solved in 1þ 1-dimensional models
[13–15,22] but not in higher dimensions. Instead of a full
minimization, most authors, therefore, use certain ansatz
functions for the condensate (e.g., single planewaves [16] or
embedding the known solutions from the 1þ 1-dimensional
into 3þ 1 spacetime dimensions [17]) or performGinzburg-
Landau or stability analyses [21,23–26]. An interesting
alternative is to investigate inhomogeneous phases with
lattice field theory or related numerical methods, where, at
least in principle, the effective action can be minimized
without restricting the condensate to a specific ansatz. This
has been demonstrated in Refs. [27,28], where the 1þ 1-
dimensional GN model with an infinite number of fermion
flavors Nf was investigated numerically, reproducing the
known analytical results for the phase diagram and the
condensate functions within numerical precision. Recently
lattice field theory was also used to simulate the 1þ 1-
dimensional GN model at finite Nf, showing for the first
time that an inhomogeneous phase also exists in this
case [29,30].
In the present articlewe extend these studies to investigate

the GN model in 2þ 1 dimensions. In doing so, we restrict
our investigations to the limit Nf → ∞, corresponding to a
mean-field approximation. For homogeneous phases this
model has been analyzed more than three decades ago
[31,32]. It was shown that it is renormalizable in the Nf

expansion and it was found that the phase transition is of
second order at any nonzero temperature, while at T ¼ 0 the
order parameter changes discontinuously at the phase
boundary. Two of us presented a first lattice field theory
study of inhomogeneous phaseswithin thatmodel at a recent
conference [33], showing indications for the existence of
such phases. Shortly afterwards, however, it was found that
the inhomogeneous phase disappears in the continuum limit
[34], thus, suggesting that the result of Ref. [33] was an
artifact of the lattice discretization. In the present paper we
investigate this more systematically, comparing the depend-
ence of the results on the lattice spacing for two different
discretization prescriptions. We also complement the lattice
field theory calculations by a stability analysis in a con-
tinuum approach. In particular, guided by the idea that a
nonzero lattice spacing might be similar to a finite momen-
tum cutoff, we investigate the dependence of the inhomo-
geneous phase on the cutoff.

The paper is organized as follows. In Sec. II we introduce
the GN model in 2þ 1 spacetime dimensions, discuss the
symmetries of the model and address the issue of fermion
representations (2-component versus 4-component spin-
ors). In Sec. III we explain our continuum approach, in
Sec. IV the lattice field theory techniques. Our results are
presented and discussed in Sec. V. We draw our conclu-
sions in Sec. VI.

II. THEORETICAL BASICS

A. The Gross-Neveu model in 2 + 1 dimensions
in the limit of infinitely many flavors

The Gross-Neveu (GN) model [35] is a relativistic
quantum field theory describing Nf fermion flavors with
a four-fermion interaction. We consider the model in 2þ 1-
dimensional Euclidean spacetime, where action and parti-
tion function are

S½ψ̄ ;ψ � ¼
Z

d3xðψ̄ðγν∂ν þ γ0μÞψ −
λ

2Nf
ðψ̄ψÞ2Þ;

Z ¼
Z

Dψ̄Dψe−S½ψ̄ ;ψ �: ð1Þ

ψ ¼ ðψ1;…;ψNf
Þ represents Nf massless fermion fields, λ

is the coupling constant and μ is the chemical potential.
Representations of the γ matrices are discussed in Sec. II B.
At nonvanishing temperature the spacetime integral is over
½0; β� × V, where β ¼ 1=T is the inverse temperature and V
denotes the 2-dimensional spatial volume.
To get rid of the four-fermion interaction, we introduce

an auxiliary scalar field σ and perform a Hubbard-
Stratonovich transformation [36],

Sσ½ψ̄ ;ψ ; σ� ¼
Z

d3x

�
ψ̄Qψ þ Nf

2λ
σ2
�
;

Z ¼
Z

Dψ̄DψDσe−Sσ ½ψ̄ ;ψ ;σ�; ð2Þ

where

Q ¼ γν∂ν þ γ0μþ σ ð3Þ

is the Dirac operator. One can show that the expectation
value of the scalar field σ is proportional to the condensate
hψ̄ψi, i.e.,

hσi ¼ −
λ

Nf
hψ̄ψi: ð4Þ

Thus, hσi can be used as an order parameter for chiral
symmetry breaking (for more details see Sec. II B).
After integrating over the fermion fields, one obtains an

effective action, which only depends on the scalar field σ,
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Seff ½σ� ¼ Nf

�
1

2λ

Z
d3xσ2 − lnðDetðQÞÞ

�
;

Z ¼
Z

Dσe−Seff ½σ�: ð5Þ

Here Det denotes a functional determinant in spacetime and
in spinor space, while the degenerate flavor degrees of
freedom have been factored out. Strictly speaking, the
dimensionful operator Q should be measured with respect
to some energy scale, e.g., the temperature in thermal field
theory or the inverse lattice spacing in a lattice field theory.
While this scale is needed to have a dimensionless argu-
ment of the logarithm, it only leads to a constant (i.e.,
σ-independent) shift of Seff and does not affect our results.
In this work we restrict the dependence of σ to the spatial

coordinates, i.e., σ ¼ σðx1; x2Þ. With this restriction Seff is
real, which is shown in Appendix A 2.
As one can see from Eq. (5), the action is proportional to

the number of fermion flavors Nf. Since we exclusively
consider the limit Nf → ∞, only field configurations σ
corresponding to global minima of Seff contribute to the
partition function Z. Thus, instead of integrating over the
scalar field σ in Eq. (5) it is sufficient to find a global
minimum of Seff . Observables OðσÞ are then evaluated on
the minimizing field σ ¼ hσi, i.e., hOðσÞi ¼ OðhσiÞ.

B. Fermion representations and the
discrete symmetry σ → − σ

In Appendix A 1 we show that the effective action (5) has
a discrete symmetry

σ → −σ; ð6Þ
i.e., Seff ½σ� ¼ Seff ½−σ�. A nonvanishing hσi indicates spon-
taneous breaking of this symmetry. Moreover, as discussed
in the context of Eq. (4), hσi is proportional to the
condensate hψ̄ψi.
We also note that a suitable set of γ matrices has to fulfill

the Dirac algebra in Euclidean spacetime,

fγμ; γνg ¼ γμγν þ γνγμ ¼ 2δμν1; ð7Þ
where 1 is the identity matrix in spinor space.

1. The GN model in 1 + 1 dimensions

We start with a brief discussion of the fermion repre-
sentation typically used for the GN model in 1þ 1
spacetime dimensions, where the situation is less compli-
cated than in 2þ 1 spacetime dimensions. A possible
irreducible 2 × 2 representation of the Dirac algebra (7) is

γ0 ¼ τ1; γ1 ¼ τ2; ð8Þ
where τj denote Pauli matrices. A suitable γ5 matrix,
which anticommutes with both γ0 and γ1, i.e., fulfilling
fγ5; γμg ¼ 0, can be defined according to

γ5 ¼ τ3: ð9Þ

The free fermion action is then invariant under continuous
chiral transformations generated by γ5,

ψ → eiθ
aγ5λ

a
ψ ; ψ̄ → ψ̄eiθ

aγ5λ
a
; ð10Þ

where λa are the generators of the UðNfÞ flavor symmetry,
e.g., the generalized Gell-Mann matrices and the identity,
and θa are the parameters of the transformation. The four-
fermion interaction term is, however, not invariant under
this chiral transformation. For example for ψ → eiθγ5ψ,

ðψ̄ψÞ2 → ðψ̄e2iθγ5ψÞ2 ¼ ðψ̄ðcosð2θÞ1þ i sinð2θÞγ5ÞψÞ2;
ð11Þ

i.e., ðψ̄ψÞ2 is invariant only for θ ¼ nπ=2, n ∈ Z. One can
show that only a discrete chiral symmetry remains,

ψ → γ5ψ ; ψ̄ → −ψ̄γ5: ð12Þ

Due to Eq. (4), a nonvanishing hσi implies a nonvanishing
fermion condensate hψ̄ψi. This in turn indicates sponta-
neous breaking of the discrete chiral symmetry, because
this symmetry implies

hψ̄ψi → −hψ̄ψi: ð13Þ

Consequently, in 1þ 1 dimensions with fermion represen-
tation (8) hσi is an order parameter for spontaneous
breaking of the discrete chiral symmetry Eq. (12).

2. The GN model in 2 + 1 dimensions

In 2þ 1 dimensions there are two inequivalent irreduc-
ible 2 × 2 representations of the Dirac algebra (7), which
can be written as

γ0 ¼ þτ2; γ1 ¼ þτ3; γ2 ¼ þτ1; ð14Þ

γ̃0 ¼ −τ2; γ̃1 ¼ −τ3; γ̃2 ¼ −τ1: ð15Þ

Neither for the representation (14) nor the representation
(15) there is an appropriate γ5 matrix, which anticommutes
with all three γμ. Consequently, there is no discrete chiral
symmetry (12) and a nonvanishing hσi cannot be inter-
preted as indication for chiral symmetry breaking. There is,
however, another discrete symmetry,

ðx0; x1; x2ÞT!P ðx0; x1;−x2ÞT; ψ!P − iγ2ψ ;

ψ̄!P − ψ̄ iγ2; ð16Þ

changing the sign of hψ̄ψi, i.e., Eq. (16) implies

REGULATOR DEPENDENCE OF INHOMOGENEOUS PHASES IN … PHYS. REV. D 103, 034503 (2021)

034503-3



hψ̄ψi!P − hψ̄ψi: ð17Þ

This symmetry, which is the reflection of the x2 coordinate,
is usually referred to as parity P in 2þ 1 dimensions, since
the reflection of both spatial coordinates amounts to a
rotation by the angle π. Thus, a nonvanishing hσi indicates
spontaneous breaking of parity.
Since the GN model is often used as a toy model for

chiral symmetry breaking in QCD, also reducible fermion
representations with a corresponding γ5 matrix play an
important role. One possibility is to combine the repre-
sentations (14) and (15) to a 4 × 4 representation,

γ0¼ τ3⊗ τ2¼
�þτ2 0

0 −τ2

�
; γ1¼ τ3⊗ τ3¼

�þτ3 0

0 −τ3

�
;

γ2¼ τ3⊗ τ1¼
�þτ1 0

0 −τ1

�
ð18Þ

(see e.g., Refs. [37–39]). The three matrices are block-
diagonal with the upper block corresponding to represen-
tation (14) and the lower block to representation (15). There
are two linearly independent matrices that anticommute
with the three γ0, γ1, and γ2,

γ4 ¼ τ1 ⊗ 12 ¼
�

0 þ12
þ12 0

�
;

γ5 ¼ −τ2 ⊗ 12 ¼
�

0 þi12
−i12 0

�
; ð19Þ

i.e., both fulfill the necessary properties for a suitable γ5
matrix.1 Chiral transformations are defined by taking both
γ4 and γ5 into account

ψ → eiðϕaγ4þθaγ5Þλaψ ; ψ̄ → ψ̄eiðϕaγ4þθaγ5Þλa ; ð20Þ

where ϕa and θa are the parameters of the transformation.
While free massless fermions are chirally symmetric
according to Eq. (20), the four-fermion interaction of the
GN model reduces this continuous symmetry to

ψ → γ4ψ ; ψ̄ → −ψ̄γ4 ð21Þ

or, equivalently,

ψ → γ5ψ ; ψ̄ → −ψ̄γ5: ð22Þ

Note, however, that Eq. (21) and Eq. (22) are not inde-
pendent, but related by a vector transformation in flavor
space (see Ref. [40] for details). Thus, in the following, it is
sufficient to consider the discrete chiral symmetry (22).

hσi is an order parameter for spontaneous breaking of this
symmetry, as in the 1þ 1-dimensional case discussed in
Sec. II B 1.

C. Equivalence of 2- and 4-component fermion
representations

In the following we will show a simple relation between
expectation values hOðσÞi obtained with either of the two
irreducible 2-component fermion representations (14) and
(15) and the 4-component fermion representation (18).
We denote the Dirac operators for fermion representa-

tions (14), (15) and (18) with Qð2Þ, Q̃ð2Þ and Qð4Þ,
respectively. Qð4Þ has block-diagonal structure in spinor
space,

Qð4Þ½σ� ¼
�
Qð2Þ½σ� 0

0 Q̃ð2Þ½σ�

�
: ð23Þ

Thus,

DetðQð4Þ½σ�Þ ¼ DetðQð2Þ½σ�ÞDetðQ̃ð2Þ½σ�Þ: ð24Þ

Using

DetðQ̃ð2Þ½þσ�Þ ¼ Detð−Qð2Þ½−σ�Þ ¼ DetðQð2Þ½−σ�Þ
¼ DetðQð2Þ½þσ�Þ; ð25Þ

where the last step is shown in Appendix A 1, Eq. (24)
simplifies to

DetðQð4Þ½σ�Þ ¼ ðDetðQð2Þ½σ�ÞÞ2 ¼ ðDetðQ̃ð2Þ½σ�ÞÞ2: ð26Þ

From Eq. (5) and Eq. (26) one can conclude

Sð4Þeff ½σ; λ� ¼ 2Sð2Þeff ½σ; 2λ� ¼ 2S̃ð2Þeff ½σ; 2λ�; ð27Þ

where Sð2Þeff ½σ; λ�, S̃ð2Þeff ½σ; λ� and Sð4Þeff ½σ; λ� denote the effective
actions for fermion representations (14), (15) and (18),
respectively, and coupling constant λ. Consequently,
expectation values hOðσÞi are related according to

hOðσÞijλ
4×4 rep:ð18Þ ¼ hOðσÞij2λ

2×2 rep:ð14Þ ¼ hOðσÞij2λ
2×2rep:ð15Þ:

ð28Þ

Note in particular that the phase diagram with respect to the
order parameter hσi is the same for all three representations.
In practice this is useful, because all numerical computa-
tions can be performed with the computationally cheaper
2 × 2 fermion representation (14) [or (15)], while the
corresponding results are also valid for the 4 × 4 fermion
representation (18), where an interpretation in terms of
chiral symmetry and its spontaneous breaking is possible.

1We follow the notation of Refs. [38,39] and denote the two
“γ5 candidates” by γ4 and γ5, respectively.
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In the following we denote the dimension of the fermion
representation by Nd.

III. CONTINUUM APPROACH

In this section, before introducing our lattice field theory
techniques in Sec. IV, we describe, how we study the phase
diagram of the 2þ 1-dimensional GN model using con-
tinuummethods. As explained in Sec. II, the ground state of
the system in the limit Nf → ∞ corresponds to the field
configuration σðxÞ, x ¼ ðx0; x1; x2Þ, which minimizes the
effective action Seff , given in Eq. (5). Despite being a
considerable simplification compared to the situation at
finite Nf, finding this configuration in 2þ 1 spacetime
dimensions is still extremely difficult. Since the ground
state is static, we can safely ignore the (imaginary) time
coordinate x0, but we must retain the possible dependence
of the σ field on the spatial coordinates x ¼ ðx1; x2Þ, if we
want to find the true minimum. The minimization of Seff is
thus a functional minimization with respect to σðxÞ. This is
a very hard problem, both analytically and numerically,
which has not been solved so far.
While in Sec. V C we will present first steps toward such

a full minimization using lattice field theory, here we
restrict ourselves to a simpler problem and perform a
stability analysis of the lowest homogeneous state with
respect to small inhomogeneous fluctuations. This method,
which has already been applied in 3þ 1 dimensions to
investigate inhomogeneous phases in the NJL model
[16,24,25] and the QM model [26], corresponds to search-
ing for a sufficient, although not necessary, condition for an
inhomogeneous phase: If the lowest homogeneous state
turns out to be unstable against small inhomogeneous
fluctuations, it is clear that the ground state must be
inhomogeneous. On the other hand, the lowest homo-
geneous state can be stable against small inhomogeneous
fluctuations but still be unstable against large ones. The
inhomogeneous phases found by a full minimization of the
effective action could thus be larger than the unstable
regions of the stability analysis, but the latter are always a
part of the former. In the following we explain this method
in more detail.

A. Stability analysis

In the first step we minimize the effective action at given
chemical potential and temperature with respect to spatially
constant fields, σ ¼ σ̄. We will give a few technical details
in Sec. III B, but basically this is a standard procedure,
which is obviously much simpler than the functional
minimization with respect to arbitrary space-dependent
fields σ ¼ σðxÞ. In the second step, we consider small
fluctuations around these homogeneous solutions and
inspect their effect on the effective action. To this end
we write

σðxÞ ¼ σ̄ þ δσðxÞ; ð29Þ

where σ̄ is a homogeneous field and δσðxÞ denotes a
fluctuation, which can have an arbitrary spatial shape but is
assumed to have an infinitesimally small amplitude.
Decomposing the Dirac operator in the same way, Q ¼

Q̄þ δσ with Q̄ ¼ Qðσ̄Þ, and noting that lnðDetðQÞÞ ¼
TrðlnðQÞÞ, this term can straightforwardly be expanded in
powers of δσ,

lnðDetðQÞÞ ¼ TrðlnðQ̄ÞÞ þ Trðlnð1þ Q̄−1δσÞÞ

¼ TrðlnðQ̄ÞÞ −
X∞
n¼1

1

n
Trð−Q̄−1δσÞn: ð30Þ

Accordingly, the effective action can be expanded as

Seff ¼
X∞
n¼0

SðnÞeff ; ð31Þ

where SðnÞeff corresponds to the contribution of the nth order
in the fluctuations. Specifically we find for the three lowest-
order terms

Sð0Þeff ¼ Nf

�
βV
2λ

σ̄2 − TrðlnðQ̄ÞÞ
�

ð32Þ

Sð1Þeff ¼ Nf

�
β

λ
σ̄

Z
d2xδσðxÞ − TrðQ̄−1δσÞ

�
ð33Þ

Sð2Þeff ¼Nf

�
β

2λ

Z
d2xðδσðxÞÞ2þ1

2
TrðQ̄−1δσQ̄−1δσÞ

�
; ð34Þ

where the integrals are over the spatial coordinates x1 and
x2, while the factors of β originate from the x0 integrations.

Demanding that σ̄ minimizes Sð0Þeff , the corresponding sta-

tionary condition ∂Sð0Þeff =∂σ̄ ¼ 0 yields the gap equation

σ̄ ¼ λ

βV
TrðQ̄−1Þ: ð35Þ

We note that Q̄−1 ¼ ðγν∂ν þ γ0μþ σ̄Þ−1 is just the propa-
gator of a noninteracting fermion with mass σ̄ at chemical
potential μ. In coordinate space it thus depends on (the
difference of) two space-time variables. The functional
traces above are defined as

TrððδσQ̄−1ÞnÞ¼
Z Yn

j¼1

d3xðjÞtrðδσðxð1ÞÞ

× Q̄−1ðxð1Þ;xð2ÞÞ…δσðxðnÞÞQ̄−1ðxðnÞ;xð1ÞÞÞ;
ð36Þ

where tr denotes a trace in spinor space. These expressions
are most easily evaluated using the Fourier representation,
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Q̄−1ðx; x0Þ ¼ 1

βV

X
p

eip·ðx−x0ÞQ̄−1ðpÞ; ð37Þ

or, in the infinite-volume limit,

Q̄−1ðx; x0Þ ¼
Z

d2p
ð2πÞ2

1

β

X
n

eiðωnðx0−x00Þþpðx−x0ÞÞQ̄−1ðωn;pÞ;

ð38Þ

where ωn ¼ 2πðn − 1=2Þ=β are fermionic Matsubara
frequencies, and

Q̄−1ðωn;pÞ ¼
−iγλp̃λ þ σ̄

p̃2 þ σ̄2
; p̃ ¼

�
ωn − iμ

p

�
ð39Þ

is the Euclidean propagator in momentum space.
Inserting this into Eq. (35), the gap equation becomes

σ̄ ¼ λl1σ̄; ð40Þ

where we have defined

l1 ¼
Nd

βV

X
p

1

p̃2 þ σ̄2

!
V→∞

Nd

Z
d2p
ð2πÞ2

1

β

X
n

1

ðωn − iμÞ2 þ p2 þ σ̄2
: ð41Þ

After performing the Matsubara sum, this takes the form

l1 ¼ Nd

Z
d2p
ð2πÞ2

1

2Ep
ð1 − nðEpÞ − n̄ðEpÞÞ ð42Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ σ̄2

p
and the Fermi functions

nðEÞ ¼ 1

1þ eβðE−μÞ
; n̄ðEÞ ¼ 1

1þ eβðEþμÞ : ð43Þ

The fluctuating field can be Fourier transformed as

δσðxÞ ¼
Z

d2q
ð2πÞ2 e

iqxδσ̃ðqÞ; ð44Þ

where the field in momentum space must obey the relation
δσ̃ð−qÞ ¼ δσ̃�ðqÞ to ensure that δσðxÞ is a real function.
For the first-order contribution to the effective action we
then obtain from Eq. (33)

Sð1Þeff ¼ δσ̃ð0ÞNfβ

λ
ðσ̄ − λl1σ̄Þ ¼ 0; ð45Þ

where the second equality follows from the gap equa-
tion (40). In fact, since according to the first equality only

the homogeneous (q ¼ 0) fluctuations contribute to Sð1Þeff , it
has to vanish if we expand about the “homogeneous ground
state,” i.e., the lowest homogeneous solution.
To find instabilities we therefore have to investigate

the second-order contribution to the effective action.
Evaluating Eq. (34) in momentum space we obtain

Sð2Þeff ¼
1

2
β

Z
d2q
ð2πÞ2 jδσ̃ðqÞj

2Γ−1ðq2Þ; ð46Þ

where

Γ−1ðq2Þ ¼ Nf

�
1

λ
− l1 −

1

2
ðq2 þ 4σ̄2Þl2ðq2Þ

�
ð47Þ

with

l2ðq2Þ ¼ −Nd

Z
d2p
ð2πÞ2

1

β

X
n

1

ððωn − iμÞ2 þ p2 þ σ̄2Þððωn − iμÞ2 þ ðpþ qÞ2 þ σ̄2Þ : ð48Þ

Carrying out the Matsubara sum, one obtains

l2ðq2Þ ¼ Nd

2

Z
d2p
ð2πÞ2

1

E2
pþq − E2

p

�
1

Epþq
ð1 − nðEpþqÞ

− n̄ðEpþqÞÞ −
1

Ep
ð1 − nðEpÞ − n̄ðEpÞÞ

�
: ð49Þ

From Eq. (46) we can see that, unlike in the first-order
contribution, also inhomogeneous (q ≠ 0) fluctuations

contribute to Sð2Þeff . In particular, if Γ−1ðq2Þ < 0 in some
momentum region, small fluctuations in that region will
lower the effective action with respect to the homogeneous

ground state. A sufficient condition for an instability of the
homogeneous ground state with respect to developing
inhomogeneities is therefore to find Γ−1ðq2Þ < 0 in some
interval around any momentum q ≠ 0. A second-order
phase boundary between a homogeneous and an inhomo-
geneous phase is thus given by the values of T and μ for
which Γ−1ðqÞ just touches the zero axis, i.e., both Γ−1 ¼ 0

and dΓ−1=dq2 ¼ 0 at some nonvanishing momentum.

B. Homogeneous phase diagram, tricritical
points and Lifshitz points

We stress again that, in order to arrive at the above
conclusions, we must expand about the homogeneous
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ground state, i.e., we first have to determine the constant
field σ̄ which minimizes Sð0Þeff . To this end we first solve the
gap equation (40) numerically, which yields all stationary

points of Sð0Þeff . These can be minima, maxima or saddle
points, but since there is only a (small) finite number of
solutions, it is easy to identify the absolute minima. Strictly
speaking, since the effective action is symmetric under

σ → −σ [see Eq. (6)], there is a degeneracy between Sð0Þeff ðσ̄Þ
and Sð0Þeff ð−σ̄Þ. However, this is of no further relevance and
we may pick either of these solutions, e.g., the positive
one.2 Another consequence of this symmetry is the fact that
σ̄ ¼ 0 is always a solution of the gap equation.
Minimizing Sð0Þeff at a large number of points in the μ − T

plane we get the homogeneous phase diagram as a by-
product. The phase boundaries between the homogeneous
symmetry-broken phase and the restored phase are then
simply given by the lines where the minimum changes from
a nonvanishing to a vanishing value of σ̄ and can in general
be obtained by a bisection procedure to the desired
accuracy. For first-order phase transitions, i.e., when σ̄
discontinuously drops to zero this is indeed what we do
in our numerical calculations The method is less efficient
for second-order phase transitions, i.e., when σ̄ continu-
ously goes to zero. In this case we determine the phase
boundary by a stability analysis of the restored phase
against homogeneous fluctuations of the sigma field. The
idea is essentially the same as in Sec. III A but now we
always expand around the trivial solution σ̄ ¼ 0 and restrict
ourselves to spatially constant fluctuations, i.e., the q ¼ 0
mode. Defining

Γ−1
0 ðq2Þ ¼ Γ−1ðq2ÞÞjσ̄¼0

¼ Nf

�
1

λ
− l1jσ̄¼0 −

1

2
q2l2ðq2Þjσ̄¼0

�
; ð50Þ

the phase boundary is then given by the condition

Γ−1
0 ð0Þ ¼ 0 ⇔

1

λ
− l1jσ̄¼0 ¼ 0; ð51Þ

provided the system is stable against finite fluctuations,
related to a first-order phase transition. The latter can in
general be identified as described above. An exception are
the regions in the close vicinity of a TCP, where a first-order
phase boundary turns into a second-order one, so that their
distinction becomes difficult in practice. Therefore, in order
to identify these points, we perform a Ginzburg-Landau

analysis. To this end we expand Sð0Þeff around the restored
solution σ̄ ¼ 0 in powers of σ̄,

Sð0Þeff ðσ̄Þ¼ Sð0Þeff ð0Þþ
1

2

d2Sð0Þeff

dσ̄2

����
σ̄¼0

σ̄2þ 1

4!

d4Sð0Þeff

dσ̄4

����
σ̄¼0

σ̄4þ…

ð52Þ

Odd powers vanish because of the symmetry (6). Assuming
that the fourth- and all higher-order derivatives are positive,
the phase transition is of second order and takes place at the
points where the second derivative vanishes. On the other
hand, if the fourth-order derivative is negative, there can be
a first-order phase transition. TCPs are thus located at the
points where both the second and the fourth derivative of

Sð0Þeff ð0Þ vanish.3 Explicit evaluation of the second derivative
yields

d2Sð0Þeff

dσ̄2

����
σ̄¼0

¼ NfβV

�
1

λ
− l1jσ̄¼0

�
¼ βVΓ−1

0 ð0Þ; ð53Þ

confirming our previous result (51) for the second-order
phase boundary. For the fourth-order derivative we find

d4Sð0Þeff

dσ̄4

����
σ̄¼0

¼ −6NfβVl2ð0Þjσ̄¼0; ð54Þ

i.e., the additional condition for the TCP is l2ð0Þjσ̄¼0 ¼ 0.
Finally, let us include again the possibility of inhomo-

geneous phases into these considerations. Obviously,
Eq. (51) only describes the location of a second-order
phase boundary between a homogeneous symmetry-broken
and a restored phase if the corresponding region is stable
against inhomogeneities. A necessary condition for this is
that the momentum dependent term in Eq. (50) does not
turn Γ−1

0 negative at q2 > 0. The LP, i.e., the point where
the second-order phase boundary between the two homo-
geneous phases is smoothly connected to the second-order
instability line with respect to inhomogeneous fluctuations
is thus given by Eq. (51), together with the condition

dΓ−1
0

dq2

����
q2¼0

¼ 0 ⇔ l2ð0Þ ¼ 0: ð55Þ

and, hence, the LP coincides with the TCP [cf. Eq. (54)].
This is a well-known result from the 1þ 1-dimensional GN
model [14] and the 3þ 1-dimensional NJL model [21].
Indeed, the number of spatial dimensions did not enter in an
essential way into the considerations above.

2Formally this can be achieved by adding a small fermion
mass term to the original action and taking the zero-mass limit at
the end.

3Here we still assume that higher-order derivative terms are
positive or unimportant. In principle this may not be true, and
there could be first-order phase transitions even if the fourth-order
derivative is positive. In practice, however, we never encountered
such a situation in our numerical calculations, i.e., the TCPs
resulting from the Ginzburg-Landau analysis always show up
where we roughly expect them to be from the numerical
minimization of Sð0Þeff .
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It is known from the homogeneous analysis of the 2þ 1-
dimensional GN model that the phase transition is second-
order at any nonzero temperature, while at T ¼ 0 the order
parameter changes discontinuously at the phase boundary
[31,32,41]. Since there is thus no TCP, we conclude that
there is no LP either, and we may anticipate that we will not
find an inhomogeneous phase in the model at nonzero
temperature. We stress, however, that these arguments do
not exclude inhomogeneous phases which are reached via
first-order phase transitions or which have second-order
boundaries without LP (e.g., inhomogeneous “islands”
surrounded by a single homogeneous phase).

C. Regularization and renormalization

The integral l1 defined in Eq. (42) diverges linearly and
needs to be regularized. It is well known, however, that the
model is renormalizable in the large-Nf expansion [32].
The renormalization is done by employing the gap equa-
tion (40) to relate the coupling constant λ to a cutoff Λ,
where the scale is set by the ground-state value σ0 of σ̄ at
T ¼ μ ¼ 0,

λðΛÞ ¼ 1

l1ðΛÞ
����
T¼μ¼0;σ̄¼σ0

: ð56Þ

Since the model is renormalizable, all observables remain
finite, even in the limit Λ → ∞. In the following sections
we refer to that limit as renormalized GN model.
It is, however, instructive to study the phase diagram of

the model not only in this renormalized limit but also for
finite values of the cutoff parameter, in particular in view of
our lattice field theory computations discussed in Secs. IV
and V, which have to be carried out always at finite lattice
spacing. Specifically, we use Pauli-Villars (PV) regulari-
zation with one regulator term,

Z
d2p
ð2πÞ2fðσ̄

2Þ→
Z

d2p
ð2πÞ2 ðfðσ̄

2Þ−fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄2þΛ2

p
ÞÞ; ð57Þ

i.e., we subtract from the integrand a term with the same
structure but with σ̄2 replaced by σ̄2 þ Λ2. We apply this
prescription only to the vacuum parts, i.e., the parts which
survive at T ¼ μ ¼ 0, but not to the medium contributions,
which are related to Fermi occupation numbers in the
integrand and are finite without regularization.4 For the
integral l1 we then obtain from Eq. (42)

l1 → Nd

Z
d2p
ð2πÞ2

�
1

2Ep
ð1 − nðEpÞ − n̄ðEpÞÞ −

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þ Λ2

q
�

¼ Nd

4π
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄2 þ Λ2

p
− jσ̄j − T lnð1þ e−ðjσ̄j−μÞ=TÞ − T lnð1þ e−ðjσ̄jþμÞ=TÞÞ ð58Þ

and thus, from Eq. (56), for the coupling constant

λ ¼ 4π

Ndð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20 þ Λ2

p
− jσ0jÞ

: ð59Þ

For the integral l2 we get

l2ðq2Þ ¼ Nd

4πq

�
arctan

�
2jσ̄j
q

�
− arctan

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄2 þ Λ2

p

q

�
þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̄2þq2=4
p

jσ̄j
dE

nðEÞ þ n̄ðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=4þ σ̄2 − E2

p
�
; ð60Þ

where q ¼ jqj ¼
ffiffiffiffiffi
q2

p
. Note that l2 is finite even for Λ →

∞ but we regularize it nevertheless for consistency. In
particular one can show that the unregularized expressions
satisfy the relation

l2ð0Þ ¼
d
dσ̄2

l1; ð61Þ

which underlies the calculation leading to Eq. (54) and,
related to this, the coincidence of a TCP and a LP. This
relation is only preserved if l1 and l2 are regularized in the
same way. One finds

l2ð0Þ¼
Nd

8π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̄2þΛ2
p −

1

jσ̄jð1−nðjσ̄jÞ− n̄ðjσ̄jÞÞ
�
: ð62Þ

Note that this expression remains also finite in the restored
phase, where σ̄ ¼ 0,

4This is a common but arbitrary choice which becomes
irrelevant in the limit Λ → ∞. An advantage of leaving the
medium parts unregularized is that many integrals can be
performed analytically.
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l2ð0Þjσ̄¼0 ¼
Nd

8π

�
1

Λ
−

1

Tð1þ coshðμTÞÞ
�
: ð63Þ

A more intuitive regularization scheme is to apply a
sharp cutoff to the momentum integrals,

Z
d2p
ð2πÞ2 fðpÞ →

Z
d2p
ð2πÞ2 fðpÞθðΛ − jpjÞ: ð64Þ

Compared to PV regularization, this prescription has the
disadvantage that it violates Lorentz invariance. Related to
this, the result for l2 is in general not unique but changes
under a shift of the loop momentum p → pþ Δp in
Eq. (49). We therefore stay with the PV regularization
scheme as described above. It turns out however, that for
both l1 and l2ð0Þ, which are relevant for the homogeneous
second-order phase boundary as well as for the LP [see
Eqs. (51) and (55)], the cutoff regularization gives identical
results.5 In this sense the PV regularization parameterΛ can
be interpreted as a Lorentz invariant generalization of a
momentum cutoff.
Finally, we note that one regulator term is not sufficient

to render the cubically divergent effective action finite. The

physically more relevant difference ΔSð0Þeff ðσ̄Þ ¼ Sð0Þeff ðσ̄Þ −
Seff ½0� is however finite in this regularization scheme. In
particular the determination of the homogeneous ground
state as the basis of our stability analysis can always be

done by calculating ΔSð0Þeff for the different solutions of the
gap equation. One finds

ΔSð0Þeff ðσ̄Þ
βVNf

¼ σ̄2

2λ
−

Nd

12π

�
jσ̄j3 − Λ3 þ ðσ̄2 þ Λ2Þ32

þ 3jσ̄j
β2

ðLi2ð−eβðjσ̄j−μÞÞ þ Li2ð−eβðjσ̄jþμÞÞÞ

−
3

β3
ðLi3ð−eβðjσ̄j−μÞÞ þ Li3ð−eβðjσ̄jþμÞÞ

− Li3ð−e−βμÞ − Li3ð−eβμÞÞ
�
; ð65Þ

where the Li are polylogarithms. Inserting Eq. (59) for λ
and evaluating this expression at T ¼ μ ¼ 0, we obtain for
the vacuum solution σ̄ ¼ σ0

ΔSð0Þeff ðσ0Þ
βVNf

¼μ;T→0−
Nd

24π

�
σ30 þ ð2Λ2 − σ20Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20 þΛ2

q
− 2Λ3

�
;

ð66Þ
which is always negative, confirming the stability of the
vacuum solution σ0 with respect to the restored phase

σ ¼ 0. For Λ → ∞, the right-hand side of this equation
stays finite and becomes −ðNd=24πÞσ30.

D. Analytical results for the phase diagram

We are now in the position to evaluate the relations
derived in Sec. III B more explicitly. In particular we can
determine the second-order phase boundary between the
restored and the homogeneous symmetry-broken phase by
inserting Eq. (58) with σ̄ ¼ 0 and Eq. (59) into Eq. (51).
This leads to

T lnð1þ eμ=TÞ þ T lnð1þ e−μ=TÞ ¼ s; ð67Þ

where we have defined

s ¼ σ0 þ Λ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20 þ Λ2

q
: ð68Þ

Here and in the following we assume the vacuum con-
densate σ0 to be positive.
Solving Eq. (67) for μ ¼ 0 yields the critical temperature

Tcðμ ¼ 0Þ ¼ s
2 ln 2

; ð69Þ

which can be expanded in powers of the inverse cutoff,

Tc

σ0
¼ 1

2 ln 2

�
1 −

σ0
2Λ

þ…

�
: ð70Þ

This is consistent with the known result Tc=σ0 ¼ 1=2 ln 2
in the limit Λ → ∞ [31,32].
For T ≤ Tc we can also solve Eq. (67) for the critical

chemical potential. One finds

μcðTÞ ¼ Tarcosh
�
1

2
es=T − 1

�
: ð71Þ

Again this is consistent with the critical phase boundary
found in Refs. [31,32] in the limit Λ → ∞, corresponding
to s → σ0. In this case the line reaches the μ axis at
μcðT ¼ 0Þ ¼ σ0, which is replaced by s in the case of
finite Λ.
We must keep in mind, however, that the above equations

have been derived under the assumption that there is a
second-order phase transition from the restored to the
homogeneous symmetry-broken phase. In Ref. [32] it
was shown for Λ → ∞ that this is indeed the case for
all T > 0 (at least for homogeneous condensates), while at
T ¼ 0 the condensate changes discontinuously at μc, cor-
responding to a first-order phase transition. For arbitrary
values ofΛwe can compute the corresponding TCP (which,
as shown above, is equal to the LP of an inhomogeneous
phase) as the simultaneous solution of Eqs. (51) and (55),
i.e., as the point where the lines defined by Eq. (71) and by
the condition l2ð0Þ ¼ 0 cross. Using Eq. (62) and taking

5This is a special property of 2þ 1 dimensions. It holds
irrespective of whether or not the finite medium parts are
regularized as well.
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the limit σ̄ → 0 one finds that the temperature at the LP is
given by the equation

TLP

s
es=TLP ¼ 2Λ

s
; ð72Þ

which has the solution

TLPðΛÞ ¼
−s

W−1ð− s
2ΛÞ

; ð73Þ

where W−1 is the lower branch of the LambertW function.
Inserting Eq. (72) into Eq. (71) one then obtains for the
chemical potential

μLPðΛÞ ¼ TLParcosh

�
Λ
TLP

− 1

�
: ð74Þ

The line of LPs in the μ − T plane for varying cutoff
parameter Λ is shown in Fig. 1, where the dots indicate
specific examples of Λ. For finite values of Λ there is a LP
at nonzero temperature, signaling the existence of an
inhomogeneous phase.6 In the limit Λ → ∞, on the other
hand, TLP → 0, and we expect a second-order phase
transition between homogeneous phases which are stable
against inhomogeneous fluctuations for all T > 0. The
figure shows, however, that this limit is reached extremely
slowly.

IV. LATTICE FIELD THEORY TECHNIQUES

A. Lattice discretization

We consider a 2-dimensional spatial volume V of extent
L, i.e., V ¼ L2, with periodic boundary conditions. This
volume is discretized using lattice field theory, where the
lattice spacing is denoted by a and the number of lattice
sites is N2

s , i.e., Ns lattice sites in each of the two directions
and L ¼ Nsa. Since we are interested in studying sponta-
neous chiral symmetry breaking, it is essential to use a
chirally symmetric fermion discretization. We decided
to use the naive discretization (see, e.g., the textbook
[42]). Naive fermions imply fermion doubling, i.e., in
our case of two spatial dimensions the number of fermion
flavors Nf is restricted to multiples of 4. For our work
this is not a problem, because we are interested in the
limit Nf → ∞.
The extent of the temporal direction corresponds to the

inverse temperature β ¼ 1=T and boundary conditions are
antiperiodic. In temporal direction we do not use lattice
field theory, but regularize the fermion fields by a super-
position of 2N0 plane waves as discussed in detail below
and in Refs. [19,28]. Since the chiral condensate does not
depend on x0, i.e., σ ¼ σðxÞ as discussed in previous
sections, plane waves allow straightforward analytical
simplifications of the fermion determinant. Moreover,
the chemical potential can be introduced as in the con-
tinuum by adding γ0μ to the Dirac operator. In particular an
exponential coupling as typically used in lattice field theory
is not necessary. As a consequence we expect smaller
discretization errors (see Ref. [30] for a detailed
discussion).

1. Free fermions

We define the plane-wave expansion of a fermion field
representing a single flavor as

ψðx0;xÞ ¼
XN0

n0¼−N0þ1

1ffiffiffiffiffiffiffiffi
2N0

p ψðn0;xÞeiωn0
x0 ; ð75Þ

where 2N0 represents the number of modes used in
temporal direction. The frequencies ωn0¼2πðn0−1=2Þ=β
with n0¼−N0þ1;−N0þ2;…;þN0−1;þN0 imply anti-
periodic boundary conditions in temporal direction. We use
1=a≡ 1 as density of degrees of freedom,7 i.e., 2N0=β ¼ 1.
Consequently, the inverse temperature and the number
of modes are related according to β ¼ 2N0. Inserting
the plane-wave expansion into the free fermion action
leads to

FIG. 1. Line of LPs (which coincide with the TCPs if the
analysis is restricted to homogeneous phases) given by Eq. (73)
and Eq. (74) for continuously varied cutoff parameters Λ (solid
line). The dots indicate specific values of Λ.

6At Λ=σ0 < 2ð1 − ln 2Þ=ð1 − ð1 − ln 2Þ2Þ ≈ 0.68 the LP
reaches the T axis at T ¼ Λ=2, and for even smaller cutoff
values it disappears from the phase diagram. In this case the
stability analysis predicts that the inhomogeneous phase reaches
all the way down to μ ¼ 0.

7Throughout this section we express all dimensionful quan-
tities in units of the lattice spacing, e.g., L≡ L=a, μ≡ μa or
σ ≡ σa.
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Sfree½ψ̄ ;ψ � ¼
Z

d3xψ̄ðx0;xÞðγ0ð∂0 þ μÞ þ γ1∂1 þ γ2∂2Þψðx0;xÞ

¼
XN0

n0¼−N0þ1

Z
d2xψ̄ðn0;xÞðγ0ðiωn0 þ μÞ þ γ1∂1 þ γ2∂2Þψðn0;xÞ: ð76Þ

For the two spatial directions we apply the naive lattice discretization,

Sfree½χ̄;χ� ¼
XN0

n0¼−N0þ1

X
x

χ̄ðn0;xÞ
�
γ0ðiωn0 þμÞχðn0;xÞþ

X
ν¼1;2

γν
χðn0;xþeνÞ−χðn0;x−eνÞ

2

�
: ð77Þ

Note that, due to fermion doubling, χ represents four fermion flavors and, thus, cannot be interpreted as a standard fermion
field ψ as, e.g., used in Eq. (76) or in Sec. II. The relation between the components of χ and of ψ is nontrivial. Ns must be
even to have periodic boundary conditions in the spatial directions for all flavors. We refer to Refs. [29,43], where this is
discussed in detail.

2. The GN model

A possible lattice discretization of the effective action (2) of the GN model with Nf flavors (where Nf must be a multiple
of 4) with naive fermions is

Sσ½χ̄f; χf; σ� ¼
XNf=4

f¼1

�
Sfree½χ̄f; χf� þ

XN0

n0¼−N0þ1

X
x;y

χ̄fðn0;xÞW2ðx − yÞσðyÞχfðn0;xÞ
�
þ NfN0

λ

X
x

σ2ðxÞ: ð78Þ

W2 is the Fourier transform of a function W̃2 with the
following properties:

(i) W̃2ðkÞ → 1 for ðjk1j; jk2jÞ ≈ ð0; 0Þ,
(ii) W̃2ðkÞ → 0 for ðjk1j; jk2jÞ ≈ ðπ; 0Þ, ðjk1j; jk2jÞ ≈

ð0; πÞ and ðjk1j; jk2jÞ ≈ ðπ; πÞ
with k ¼ ðk1; k2Þ.
In the following we explore two suitable choices, which

have the same correct continuum limit:

W0
2ðxÞ¼

Y
ν¼1;2

W0
1ðxνÞ; W0

1ðxνÞ¼
1

4
δxν;−1þ

1

2
δxν;0þ

1

4
δxν;þ1;

ð79Þ

where the corresponding Fourier transform is W̃0
1ðkÞ ¼

ðcosðkÞ þ 1Þ=2, and

W00
2ðxÞ¼

Y
ν¼1;2

W00
1ðxνÞ;

W00
1ðxνÞ¼

1

Ns

�
1þ

XNs=4−1

n¼1

2cos

�
2πnxν
L

�
þ cos

�
πxν
2

��
;

ð80Þ

where Ns is a multiple of 4 and the corresponding Fourier
transform is W̃0

1ðkÞ ¼ Θðπ=2 − jkjÞ.
Because of fermion doubling Nf=4 naive fermion fields

χf are needed to represent Nf fermion flavors. We stress
that a specific nondiagonal structure ofW2ðxÞ is mandatory

for a valid discretization of the GN model with naive
fermions, i.e., a discretization with the correct continuum
limit. The straightforward and probably more intuitive
choice W2ðxÞ ¼ δx1;0δx2;0, which we used at an early stage
of this work [33] and which was also used in Ref. [34],
introduces additional four fermion interactions which are
not part of the GN model, e.g., couplings between different
flavors like ψ̄1ψ2σ, ψ̄1ψ3σ, etc. For a more detailed
discussion we refer to Sec. V C 1 of this work and to
Appendix A of Ref. [29].
After integrating over the fermion fields in the partition

function, as discussed in Sec. II, one obtains the discretized
effective action

Seff ½σ�
Nf

¼ N0

λ

X
x

σ2ðxÞ − 1

4
lnðDetðQÞÞ: ð81Þ

The Dirac operator Q is a matrix of size 2N0N2
sNd ×

2N0N2
sNd with rows and columns representing spacetime

and spin,

Qðn0;x; n00;x0Þ ¼ δn0;n00

�
γ0ðiωn0 þ μÞδx;x0

þ
X
ν¼1;2

γν
δxþeν;x0 − δx−eν;x0

2

þ
X
y

W2ðx − yÞσðyÞδx;x0
�
: ð82Þ
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This matrix is diagonal with respect to the temporal indices
n0 and n00. Thus, one can factorize the fermion determinant
in Eq. (81) according to

lnðDetðQÞÞ ¼
XN0

n0¼−N0þ1

lnðDetðQðn0;x; n0;x0ÞÞÞ; ð83Þ

i.e., the problem is reduced to the computation of the
determinants of 2N0 smaller matrices of size N2

sNd×
N2

sNd.
When restricting the dependence of σ to only one of

the two spatial coordinates, i.e., σ ¼ σðx1Þ, the numerical
costs of computing Seff can be further reduced. Similar to
the plane-wave expansion in temporal direction one can
diagonalize the Dirac operator (82) with respect to x2 by
writing

χðx0;xÞ¼
XN0

n0¼−N0þ1

XNs−1

n2¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N0Ns

p χðn0;x1;n2Þeiðωn0
x0þkn2x2Þ

ð84Þ

with x2 still restricted to the sites of the spatial lattice8 and
kn2 ¼ 2πn2=L. The Dirac operator (82) then becomes

Qðn0;x1;n2;n00;x01;n02Þ

¼ δn0;n00δn2;n02

�
γ0ðiωn0 þμÞδx1;x01 þ γ1

δx1þ1;x0
1
−δx1−1;x01
2

þ γ2isinðkn2Þδx1;x01 þ
X
y1

W1ðx1−y1Þσðy1Þδx1;x01
�
; ð85Þ

where W1 ¼ W0
1 or W1 ¼ W00

1. This is a diagonal matrix
with respect to the temporal indices n0 and n00 as well
as the spatial indices n2 and n02. The computation of the
fermion determinant in Eq. (81) is, thus, reduced to the
computation of the determinants of 2N0Ns matrices of size
NsNd × NsNd,

lnðDetðQÞÞ¼
XN0

n0¼−N0þ1

XNs−1

n2¼0

lnðDetðQðn0;x1;n2;n0;x01;n2ÞÞÞ:

ð86Þ

B. Numerical evaluation of the effective action

We perform all computations with the 2 × 2 representa-
tion of γ matrices (14), i.e., Nd ¼ 2. An important part of

these computations is the numerical evaluation of the
effective action (81) for a given field configuration σ.
Typically, this has to be repeated many times, e.g., when
minimizing Seff with respect to σ, or when checking the
stability of a homogeneous condensate σ ¼ σ̄ ¼ const with
respect to inhomogeneous perturbations. Particularly time
consuming is the computation of lnðDetðQÞÞ. To maximize
efficiency, we distinguish the following three cases:

(i) σ ¼ σðxÞ:
The Dirac operator (82) is a block-diagonal matrix

with 2N0 blocks of size 2N2
s × 2N2

s . The determi-
nant of each block is computed via a standard
LU-decomposition. We use the publicly available
GSL library [44].

(ii) σ ¼ σðx1Þ:
The Dirac operator (85) is a block-diagonal matrix

with 2N0Ns blocks of size 2Ns × 2Ns. Again the
determinant of each block is computed via a stan-
dard LU-decomposition.

(iii) σ ¼ σ̄ ¼ const:
For homogeneous condensates we obtain identi-

cal results for the discretizations W0
2 and W00

2 , as can
be seen from Eqs. (78)–(80). The eigenvalues of Q
can be calculated analytically in a straightforward
way. lnðDetðQÞÞ is then computed by summing over
the eigenvalues, leading to

Seff ½σ̄�
Nf

¼ N0N2
s

λ
σ̄2 −

1

4

XN0

n0¼1

XNs−1

n1¼0

XNs−1

n2¼0

lnðA2ðσ̄Þ þ B2Þ

ð87Þ
(note that in contrast to previous equations the sum
over n0 is restricted to positive integers) with

Aðσ̄Þ ¼ σ̄2 − μ2 þ ω2
n0 þ sin2ðkn1Þ þ sin2ðkn2Þ;

B ¼ 2μωn0 ; ð88Þ

ωn0 ¼ 2πðn0 − 1=2Þ=β and knj ¼ 2πnj=L.
In Sec. IV D we also need the second derivative of

Seff with respect to σ̄ at σ̄ ¼ 0, which can be
calculated as

∂2

∂σ̄2
Seff ½σ̄�
Nf

����
σ̄¼0

¼ 2N0N2
s

λ
−
XN0

n0¼1

XNs−1

n1¼0

XNs−1

n2¼0

Að0Þ
A2ð0ÞþB2

:

ð89Þ

Note that for σ ¼ σ̄ ¼ const the effective action

corresponds to the term Sð0Þeff of the expansion (31).
Hence, Eq. (89) is the lattice field-theory version of
Eq. (53). Indeed, since 2N0N2

s ¼ βV in lattice units,
this is immediately obvious for the first term on the
right-hand side, while the lattice version of the
integral (41) is given by

8In principle the x2 direction could be treated in the continuum,
exactly in the same way as the temporal direction discussed
in Sec. IVA 1. However, since we carry out computations with
σ ¼ σðx1Þ and σ ¼ σðx1; x2Þ in Sec. V, we prefer to use the same
lattice regularization in both cases.
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l1 →
1

2N0N2
s

XN0

n0¼1

XNs−1

n1¼0

XNs−1

n2¼0

Aðσ̄Þ
A2ðσ̄Þ þ B2

ð90Þ

in consistency with the second term.

C. Stability analysis on the lattice

In Sec. III A we have discussed in detail within the
continuum approach, how to perform a stability analysis

with respect to inhomogeneous perturbations of a homo-
geneous condensate minimizing the effective action. The
same steps and calculations can also be carried out in the
lattice field theory approach.
The important analytical result is an expression for the

second-order contributions of the fluctuations to the effec-
tive action, when using the lattice Dirac operator (82). It
reads

Sð2Þeff ¼
βL2

2

X
qk

jδσ̃qk j2Γ−1ðqkÞ; ð91Þ

where

Γ−1ðqkÞ ¼ Nf

�
1

λ
−
W̃2ðqkÞW̃2ð−qkÞ

2βL2

×
XN0

n0¼−N0þ1

XNs−1

n1¼0

XNs−1

n2¼0

lðn0; n1; n2;qkÞ
�

ð92Þ

with qk¼ðqk;1;qk;2Þ and qk;j¼2πkj=L with kj¼0;1;…;
Ns−1, and

lðn0; n1; n2;qkÞ ¼
ðωn0 − iμÞ2 þ sinðkn1Þ sinðkn1 − qk;1Þ þ sinðkn2Þ sinðkn2 − qk;2Þ − σ̄2

ððωn0 − iμÞ2 þ sin2ðkn1Þ þ sin2ðkn2Þ þ σ̄2Þ

×
1

ððωn0 − iμÞ2 þ sin2ðkn1 − qk;1Þ þ sin2ðkn2 − qk;2Þ þ σ̄2Þ ð93Þ

with ωn0 ¼ 2πðn0 − 1=2Þ=β and knj ¼ 2πnj=L. These
equations are the analogs of Eqs. (46) and (47). As
discussed in Sec. III A, negative Γ−1ðqkÞ with qk ≠ 0
indicate inhomogeneous perturbations which decrease Seff .

D. Coupling constant, lattice spacing and scale setting

As usual in a renormalizable lattice field theory, the
lattice spacing a can be set by tuning the coupling constant
λ, i.e., a ¼ aðλÞ.9 Moreover, in our particular regularization
the number of modes in temporal direction N0 is propor-
tional to the inverse temperature β, i.e., N0 ¼ β=2a, as
discussed in Sec. IVA 1. Thus, the temperature can be
adjusted by either changing N0 or λ.
For our computations we first fix the number of modes at

the critical temperature, denoted by N0;c, where we typi-
cally use a small number, 2 ≤ N0;c ≤ 5 (throughout this
section Ns ¼ L is chosen sufficiently large, such that finite

volume corrections are essentially negligible). This in turn
fixes the coupling constant λ and the lattice spacing a,
where the former has to be tuned in such a way that
2N0;caðλÞ ¼ βc. An obvious possibility is to determine λ
such that σ̄ðλ − ϵÞ ¼ 0 and σ̄ðλþ ϵÞ ≠ 0 for infinitesimal ϵ
(see Fig. 2, where jσ̄j is plotted as a function of λ).10

Mathematically equivalent, butmore practical froma numeri-
cal point of view is to consider ð∂2=∂σ̄2ÞSeff ½σ̄�=Nfjσ̄¼0 [see
Eq. (89)] as a function of λ and to determine its root, which
leads to

λ ¼
�

1

2N0;cN2
s

XN0;c

n0¼1

XNs−1

n1¼0

XNs−1

n2¼0

Að0Þ
A2ð0Þ þ B2

�
−1
: ð94Þ

FIG. 2. jσ̄j as a function of λ forN0¼5 andNs ¼ 100.N0;c ¼ 5
corresponds to λ ¼ 3.998, where jσ̄j starts to deviate from 0.

9This equation is analogous to Eq. (56), which relates λ and Λ.

10This is based on Refs. [31,32,45], where it was found that at
μ ¼ 0 there is a homogeneous symmetry-broken phase with σ ¼
σ̄ ≠ 0 for T < Tc and a symmetric phase with σ ¼ σ̄ ¼ 0 for
T > Tc connected by a phase transition of second order.
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Even though λ is now fixed, the temperature can still be
changed in discrete steps by increasing or decreasing the
number of modes, since T ¼ 1=2N0.
Equation (94) is similar to the renormalization condition

(56) used in our continuum approach, as can be seen by
inserting the correspondence given in Eq. (90). In Eq. (56)
the integral l1 is evaluated in the vacuum at T ¼ μ ¼ 0 for
σ̄ ¼ σ0, while in Eq. (94) it is evaluated at T ¼ Tc and
μ ¼ 0 for σ̄ ¼ 0. However, both conditions correspond to
the nontrivial solution of the gap equation (40), which is
equal to σ0 in vacuum and goes to zero at Tc.
In principle, the scale could now be set via the critical

temperature Tc ¼ 1=2N0;c, i.e., we could express all
dimensionful quantities in units of Tc. However, we prefer
to set the scale via σ0, which is common in the existing
literature. To determine σ0, we compute jσ̄jμ¼0;T for several
small T by minimizing Seff with respect to σ̄. Using
Eq. (87) this is numerically rather simple and can by done
by a standard golden section search. jσ̄jμ¼0;T quickly
approaches a plateau, when decreasing T, i.e., jσ̄jμ¼0;T is
almost constant for T ≲ Tc=4, and the plateau value is
identical to σ0 (see Fig. 3, left plot).
In the following we express all dimensionful quantities

in units of σ0. For example for Tc=σ0 we obtain values
rather close to the analytically known result 1=2 lnð2Þ [31]
also at finite lattice spacing. When increasing N0;c, which
amounts to decreasing λ as well as decreasing a, and
approaching the continuum limit, our results for Tc=σ0
approach 1=2 lnð2Þ ≈ 0.721…, as can be seen in the right
plot of Fig. 3. Note, however, that in contrast to our
continuum approach, where this limit is reached from
below when the cutoff Λ is sent to infinity [see
Eq. (70)], here the data points first overshoot the limiting
value and then approach the latter from above.

V. RESULTS

After having introduced our different approaches, we
finally turn to the discussion of our results for the phase
diagram. From Refs. [31–34,45] as well as from our

analytical studies in Sec. III D we expect up to three phases,
each characterized by a different behavior of the field σ:

(i) A symmetric phase with σ ¼ 0 at large μ and/or
large T.

(ii) A homogeneous symmetry-broken phase with a
spatially constant (but μ and T dependent) field σ ¼
σ̄ ≠ 0 at small μ and small T.

(iii) Possibly an inhomogeneous phase, where σðxÞ is a
varying function of the spatial coordinates, at inter-
mediate μ and small T [33]. This phase might only be
present at a finite value of the regulator (e.g., Pauli-
Villars cutoff Λ or lattice spacing a), as indicated by
recent lattice field theory results reported in Ref. [34]
and the behavior of the LP found in Sec. III D.

In the following we present and compare results, which
we computed using our three regularizations, the continuum
approach with Pauli-Villars cutoff Λ discussed in Sec. III
and the two lattice discretizations with lattice spacing a
discussed in Sec. IV. The advantage of the lattice approach
compared to the continuumapproach is that one can perform
minimizations of Seff with respect to σðxÞ, allowing for
arbitrarymodulations of the condensate. There are, however,
also drawbacks, namely computations are typically expen-
sive and have to be carried out at finite spatial volume V and
finite lattice spacing a, while in the continuum approach
both V and the Pauli-Villars cutoff Λ can be sent to infinity.
Thus, both approaches complement each other.
Our main goal is to explore and to understand the

dependence of a possibly existent inhomogeneous phase
in the 2þ 1-dimensional GNmodel on the regulatorsΛ and
a. In particular we expect to get insights concerning the a
dependence of the lattice field theory results by analogy to
the Λ dependence of the continuum results, for which we
have derived analytical expressions in Sec. III D. For a
crude quantitative comparison of continuum and lattice
results we relate the corresponding regulators via

Λ ¼
ffiffiffi
π

p
a

: ð95Þ

FIG. 3. Left: jσ̄jμ¼0;T as a function of T=Tc for N0;c ¼ 4 and Ns ¼ 80. Right: Tc=σ0 as a function of the lattice spacing a (the data
points correspond to 2 ≤ N0;c ≤ 28). For small values of a, Tc=σ0 approaches the analytical result 1=2 lnð2Þ ≈ 0.721… [31].
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This equation can be obtained by equating the considered
regions of spatial momenta, which are πΛ2 (a circle
in momentum space in the continuum approach; see
Sec. III C) and ðπ=aÞ2 (a square in momentum space in
the lattice approach; see Appendix A in Ref. [29]).
The lattice spacings used in the numerical calculations

presented below, together with the corresponding values of
the Pauli-Villars cutoffs, are listed in Table I. We also list
the corresponding coupling constants λ for both cases.
Despite the rather different approaches, the values of λσ0
turn out to be quite similar, which may be considered as an
additional justification of Eq. (95).

A. Phase diagram for homogeneous condensate
σðxÞ= σ̄ = const

In this subsection we only allow spatially constant
condensates, i.e., σðxÞ ¼ σ̄ ¼ const. The resulting
homogeneous phase diagrams are presented in Fig. 4.

For Λ → ∞ the phase boundary obtained in the continuum
approach is of second order (with the exception of the
endpoint at T ¼ 0, where it is of first order) and given by
Eq. (71) with s → σ0. It is identical to the known result of
Ref. [31] and shown as solid blue line in both plots
of Fig. 4.
The two lattice discretizations with W0

2 and W00
2 become

identical for homogeneous condensates, as discussed in
Sec. IV B. In the right plot of Fig. 4 we show results for two
different lattice spacings, aσ0 ¼ 0.379 and aσ0 ¼ 0.049,
but identical spatial volume (in units of the critical temper-
ature), ðLTcÞ2 ¼ ðNs=2N0;cÞ2 ¼ 102. The phase boundary
obtained with the finer lattice spacing is much closer to the
result from Ref. [31] and a combined continuum and
infinite-volume extrapolation indicates consistency with
that result. It is interesting to note that at the coarse
lattice spacing aσ0 ¼ 0.379 the phase transition is of
second order for T=σ0 ≥ 0.189, while it is of first order
for T=σ0 ≤ 0.165. At the fine lattice spacing aσ0 ¼ 0.049
we only observe second-order phase transitions, but we
expect that somewhere below T=σ0 ¼ 0.075 (the smallest
temperature we have investigated) these transitions change
to first order.
Our continuum results, which are displayed in the left

panel of Fig. 4, exhibit a qualitatively similar behavior. We
use the finite Pauli-Villars cutoffs Λ=σ0 ¼ 4.68 and
Λ=σ0 ¼ 36.17, which, according to the matching for-
mula (95), correspond to the two lattice spacings used in
the right panel of the figure (see also Table I). As discussed
in Sec. III D and illustrated in Fig. 1, at finite Λ there
always exists a TCP, separating first- and second-order
phase boundaries. In Fig. 4 these points are marked by open
circles. For Λ=σ0 ¼ 4.68 the TCP is located at μ=σ0 ¼
0.881 and T=σ0 ¼ 0.245, which is somewhat lower in
chemical potential and higher in temperature than observed

FIG. 4. Phase diagram of the 2þ 1-dimensional GN model in the μ − T plane for σðxÞ ¼ σ̄ ¼ const. The blue lines shown in both
plots represent the phase boundary from Ref. [31], which we also obtain in our continuum approach forΛ → ∞. Left: Continuum results
at finite Pauli-Villars cutoffs, Λ=σ0 ¼ 4.68 (red) and Λ=σ0 ¼ 36.17 (green). Second-order (first-order) phase boundaries are indicated
by solid (dashed) lines. The open circles mark the locations of the TCPs. Right: Lattice results at finite lattice spacings, aσ0 ¼ 0.379
(red) and aσ0 ¼ 0.049 (green), and finite spatial volume, ðLTcÞ2 ¼ 102. Full circles (open triangles) indicate second-order (first-order)
phase transitions.

TABLE I. Lattice spacings a used in the numerical calculations,
and the corresponding values of the Pauli-Villars cutoff Λ
according to Eq. (95). We also list the corresponding coupling
constants λ for both the lattice field theory and the continuum
approach [see Eq. (94) and Eq. (59)]. All quantities are made
dimensionless with the help of the vacuum value σ0 of the scalar
field σ.

Lattice field theory Continuum approach

aσ0 λσ0 Λ=σ0 λσ0

0.379 1.78 4.68 1.66
0.237 1.01 7.48 0.96
0.115 0.45 15.41 0.43
0.086 0.33 20.61 0.32
0.049 0.19 36.17 0.18
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in the lattice approach for aσ0 ¼ 0.379. A similar tendency
is seen at Λ=σ0 ¼ 36.17, where the TCP is found at
μ=σ0 ¼ 0.985 and T=σ0 ¼ 0.166 in the continuum
approach, while no first-order phase transition at temper-
atures above T=σ0 ¼ 0.075was found in the corresponding
lattice calculation. We emphasize, however, that Eq. (95) is
only a crude prescription to compare two very different
approaches and there is no reason to expect perfect
agreement. In general we find that the lattice points at
low T converge faster to the Λ → ∞ line than the
corresponding continuum results, while the second-
order phase boundaries at low μ agree fairly well, even
quantitatively.

B. Instabilities with respect to spatially
inhomogeneous perturbations

We now relax the restriction to a homogeneous
field σ and investigate the possible appearance of inho-
mogeneous phases in the phase diagram. To do this in a
rigorous way, one has to consider arbitrary modulations
of the condensate and minimize the effective action
Seff with respect to σðxÞ. In the lattice approach this is
possible, but numerically a very hard problem. It amounts
to minimizing Seff in Eq. (81), which is a function
in N2

s variables σðxÞ. Finding the global minimum of a
function in a large number of variables (in our case
N2

s ¼ Oð102Þ…Oð1002Þ) is an extremely challenging task.
Therefore, in a first step, we check, whether the constant
σ ¼ σ̄ determined in Sec. VA is stable with respect to
spatially inhomogeneous perturbations δσ. We do this both
in the continuum approach introduced in Sec. III as well as
in the lattice approach of Sec. IV. Steps toward a rigorous
minimization of the effective action with respect to arbi-
trarily varying fields will be discussed afterwards, in
Sec. V C.
The starting point for the stability analysis is Sð2Þeff at

σ ¼ σ̄, which is given by Eq. (46) in the continuum
approach and by Eq. (91) in the lattice approach. In both
cases the perturbation δσ is expressed as a sum of plane

waves. This leads to a particularly simple form for Sð2Þeff ,
where an instability with respect to inhomogeneous
perturbations is indicated by a negative value of Γ−1 for
at least one momentum q ≠ 0. (For q ¼ 0 we have
Γ−1 ≥ 0 because σ ¼ σ̄ minimizes Seff when restricting
σ to a constant.) Thus, in order to determine numerically
whether there is an instability at given μ and T, one just
has to find the minimum of Γ−1. This is rather straightfor-
ward, because Γ−1 is a function with only a single
argument q2 in the continuum approach and a finite set
of numbers, each corresponding to one of the discrete
lattice momenta qk, in the lattice field theory approach.
Instability lines separating regions of stability from
regions of instability can then be computed by a simple
bisection in μ direction.

In Fig. 5 we show results of such analyses obtained in
lattice field theory with the discretization W2 ¼ W00

2 [see
Eq. (80)] for three different lattice spacings as well as in the
continuum approach with the corresponding values of the
Pauli-Villars cutoff Λ. Regions where the homogeneous
ground state is unstable against inhomogeneous fluctua-
tions and which are therefore parts of an inhomogeneous
phase are shaded in green.
In the continuum approach (left column of Fig. 5) these

instability regions are found in a temperature regime from
T ¼ 0 up to the LP, which, as shown in Sec. III B, coincides
with the TCP of the corresponding homogeneous phase
diagram. Accordingly, as already expected from the behav-
ior of the LP shown in Fig. 1, the instability region shrinks
when Λ is increased, and disappears completely for
Λ → ∞. At finite Λ we find that instabilities only occur
in the symmetric phase of the homogeneous phase dia-
grams, while the homogeneous symmetry-broken phase
remains stable against small inhomogeneous fluctuations.
In particular the “left” phase boundaries of the instability
region coincide with the first-order phase boundaries of the
homogeneous phase diagrams. It is quite likely, however,
that the true inhomogeneous phase (at finite Λ) reaches to
somewhat lower values of μ, as known, e.g., from the GN
model in 1þ 1 dimensions [13–15] or the NJL model in
3þ 1 dimensions [16,17].
For further illustration of the continuum-approach

results of Fig. 5 we show in Fig. 6 selected examples
of the function Γ−1 for Λ=σ0 ¼ 4.68 (left plot) and Λ → ∞
(right plot). The green curve in the left plot corresponds
to a point inside the instability region, as obvious from
the fact that Γ−1 is negative in some momentum interval.
The red curve, on the other hand, just touches the Γ−1 ¼ 0

axis at some nonzero q2 and therefore corresponds
to a point on the boundary between the stable and the
unstable region with respect to inhomogeneous fluctua-
tions. The blue curve has a similar minimum as the red
curve, however at q2 ¼ 0, thus indicating a LP
(cf. Eq. (55)). Finally, the magenta curve corresponds
to a point on the second-order boundary between the
homogeneous symmetry-broken and the symmetric
phase, where Γ−1ð0Þ ¼ 0 but with a nonvanishing deriva-
tive with respect to q2.
The magenta curve in the right plot of Fig. 6 is

qualitatively similar and corresponds to a point on the
second-order boundary between the homogeneous sym-
metry-broken and the symmetric phase in the renormal-
ized model, i.e., for Λ → ∞. As pointed out above, for
Λ → ∞ there is no instability with respect to inhomo-
geneous fluctuations at any T > 0, and therefore the blue
curve is characteristic for the entire phase boundary. An
exceptional case is the situation at T ¼ 0 and μ ¼ σ0,
indicated by the blue curve. Here Γ−1ðq2Þ ¼ 0 in the
whole interval 0 ≤ q2 ≤ 4σ20. This point may thus be
interpreted as a point on the instability boundary, but
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instead of having a single unstable mode, the instability is
driven by any momenta 0 ≤ jqj ≤ 2μ or superposition of
them. This behavior, which clearly deserves further
investigation, could be related to an observation reported
in Ref. [45], where it was found that at T ¼ 0 a specific
inhomogeneous modulation based on Jacobi elliptic
functions is degenerate with the favored homogeneous
solutions.
Going back to Fig. 5, we now turn to the diagrams

shown in the right column, which have been obtained

within the lattice field theory approach, using the dis-
cretization with W2 ¼ W00

2 . As one can see by comparison
with the left panels, the results are qualitatively similar to
those from the continuum approach. Again, the regions of
instability are only found in the symmetric phase of the
homogeneous phase diagram, and they shrink when the
lattice spacing is decreased. We therefore expect that in
the continuum limit a → 0 the instability regions vanish
(at least for T > 0), as they do for Λ → ∞ in the
continuum approach.

FIG. 5. “Phase diagram” of the 2þ 1-dimensional GN model in the μ − T plane obtained by stability analyses with respect to spatially
inhomogeneous perturbations. Lattice field theory results obtained with W00

2 for three different lattice spacings a are shown in the right
column, continuum results for the corresponding Pauli-Villars cutoff Λ ¼ ffiffiffi

π
p

=a in the left column. The blue line appearing in all six
plots represents the known phase boundary from Ref. [31], which we also obtain in our continuum approach for Λ → ∞. Regions of
instability, which are part of and may coincide with inhomogeneous phases, are shaded in green.
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When carefully inspecting the instability line toward
the symmetric phase, one can identify small deviations
from a smooth behavior. This is a finite-volume effect,
similar to that observed in numerical studies of the 1þ 1-
dimensional GN model [27,28]. The reason is that close to
the phase boundary only nonvanishing momenta inside a
small interval would lead to negative Γ−1, but none of the
numerically considered momenta, which are quantized by
the finite spatial volume, is inside that interval. We also
note that the LP has a higher temperature than the TCP, i.e.,
they do not coincide as it is the case in the continuum
approach. We attribute this to the lattice discretization,
which invalidates some of the steps we have performed in
Sec. III B to show the coincidence of the two points in the
continuum approach. In particular the momentum deriva-
tive in Eq. (55) is not well defined on the lattice, where the
allowed momenta are discrete. Interestingly, the positions
of the LP for the different lattice spacings agree fairly well
with the corresponding ones in the continuum approach,
when we apply our matching prescription (95), while the
agreement of the positions of the TCP is not as good
(see Fig. 4).
For aσ0 ¼ 0.379, despite the similar positions of the LP,

the instability region from the lattice approach extends to
considerably higher chemical potentials than in the
corresponding continuum calculation. In fact, extending
the stability analysis to higher values of μ it turns out that
the temperature of the boundary to the stable region rises
again, leading to a much larger instability region, before it
drops toward T ¼ 0 at around μ=σ0 ¼ 3.5. This can be
seen in Fig. 7 (upper right plot), where the results of the
stability analysis are shown for the same parameters as in
Fig. 5 but for a much larger μ range. In the corresponding
continuum plot (upper left) we see that around μ=σ0 ¼ 5 a
second instability region appears, which grows to very
high temperatures and does not seem to be bounded at all.
Such a type of inhomogeneous region is also known from
the 3þ 1-dimensional NJL model, where it has been
termed “inhomogeneous continent.” Lowering the cutoff

below Λ=σ0 ≈ 3 (not shown in the figure), the continent
merges with the finite instability region at smaller μ,
which is connected to the homogeneous symmetry-
broken phase (sometimes called “inhomogeneous
island”), leading to a single large instability region,
similar as in the lattice result at aσ0 ¼ 0.379 but without
a decreasing boundary at large μ. On the other hand, if
we increase the cutoff, the onset of the continent is pushed
to higher values of μ, and it disappears completely for
Λ → ∞, so that no instability region is left in the
renormalized model. The behavior on the lattice is
qualitatively similar, with the exception that the size of
the second inhomogeneous region is finite. This differ-
ence is most likely due to the fact that the momenta of the
unstable modes increase with μ, and that, in contrast to the
continuum approach, the available momentum modes on
the lattice are restricted.
So far we have only discussed lattice results with the

discretization W2 ¼ W00
2 . Using the lattice discretization

with W2 ¼ W0
2 [see Eq. (79)] we did not find instabilities

anywhere in the μ − T plane, neither for aσ0 ¼ 0.379 nor
for aσ0 ¼ 0.115. When using naive lattice fermions,
momenta jk1j≳ π=2 or jk2j≳ π=2 in the Fourier expan-
sion of σ lead to unphysical interaction terms not present
in the GN model, as discussed in Sec. IVA 2 and in more
detail in Ref. [29]. Thus, these large momenta need to be
suppressed, to obtain lattice actions with the correct
continuum limit. This is done in different ways for the
two lattice discretizations we are using. W0

2 is a smooth
cosine function in momentum space, while W00

2 is a step
function. Both discretizations yield identical results in
the continuum limit, butW0

2 generates a slight suppression
∝ a2 also for small momenta, which are relevant for the
formation of inhomogeneous instabilities. In contrast to
that W00

2 does not generate such a suppression. This could
be the reason why the discretization with W2 ¼ W00

2 leads
to instability regions at finite a, while the discretization
with W2 ¼ W0

2 does not. We will come back to this issue
in Sec. V C.

FIG. 6. Γ−1 as a function of the squared spatial momentum in the continuum approach for selected values of μ and T (see also the upper
left panel of Fig. 5). Left: Λ=σ0 ¼ 4.68. Right: Λ → ∞.
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C. Minimization of the effective action allowing
inhomogeneous modulations

As pointed out before, the true inhomogeneous phases
could be larger than the instability regions found in Sec.V B.
The latter are fully included in the former, but the former
might extend further if somewhere σ̄ is just a local minimum
ofSeff with the globalminimumgiven by an inhomogeneous
σðxÞ. In particular the nonexistence of instability regions
in the renormalized model (at least for T ≠ 0) does not
generally exclude the existence of an inhomogeneous phase
in this limit. In the following, in order to explore this
possibility, we perform numerical minimizations of the
lattice discretized effective action (81), allowing inhomo-
geneous modulations of the condensate. To this end, we use
W0

2 as well as W
00
2 .

1. Minimization using a cosine ansatz for the condensate

We start by restricting the condensate to

σðx1Þ ¼ α cos

�
2πnðx1=aÞ

Ns

�
ð96Þ

with fixed integer n and minimize Seff with respect to α. For
small α this ansatz corresponds to one of the terms in the
sum of Eq. (91), i.e., it represents a particular perturbation
investigated in the stability analyses of Sec. V B. The
motivation for this subsection is to provide further support
that the two lattice discretizations corresponding to
W2 ¼ W0

2 and W2 ¼ W00
2 coincide in the continuum limit.

Moreover, this particular cosine ansatz allows to make

FIG. 7. The same as Fig. 5 but showing a larger region of chemical potentials.
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contact to and perform a cross check with existing lattice
results from Ref. [34].
As an example we focus on n ¼ 3 at ðμ=σ0; T=σ0Þ ¼

ð1.035; 0.110Þ. For the lattice discretization withW2 ¼ W00
2

and the two coarser lattice spacings aσ0 ∈ f0.379; 0.237g
the associated Γ−1 (see Eq. (92)) is negative, i.e., in these
cases the ansatz leads to an inhomogeneous phase. For
W2 ¼ W00

2 and aσ0 ¼ 0.086 as well as for W2 ¼ W0
2 the

associated Γ−1 is positive. In Fig. 8 we plot the effective
action as a function of α. The plot confirms our findings
from Sec. V B: α ¼ 0 is the location of a maximum of Seff
forW2 ¼ W00

2 and aσ0 ∈ f0.379; 0.237g and of a minimum
in the other cases. The qualitatively different behavior
of Seff for W2 ¼ W0

2 and W2 ¼ W00
2 , in particular for larger

a, is the reason, why the discretization withW2 ¼ W00
2 leads

to an inhomogeneous phase at finite a, while W2 ¼ W0
2

does not. From Fig. 8 one can also see that the effective
actions for W2 ¼ W0

2 and W2 ¼ W00
2 are approaching each

other for decreasing a. This indicates that in the limit a → 0
both actions converge to the same action, the action
of the renormalized 2þ 1-dimensional GN model, as
theoretically expected (see the discussion in Sec. IVA 2
and Ref. [29]).
The ansatz (96) together with a numerical minimization

was already used in the previous lattice field theory study of
the 2þ 1-dimensional GN model in Ref. [34]. There,
however, a different discretization was used, equivalent
to Eq. (78) withW2ðx − yÞ ¼ δx;y . While this discretization
does not correspond to the GN model for an arbitrary
spatially varying condensate σðxÞ (see Sec. IVA 2 and the
detailed discussion in Ref. [29]), it becomes identical to
W2 ¼ W00

2 if σ is restricted to a cosine-shaped modulation as
in Eq. (96) with jnj < Ns=4. Of particular interest is a
comparison of Fig. 8 of Ref. [34] and our results from
Fig. 8 for W2 ¼ W00

2. Since we do not use the same lattice

spacings and spatial volumes as used in Ref. [34], a precise
quantitative comparison is not possible. However, the two
figures are qualitatively identical and indicate consistency
of the results presented in Ref. [34] and our results.

2. Minimization allowing arbitrary 1-dimensional
modulations of the condensate

Finding the global minimum of the effective action
for arbitrary σ ¼ σðx1; x2Þ is time consuming, because
it is quite expensive to evaluate Seff . Thus, we restrict
σ to arbitrary 1-dimensional modulations, i.e., consider
σ ¼ σðx1Þ. Seff can then be evaluated more efficiently,
because the determinant of the Dirac operator factorizes
into determinants of smaller matrices of size NsNd × NsNd
[see Eq. (86)]. Moreover, the number of variables for the
minimization is reduced from N2

s to Ns. To search for the
global minimum of Seff for given ðμ; TÞ, a Fletcher-Reeves
conjugate gradient algorithm is used, as implemented in the
GNU Scientific Library [44]. This algorithm is suited to
compute local minima of a given function. We try to find
the global minimum of Seff by carrying out several local
minimizations with different initial field configurations
σðx1Þ. Some of these initial configurations are proportional
to a cosine as in Eq. (96), but also randomly generated
initial configurations are used. For values ðμ; TÞ, where we
find local minima, the corresponding condensates are
always periodic and oscillating. We note that local mini-
mizations with randomly generated initial configurations
do not lead to additional local minima, but to the same
minima already found with initial configurations propor-
tional to a cosine. We interpret this as indication that the
found σðx1Þ with the smallest corresponding value for Seff
represents the global minimum.

The shape of the condensate inside the instability region
for W2 ¼ W00

2—As discussed in Sec. V B, the instability
regions found for the lattice discretization with W2 ¼ W00

2

and finite lattice spacing (see Fig. 5 and Fig. 7) are regions
where the condensate exhibits inhomogeneous modula-
tions. By minimizing Seff we determine the shape of these
modulations. In Fig. 9 we show the condensate σ as a
function of x1 for aσ0 ¼ 0.379, T=σ0 ¼ 0.132 and two
values of the chemical potential, μ=σ0 ¼ 0.97 (left plot) and
μ=σ0 ¼ 1.11 (right plot). For the smaller value of μ the
number of oscillations is smaller and the amplitude is larger
than for the larger value of μ. Moreover, at μ=σ0 ¼ 0.97 the
condensate deviates from a cosine, while at μ=σ0 ¼ 1.11
the modulation is essentially a cosine. For even larger μ,
when approaching the boundary of the instability region at
μ=σ0 ¼ 1.134, the amplitude tends to zero, whereas the
wavelength is still finite and consistent with the unstable
momentum mode in the stability analysis. Note that the
same behavior was observed for the 1þ 1-dimensional GN
model inside the inhomogeneous phase [13,14].

FIG. 8. Seff − S0 for ðμ=σ0; T=σ0Þ ¼ ð1.035; 0.110Þ as a func-
tion of α, where the condensate is restricted according to
σðx1Þ ¼ α cosð6πðx1=aÞ=NsÞ. We show results for both lattice
discretizationsW2 ¼ W0

2 andW2 ¼ W00
2 and three lattice spacings

a. S0 is a physically irrelevant a-dependent shift chosen such that
Seff jα¼0 is identical for all three lattice spacings.
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Local minima of Seff in the homogeneous symmetry-broken
phase—Inside the σ ≠ 0 regions shown in the right plot of
Fig. 4 we find in addition to the favored homogeneous
configuration σ ¼ σ̄ several local minima corresponding to
inhomogeneous modulations. None of these minima leads
to a smaller value of Seff than the constant condensate
σ ¼ σ̄, which seems to represent the global minimum. Only
rather close to the boundary of the homogeneous sym-
metry-broken phase the existence and properties of the
inhomogeneous minima depend on the lattice discretiza-
tion, i.e., whether we use W2 ¼ W0

2 or W2 ¼ W00
2, and on

the lattice spacing a. Farther inside the homogeneous
symmetry-broken phase they are almost independent of
W2 and of a. This indicates that these local inhomogeneous
minima are also present in the renormalized 2þ 1-dimen-
sional GN model. As an example we show in Fig. 10 the
condensate σðx1Þ corresponding to one such local mini-
mum at ðμ=σ0; T=σ0Þ ¼ ð0.60; 0.176Þ and lattice spacing
aσ0 ¼ 0.237. As one might expect from the minimizations

in the instability region discussed above, the wavelengths
of the condensates corresponding to the local inhomo-
geneous minima are quite large, their amplitudes are close
to σ0 and the shape is somewhere between a cosine and a
kink-antikink structure.
We also studied the differences between Seffðσ̄Þ and Seff

evaluated at the local minima. These differences are
positive in the homogeneous symmetry-broken phase,
since σ ¼ σ̄ represents the global minimum of Seff . For
fixed T and increasing μ the differences become smaller.
For the discretization with W2 ¼ W00

2 and T < TLP the
difference to the local minimum corresponding to a kink-
antikink with wavelength L approaches 0 extremely close
to or exactly at the boundary to the instability region. For
the discretization with W2 ¼ W0

2 inhomogeneous minima
cease to exist near the boundary to the instability region.
For fixed μ and decreasing T the differences between
Seffðσ̄Þ and Seff evaluated at the local minima also decrease.
This is consistent with Ref. [45], where the 2þ 1-dimen-
sional GN was studied at T ¼ 0 using a specific ansatz for
σðx1Þ based on Jacobi elliptic functions. There it was found
that such inhomogeneous modulations represent minima of
Seff , which are degenerate with the minimum at σ ¼ σ̄.

Phase diagram—Within the σ ¼ 0 regions shown in the
right plot of Fig. 4 and (for W2 ¼ W00

2) outside the
instability region we do not find any local minima
corresponding to inhomogeneous modulations. Thus, the
phase diagram of the 2þ 1-dimensional GN model, when
allowing arbitrary 1-dimensional modulations, is identical
to that already found by stability analyses (see Fig. 4, right
plot for W2 ¼ W0

2 and Fig. 5 and Fig. 7, right columns
for W2 ¼ W00

2). In particular we confirm and consolidate
the findings from Ref. [34], where some evidence was
presented that there is no inhomogeneous phase in the
continuum limit.
It is, however, important to note, that we did not yet carry

out minimizations for 2-dimensional modulations. Such
2-dimensional modulations of the condensate might lead to

FIG. 9. The condensate σ as a function of x1 for the lattice discretization withW2 ¼ W00
2 , aσ0 ¼ 0.379, T=σ0 ¼ 0.132 and μ=σ0 ¼ 0.97

(left plot) and μ=σ0 ¼ 1.11 (right plot). The dotted lines represent cosine functions with the same wavelengths and amplitudes.

FIG. 10. The condensate σðx1Þ corresponding to one of the
local minima at ðμ=σ0; T=σ0Þ ¼ ð0.60; 0.176Þ and lattice spacing
aσ0 ¼ 0.237. There is essentially no difference between the two
lattice discretizations W2 ¼ W0

2 and W2 ¼ W00
2 . The dotted line

represents a cosine function with the same wavelength and
amplitude.
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lower values of Seff and, thus, could generate larger
inhomogeneous phases at finite a or inhomogeneous
phases, which survive the continuum limit. We plan to
study this possibility in the near future.

VI. CONCLUSIONS

In this work we explored in detail the phase diagram of
the 2þ 1-dimensional GN model in the limit of infinitely
many flavors. We implemented three different regulariza-
tions, a continuum regularization with a Pauli-Villars cutoff
Λ and two lattice field theory regularizations with lattice
spacing a, which are based on naive fermions. Particular
focus was put on studying the possible existence of
inhomogeneous phases, their location in the μ − T plane
and their dependence on the regularization and the corre-
sponding regulator, Λ or a, respectively.
Our main results are the following:
(i) For finite values of the regulator, inhomogeneous

phases may exist, depending on the details of the
regularization: For the continuum regularization and
one of the two lattice field theory regularizations we
found an inhomogeneous phase, while for the other
lattice field theory regularization there is no inho-
mogeneous phase.

(ii) Even if there is an inhomogeneous phase at finite
values of the regulator, it seems to disappear, when
the regulator is removed, i.e., in the limit Λ → ∞
or a → 0.

These results confirm existing results, e.g., continuum
results for the homogeneous phase diagram [31,32] or
lattice field theory results at a single lattice spacing [33] and
at several lattice spacings, but with a specific cosine ansatz
for the condensate [34]. Our work also substantially
extends these existing results, in particular by an analytical
stability analysis of homogeneous phases with respect to
arbitrary inhomogeneous perturbations and by a full
numerical minimization of the effective action, where
arbitrary 1-dimensional modulations of the condensate
are allowed, i.e., without restriction to a specific ansatz
like plane waves or Jacobi elliptic functions as done in
existing work [34,45].
It is important to note that our numerical minimization

is currently limited to arbitrary 1-dimensional modulations.
Thus, an important next step is to allow arbitrary
2-dimensional modulations. This could not only lead to
larger or additional inhomogeneous phases at finite values
of the regulator, but also to the existence of inhomogeneous
phases in the renormalized 2þ 1-dimensional GN model,
i.e., in the limit Λ → ∞ or a → 0.
Our results call for a critical revision of the role of the

regularization in the physically more relevant case of 3þ 1

space-time dimensions. For instance, inhomogeneous
phases have also been found in the 3þ 1-dimensional
NJL model. However, unlike in 2þ 1 dimensions, this
model is nonrenormalizable and therefore the studies have
been performed using finite fixed regulators. Given that
inhomogeneous phases exist in the renormalized 1þ 1-
dimensional GN and NJL models, while in the 2þ 1-
dimensional GN model they are only present at finite
regulator values, one might suspect that the observed
inhomogeneous phases at 3þ 1 dimensions could be
regularization artifacts. The QM model, on the other hand,
is renormalizable in 3þ 1 dimensions, and inhomogeneous
phases have been reported to exist in that model even in the
renormalized limit. Unfortunately, the model suffers from
other instabilities at large cutoff values, at least in mean-
field approximation. In the near future we therefore plan to
extend our detailed investigations to 3þ 1-dimensional
models in order to shed light on these issues.
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APPENDIX: PROOF OF DetðQ½− σ�Þ=DetðQ½+ σ�Þ
AND DetðQÞ ∈ R

The calculations in this appendix are valid for the
2 × 2 fermion representations (14) and (15) and for the
4 × 4 fermion representation (18). Note that we restrict
the dependence of σ to the spatial coordinates, i.e.,
σ ¼ σðx1; x2Þ, as specified in Sec. II A.

1. DetðQ½− σ�Þ=DetðQ½+ σ�Þ
We start with the eigenvalue equation for QT,

QT ½þσ�fj ¼ ðþγ0∂0 − γ0μ − γ1∂1 − γ2∂2 þ σðx1; x2ÞÞfjðx0; x1; x2Þ ¼ αjfjðx0; x1; x2Þ; ðA1Þ
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where we have used ∂T
μ ¼ −∂μ. The coordinate transformation u ¼ −x0 leads to

ðγ0∂0 þ γ0μþ γ1∂1 þ γ2∂2 − σðx1; x2ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Q½−σ�

fjð−u; x1; x2Þ ¼ −αjfjð−u; x1; x2Þ: ðA2Þ

Thus, if αj is an eigenvalue of QT ½þσ�, −αj is an eigenvalue of Q½−σ�. Consequently,

DetðQ½−σ�Þ ¼
Y
j

ð−αjÞ ¼
Y
j

αj ¼ DetðQT ½þσ�Þ ¼ DetðQ½þσ�Þ; ðA3Þ

where we have used that the number of eigenvalues is even. Note that Eq. (A3) implies

Seff ½−σ� ¼ Seff ½þσ�: ðA4Þ

2. DetðQÞ ∈ R

We start with the eigenvalue equation for Q,

Q½þσ�fj ¼ ðþγ0∂0 þ γ0μþ γ1∂1 þ γ2∂2 þ σðx1; x2ÞÞfjðx0; x1; x2Þ ¼ αjfjðx0; x1; x2Þ: ðA5Þ

Complex conjugation leads to

ð−γ0∂0 − γ0μþ γ1∂1 þ γ2∂2 þ σðx1; x2ÞÞf�jðx0; x1; x2Þ ¼ α�jf
�
jðx0; x1; x2Þ ðA6Þ

and multiplication of this equation with −γ0 to

ðþγ0∂0 þ γ0μþ γ1∂1 þ γ2∂2 − σðx1; x2ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Q½−σ�

γ0f�jðx0; x1; x2Þ ¼ −α�jγ0f�jðx0; x1; x2Þ: ðA7Þ

Thus, if αj is an eigenvalue of Q½þσ�, −α�j is an eigenvalue of Q½−σ�. Consequently,

ðDetðQ½−σ�ÞÞ� ¼
�Y

j

ð−α�jÞ
��

¼
Y
j

αj ¼ DetðQ½þσ�Þ; ðA8Þ

where we have again used that the number of eigenvalues is even. Combining Eq. (A3) and Eq. (A8) leads to

ðDetðQ½þσ�ÞÞ� ¼ DetðQ½þσ�Þ; ðA9Þ

i.e., DetðQÞ ∈ R.
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