
 

Nucleon mass with highly improved staggered quarks

Yin Lin (林胤),1,2,* Aaron S. Meyer ,1,2,3,† Ciaran Hughes,2,‡ Andreas S. Kronfeld ,2,§

James N. Simone,2,∥ and Alexei Strelchenko2,¶

(Fermilab Lattice Collaboration)

1University of Chicago, Department of Physics, Chicago, Illinois 60637, USA
2Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

3Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 9 December 2019; revised 12 January 2021; accepted 15 January 2021; published 2 February 2021)

We present the first computation in a program of lattice-QCD baryon physics using staggered fermions
for sea and valence quarks. For this initial study, we present a calculation of the nucleon mass, obtaining
964� 16 MeV with all sources of statistical and systematic errors controlled and accounted for. This result
is the most precise determination to date of the nucleon mass from first principles. We use the highly
improved staggered quark action, which is computationally efficient. Three gluon ensembles are employed,
which have approximate lattice spacings a ≈ 0.09; 0.12, and 0.15 fm, each with equal-mass u=d, s, and c
quarks in the sea. Further, all ensembles have the light valence and sea u=d quarks tuned to reproduce the
physical pion mass, avoiding complications from chiral extrapolations. Our work opens a new avenue for
precise calculations of baryon properties, which are both feasible and relevant to experiments in particle
and nuclear physics.

DOI: 10.1103/PhysRevD.103.034501

I. INTRODUCTION

Lattice-QCD calculations have entered a precision era,
with total uncertainties below one percent for some simple
properties ofmesons and StandardModel parameters that can
be determined from them [1–6]. It is important for interpreting
experiments in nuclear and particle physics to extend such
precision calculations to nucleon properties. For example,
various nucleon expectation values (with no momentum
transfer) are needed for precision nucleon beta decay
(scalar and tensor charges), direct dark matter detection
(sigma terms), and high-energy scattering (moments of
parton distribution functions) [7,8].With nonzeromomentum
transfer, there are form factors pertinent to lepton-nucleon
scattering [9]. In particular, lattice-QCD calculations of
vector-current formfactors canbe compared tomeasurements

in electron-nucleon scattering,while very similar calculations
of (nucleon) axial-current form factors are needed as inputs to
the analysis of neutrino-nucleus scattering.
To carry out a lattice QCD calculation one must first

choose a discretization for the quarks and gluons. Because
of the doubling problem of lattice fermion fields, the quarks
are the more complicated consideration. The precise
meson-sector calculations referred to above employ the
“highly improved staggered quark” (HISQ) action [10].
Not only are the discretization effects small (by design
and, it turns out, in practice [11–13]), but also the MILC
collaboration has generated two dozen ensembles of
SU(3) gauge fields with 2þ 1þ 1 flavors of sea quarks
(where “2” implies the up and down quarks are chosen
to have equal mass, and the strange- and charm-quark
masses are tuned close to their physical value). The MILC
HISQ ensembles [3,14] have four lattice spacings
(a ≈ 0.15; 0.12; 0.09; 0.06 fm) with pion masses near
135, 210, and 300 MeV, a fifth (a ≈ 0.042 fm) at 135
and 300 MeV, plus a sixth (a ≈ 0.03 fm) at 300 MeVonly.
It is worth investigating how useful these ensembles are for
nucleon physics. Here we present our first step in this
direction: a calculation of the nucleon mass employing the
HISQ action for the valence quarks and using the MILC
HISQ ensembles with physical pion masses, which have
lattice spacings ranging from a ≈ 0.15; 0.12, and 0.09 fm.
The valence masses are chosen equal to the equal-mass
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light pair in the sea. An advantage of using only the
physical-pion ensembles is that we do not need to extrapo-
late unphysical-pion-mass data to the physical limit.
These ensembles have already been used for nucleon

physics using different fermion formulations for the
valence quarks. One set of papers uses Wilson fermions
with the clover action for the valence quarks [15–17];
another set uses gradient-flowed Möbius domain-wall
fermions for the valence quarks [18–20].
Any simulation with rooted staggered fermions violates

unitarity at order a2 [21,22], but the mixed-action simu-
lations of Refs. [15–20] introduce further violations
[23–26]. On the other hand, if the same staggered action
is used for valence quarks as is used in the sea-quark
determinant, no new unitarity violations arise [21,22,27].
These properties can be seen in chiral perturbation theory,
where mixed-action simulations require more low-energy
constants than the HISQ-on-HISQ setup used here. Thus,
our setup is simpler than those of Refs. [15–20].
The challenge for an all-staggered calculation stems from

the remaining doubling: one staggered fermion field yields
four Dirac fermions. The quantum number labeling the four
species is knownas “taste.” In the continuum, infinite-volume
limit, SU(4) taste and SO(4) spacetime symmetries are
expected to become separately exact. At nonzero lattice
spacing, however, the taste-rotation symmetry group (of the
transfer matrix) is a finite group lying in a diagonal subgroup
of SUð4Þ × SOð4Þ [28–30]. Consequently, it is complicated
to construct staggered-baryon creation and annihilation
operators [29], especially when isospin and strangeness are
incorporated [31]. These complications need to be confronted
only once for each correlation function, after which one can
study whether the all-HISQ formulation is promising for
simple quantities (e.g., masses and form factors). If success-
ful, increasingly more complicated quantities can be deter-
mined. Here, we start with the nucleon mass.
This paper is organized as follows: in Sec. II the

construction of the staggered baryon irreducible interpolat-
ing operators is discussed, in Sec. III the simulation details
are given, and in Sec. IVour different fitting methodologies
are described. Specific details about fitting the staggered
nucleon two-point correlators is given in Sec. V, and these
results are combined with all sources of systematic errors in
Sec. VI to produce a final estimate of the nucleon mass. We
then discuss our conclusions in Sec. VII. Appendices A–C
spell out the group-theoretic construction of staggered
baryon operators in detail. Appendix D contains additional
information about the Bayesian fits discussed in Sec. V,
namely the priors and posteriors from the Bayesian fits in
Sec. V and additional plots.

II. BARYONS BUILT WITH STAGGERED
FERMIONS

Here we outline the construction of our baryon
operators using staggered quarks, and refer the reader to
Appendices A–C for more technical details.

With staggered fermions [32], the doubling problem is
partly solved. The simplest discretization contains a set of
“doubling symmetries” that, in the end, imply that a single
lattice fermion field corresponds to 16 Dirac fermions in the
continuum limit. A subset of doubling symmetries can be
simultaneously diagonalized [33,34], leaving four identi-
cal, decoupled one-component fields. Three of these four
copies can simply be removed, leaving four tastes instead
of 16. This procedure retains one exact axial symmetry,
which is a nonsinglet with respect to taste. This remnant is
enough to ensure several important consequences of chiral
symmetry: if the bare mass vanishes, the pion mass
vanishes; renormalization constants related by chiral sym-
metry are equal, etc.
On the other hand, the translational and doubling

symmetries are not separate after this diagonalization.
The lattice action is invariant under a composition of the
two known as “shifts,” which multiply the fermion field
with a sign that depends on the originating site and
direction of the translation.

A. Staggered baryon quantum numbers

The diagonalization of the doubling symmetries leads to
an intimate relationship between the spin-taste quantum
numbers of a hadron creation/annihilation operator and
the spatial distribution of the constituent quark fields.
For computing masses and matrix elements, the relevant
symmetry group is the subgroup of lattice transformations
restricted to a single time slice. This group is called the
geometric time slice group [29], and denoted “GTS.”
For a meson bilinear, operators that transform irreducibly
under GTS can be constructed by fixing both the relative
displacement between the quark and antiquark in the
bilinear, in combination with fixing the relative signs
between the bilinear from one lattice site to its neighbors.
Rotation symmetries interchange the staggered phases
identified with the sites, and shift symmetries induce phase
changes in meson operators.
For baryons, we need the fermionic irreducible repre-

sentations (irreps), which are much more complicated. GTS
has three fermionic irreducible representations, labeled 8,
80, and 16, which are simply the dimensions of the irreps.
The staggered quark field with zero momentum transforms
irreducibly under the 8, where the 8 elements of the
representation map onto the 8 vertices of a spatial unit
cube. Shift transformations and rotations interchange quark
fields at the unit-cube sites, and also change the phases of
the sites relative to one another.
The characters of the 80 irrep are mostly the same as

those of the 8 irrep, except that the characters of the
rotations by π=2 about a lattice axis have the opposite sign.
The 16 irrep is less simple to describe. Under shifts, the
sixteen elements split into two disjoint subsets of eight
elements each. Under rotations, the elements map onto
linear combinations of elements from both subsets, albeit in
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a convention-dependent way. One can choose a convention
such that rotations about a single lattice axis only permute
and sign-flip elements within each separate subset. The
characters of 16 irrep are obtained from those of the 8 irrep
via a tensor product with the irrep of Q8 ⋊ SW3 induced
from the E irrep of SW3 [30].
The mapping of the continuum spin representations

to the lattice octahedral representations is given in
Table I. There is a one-to-one correspondence between
the 8, 80, and 16 representations of the GTS group to the
conventionally named G1, G2, and H representations of
the double cover of the cubic rotation group [35]. This
mapping is a consequence of the reduction of the con-
tinuum taste symmetry group SU(4) to the Clifford group
Γ4 ¼ ðQ8 × D4Þ=Z2 [30,36]. Here, Q8 is the order-8
quaternion group and D4 is the order-8 dihedral group.
Both Q8 and D4 only have one fermionic representation,
which in both cases is two-dimensional. The method of
induced representations tells us that these fermionic rep-
resentations are the only representations that can appear
when lifting a fermionic representation from the octahedral
group to the GTS group. In this way, the only modification
of the G1=G2=H representations when including the taste
symmetry is to increase the dimension of these represen-
tations from 2=2=4 to 8=80=16.
In phenomenological models, the structure of baryonic

wave functions is typically understood by embedding the
SU(2) spin and SU(3) flavor groups into an SU(6)
symmetry group. As baryonic wave functions need to be
overall antisymmetric, and the color component is anti-
symmetric, it is necessary to isolate the representations of
SU(6) that are symmetric combinations of spin and flavor.
This embedding procedure may also be performed for

the staggered fermions by combining the SU(4) taste
symmetry group with the aforementioned spin and flavor
groups. These three groups are thus embedded into SU(24)
[31]. The representations of SU(24) are decomposed back
into SUð2Þ × SUð3Þ × SUð4Þ in order to understand the
symmetry structure of the resulting operators. This pro-
cedure yields the usual baryon octet and decuplet (paired
with symmetric taste representations) as well as several
other representations that are mixed symmetric or anti-
symmetric in taste.
Notably, it is possible to construct baryon operators that

are nonsymmetric in taste. These operators are also non-
symmetric in spin and flavor, in such a way that, when

combined with the antisymmetric color component, the
overall baryon wave function is antisymmetric. Such
operators are not part of the physical world without taste.
For example, in the physical world, symmetrizing over spin
and isospin only allows for combinations of spin 1

2
(3
2
) with

isospin 1
2
(3
2
), which correspond to the nucleon (Δ). With the

additional taste symmetry, it is also possible to build
operators with nontrivial symmetrization over tastes, which
create states that have isospin 3

2
with spin 1

2
, and vice versa.

Further, Bailey [31] shows that in the continuum limit each
of these additional states lies in a multiplet that is related by
a SU(12) flavor-taste symmetry transformation to the
physical nucleon or Δ states. Consequently, these taste
nonsymmetric (iso)spin (3

2
) 1

2
representations must give

identical physics in the continuum limit to the physical
nucleon or Δ baryon. We refer to these states as “N-like” or
“Δ-like.”
It should be emphasized that the N-like and Δ-like

multiplets are distinct in the continuum limit. The continuum
taste symmetry transformations are local operations insen-
sitive to the finite spatial extent, even though the finite
volume breaks spin symmetry. As a consequence, the mixing
of the baryon spin-taste spectra on the lattice is entirely due
to taste-breaking effects that enter at Oðαsa2Þ for the
improved staggered action used here. The same separation
applies to the excited-state spectra as well, meaning that the
N-like andΔ-like states may be considered to have their own
sets of excited states that mix only at Oðαsa2Þ.
In each irrep of GTS, multiple taste partners of the same

baryon can contribute, which we call multiplicity of tastes,
e.g., three N-like tastes lie in the 8. The expected multi-
plicity of the lowest-lying multiplet (i.e., not orbital or
radial excitations) of N-like and Δ-like states are given
in Table II. Excited multiplets are expected to have the
same taste multiplicities if they share the same particle
content and JP quantum numbers. In the numerical work

TABLE I. Continuum spin irrep decompositions into lattice octahedral irreps when excluding and including the
taste symmetry group.

Spin Lattice Spin Lattice w/o shifts Lattice with shifts

0 A1 1=2 G1 8
1 T1 3=2 H 16
2 E ⊕ T2 5=2 G2 ⊕ H 80 ⊕ 16
3 A2 ⊕ T1 ⊕ T2 7=2 G1 ⊕ G2 ⊕ H 8 ⊕ 80 ⊕ 16

TABLE II. Multiplicities of the N-like and Δ-like states in each
GTS irrep for a given isospin. Refer to the text for an explanation
of how I ¼ 3

2
combines with taste to give a nucleon-like state.

Irrep I ¼ 3=2 I ¼ 1=2

8 3N þ 2Δ 5N þ 1Δ
80 0N þ 2Δ 0N þ 1Δ
16 1N þ 3Δ 3N þ 4Δ
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presented below, we only use the 16 irrep of the isospin-3
2

constructions of Table II, because the 16 irrep only has a
single N-like state, whereas the 8 has three and the 80
has none.

B. Interpolating operator construction

Here we give an overview of our interpolating operator
construction and refer the reader to Ref. [31] and
Appendix C for more technical details. When constructing
staggered-baryon interpolating operators, it is easier towork
on one time slice with combinations of quark fields that are
defined by their displacement from the origin modulo 2.
There are eight sets of these quark combinations which can
be labeled by a unit-cube corner A⃗ with Al ∈ f0; 1g and
l ∈ f1; 2; 3g. We refer to these objects as “corner walls,”
which are conventional wall sources projected to a single
corner in every unit cube, and write them as

χa
A⃗
¼

X
x⃗@A⃗

χaðx⃗Þ: ð2:1Þ

The sum over “x⃗@A⃗” is defined by summing x⃗ over all sites
on a time slice that are displacedmodulo 2 from the origin by
the vector A⃗:

X
x⃗@A⃗

fðx⃗Þ≡ XðNs=2Þ3

y⃗

XN3
s

x⃗

δ
2y⃗þA⃗;x⃗fðx⃗Þ ð2:2Þ

for some general function fðx⃗Þ. Here, Ns is the (even)
number of sites in a spatial direction. These corner wall
sources must be connected by Wilson lines to construct
gauge-invariant operators, whichmay be accomplishedwith
explicit insertions or implicitly with gauge fixing.
Interpolating operators with nontrivial taste quantum

numbers have two or more quarks at different spatial sites.
To make these operators gauge invariant, parallel trans-
porters must be inserted to connect the quarks at different
spatial sites. Our parallel transporters are defined as (with
color indices suppressed)

U
↔

iðx⃗; x⃗0Þ ¼
1

2

�
Uiðx⃗Þδx⃗;x⃗0−î þ U†

i ðx⃗ − îÞδx⃗;x⃗0þî

�
; ð2:3Þ

which have an equal sum of links in both the positive and
negative directions away from a lattice site, ensuring the
operators have simple transformations under discrete
rotations.
The parallel transporters from perpendicular directions

are chained together to build operators that obey the full set
of spin-taste symmetries allowed by the staggered lattice
symmetry group. The dressing with parallel transporters
may be denoted with a vector B⃗, with Bl ∈ f0; 1g and
l ∈ f1; 2; 3g, indicating the displacement away from the
starting site. We write these eight parallel transport dress-
ings with the condensed notation,

VB⃗ðx⃗; y⃗Þ ¼

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

δx⃗;y⃗; when
X
l

Bl ¼ 0

U
↔

iðx⃗; y⃗Þ; when
X
l

Bl ¼ 1 ; Bi ¼ 1

1
2

P
x⃗0

P
i≠j

U
↔

iðx⃗; x⃗0ÞU
↔

jðx⃗0; y⃗Þ; when
X
l

Bl ¼ 2; Bi ¼ Bj ¼ 1

1
6

P
x⃗0;x⃗00

P
i≠j≠k

U
↔

iðx⃗; x⃗0ÞU
↔

jðx⃗0; x⃗00ÞU
↔

kðx⃗00; y⃗Þ; when
X
l

Bl ¼ 3.

ð2:4Þ

To construct gauge invariant operators, the quark fields are
dressed with these parallel transporters:

χ̃a
A⃗;B⃗

ðx⃗Þ ¼
X
y⃗@A⃗

X
b

Vab
B⃗
ðx⃗; y⃗Þχbðy⃗Þ; ð2:5Þ

where a and b are color indices.
A baryon operator, B, is a quark trilinear that is overall

antisymmetric when considering color, flavor, spin, and
taste. Because color is antisymmetric, B must be symmetric
under simultaneous interchange of the flavor and spin taste
of any two quarks, namely,

Bijk

D⃗;A⃗ B⃗ C⃗
¼ Bjik

D⃗;B⃗ A⃗ C⃗
¼ Bikj

D⃗;A⃗ C⃗ B⃗
; ð2:6Þ

where the flavor indices i, j, k, and the spin-taste unit-cube
indices A⃗, B⃗, C⃗ are for the three quarks in the baryon. The
remaining unit-cube index D⃗ is discussed below.
As mentioned above, we restrict ourselves to the

isospin I ¼ 3=2 representations of a baryon in this
paper. As the I ¼ 3

2
irrep built from three I ¼ 1

2
irreps

is completely symmetric, in the following we drop the
flavor indices for clarity. Then baryon operators are
constructed as
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BD⃗;A⃗ B⃗ C⃗ðx⃗Þ ¼
1

6

X
abc

ϵabcχ̃a
D⃗þA⃗;A⃗

ðx⃗Þχ̃b
D⃗þB⃗;B⃗

ðx⃗Þχ̃c
D⃗þC⃗;C⃗

ðx⃗Þ:

ð2:7Þ

Here, the index D⃗ is the site where all parallel transporters
meet. Next, the baryon operatorsmust be symmetrized over
the flavor and spin-taste unit-cube site indices. The unit-
cube sites of the quarks are symmetrized via

SD⃗;A⃗ B⃗ C⃗ ¼ 1

6
ðBD⃗;A⃗ B⃗ C⃗ þ BD⃗;B⃗ A⃗ C⃗ þ BD⃗;C⃗ A⃗ B⃗

þ BD⃗;C⃗ A⃗ B⃗ þ BD⃗;B⃗ C⃗ A⃗ þ BD⃗;C⃗ B⃗ A⃗Þ: ð2:8Þ

To build interpolating operators that transform in a
desired irreducible representation of GTS, one must define
appropriate tensors and contract them with the symmetrized
baryon operators SD⃗;A⃗ B⃗ C⃗ in Eq. (2.8). For the fermionic
irreps of the GTS symmetry group, these tensors can be
written as OR

sD⃗;A⃗ B⃗ C⃗
, where R is an index distinguishing

different irreducible representations and spatial combina-
tions, and s is an additional index for the 16 irrep. It trivially
takes one value for the two eight-dimensional irreps, and in
the 16-dimensional irrep s ¼ �1. The spin-taste unit-cube
index D⃗ serves as the component of the irrep. In
Appendix C, we give explicit formulas for the OR

sD⃗;A⃗ B⃗ C⃗

that we use in this paper.
Finally, the baryon interpolating operator that transforms

within a definite GTS irrep is

BR
sD⃗
ðx⃗; tÞ ¼

X
A⃗ B⃗ C⃗

OR
sD⃗;A⃗ B⃗ C⃗

SD⃗;A⃗ B⃗ C⃗ðx⃗; tÞ; ð2:9Þ

where D⃗ and sD⃗ denote the representation index for irrep 8,
80, or 16, so D⃗ is not summed over.
The antibaryon operator is a similarly symmetrized

trilinear, but with antiquarks rather than quarks. We use
the conjugate of the corner-wall construction in Eq. (2.1),
without parallel transporters, rather than Eq. (2.5). We
denote this object as S̄ after replacing χ̃A⃗;B⃗ðx⃗Þ → χ̄A⃗ (with
no B⃗ or x⃗ dependence). These operators are

B̄R̄
sD⃗
ðtÞ ¼

X
A⃗ B⃗ C⃗

OR̄
sD⃗;A⃗ B⃗ C⃗

S̄A⃗ B⃗ C⃗ðtÞ: ð2:10Þ

We retain the spatial dependence in BR
sD⃗
, but not in B̄R̄

sD⃗
,

because in Sec. III we use them as sink and source,
respectively.
As described in Appendix C, operators in each irrep can

be obtained from distinct “classes” of the three quark fields.
Here, “class” is shorthand [29,31] for distinct spatial
distributions of the three quark fields within the unit cube.
As operators with identical quantum numbers, these classes
of operators all excite the same N-like or Δ-like states.1 As
described in Appendix C, in this work we use the four
classes of the I ¼ 3

2
, GTS 16 irrep, which are labeled as

class 2, 3, 4, and 6 [29,31]. With any of these operators at
the source or sink, we consequently have a 4 × 4 matrix
correlation function.

III. SIMULATION DETAILS

We use gauge-field configurations generated by the
MILC collaboration [3,14]. For the gauge fields, they
employed the one-loop tadpole-improved Lüscher-Weisz
gauge action improved through Oðαsa2Þ [37] and included
2þ 1þ 1 flavors in the sea, the up and down quarks (with
equal mass ml), the strange quark (ms), and the charm
quark (mc). For the sea quarks, MILC employed the HISQ
action [10], also improved to Oðαsa2Þ by removing one-
loop taste-changing processes. For valence quarks, we use
the HISQ action with the same bare masses as their sea
counterparts. This choice introduces no additional unitarity
violations from a mixed action [21,22,27]. Further, the
remnant chiral symmetry ensures there are no unwanted
near-zero modes in the propagators at nonzero quark
mass [38].
To enable a continuum extrapolation, we choose

three ensembles, with lattice spacings in the range
a ≈ 0.09–0.15 fm. Details of these ensembles are given in
Table III. The spatial volumes of the lattices are large enough
to ensure single particle finite volume effects are exponen-
tially small [39]. Each ensemble has ml tuned to reproduce
the physical pion mass. They differ from those listed in
Refs. [3,14] by retuning the light sea-quark masses to

TABLE III. Details of the gauge-field ensembles used in this study. β is the gauge coupling; a (fm) is the lattice
spacing in a mass-independent fp4s scheme [3]; aml, ams, and amc are the sea quark masses; Ns × NT gives the
spatial and temporal extent of the lattices; and ncfg is the number of configurations used for each ensemble.

Set β a (fm) aml ams amc Ns × NT ncfg

1 5.8 0.1529(4) 0.002426 0.06730 0.8447 32 × 48 3500
2 6.0 0.1222(3) 0.001907 0.05252 0.6382 48 × 64 1000
3 6.3 0.0879(3) 0.001200 0.03630 0.4320 64 × 96 1047

1Classes do not arise for staggered mesons, because the
decomposition of 8 ⊗ 8 contains at most one copy of any irrep.
On the other hand, the decomposition of 8 ⊗ 8 ⊗ 8 contains
multiplicity 20, 4, and 20 for the 8, 80, and 16, respectively.
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reproduce the pion masses more accurately. The taste-
Goldstone pion mass Mπ5 on sets 1 and 2 is 135 MeV,
while the mass on set 3 is 128 MeV [40]. The retuning does
not alter the lattice spacing values, which are determined
from the mass-independent scheme.
Although MILC has generated many ensembles with

unphysically large ml, we do not use those ensembles here.
In this way, we can circumvent using baryon chiral
perturbation theory (or some other physically motivated
function) to guide the unphysical data to the physical value.
There is some evidence [41,42] that high-order functional
forms are necessary. To gain control over the chiral
extrapolation it might, in this case, be more costly, because
numerous ensembles could be needed.
To compute baryon masses, we construct the two-point

correlation function,

CRR̄ðtÞ ¼
X
s;D⃗

X
x⃗

hBR
sD⃗
ðx⃗; tÞB̄R̄

sD⃗
ð0Þi; ð3:1Þ

where the source is defined in Eq. (2.10) and the sink is
defined in Eq. (2.7). In order to increase statistics for
ensembles 1 and 2, we choose two well separated time
slices for t ¼ 0. The locations of these two time slices are
chosen randomly for each configuration. Successive con-
figurations generated within each ensemble are expected to
be correlated. These autocorrelations were studied in
Ref. [14] and were, however, found not to be appreciable,
so that these configurations can be treated as statistically
independent. Even so, we reduce the autocorrelations by
blocking two consecutive configurations to obtain each
sample.
By expressing hadron correlators in terms of quark fields

and then using Wick’s theorem in the Feynman path
integral, one can write the two-point correlation functions
in Eq. (3.1) in terms of quark propagators. Quark propa-
gators emanating from time slice t are found by solvingX

b;y

=Dab
xyGbc

A⃗
ðy; tÞ ¼

X
z⃗@A⃗

δacδx⃗;z⃗δx4;t ð3:2Þ

for the Green function Gac
A⃗
ðx; tÞ, where =Dab

xy is the kernel of
the HISQ action [10].
A straightforward way to construct the full set of

correlation functions would require 64 different quark
propagators, one for every source corresponding to the
parallel-transported field, χ̃a

A⃗;B⃗
ðx⃗Þ in Eq. (2.5). To reduce

the number of propagators, we have fixed the gauge fields
to Coulomb gauge. Then the links connecting the quark
fields in the source interpolating operators are no longer
necessary. Instead, only the eight propagators with the
corner-wall sources specified in Eq. (2.1) must be com-
puted. It turns out that the gauge fixing improves the signal
significantly. Without gauge fixing, it would be necessary
to introduce the parallel transporters within each unit cube.

Contributions from different cubes would average to zero,
albeit introducing some gauge noise. With gauge fixing,
however, every part of the corner walls is linked to the
others, providing a helpful volume factor in the signal.
The parallel transporters at the sink are applied after all

quark propagators have been calculated. The only nonzero
correlation functions are those where the quantum numbers
are conserved, e.g., where R and R̄ belong to the same
irreducible representation. The correlation functions are
also nonzero when all unit-cube sites D⃗ are summed
without any staggered phase factor, as reflected in
Eq. (3.1), which increases statistics eightfold.

IV. FITTING METHODOLOGIES

After generating data for the two-point correlation
function, Eq. (3.1), the next step is to extract the baryon
masses. In this section, we discuss general aspects of the
problem; in Sec. V, we apply these considerations to the
data at hand.
Inserting a complete set of eigenstates of the QCD

Hamiltonian into Eq. (3.1) yields many exponential con-
tributions, including those associated with N-like, Δ-like,
and Nπ scattering states in the positive-parity sector as well
as many higher excitations and other negative-parity states.
To capture the important physics of this problem, we model
the correlation function as a sum of the exponential
contributions:

Cðr1;r2ÞðtÞ¼Cðr1;r2Þ
N ðtÞþCðr1;r2Þ

Δ ðtÞþCðr1;r2Þ
r ðtÞþCðr1;r2Þ− ðtÞ;

ð4:1aÞ

Cðr1;r2Þ
N ðtÞ≡ aðr1ÞN bðr2ÞN ðe−MNt − ð−1Þte−MNðT−tÞÞ; ð4:1bÞ

Cðr1;r2Þ
Δ ðtÞ≡X3

i¼1

aðr1ÞΔi
bðr2ÞΔi

ðe−MΔi t − ð−1Þte−MΔi ðT−tÞÞ;

ð4:1cÞ

Cðr1;r2Þ
r ðtÞ≡Xn

i¼1

aðr1Þr;i b
ðr2Þ
r;i ðe−Mr;it − ð−1Þte−Mr;iðT−tÞÞ;

ð4:1dÞ

Cðr1;r2Þ− ðtÞ≡Xm
i¼1

aðr1Þ−;i b
ðr2Þ
−;i ðe−M−;iðT−tÞ − ð−1Þte−M−;itÞ;

ð4:1eÞ

where aðr1Þ and bðr2Þ are the source and sink overlap
amplitudes, M is the mass of the corresponding state, t
is the propagation time, and T ¼ NTa is the time extent of
the lattice. The superscripts r1 and r2 indicate the classes of
the source and sink operators. For clarity, we separate the
two-point correlator into CNðtÞ, CΔðtÞ, CrðtÞ, and C−ðtÞ,

YIN LIN et al. PHYS. REV. D 103, 034501 (2021)

034501-6



which describe, respectively, the lowest-lying N-like state,
the lowest three Δ-like states, all other positive-parity
excited states, and all negative-parity states. Contributions
fromNπ scattering states are discussed belowand are argued

to be largely incorporated intoCðr1;r2Þ
Δ , with a small, residual

contamination that is included in the excited state systematic
uncertainty.
Due to the antiperiodic boundary conditions of the

lattice, two-point correlator data at time t and T − t should
converge to the same result (up to a sign) at infinite
statistics. Therefore, it is convenient to average the corre-
lator data around T=2, substituting

Cðr1;r2ÞðtÞ → Cðr1;r2ÞðtÞ − ð−1ÞNT−t=aCðr1;r2ÞðT − tÞ
2

ð4:2Þ

and then fitting in t only up to T=2.
Although an infinite number of states contribute to the

spectral decomposition, the exponential suppression in
Eq. (4.1) of excited states effectively reduces the sums
to a small number of states. Even so, a few still contribute to
the correlator after a few time steps. Thus, one obstacle in
extracting accurate information about a particular state is
correctly disentangling its contribution from the other
states’ contributions.
In this work, we are only interested in the ground state

nucleon, so the contamination just mentioned comes from
excited states. We treat all excited states, for both positive
and negative parities, as nuisance parameters. Three kinds
of excited state contributions must be addressed: (1) the

three tastes of Δ-like states in Cðr1;r2Þ
Δ , (2) the other parity-

even excited states in Cðr1;r2Þ
r , and (3) the negative parity

partners in Cðr1;r2Þ− . The latter two, Cðr1;r2Þ
r and Cðr1;r2Þ− ,

include finite-volume scattering states, the lowest of which
are Nπ combinations. As discussed below, Nπ states near
the Δ mass are not cleanly disentangled from the Δ-like
states modeled by Cðr1;r2Þ

Δ .
Concerning (1), the nucleon and Δ baryons have distinct

quantum numbers, so in other fermion formulations the Δ
baryon does not contribute to their nucleon correlation
functions [15]. Here, however, the 16 irrep of the staggered
GTS contains both N-like and Δ-like states, as shown in
Table II. From experiment [43], the Δ mass (≈1232 MeV)
is closer to the nucleon mass (≈940 MeV) than any other
JP ¼ 1

2
þ or 3

2
þ single-particle excitation, so it is the most

important excited state in staggered-baryon correlator data.
Further, the 16 irrep contains three tastes of Δ-like states,
which are separated by a splitting of order αsa2.
Regarding (2), after the N-like and Δ-like states, the next

state in the positive-parity spectrum is (in infinite volume)
the Nπ state in a P wave and, thus, energy near 1250 MeV
on our ensembles. The next single-particle state in the
spectrum is expected to be the so-called Roper resonance
Nð1440Þ, which has JP ¼ 1

2
þ. Disentangling these excited

states from the Δ-like states is, however, unlikely within
our statistical precision. Of course, in a finite volume
resonances and two-particle states cannot be cleanly
separated. Even so, we aim to include these states as
nuisance parameters with suitable prior widths when fitting
correlator data to fit away any excited-state contamination.
For a detailed account of the effects of these states in finite
volume, we refer the reader to Ref. [42].
Last, concerning (3), all our correlation functions

show oscillatory behavior as a consequence of the neg-
ative-parity states. The lowest single-particle contribution
to this channel is expected to be the Nð1520Þwith JP ¼ 3

2
−.

The lowest finite-volume two-body state in this channel
is expected to be the Nπ in an S wave with zero momentum
and, thus, energy around 1080 MeV. We expect finite-
volume corrections from scattering between the two
states [44], with potentially large effects near the JP ¼
1
2
− Nð1535Þ resonance. In the meson sector, extracting two-
body eigenstates from correlation functions built from
single particle interpolating operators has not been possible
[45]. With staggered baryons, even though we only use
single-baryon interpolating operators, we may still be able
to resolve the lowest negative-parity two-body eigenstates,
because the next-lowest state has an appreciable splitting.
Moreover, the operator constructions for the 16 irrep
classes are somewhat nonlocal, being spread out over
the whole unit cube. In fact, evidence of negative-parity
Nπ states has been found using only three-quark operators
with Wilson fermions [46].
These contributions all must be dealt with carefully

in order to extract nucleon physics. Because we compute
four different classes of staggered-baryon operators, as
described in Sec. II B, we obtain a 4 × 4 matrix correlation
function. Further, we adopt two distinct fitting strategies to
ensure that we have removed excited-state contamination
reliably. In Sec. IVA, we apply multistate Bayesian curve
fitting [47] to the matrix correlation function, using all
information in the spectral decomposition, Eq. (4.1). In
Sec. IV B, we solve the generalized eigenvalue problem
(GEVP) [48–51], adapted to correlators with oscillating
states [52]. This is particularly suited to staggered baryons
because the Golterman-Smit-Bailey construction naturally
provides several distinct operator classes. We have found
that the two analyses yield consistent results for the
nucleon mass.

A. Bayesian approach

In the Bayesian fitting approach, we simultaneously fit
multiple different correlators using Lepage’s CORRFITTER

[53] and related packages [54,55]. We omit correlator
data built from the class-3 interpolating operator, which
we have empirically observed to have a poor signal-
to-noise ratio due to a smaller overlap with the lowest
N-like state, corroborating earlier findings [56]. As such,
we fit a 3 × 3 matrix of correlation functions built from
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the ri ¼ 2, 4, and 6 operator classes residing at either the
source or sink.
Within the Bayesian methodology, every fit parameter

is assigned a prior distribution. The fit function can
incorporate, in principle, an arbitrarily large number of
states. Any state insufficiently constrained by the data
will return a posterior distribution close to the prior, and
so will have negligible effect upon the fit results. With
such an approach, in contrast to plateau fitting (of the
effective mass), we can include as many states as needed
to successfully fit the correlation functions at small t
without compromising fit quality. As baryon correlation
functions suffer from an exponential signal-to-noise
degradation at large times, fitting to small t increases
the amount of available data, leading to a more precise
nucleon mass.
Suitably wide priors have to be chosen for each fit

parameter, based on available information. In practice,
one has knowledge only about the first few excited-state
mass splittings, while one has very little knowledge
about the remaining spectrum or overlap amplitudes. For
the nucleon fit parameters, we want to assume no
significant prior knowledge, so the prior widths are
chosen wide enough to leave them effectively uncon-
strained. As is standard, we shall demonstrate that our
fitted nucleon mass is stable against reasonable varia-
tions of the prior widths. To ensure the correct ordering
of states, we choose a log-normal distribution for the
mass differences between adjacent states and a normal
distribution for all other priors, as implemented in
CORRFITTER [53].
We have observed that fits including four exponentials in

the positive parity channel—corresponding to the N-like
state and all three Δ-like tastes—in addition to a high-mass
positive parity exponential and four negative-parity expo-
nentials are unstable under a variation of fit choices, such as
the number of states in the fit function and prior choices.
This is caused by the presence of three states with masses
separated by Oðαsa2Þ. Resolving three states with such
small splittings is not possible within our statistical errors,
and including these three states in a fit function gives rise to
a flat direction in the χ2 landscape.
Knowing the cause of the issue, it is easy to overcome it

by removing the flat directions systematically. For sim-
plicity, we can examine a single correlation function. Let
δmtaste denote the typical taste splitting between the Δ-like
masses. The taste splittings between HISQ pions are
Oðαsa2Þ [10], the largest of which is between the taste-
scalar pion and Goldstone pion and is around 200 MeV
on our ensembles [14]. We order the three taste-split states
asMΔ1

< MΔ2
< MΔ3

and takeMΔ3
−MΔ1

∼ δmtaste as the
largest taste splitting.
To marginalize the Δ-like contribution, we replace CΔðtÞ

in Eq. (4.1) with a functional form containing two expo-
nentials instead of three,

CΔ0 ðtÞ≡X2
i¼1

aΔ0
i
bΔ0

i
e
−MΔ0

i
t
; ð4:3Þ

suppressing the backward propagating terms for clarity. It
should be safe to use CΔ0 ðtÞ in place of CΔðtÞ for times t
such that ����CΔ0 ðtÞ − CΔðtÞ

CðtÞ
���� < statistical error; ð4:4Þ

as has been used successfully before [57].
To explore the systematic error introduced by Eq. (4.3),

let us focus on a single channel and Taylor expand both
CΔ0 ðtÞ and CΔðtÞ around MΔ0

1
, finding

CΔðtÞ¼
X3
i¼1

aΔi
bΔi

e
−MΔ0

1
tþ

X∞
n¼1

X3
i¼1

aΔi
bΔi

n!
ð−δmitÞne−MΔ0

1
t
;

ð4:5Þ

CΔ0 ðtÞ ¼ ðaΔ0
1
bΔ0

1
þ aΔ0

2
bΔ0

2
Þe−MΔ0

1
t

þ
X∞
n¼1

aΔ0
2
bΔ0

2

n!
ð−δMtÞne−MΔ0

1
t
; ð4:6Þ

where δmi ≡MΔi
−MΔ0

1
and δM ≡MΔ0

2
−MΔ0

1
. Treating

aΔi
, bΔi

, and MΔi
as fixed, one can solve for MΔ0

i
and the

products of overlaps aΔ0
i
bΔ0

i
order by order:

δM ≈
P

3
i¼1 aΔi

bΔi
ðδmiÞ2P

3
i¼1 aΔi

bΔi
δmi

; ð4:7Þ

aΔ0
2
bΔ0

2
≈
ðP3

i¼1 aΔi
bΔi

δmiÞ2P
3
i¼1 aΔi

bΔi
ðδmiÞ2

; ð4:8Þ

aΔ0
1
bΔ0

1
≈ −aΔ0

2
bΔ0

2
þ
X3
i¼1

aΔi
bΔi

; ð4:9Þ

to OððδmitÞ2Þ ∼ OððδmtastetÞ2Þ. In this way, the two- and
three-state fits are equivalent if the statistical error is larger
than OððδmtastetÞ2Þ. Note that the analysis with a 4 × 4
matrix including the class-3 entries would be more com-
plicated [49].
In Fig. 1, we compare our statistical precision to the

quantity defined in Eq. (4.4) for various δmtaste. These data
are from the a ≈ 0.12 fm ensemble with the class-2
operator residing at both the source and sink. This
correlator has the smallest statistical error of all our data,
giving it the best opportunity to resolve the various taste-
split states. As can be seen, the systematic error introduced
by using CΔ0 ðtÞ is smaller than our statistical precision, and
so we are unable to distinguish between CΔðtÞ and CΔ0 ðtÞ.
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If we do try to fit to CΔðtÞ, we observe the expected flat
direction in the Δ parameters.
In practice, a 3 × 3 matrix of correlators is used to

disentangle the Δ-like states. Given high enough statistics,
a fit to the correlator matrix could resolve the small mass
splittings and the two-state model would not suffice. (Even
at infinite statistics, we would not be able to eliminate all
excited-state contamination, simply because we have a
finite basis and finite number of time slices, but an infinite
tower of states.) At finite precision, however, the two-state
model should be good enough to reduce the excited-state
contamination of the three Δ-like states, if we find stable
posteriors for aðMΔ0

1
−MNÞ and aδM ¼ aðMΔ0

2
−MΔ0

1
Þ.

We discuss the outcome for our data in Sec. VA 2.
The two-state model can be further validated with the

data by the following exercise. Assuming the Δ-like states
are degenerate, we can rewrite Eq. (4.1) as

CðtÞ ¼ CNðtÞ þ CΔðtÞ þ � � � ; ð4:10Þ

CNðtÞ≡Nðe−MNt − ð−1Þte−MNðT−tÞÞ; ð4:11Þ

CΔðtÞ≡ Δðe−MΔ − ð−1Þte−MΔðT−tÞÞ; ð4:12Þ

where N and Δ are the time-independent 3 × 3 coefficient
matrices for the N-like and Δ-like states. We now fit the
data to Eqs (4.10)–(4.12) with independent entries in N and
Δ but common masses. We then find the number of
nonvanishing singular values of N and Δ, thereby deter-
mining the rank of these matrices. On all three ensembles,

we find one nonvanishing singular value for N and two for
Δ, and further, that this outcome is stable under bootstrap
resampling. This test validates using the two-state model so
to marginalize the Δ-like contribution.
Future analyses with higher statistics should revisit the

omission of the class-3 correlators. In our data, their
exponential falloff and signal-to-noise behavior suggest a
small coupling of the class-3 operator to the lowest-lying
N-like state. Because the N-like and Δ-like states end up in
different multiplets in the continuum limit, the class-3
operators are mostly Δ-like, as explained further in
Appendix C. We have tried some fits including it: it is

then possible, but not compelling to use Cðr1;r2Þ
Δ ðtÞ, i.e., to

fit three states. For a complete description of the states in
this region of the spectrum (e.g., in calculation of the Δ
mass or N → Δ form factors), two-body Nπ operators are
expected to be essential too, because, as mentioned above,
the lowest Nπ states have an energy close to the Δ mass.
The Nπ states in the spectrum warrant some further

discussion. As mentioned above, the J ¼ 1
2
states are in an S

wave starting around 1080 MeV, while the J ¼ 3
2
states are

in a P wave that, for our volumes, are near the Δ mass.
Although the overlap of these states with our one-body
operators can be expected to be small, Hansen and Meyer
[42] caution that an accumulation could cause a false
plateau. Because our source and sink operators are not
identical, our matrix of correlators need not be even
approximately symmetric and, thus, our data are especially
susceptible. For our data to exhibit false plateaux, negative
exponential contributions in the diagonal correlation func-
tions Cðr1;r1Þ would have to be present, which would
indicate very different behavior for the wall and point
operators in the same operator class. We have studied our
data, looking for these negative contributions in the
diagonal correlation functions. We find that (i) any negative
fit contributions appear only in the two highest excited
states and (ii) the negative fit contributions are rare and
suppressed by at least one, if not several, orders of
magnitude relative to the N-like fit exponential. The mass
gap between these states and the nucleon mass is large,
making this unlikely to be cause for concern.
Note also that Ref. [42] observes problems—a “false

plateau”—in a three-point function yielding the nucleon
axial charge gA. Tracing the analysis given there, it turns out

FIG. 1. Comparison between the statistical fractional (relative)
error in the correlator data—shown as crosses—and the system-
atic error—shown as circles—induced by replacing the fit
function as defined by the left-hand side of Eq. (4.4). The test
parameter values used to generate these points are listed in
Table IV. Parameters for CΔ0 ðtÞ are calculated using Eq. (4.7)–
(4.9). The tfit within the white range are those used in the later
analysis. The correlator data used to generate the crosses are our
most statistically precise, coming from the a ≈ 0.12 fm ensemble
with a class-2 operator at both source and sink.

TABLE IV. Input values used to generate Fig. 1.

Parameter Test input

MN 940 MeV
MΔ1

MΔ2
− δmtaste=2

MΔ2
1230 MeV

MΔ3
MΔ2

þ δmtaste=2
aNbN 1
aΔi

bΔi
1
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that the main culprit for the false plateau is an excited-state
matrix element of the axial current, which is immaterial
here. Moreover, Ref. [42] has in mind a strategy of fitting
only to a plateau, whereas we deliberately aim to fit the
region in which the excited states are not especially small,
in order to fit them away.
In summary, the final function that we perform a

Bayesian fit to is

Cðr1;r2ÞðtÞ¼Cðr1;r2Þ
N ðtÞþCðr1;r2Þ

Δ0 ðtÞþCðr1;r2Þ
r ðtÞþCðr1;r2Þ− ðtÞ:

ð4:13Þ

We have found empirically that CrðtÞ and C−ðtÞ contribute
very little to the correlator during our fit range. Note that
one should be careful about assigning physical meaning to

the fit parameters of Cðr1;r2Þ
Δ0 ðtÞ, Cðr1;r2Þ

r ðtÞ, and Cðr1;r2Þ− ðtÞ.
Their role is to describe the contributions other than the
lowest-lying N-like state while yielding stable results for
the corresponding parameters.

B. GEVP approach

The construction of staggered baryons naturally gives
rise to different classes of interpolating operators, which
can form a basis for the GEVP. With this GEVP approach
we can extract the mass of the lowest N-like state.
After setting aside the class-3 correlator data, we have a

3 × 3 matrix CðtÞ≡ Cðr1;r2ÞðtÞ, where r1; r2 ∈ f2; 4; 6g
again denotes the class of the operator at the source or
sink. The GEVP [48–51] is defined via

CðtÞvRi ðt; t0Þ ¼ λiðt; t0ÞCðt0ÞvRi ðt; t0Þ; ð4:14Þ

½vLi ðt; t0Þ�TCðtÞ ¼ λiðt; t0Þ½vLi ðt; t0Þ�TCðt0Þ; ð4:15Þ

where vLi ðt; t0Þ and vRi ðt; t0Þ are the generalized left and
right eigenvectors, i ∈ f1; 2; 3g. They share the same set of
generalized eigenvalues λiðt; t0Þ.
For staggered fermions, the oscillating parity-partner

states must also be addressed. We fit the ground state
eigenvalues, λ0ðt; t0Þ, to a reduced form of Eq. (2.16) in
Ref. [52],

λ0ðt; t0 ¼ fixedÞ ¼ Ae−MNt − ð−1Þt=aBe−M−t; ð4:16Þ

where MN is the nucleon mass, M− accounts for an
oscillating state, and A and B are coefficients satisfying
AiþBi≈1. Equation (4.16) sets bn ¼ dn ¼ 0 in Eq. (2.16)
of Ref. [52]. The further excited state contamination can be
controlled by varying t0 and t, as shown below.
Based on the discussion in Sec. IVA, we can marginalize

over a Δ-like state and constrain the Δ0 contributions. As a
consequence, we expect the lowest-lying N-like state and
the two Δ0 exponentials to be the three distinguishable
states from the asymptotic time GEVP with a 3 × 3 basis.

The initial time t0 is chosen to suppress excited-
state contributions to the eigenvalues, which in this work
come from the higher nonoscillating states and all of the
oscillating states. The traditional approach employed to
suppress excited state contamination in the GEVP is to
choose a large enough t0 in either Eq. (4.14) or (4.15). Below
we show control over excited contributions by varying the
choice of t0 in Sec. V B, where we observe such excited
states have a negligible impact on the quality of fits.
The presence of the staggered phase ð−1Þt=a in Eq. (4.16)

can be mitigated via a combination that becomes an exact
cancellation in the asymptotic large-time limit. To achieve
such an affect, we take the symmetrized combination

1

4
f½Cðt0−1Þ�−1Cðt−1Þþ2½Cðt0Þ�−1CðtÞ
þ ½Cðt0þ1Þ�−1Cðtþ1ÞgṽRi ðtÞ¼ λ̃iðt; t0ÞṽRi ðtÞ; ð4:17Þ

which cancels most of the opposite-parity contributions.
A similar expression holds for the left eigenvectors ṽLi ðtÞ.
At large t and t0, λiðt; t0Þ → λ̃iðt; t0Þ, but for intermediate
t and t0 the explicit cancellation of oscillations makes
λ̃iðt; t0Þ much better behaved. In the scenario with a 1 × 1
correlator matrix, this approach is equivalent to the
smoothed effective mass [52,58].
After performing the GEVP analysis and determining the

eigenvalues, we perform unconstrained plateau fits to

−
ln λ̃iðt; t0Þ

τ
¼ Mi þ Cie−

fδMit0 ; ð4:18Þ

whereCi and gδMi are fit parameters used to account for any
residual excited-state contribution, and τ ¼ t − t0. In the
subsequent analysis, we fix τ=a ¼ 2 and vary t0. In this
way we can obtain the nucleon mass MN ¼ M1.

V. FITTING NUCLEON CORRELATOR DATA

In this section, we present specific details about fitting
the 16 irrep two-point correlators. The N-like mass on each
ensemble is determined as a fit parameter from this process.
The Bayesian and GEVP analyses are discussed in turn.

A. Bayesian analysis

Table V summarizes the priors used in the Bayesian fits
for the three ensembles used in this paper. Detailed prior
and posterior values are given in Table XI of Appendix D.
For each two-point correlator, tmin is fixed in physical units
across all three ensembles to be ≈0.6 fm and tmax is chosen
to be the time slice where the noise-to-signal ratio
exceeds 5%.
As mentioned in Sec. IV, we take prior central values for

the excited-state contributions based on infinite-volume
and noninteracting energy splittings. We choose prior
widths for the excited states in the region of the Δ mass
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that are, however, large enough to accommodate the fact that
finite-volume states could receive corrections from avoided
level crossings withNπ-like scattering states, among others.
The mass difference between the lowestN-like state and the
Δ0

1 state is chosen so that MΔ0
1
≈ 1230 MeV, which is the

physical Δ resonance mass. We choose a prior width of

100 MeV. To roughly match the observed taste-split masses
between staggered mesons, the mass difference betweenΔ0

1

and Δ0
2 states is given a prior of 150� 50, 100� 50 and

50� 50 MeV on the 0.15, 0.12 and 0.09 fm ensembles. The
other mass differences, for both even- and odd-parity states,
are 400� 200 MeV.

TABLE V. Summary of priors used in nominal Bayesian fits. Note that the notation 4Eþ 4O means that we are
fitting to four even and four odd parity states. Refer to Table XI for more detailed priors and posteriors. Entries for
masses and mass splittings in MeV.

Ensemble tmin=a Number of states MN prior MΔ0
1
−MN prior MΔ0

2
−MΔ0

1
prior M−;1 prior

1 4 4Eþ 4O 940(50) 290(100) 150(50) 1400(200)
2 5 4Eþ 4O 940(50) 290(100) 100(50) 1400(200)
3 6 4Eþ 4O 940(50) 290(100) 50(50) 1400(200)

FIG. 2. Joint nominal fit of the 0.12 fm ensemble correlators Cðr1;r2Þ, with r1; r2 ¼ 2, 4, 6 denoting the different classes of source and
sink operators (defined in Appendix C). The nominal fit posteriors can be found in Table XI. The solid blue circles are the raw two-point
data; and the red lines with error bars are the nominal fit result; the solid black circles in the bottom panels display the fractional residues
defined in Eq. (5.1). The white regions are the fit ranges for each correlator.
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1. Fit analysis

For brevity, we focus on the ensemble with a ≈ 0.12 fm,
with the corresponding information for a ≈ 0.15; 0.09 fm
in Appendix D. We plot the raw correlator data overlaid
with the fit result in Fig. 2, showing the results for the
correlator matrix element, Cðr1;r2Þ, where ri ¼ 2; 4; 6 labels
the source and sink operator classes. The fractional residues
in the bottom panels of these figures are defined by

frac: res:≡ data − nominal fit
data

; ð5:1Þ
where the correlations between the data and the nominal fit
are not included and the exhibited error bars are statistical.
To further examine the quality of the nominal fits, we

show effective masses in Fig. 3. Again, we plot results for
each correlator matrix element Cðr1;r2Þ. The effective mass
is defined by

MeffðtÞ≡ 1

τ
ln

�
CðtÞ

Cðtþ τÞ
�
; ð5:2Þ

where CðtÞ is the two-point correlator at time slice t, and
τ ¼ 2 is chosen to reduce the effects of oscillations. For
some two-point correlators (solid blue circles), effective
mass plateaus are not visible due to the excited state
contributions combined with the oscillating terms [cf.,
Eq. (4.1)]. Traditional plateau fits to these effective masses
would clearly fail. After carefully fitting away the excited
states with the Bayesian method, however, and subtracting
the excited-state contributions from the raw data, a much
better plateau (solid orange circles) appears across the fit
range. There is also consistency between plateaus for
different choices of source and sink operators. Without
excited states, the solid orange circles would only contain a
single exponential contribution from the ground state, and

FIG. 3. Effective mass [as defined in Eq. (5.2)] of the 0.12 fm ensemble correlators Cðr1;r2Þ, with r1, r2 ¼ 2, 4, 6 denoting the different
classes of source and sink operators (defined in Appendix C). The solid blue circles are the effective masses of raw two-point correlators,
whereas the solid orange circles are the effective masses of the two-point correlators after the nominal fitted values for the higher excited
states have been subtracted out. The green bands show the posterior mass from the joint Bayesian fit to the matrix correlator.
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produce a flat plateau. Consequently, we have successfully
eliminated most of the excited states contamination. The
final posterior estimates of the N-like masses are done with
1000 bootstrap samples for each ensemble. They are listed
in the Bayesian fit column of Table VII.

2. Systematic checks

We have plotted several stability plots in Figs. 4 and 5 to
demonstrate control over various types of systematic effects
when extracting the N-like mass. Excited state contami-
nation of any kind would manifest as a variation of the
ground state N-like mass posterior as the value of tmin=a
varies. Figure 4 shows the stability of our Bayesian results
under such a variation. Note that as tmin is increased, fewer
data points are included in the fit, and, thus, the errors
increase. We observe that the ground state N-like mass is
stable under a change of tmin for all three ensembles,
indicating that excited-state contamination is under control
in these Bayesian fits.
To estimate any small residual excited state contamina-

tion, let tnom=a be the nominal value of tmin=a, which is
shown as the red diamonds in Fig. 4. We choose tsys ≈
0.15 fm to be a fixed physical length across all ensembles
and examine the posteriors for tmin ¼ tnom − tsys, which are
shown as black squares in Fig. 4. The central-value
difference between the red diamonds and black squares
is an estimate of the systematic error from fitting. We
expect the source of this difference to be stem from any
residual excited-state contamination and/or the choice of fit
range. Although these two results are not independent, we
conservatively combine the statistical error and the above

fitting systematic estimate in quadrature to obtain the total
N-like mass posterior width.
We also study how the ground-state mass posterior

changes as a function of the number of states included
in the Bayesian fit function, as shown in Fig. 5. Based on
the stability of the ground state posterior, our nominal fit
contains four even and four odd parity states, which we
denote by 4Eþ 4O. As can be seen, including too many
higher excited states and, thus, many more poorly con-
strained priors, can cause noticeable changes in the low-
energy posteriors. This behavior could be avoided if we had
some prior knowledge of the overlap factors, which could
then be used to impose prior widths of natural size.
A third systematic test demonstrates that the variation of

posteriors from changing tmax=a is not significant, as
shown in Fig. 6. The breakdown of the final uncertainties
can be found in Table VII.

FIG. 4. Stability of the nucleon mass posterior as a function of
tmin=a. The red diamonds denote the nominal fits, the black
squares denote the time slices used to estimate the fitting
systematics (see text for further details), and the green bands
show the final estimates, which include both systematic and
statistical errors from fitting combined in quadrature.

FIG. 5. Stability of the nucleon mass as a function of the
number of additional radial excitations included in the fit
function. The red diamonds denote the nominal fits.

FIG. 6. Stability of the nucleon mass posterior as a function of
tmax=a. The red diamonds denote the nominal fits.
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As discussed in Sec. IVA,wemust also test the stability of
aðMΔ0

1
−MNÞ and aδM ¼ aðMΔ0

2
−MΔ0

1
Þ as functions of

tmin=a. Figures 7 and 8 demonstrate stability in both
quantities similar to that seen for the nucleon mass in
Fig. 4. Similar stability is observed in aðMΔ0

1
−MNÞ and

aðMΔ0
2
−MΔ0

1
Þ as additional radial excitations are added.

These observations confirm our expectation that the two-
state model is enough to describe the Δ-like contributions,
especially since the corresponding fit quantities are not target
observables, but instead nuisance parameters employed to
reduce the bias in the nucleon mass from these states below
the statistical precision of the correlator data.

3. Negative-parity states

As shown in Eq. (4.1), our correlation functions
contain contributions from negative-parity states with a

characteristic ð−1Þt=a in the time evolution. The lowest-
lying single-particle negative-parity state should be the
Nð1520Þ, while the lowest-lying two-particle threshold
should consist of S-wave Nπ states with energy around
and above MN þMπ ¼ 1100 MeV. With staggered
quarks, the Nπ states spread out over several levels,
corresponding to the different pions tastes. Experience
from the meson sector and studies of nucleon correlators
in chiral perturbation theory [59] provide no reason to
expect that Nπ states contribute enough to single-particle-
correlator data to be determined reliably. That said, our
operators differ from those in other formulations, being
spread over a unit cube. Particularly in light of the results of
Ref. [46], we should keep an open mind.
We have studied these states with the Bayesian meth-

odology. The default prior for the lowest-lying negative-
parity energy is 1400(200) MeV (cf. Table V), which yields
a posterior centered around 1250(50) MeV for the 0.15 and
0.12 fm ensembles (cf. aM−;1 in Table XI). The 0.09 fm
ensemble does not exhibit this behavior, instead returning a
posterior of 1400(50) in agreement with the prior. We have
tried further Bayesian fits on the coarser ensembles with the
prior centered within the range 1250–1500 MeV and a
similar width. Such fits always return a posterior centered
around 1250 MeV, and the same holds for any prior with
significant probability at 1250 MeV. To pull the posterior
away from 1250 MeV, it is necessary to choose a prior with
center separated from 1250 MeV by at least a few multiples
of the prior width. In such cases, it is possible to obtain a
posterior centered somewhere in the range 1250–
1500 MeV. Note also that even though the GEVP should
not be expected to isolate any state besides the positive-
parity nucleon and twoΔ0 s, it also returns 1400� 40 MeV
in the negative-parity channel.
These findings suggest that the data contain some

information about Nπ states, but it is too weak to pull a
“bad prior” down to the expected threshold energy. It is
certainly more likely that the 1250 MeV signal consists of
multiparticle states than the Nð1520Þ. While this study is
interesting, a definitive work would require multibody
interpolating operators.
In the context of our determination of the nucleon mass,

this study of the negative-parity channel is relevant for the
simple reason that the N-like posterior is stable under the
changes mentioned here.

B. GEVP analysis

We have also performed a GEVP analysis in order to
extract both λ1ðt; t0Þ and λ̃1ðt; t0Þ. From the solutions of the
GEVP in Eqs. (4.14) and (4.17), we use Eqs. (4.16) and
(4.18) respectively to fit the ground state nucleon mass.
Table VI summarizes the fitting parameters used in the
GEVP analysis. To compare consistently between both
fitting strategies, we impose that t0 þ tmin in the λ1 fits is
equal to t − t0 þ tmin in the λ̃1 fits.

FIG. 7. Stability of aðMN −MΔ0
1
Þ posterior as a function of

tmin=a. The red diamonds denote the nominal fits.

FIG. 8. Stability of aðMΔ0
2
−MΔ0

1
Þ posterior as a function of

tmin=a. The red diamonds denote the nominal fits.
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For the λ1ðt; t0Þ analyses, we fix t0=a ¼ 3, 5, 5 for the
0.15, 0.12, and 0.09 fm ensembles to minimize the effects
of oscillating states. In Fig. 9, we have plotted the results
for λ1ðt; t0 ¼ 5Þ overlaid with the fit curve for the 0.12 fm
ensemble. Similar plots for the other ensembles are shown
in Fig. 19 in Appendix D.
Next, in the left column of Fig. 10, we show three

different definitions of the effective masses for the λ1ðt; t0Þ
data just described. The first effective mass (solid blue
circles) is the usual effective masses as defined in Eq. (5.2)
using λ1ðt; t0Þ instead of CðtÞ. The second effective mass
(solid orange squares) is obtained by subtracting the
central values of the excited states from the nominal fit
to λ1ðt; t0Þ and then using Eq. (5.2). This third effective
mass (black diamonds) is obtained by reducing the oscil-
lations in the effective masses via the smoothed effective
mass [52,58]

M̄effðtÞ¼
1

4
ð2MeffðtÞþMeffðt−1ÞþMeffðtþ1ÞÞ: ð5:3Þ

We can see that M̄effðtÞ shows no perceptible oscillations
and agrees well with both Bayesian estimates and the direct
fitting to λ1ðt; t0Þ, giving confidence in the reliability of the
extracted nucleon mass.

The results of solving for the eigenvalues of the
smoothed GEVP in Eq. (4.17) are shown in the right
column of Fig. 10. Without any postprocessing, the
plateaus of λ̃1 are clearly identifiable, with no sign of
oscillations. Thus, with no issues associated with negative-
parity states, we simply perform unconstrained fits to
Eq. (4.17) and extract the N-like mass.
We estimate the fitting systematics of both λ1 and λ̃1

using the same procedures as in Sec. VA 2. These fitting
systematics are listed in Table VII. All aspects are quali-
tatively similar to those in Sec. VA 2. Still, to emphasize
this point, in Fig. 11 we show the stability of the GEVP
extracted nucleon mass as a function of tmin=a.
Table VII lists the N-like mass estimates for all ensem-

bles from the three analyses. The extracted N-like mass
values from the three Bayesian and GEVP analyses all
agree within their (uncorrelated) 1σ uncertainties. As the
smoothed effective mass with the GEVP removes opposite
parity contamination and shows a visible plateau, we take
the N-like mass values from λ̃1ðt; t0Þ for use in a continuum
extrapolation and all further discussion. Note that since all
three analyses agree with one another, the value of the
continuum nucleon mass does not depend on which fitting
methodology we use.

VI. NUCLEON MASS DETERMINATION

In the previous section we have extracted the N-like
masses from physical-mass ensembles at three lattice
spacings. In this section, we use these values to extract a
physical value of the nucleon mass that can be compared to
experiment.

A. Sources of systematic error

In our calculation, the sources of systematic uncertainty
include excited-state contamination, a slightly unphysical
quark mass on one ensemble, finite-volume effects, iso-
spin-breaking effects, and scale-setting errors. Errors aris-
ing from excited-state contamination have already been
addressed, estimated, and controlled in Sec. V.
As mentioned in Table III, all three of our ensembles

have nearly physical pion masses. As such, we avoid the
potentially large chiral extrapolation errors (compounded
by using a slowly converging chiral fit function [41]) and
do not need to include an error from a chiral extrapolation.
Nevertheless, the mistuned light-quark mass on the

0.09 fm ensemble is an important effect. Although the
other two ensembles have negligible mistuning, the task at
hand is to combine the three results. The taste-Goldstone
pion on the 0.09 fm ensemble has a mass of 128.3(7) MeV,
as mentioned in Sec. III, which is about 7 MeV smaller than
the taste-Goldstone pion mass from the other two ensem-
bles. References [60,61] study the nucleon mass vs pion
mass and observe that MN ≈ 800 MeVþMπ (within
uncertainties) over a wide range of pion mass and with

FIG. 9. The GEVP eigenvalue λ1 [defined in Eq. (4.14)] on the
0.12 fm ensemble. The fit function is given in Eq. (4.16). The
white region is the fitted time range. The fractional residues of the
nominal fit [defined in Eq. (5.1)] are shown in the bottom panel.

TABLE VI. The fit parameters used in the GEVP analyses to
extract the ground state nucleon eigenvalues λ1 and λ̃1, defined in
Eqs. (4.15) and (4.17).

Ensemble
t0=a
(λ1 fit)

tmin=a
(λ1 fit)

ðt − t0Þ=a
(λ̃1 fit)

tmin=a
(λ̃1 fit)

1 3 2 2 3
2 5 1 2 4
3 5 2 2 5
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different actions. Since our mistuning is small, this obser-
vation suggests that the nucleon mass on the 0.09 fm
ensemble is approximately 7 MeV too small. We therefore
take account of the 0.09 fm ensemble mistuning by
applying a shift of þ7ð7Þ MeV before performing the
continuum extrapolation.

We can check this estimate with baryon chiral perturba-
tion theory. A detailed next to next to leading order SU(2)
analysis leads to the conclusion that the perturbative
expansion for the nucleon mass converges for Mπ <
350 MeV [62], which easily covers the pion masses used
in this work. This SU(2) analysis gives a þ5 MeV shift to

FIG. 10. Results from the GEVP analyses. The left column shows the effective masses of the eigenvalue λ1. The blue circles are the
raw effective masses of λ1, and the orange squares are the effective masses of the raw data which has the excited state central values from
the nominal fit subtracted out. The black diamonds are the smoothed effective masses defined in Eq. (5.3). The green band is the result of
the Bayesian fit described in Sec. VA 1. The right column shows the data for λ̃1 [defined in Eq. (4.17)] and the corresponding plateau fits
(brown bands) to − ln λ̃1=τ for τ=a≡ ðt − t0Þ=a ¼ 2 using Eq. (4.18).
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our N-like mass on the 0.09 fm ensemble from mistuning
which is well within the range 7(7) MeV from the linear fit.
Another check is to use a Taylor expansion ofMN that is

linear in M2
π . The slope is the nucleon sigma term σNπ .

It can be determined from lattice QCD: the NF ¼ 2þ1þ1
FLAG average [63,64] is 64.9(1.5)(13.2) MeV, while an
estimate from the Roy-Steiner equations [65] yields
σNπ ¼ 59.1ð3.5Þ MeV. Using either value of σNπ yields

a 6 MeV shift to the N-like mass, which is also within the
7(7) MeV range from our first estimate.
Single-particle finite-volume errors are exponentially

small in MπL [39]. For the a ≈ 0.15, 0.12, and 0.09 fm
ensembles, the corresponding values of MπL are 3.4, 4.0,
and 3.7 respectively. The lattice data of Ref. [66] supports a
model based on a resummation of the Lüscher formula
[67], but the statistical errors on the nucleon masses are too
large—around 5%—to be conclusive. Applying this model
with our ensemble parameters, only the a ¼ 0.15 fm
nucleon mass would receive an appreciable correction,
namely −5 MeV. However, applicability of this model is
still unclear, as Ref. [68] observes no change in the nucleon
mass with a variation of MπL between 3.4 and 6.7, with
∼1% statistical and fitting uncertainties. Moreover,
Ref. [17] has ensembles which have MπL ranging from
3.3–5.5 and finds a positive 4 MeV shift between MπL ¼
3.3 and 4, beyond which any further change is negligible.
Due to this conflicting information, even about the sign of
the correction, we apply a 0(5) MeV error on the a ¼
0.15 fm nucleon mass arising from finite-volume correc-
tions. Our final result is insensitive to this finite-volume
correction and we leave an in-depth study of potential
finite-volume corrections of the nucleon mass on the MILC
HISQ ensembles to a future investigation.
Our lattice simulation is isospin symmetric, i.e., the up-

and down-quark masses have the same value and quantum
electrodynamics is omitted. Both of these effects give rise
to the proton-neutron mass difference, which is less than
1 MeV. As 1 MeV is small compared to our statistical error,
we apply no additional uncertainty from these effects.

B. Continuum extrapolation

Using the ensemble-by-ensemble nucleon masses given
in Sec. V B, we can include all sources of systematic error
and perform a continuum extrapolation to produce a
nucleon mass which can be compared to experiment. To
do so, we perform a Bayesian fit to the functional form,

MNðaÞ¼MN;phyf1þo2ðΛQCDaÞ2þo4ðΛQCDaÞ4g; ð6:1Þ

where MN;phy is the physical nucleon mass, ΛQCD is taken
to be 500 MeV, and o2 and o4 are fit coefficients.
Equation (6.1) is fit to the λ̃1 results in Table VII after
converting to MeV. The lattice spacings for this conversion
are taken from Table III and are assumed to be uncorrelated
with other errors. We do not constrain the prior on o2
and choose an order-one prior for o4 ¼ 0ð1Þ. The list of
priors and posteriors are given in Table VIII, and the
continuum extrapolation is shown in Fig. 12. If we
constrain o2 ¼ 0.0ð3Þ, in line with the HISQ action
improvement, we obtain the same posterior as with no
constraint on o2. We choose the fit with unconstrained o2
for our central result.

FIG. 11. Stability of the nucleon mass as a function of tmin=a
for λ1 (top) and λ̃1 (bottom). Note that the same physical distance
of approximately 0.7 fm is kept fixed on all ensembles for both λ1
and λ̃1. Plotting symbols are as in Fig. 4.

TABLE VII. The N-like mass, in lattice units, extracted from
the three different fitting methodologies described in the text. λ̃1
are the fit results from Eq. (4.17), whereas λ1 are from (4.16). The
first uncertainties are statistical and the second are fitting
systematics (described in Sec. VA 2).

Ensemble λ̃1 fit λ1 fit Bayesian fit

1 0.7555(22)(59) 0.7562(25)(9) 0.7579(36)(48)
2 0.5946(48)(22) 0.5945(29)(13) 0.5952(31)(1)
3 0.4295(26)(8) 0.4307(34)(2) 0.4308(31)(14)
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Our final estimate for the continuum nucleon mass,
including all sources of systematic errors, is

MN;phy ¼ 964ð8Þstatð5Þfitð4Það3ÞFVð8Þmis MeV; ð6:2Þ

¼ 964ð16Þ MeV; ð6:3Þ

where “stat,” “fit,” “a,” “FV,” and “mis” represent the
statistical, fitting, scale setting, finite volume, and the
0.09 fm ensemble quark mistuning errors contribution to
the final continuum nucleon mass uncertainties. With no
prior constraint on MN;phy, we find the posterior MN;phy ¼
966ð8Þstat and the same systematic uncertainties as in
Eq. (6.2).
Our determination of the nucleon mass is 1.6σ above the

experimental value, which arises from the high nucleon
mass on the 0.09 fm ensemble, as can be seen clearly in
Fig. 12. Either higher statistics at a ≈ 0.09 fm or additional
ensembles with smaller lattice spacings could be employed
to see whether this is a statistical fluctuation. Such work is
planned.
It is interesting to see what happens if we do not apply a

þ7ð7Þ MeV correction on this ensemble for the quark
mistuning. If instead we apply a 0(7) MeV correction, the
final value of our nucleon mass is 955(16) MeV which is
within the 1σ error of our final result in Eq. (6.3), as
expected. Even though this result is closer to experiment,
we do not prefer it, because the size and direction of the
shift is on solid footing. The only robust way to reconcile

this issue is to generated an ensemble with a more precisely
tuned light-quark mass.

C. Comparison with other calculations

The average of the proton and neutron masses found in
experiment [43] is 939 MeV, and the uncertainties on these
masses are about the level of one part per million. In this
work, we determine a nucleon mass of 964(16) MeV.
Although this work is the first to determine the nucleon
mass from first principles using staggered baryons, other
first-principles results exist in the literature. Those which
quote a full error budget, and hence are comparable to the
present work in scope, can be found in Refs. [17,66].2

FIG. 12. The continuum extrapolation of the nucleon mass
using Eq. (6.1).

TABLE VIII. The results from the nucleon mass continuum
extrapolation.

Parameter Prior Posterior

MN;phy [MeV] 940(50) 964(16)
o2 Unconstrained 0.02(23)
o4 0.0(1.0) 0.17(97)
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FIG. 13. A comparison of our result against others found in the
literature, as discussed in Sec. VI C. The outer bars denote the 1σ
error from both statistics and systematics, while the inner bar
consists of the statistical error only. The labels on the y axis
denote the PNDME Collaboration’s result [17] and the BMW
Collaboration result [66]. The upper BMW result sets the scale
using theΩ baryon and the lower sets the scale with the Ξ baryon.

2There are other studies [68,69] that are comparable to ours in
scope but which use the nucleon mass to set the lattice scale, and
hence cannot be compared to our final result. A very recent paper
[70] reports a result on one lattice spacing, using it as a cross-
check and, therefore, does not provide a full error budget.
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Reference [66] uses a tree-level Oða2Þ-improved
Symanzik gauge action, (2þ 1) tree-level improved
Wilson fermions, and includes 20 different ensembles
covering three lattice spacings (0.13, 0.09, and 0.07 fm),
4–5 different light quark masses (giving pion masses
ranging from approximately 190–650 MeV), three ensem-
bles with different physical volumes, and eight ensembles
with different strange quark masses. Reference [66] gives
two determinations of the nucleon mass: 936(25)(22) MeV
and 953(29)(19) MeV, where the first error is statistical
and the second is systematic. Here, the two values differ
by the quantity used to set the scale: the first uses the Ξ
baryon mass and the second uses the Ω. Reference [17]
uses 11 ensembles generated by the MILC collaboration
(general details of which are in Sec. III). The ensembles
have ð2þ 1þ 1Þ-HISQ sea quarks with pion masses
ranging from 128–320 MeV and four lattice spacings
covering 0.06, 0.09, 0.12, and 0.15 fm. Their valence
quarks have the improved Wilson-clover action. With a
combined chiral–continuum–finite-volume ansatz for the
systematic extrapolation, they find a nucleon mass of
976(20) MeV. As such, our result is the most precise
first-principles determination of the nucleon mass in the
literature, and is relatively low cost calculation. A
comparison of the results from the three collaborations
is shown in Fig. 13.

VII. DISCUSSION AND CONCLUSIONS

In this work, we have extracted a precise and accurate
value for the nucleon mass, including a full error budget,
using lattice QCD with the HISQ action for both valence
and sea quarks. We find MN ¼ 964� 16 MeV [Eq. (6.3)].
Some notable details of our simulations are three lattice
spacings ranging from a ¼ 0.09–0.15 fm, all of which are
tuned to a nearly physical pion mass. All ensembles have
u, d, s and c quarks in the sea. We employ three different
fitting methodologies: multistate constrained Bayesian
curve fitting and two versions of the generalized eigenvalue
problem approach. Within each approach, we verify sta-
bility under variation of the fitting range, the numbers of
states, and other choices. The superb consistency between
the results of these fitting procedures demonstrates their
robustness and accuracy.
Our results suggest a promising outlook for staggered

baryon lattice QCD. As can be seen in Eq. (6.2), our
dominant error arises from the light-quark-mass mistuning
on the 0.09 fm ensemble, compounded by the continuum
extrapolation. The most direct method to reduce this error
would be to generate an ensemble with a better tuned light-
quark mass. Alternatively, an ensemble with slightly
heavier light quarks would allow retuning via interpolation.
Further, with three ensembles a 1σ statistical fluctuation on
one of them is not unlikely. As can be seen in Fig. 12, the
0.09 fm ensemble seems to exhibit such a fluctuation.
Another data point at smaller lattice spacing would help

alleviate effects from both the mistuning and this potential
fluctuation.
After the error from mistuning, the next largest error

comes from statistics. Reducing the statistical error is
possible by adding additional configurations, or adopting
techniques such as the truncated solver method [17,71],
low-mode averaging [72,73], or all-mode averaging
[74,75]. Another way to reduce the statistical error is to
compute the matrix correlation functions for the 8 and 80
irreps. In the continuum limit, where taste symmetry is
restored, all N-like masses should tend to the same point.
Thus, the final result could be improved by combining the
information from all three baryon irreps and enforcing a
common continuum limit. Finally, one could introduce
more sophisticated smeared interpolating operators. We
have carried out initial tests with stride-two staggered
smearing functions and find them to be promising.
Staggered-baryon methodology can be straightforwardly

applied to compute further baryon properties. The Ω
baryon mass is especially interesting for scale setting in
lattice QCD [76]. It is long lived and composed of three
strange quarks, so the quark propagators are computation-
ally cheaper than those for light quarks, and its two-point
correlation function has a better signal-to-noise ratio.
Moreover, the Ω baryon mass is known unambiguously
from experiment, unlike the pion decay constant, which
relies on determinations of jVudj from nuclear beta decay.
Robust and precise scale setting is, of course, crucial as
total error budgets for lattice QCD fall below 1%, which is
not only feasible but, in the case of hadronic-vacuum-
polarization contribution to the muon g − 2, necessary [77].
We have started such work on the ensembles listed in
Table III, i.e., ensembles that omit QED, which is espe-
cially relevant with a charged particle.
This work also paves the way for all-staggered compu-

tations of three-point baryon correlation functions. Now
that we have identified N-like states via both the GEVP and
multistate Bayesian curve fitting, we can have confidence
that the extracted N-like matrix elements do indeed
correspond to the physical nucleon. Especially important
for neutrino scattering experiments, for example, is the
nucleon axial form factor. The first step in such a program
is to calculate the axial charge, gA, which is just the form
factor at zero-momentum transfer. Because it is precisely
known from neutrino beta decay, gA serves as a calibration
point for lattice QCD. Indeed, we consider the nucleon
mass presented here more important as a prerequisite for
future all-staggered calculations of nucleon matrix ele-
ments than as a test of (lattice) QCD.
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APPENDIX A: IRREDUCIBLE
REPRESENTATIONS OF GTS

In this Appendix, we are concerned with the geometric
symmetries of staggered fermions, in order to classify
physical baryon states. The properties of physical states
under charge conjugation, baryon number, and the exact
axial symmetry are straightforward. Complications arising
from the interplay of flavor and taste are deferred to
Appendix B.
The emergence of four Dirac fermions in the continuum

limit stems from the group theory of the shifts, which
translate fields by a single lattice site and multiply fermion
fields by a convention- and x-dependent staggered sign
factor such that

SμSνS−1μ S−1ν ¼ ð−1ÞF; ν ≠ μ; ðA1Þ

where F is fermion number, and μ and ν denote directions
of translations. The shift Sμ is defined in, for instance,
Ref. [28]. It is a translation by one lattice spacing in the μ
direction, multiplied by a sign factor that depends on xν,
ν ≠ μ, but not on xμ. Therefore, Tμ ≡ S2μ is a normal
translation by two lattice sites for all fields. It is convenient
(and permissible, because the translations commute with
the shifts) to remove the translation part of the shifts by
introducing Ξμ ≡ SμT

−1=2
μ , where T−1=2

μ is a formal square
root of T−1

μ in any representation of the symmetry group.
Nowadays one calls the Ξμ the taste generators (reserving
“shift” for Sμ and “flavor” for flavor). They satisfy Eq. (A1)
and Ξ2

μ ¼ 1; thus, they generate the Clifford group Γ4.
On physical states,T4 is the (two-time slice [34,78]) time-

evolution operator, also known as the transfer matrix. The
classification of states in Hilbert space hinges on the
symmetries that commute with T4. These are the spatial
translations, all four shifts, and (assuming the same extent in
all three spatial directions) the rotation-reflection sym-
metries of the cube. Thus, on a ð2NÞ3 spatial lattice with
(anti)periodic boundary conditions, the geometric symmetry
group of the staggered-fermion transfer matrix is [28–30]

G ¼ ðZ3
N × Γ4Þ ⋊ W3; ðA2Þ

where the first two factors are the groups generated by the
(two-site) spatial translations Ti and the tastes Ξμ. W3 is the

cubic rotation-inversion symmetry group, generated
by π=2 rotations in the ij plane, Rij, and spatial inversion,
IS. The last product is semidirect, because RijTj ¼ TiRij,
RijΞj ¼ ΞiRij, etc.
Earlier work [29,30] has shown that the problem

of finding irreducible representations can be simplified
by grouping the generators judiciously. In particular, the
spatial taste generators can be chosen to be Ξ123 ≡ Ξ1Ξ2Ξ3

and any two Ξij ≡ ΞiΞj. Further, the combination P≡
Ξ4IS commutes with the taste generators as well as with
rotations, so in the continuum limit it is the analog of parity
[29,30]. It is convenient to use IS as a generator and leave
parity until the end; then [36],

G ≅ ½ððZ3
N ×Q8Þ ⋊ SW3 × D4Þ=Z2� ⋊ Z2ðPÞ; ðA3Þ

whereZ2ðPÞ ¼ f1; Pg,Q8 is the quaternion group of order
8, D4 is the dihedral group (also of order 8), and SW3 ⊂
SOð3Þ is the cubic rotation group. The generators of these
groups are listed in Table IX.3 The Z2 divisor identifies
ð−1;−1Þ ∈ Q8 × D4 with (1,1), leading to the isomor-
phism Γ4 ≅ ðQ8 × D4Þ=Z2.
In this paper, we are concerned with the trivial

representation of the translation group, namely, zero
3-momentum. We note in passing, however, that the group
theory at nonzero momentum is simpler if the taste gen-
erators insensitive to rotations are factored as in Eq. (A3).
At zero momentum, we are left with the “geometric rest-

frame group” [29]

GRF ¼ GTS × Z2ðPÞ; ðA4Þ
where the 768-element “geometric time slice group” [29]

GTS ¼ ððQ8 ⋊ SW3Þ × D4Þ=Z2: ðA5Þ

Equation (A5) is equivalent to an isomorphism given by
Kilcup and Sharpe [30],

GTS ≅ ðSW4 × D4Þ=Z2; ðA6Þ

since Q8 ⋊ SW3 is isomorphic to SW4, the rotation group
of the four-dimensional hypercube.

TABLE IX. The generators of each group appearing in the GTS
decomposition of Eq. (A5).

Group Generators

Q8 fΞ12;Ξ23g
SW3 fR12; R23g
D4 fΞ123; ISg

3Following Ref. [29], we choose IS to generate D4 instead of
Ξ4. Then everything inside the bracket in Eq. (A3) is associated
with a single time slice.
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Baryon states transform under the “fermionic” repre-
sentations of GTS, namely those that preserve the minus
sign in Eq. (A1). Both Q8 and D4 have one such irrep,
which is two-dimensional and can be expressed as Pauli
matrices. We denote them σ and B, respectively. Similarly,
fermions obtain a minus sign under 2π rotations, which is
possible with representations of the double cover of SW3,gSW3 ⊂ SUð2Þ. As shown in Table I, there are three of these
[35], G1, H ¼ G1 ⊗ E, and G2 ¼ G1 ⊗ A2, where E and
A2 are, respectively, the two-dimensional and nontrivial
one-dimensional irreps of SW3. The fermionic irreps of
GTS are then the tensor products (labeled by their dimen-
sion, following Ref. [30])

8 ¼ σ ⊗ G1 ⊗ B; ðA7aÞ

80 ¼ σ ⊗ G2 ⊗ B; ðA7bÞ

16 ¼ σ ⊗ H ⊗ B: ðA7cÞ

From the matrix form of the tensor product, one sees
that σ ⊗ B automatically identifies ð−1;−1Þ ∈ Q8 × D4

with ð1; 1Þ.
For completeness, we discuss the bosonic representa-

tions of GTS, which correspond to even F in Eq. (A1) and
no sign for 2π rotations. Because of the Z2 divisor in
Eq. (A3), these arise from the bosonic representations of all
three factors.
D4 has four one-dimensional bosonic representations,

AIS
Ξ123

, in which �Ξ123 and IS can each be represented by
�1. Consequently, for every bosonic irrep of ðQ8 ⋊ SW3Þ,
four irreps of GTS are induced. These induced representa-
tions are just the tensor products with AIS

Ξ123
and, thus, have

the same dimension as their ðQ8 ⋊ SW3Þ counterparts.
To fully classify representations of ðQ8 ⋊ SW3Þ, it is

easiest to first consider representations of Q8 and then use
the Wigner little-group method to induce the representa-
tions of the full group.4 Q8 has four one-dimensional
bosonic irreps, which are the trivial representation and
three sign representations in which two of Ξ23, Ξ31, and Ξ12

have character −1 (and the third þ1). The trivial repre-
sentation is in its own orbit, and the latter three for another
orbit. These orbits arise from the way the group elements
transform into each other under conjugation with the
rotations:

R−1
jk ΞijRjk → �Ξik: ðA8Þ

Physically, the nontrivial bosonic representations act as a
3-vector under rotations. The vector’s direction follows
from the signs representing the Ξij.

The orbits and their little groups, L ⊂ SW3, are shown in
Table X. Note that the little group D4 for the nontrivial one-
dimensionalQ8 irreps is generated by,

5 e.g., R23 and R2
12 for

the irrep in which the character χðΞ23Þ ¼ 1 [and
χðΞ12Þ ¼ χðΞ31Þ ¼ −1]. From this construction, one sees
that ðQ8 × SW3Þ ≅ SW4 has ten bosonic irreps and three
fermionic irreps. The final step is simple, because GTS is a
direct product of ðQ8 × SW3Þ ≅ SW4 with D4, but modded
out by a Z2, requiring bosonic (fermionic) irreps to be
tensored with bosonic (fermionic) irreps. Thus, GTS has 40
bosonic irreps and three fermionic irreps.

APPENDIX B: STAGGERED LATTICE BARYON
IRREP IDENTIFICATION

The usual strategy to build baryon operators starts with
embedding SU(2) spin and SU(3) flavor into an SU(6) spin-
flavor group. As baryons must obey Fermi statistics, the
overall baryon wave function must be antisymmetric. The
antisymmetrization is completely captured by SU(3) color,
so the only needed representations of SU(6) spin flavor are
those that are overall symmetric. Decomposition of these
symmetric SU(6) representations back into SUð2ÞS ×
SUð3ÞF pairs the symmetric (mixed-symmetric) represen-
tations of SUð2ÞS with the symmetric (mixed-symmetric)
representations of SUð3ÞF, giving the usual spin-12 octet and
spin-3

2
decuplet of physical baryons.

When including the continuum taste symmetry, this can
be extended to include the SU(4) taste symmetry.
Golterman and Smit [29] pursued this strategy without
considering flavor, and Bailey [31] generalized it to include
SU(3) flavor. Here, we summarize the main steps.
Thus, SUð2ÞS, SUð3ÞF and SUð4ÞT are embedded into

SU(24), applying the symmetrization to combinations of

TABLE X. Structure of GTS irreps γ. The first column shows
the orbits of the Q8 irreps under SW3. The little group L ⊂ SW3

and its irreps are given in the next two columns. (As discussed in
the text, the fermionic irrep requires the double cover gSW3.) The
fourth column gives the irrep of the D4 factor in Eq. (A3). The
next-to-last column gives the dimension dim γ of the induced
irreps of GTS. The last column gives the number of resulting GTS
irreps: in all, 40 bosonic and three fermionic.

Q8 orbit L L irreps D4 irreps dim γ #ðγÞ
α0 SW3 A1; A2 AIS

Ξ123

1 8
E 2 4

T1; T2 3 8
α⃗ D4 A

R2
12

R23

AIS
Ξ123

3 16

B 6 4
σ gSW3

G1; G2 B 8 2
H 16 1

4For advanced group theory concepts, we refer the reader to
Ref. [79]. 5This D4 is not equal to the D4 of tastes in Eq. (A3).
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spin, flavor, and taste. In addition to the usual baryon
decuplet and octet, which lie in the symmetric SU(4) irreps,
further states appear in mixed and asymmetric taste
representations combined with mixed and asymmetric
spin-flavor representations. These states have no real-world
equivalent, but the SU(24) embedding demonstrates that
they have the same masses and matrix elements as the
physical baryons.
At nonzero lattice spacing, the spin-flavor-taste rep-

resentations break down into direct sums of GTS irreps.
There are two important consequences. First, states
within a continuum-limit multiplet split into smaller
multiplets that differ at order a2 (or αsa2 for tree-level
improved actions). Second, because there are so few
GTS irreps, various multiplets can mix, again at order a2

(or αsa2). Excitations of the GTS irreps must, in general,
be matched up as the continuum limit is approached to
identify higher-spin baryons, as is familiar elsewhere in
spectroscopy [80].
In the following, the SUðNÞ representations are denoted

by a number and a subscript, where the number is the
dimension of the representation and the subscript refers to
the symmetrization of the representation indices, and can
either be symmetric (S), mixed-symmetric (M), or anti-
symmetric (A). Subgroups also often carry a subscript for
spin (S), flavor (F), or taste (T). Note that the restriction of
a large SUðNÞ to smaller SUðNÞ subgroups need not be
unique. In all of the following, we use the pattern for
SUðNÞ → SUðN1Þ × SUðN2Þ, N ¼ N1N2, in which an
SUðN1Þ × SUðN2Þ matrix is the Kronecker product of
an SUðN1Þ matrix and an SUðN2Þ matrix. Thus, this
decomposition always starts with and yields only defining
representations, i.e., N → N1 ⊗ N2.
Quarks transform under the defining 24-dimensional

representation of the SU(24) embedding group. The sym-
metric combination of three fundamental quarks is the
representation denoted 2600S. The first step is to separate
out the SU(2) spin group, which yields

SUð24ÞSFT → SUð2ÞS × SUð12ÞFT;
2600S → ð4S; 364SÞ ⊕ ð2M; 572MÞ; ðB1Þ

where we abbreviate, for example, 4S ⊗ 364S by
ð4S; 364SÞ. In Eq. (B1), 4S (2M) is the usual symmetric
(mixed-symmetric) spin 3

2
(1
2
) construction for the baryon

decuplet (octet). Now, however, we have larger multiplets
of SUð12ÞFT . Because flavor and taste are both names
for quark species,6 the SUð12ÞFT symmetry remains,
even when these representations are decomposed into
SUð3ÞF × SUð4ÞT . As a consequence, any representation
that is formed by decomposing the ð4S; 364SÞ

representation can be identified with a baryon from
the physical decuplet, and similarly any representations
found by decomposing the ð2M; 572MÞ irrep can be
identified with baryons from the physical octet. It is
convenient to refer to states in these representations
decuplet-like and octet-like, respectively, as a reminder
of the differences with and similarities to the physical
decuplet and octet.
Next, the flavor and taste symmetries are separated

from each other. The decomposition of the 572M repre-
sentation gives

SUð12ÞFT → SUð3ÞF × SUð4ÞT;
572M → ð8M; 20SÞ ⊕ ð10S; 20MÞ ⊕ ð8M; 20MÞ

⊕ ð8M; 4AÞ ⊕ ð1A; 20MÞ: ðB2Þ

The physical octet is in the taste-symmetric ð8M; 20SÞ
representation. The other representations are all a conse-
quence of nontrivial taste symmetry. As discussed in the
main text, they should not be discarded: they are, in fact,
useful, in a way similar to the utility of taste-nonsinglet
pions. Similarly, the decomposition of the 364S represen-
tation yields

SUð12ÞFT → SUð3ÞF × SUð4ÞT;
364S → ð10S; 20SÞ ⊕ ð8M; 20MÞ ⊕ ð1A; 4AÞ: ðB3Þ

The ð10S; 20SÞ is taste symmetric and, thus, identified with
the physical decuplet, but the other states are useful once.
Below we relate the 20S, 20M, and 4A of SUð4ÞT and the 4S
and 2M of SUð2ÞS to the irreps of GTS.
With two equal-mass light quarks and a heavier strange

quark, one is interested in the further decomposition from
SU(3) flavor to SU(2) isospin. Here, we focus on irreps
with zero strangeness. The 10S and 8M representations of
SUð3ÞF in Eqs. (B2) and (B3) each contain only one zero
strangeness representation:

SUð3ÞF → SUð2ÞF;
10S → 4S ⊕ � � � ;
8M → 2M ⊕ � � � ; ðB4Þ

where the ellipses denote representations with nonzero
strangeness. The 4S and 2M are the isospin 3

2
and 1

2

representations, respectively.
At this point, we have the group-theoretic ingredients to

specify the operators for baryon states labeled by ðS; F; TÞ.
To understand the decomposition of these representations
into GTS, it is convenient to carry out the decomposition in
several steps. Each of the subgroups Q8, SW3, and D4 that
build GTS has a faithful fermionic representation generated
by Pauli matrices. As such, identification of each of the6Taste and flavor differ crucially at nonzero lattice spacing.
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subgroups with SU(2) is useful.7 One of these factors comes
directly from the SUð2ÞS spin in the decomposition of
Eq. (B1), while the other two are found by decomposing the
SU(4) taste factor into SUð2ÞQ8

× ½ðSUð2Þ × Z4Þ=Z2�D4
.

Under this decomposition, we have the following three
representations to consider:

SUð4ÞT → SUð2ÞQ8
× ½ðSUð2Þ × Z4Þ=Z2�D4

;

20S → ð4S; 4SÞ ⊕ ð2M; 2MÞ;
20M → ð2M; 4SÞ ⊕ ð4S; 2MÞ ⊕ ð2M; 2MÞ;
4A → ð2M; 2MÞ: ðB5Þ

For brevity, we do not introduce a label for the Z4 quantum
number. The nontrivial element is �i (�1) in fermionic
(bosonic) representations, with the sign modded out by Z2.
To mimic GTS, the quaternion factor SUð2ÞQ8

should be
in a semidirect product with something corresponding to
the lattice rotation group, which we denote SUð2ÞSW3

. In
the continuum limit, however, spin and taste commute,
namely SUð2ÞS × SUð4ÞT ; cf. Eqs. (B1) and (B2). It is
possible to arrive at the desired structure by noting

SOð4Þ ≅ SUð2ÞQ8
× SUð2ÞS;

≅ SUð2ÞQ8
⋊ SUð2ÞSW3

; ðB6Þ

where SOð4Þ ⊃ SW4 of Eq. (A6). If the generators of
SUð2ÞQ8

and SUð2ÞS are τ and Σ, respectively, then the
generators of SUð2ÞSW3

are σ ≡ Σþ τ. Although τ and Σ
commute, one finds the desired behavior of the tastes under
lattice rotations: ½σi; τj� ¼ 2iεijkτk.
In summary, to mimic GTS with SU(2) groups,

GTS ⊂ ðSUð2ÞQ8
× SUð2ÞS × ½ðSUð2Þ × Z4Þ=Z2�D4

Þ=Z2;

ðB7Þ

the last Z2 is the same as the Z2 factor in Eq. (A5). The
remainder of this section focuses on decomposing
the various SU(2) group factors down into their discrete
lattice subgroups, being mindful that SUð2ÞQ8

× SUð2ÞS in
Eq. (B7) is isomorphic to SUð2ÞQ8

⋊ SUð2ÞSW3
, as shown

in Eq. (B6). In this way we derive the full map from SU
(24), where it is easiest to construct operators obeying
Fermi statistics, to the GTS symmetry of staggered lattice
fermions.
The decompositions of all irreps to this point have

resulted in just two SU(2) representations: 2M and 4S. It
is important to keep track of which subgroup factor each

representation belongs to. In the interest of clarity, the
subduction of these subgroup factors is listed for each
subgroup factor individually, with a guide for assembling
the individual subduction patterns into GTS irreps. The end
result of this assembly yields the subduction of Eq. (B7),
summarized in Eq. (B14).
The ½ðSUð2Þ × Z4Þ=Z2�D4

factor is separated from the
other products by a direct product, and so may be
considered independently. Subduction to D4 can yield only
one fermionic representation, and so all fermionic repre-
sentations must subduce to multiples of this irrep. This
gives

½ðSUð2Þ × Z4Þ=Z2�D4
→ D4;

2M → B;

4S → B ⊕ B: ðB8Þ

Thus, when 4S of ½ðSUð2Þ×Z4Þ=Z2�D4
appears in Eq. (B8),

the irreps subduced from the other groups appear twice in
the subduction to GTS.
Equation (B7) demonstrates that the taste and spin

representations may be considered separately in the
continuum. However, the presence of the semidirect
product in Eq. (A5), Q8 ⋊ SW3, means that the lattice
generators of rotations mix up the discrete taste trans-
formations. It is instructive to trace the subduction from the
continuum SUð2ÞQ8

⋊ SUð2ÞSW3
down to the discrete

subgroup Q8 ⋊ SW3 to see how the spin and taste degrees
of freedom become mixed up by the discretization.
The first step in the subduction is to identify how the

direct product is converted to a semidirect product in
Eq. (B6). The semidirect product is enforced by replacing
Σ with σ, to arrive at the rotation group SUð2ÞSW3

, which
acts on both spin and taste. Since the two groups in
Eq. (B6) are isomorphic, their irreps must be in a one-
to-one correspondence. In addition, to preserve the repre-
sentations’ dimensions, the semidirect product cannot mix
different irreps, and the little group is nothing but the entire
SUð2ÞSW3

group in all cases. This means that the mapping
between irreps of the direct product and the semidirect
product is trivial,

SUð2ÞQ8
× SUð2ÞS → SUð2ÞQ8

⋊ SUð2ÞSW3
;

ð2M; 2MÞ → ð2M; 2Þ;
ð2M; 4SÞ → ð2M; 4Þ;
ð4S; 2MÞ → ð4S; 2Þ;
ð4S; 4SÞ → ð4S; 4Þ; ðB9Þ

where for clarity below, we omit the second subscript when
referring to the semidirect product.
To understand the decomposition of the semidirect

product group, it is not sufficient to break the two SU(2)

7The dihedral group D4 ≅ f�1;�iσ2;�σ3;�σ1g⊂ SUð2Þ,
but D4 ⊂ ½ðSUð2Þ × Z4Þ=Z2�D4

. Neither the Z4 factor nor the
Z2 identifying ð−1;−1Þ with (1,1) affects the structure relating
GTS to SUð4ÞT × SUð2ÞS.
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subgroups into Q8 and SW3, respectively, but the separate
breakings provide a useful ingredient. The Q8 group factor
has only one fermionic irrep, σ, and so all fermionic irreps
of SUð2ÞQ8

must break into copies of that irrep,

SUð2ÞQ8
→ Q8;

2M → σ;

4S → σ ⊕ σ: ðB10Þ

The SW3 factor has three fermionic irreps, and the
decomposition of the relevant SUð2ÞSW3

irreps is simple,

SUð2ÞSW3
→ SW3;

2 → G1;

4 → H: ðB11Þ

The key point is that the semidirect product also
induces a rotation of the copies of the σ irreps into
each other. This additional transformation acts as an irrep
of the SW3 rotation group, and is combined as a tensor
product with the irrep resulting from the direct decom-
position of the SUð2ÞSW3

factor. We can write this as an
additional irrep factor belonging to the SW3 group instead
of as an uninformative multiplicative factor on the number
of irreps,

SUð2ÞQ8
→ Q8ð⋊SW3Þ;

2M → σð⊗A1Þ;
4S → σð⊗EÞ: ðB12Þ

Combining this together with the irreps in Eq. (B11), we
get the full decomposition

SUð2ÞQ8
⋊ SUð2ÞSW3

→ Q8 ⋊ SW3;

ð2M; 2Þ → ðσ; A1 ⊗ G1Þ ¼ ðσ; G1Þ;
ð2M; 4Þ → ðσ; A1 ⊗ HÞ ¼ ðσ; HÞ;
ð4S; 2Þ → ðσ; E ⊗ G1Þ ¼ ðσ; HÞ;
ð4S; 4Þ → ðσ; E ⊗ HÞ

¼ ðσ; G1Þ ⊕ ðσ; G2Þ ⊕ ðσ; HÞ:
ðB13Þ

We have now completed the decomposition of Eq. (B7).
Combining the identifications of the irreps [Eq. (A7)] with
the decompositions in Eqs. (B8) and (B13), we get

ðSUð2ÞQ8
× SUð2ÞS × ½ðSUð2Þ × Z4Þ=Z2�D4

Þ=Z2 → GTS;

ð2M; 2M; 2MÞ → 8N;

ð4S; 2M; 2MÞ → 16N;

ð2M; 4S; 2MÞ → 16Δ;

ð4S; 4S; 2MÞ → 8Δ ⊕ 80Δ ⊕ 16Δ;

ð2M; 2M; 4SÞ → 2 × ð8NÞ;
ð4S; 2M; 4SÞ → 2 × ð16NÞ;
ð2M; 4S; 4SÞ → 2 × ð16ΔÞ;
ð4S; 4S; 4SÞ → 2 × ð8Δ ⊕ 80Δ ⊕ 16ΔÞ: ðB14Þ

Since the particle content, either N or Δ, is determined
by the SUð2ÞS irrep, an additional subscript has been added
to the GTS irreps. Additionally, the two choices of
½ðSUð2Þ × Z4Þ=Z2�D4

irrep result only in a different multi-
plicity in the number of irreps, not in the irreps that appear.

APPENDIX C: STAGGERED BARYON
OPERATORS IN THE 16 IRREP

In this Appendix, we give specific details about the
operators for the 16 irrep. The 16 components are related by
GTS symmetry, and here we construct an interpolating
operator for each component. As described in Sec. II B,
these 16 components split into two sets of eight compo-
nents. We conventionally construct the 16-irrep elements
such that the corresponding baryon operators at the origin
are eigenstates under a π=2 z-axis rotation with eigenvalue
s ¼ �1. The remaining 16-irrep elements can be obtained
by applying shifts to take these two rotation-eigenstate
operators to each of the remaining unit cube sites. As also
discussed in Sec. II B, there are four different classes of
operators that one can construct in the I ¼ 3

2
16 irrep. No

class of the 16 irrep can be transformed into another by a
GTS symmetry. Each class thus serves as a different
operator construction, and each effectively gives a different
overlap with the nucleon wave function.
In the following, we give the operator coefficients

OS;16;C
sD⃗;A⃗ B⃗ C⃗

appearing in Eq. (2.9). Here, S denotes the totally

symmetric representation of both spin taste and isospin, to
distinguish these operators from mixed-symmetry repre-
sentations which may be studied in the future; C denotes
the class introduced by Golterman and Smit [29] (in the 16
irrep, C ∈ f2; 3; 4; 6g); and D⃗ is an unspecified index that
can have one of eight different values. As the eight different
D⃗ components are related by a shift symmetry, we fix D⃗
and only give a single operator within this set. The other
seven operators within this set can be generated with the
nontrivial shift symmetry transformations.
Equations (C1)–(C8) give all the operators we use that

are unrelated by a shift symmetry, e.g., one choice for each
value of s and C. A hat over multiple letters is shorthand for

YIN LIN et al. PHYS. REV. D 103, 034501 (2021)

034501-24



the sum of unit vectors in each of those directions, e.g., andbxy ¼ x̂þ ŷ. Quarks on the site bxz conventionally appear
with an extra minus sign so they respect the shift and
rotation symmetry operations. The operators are written
with only the positive directions, but symmetrization over
all combinations of positive and negative directions is
implied. These operators are also shown diagrammatically
in Fig. 14. We have found empirically that correlators with
the class-3 operator OS;16;3 are noisier than the others and
so we have excluded them from the analysis. This operator

can only couple to theN-like state at order αsa2 (or order a2

in actions without the Naik term). Unlike the other operator
classes, the class-3 operator has all three quarks on even
sites, which can only be subduced from the completely
symmetric 4S representation of ½ðSUð2Þ × Z4Þ=Z2�D4

. For
the isospin-3

2
operators in the 16 irrep, the N-like state

comes from a 2M irrep of ½ðSUð2Þ × Z4Þ=Z2�D4
, and so its

contribution to the class-3 operator must vanish in the
continuum limit upon restoration of taste symmetry:

OS;16;2
þD⃗;A⃗ B⃗ C⃗

¼ 1ffiffiffi
6

p ðδA⃗;D⃗δB⃗;D⃗þx̂δC⃗;D⃗þx̂ þ δA⃗;D⃗δB⃗;D⃗þŷδC⃗;D⃗þŷ − 2δA⃗;D⃗δB⃗;D⃗þẑδC⃗;D⃗þẑÞ ðC1Þ

OS;16;2
−D⃗;A⃗ B⃗ C⃗

¼ 1ffiffiffi
2

p ðδA⃗;D⃗δB⃗;D⃗þx̂δC⃗;D⃗þx̂ − δA⃗;D⃗δB⃗;D⃗þŷδC⃗;D⃗þŷÞ ðC2Þ

OS;16;3
þD⃗;A⃗ B⃗ C⃗

¼ 1ffiffiffi
6

p ðδA⃗;D⃗δB⃗;D⃗þbyzδC⃗;D⃗þbyz þ δA⃗;D⃗δB⃗;D⃗þbxzδC⃗;D⃗þbxz − 2δA⃗;D⃗δB⃗;D⃗þbxyδC⃗;D⃗þbxyÞ ðC3Þ

OS;16;3
−D⃗;A⃗ B⃗ C⃗

¼ 1ffiffiffi
2

p ðδA⃗;D⃗δB⃗;D⃗þbyzδC⃗;D⃗þbyz − δA⃗;D⃗δB⃗;D⃗þbxzδC⃗;D⃗þbxzÞ ðC4Þ

OS;16;4
þD⃗;A⃗ B⃗ C⃗

¼ 1ffiffiffi
2

p ð−δ
A⃗;D⃗þbyzδB⃗;D⃗þẑδC⃗;D⃗þŷ − δ

A⃗;D⃗þbxzδB⃗;D⃗þẑδC⃗;D⃗þx̂Þ ðC5Þ

OS;16;4
−D⃗;A⃗ B⃗ C⃗

¼ 1ffiffiffi
6

p ðδ
A⃗;D⃗þbyzδB⃗;D⃗þẑδC⃗;D⃗þŷ − δ

A⃗;D⃗þbxzδB⃗;D⃗þẑδC⃗;D⃗þx̂ − 2δ
A⃗;D⃗þbxyδB⃗;D⃗þŷδC⃗;D⃗þx̂Þ ðC6Þ

OS;16;6
þD⃗;A⃗ B⃗ C⃗

¼ 1ffiffiffi
6

p ðδ
A⃗;D⃗þ bxyzδB⃗;D⃗þbyzδC⃗;D⃗þx̂ − δ

A⃗;D⃗þ bxyzδB⃗;D⃗þx̂zδC⃗;D⃗þŷ − 2δ
A⃗;D⃗þ bxyzδB⃗;D⃗þbxyδC⃗;D⃗þẑÞ ðC7Þ

OS;16;6
−D⃗;A⃗ B⃗ C⃗

¼ 1ffiffiffi
2

p ðδ
A⃗;D⃗þ bxyzδB⃗;D⃗þbyzδC⃗;D⃗þx̂ þ δ

A⃗;D⃗þ bxyzδB⃗;D⃗þbxzδC⃗;D⃗þŷÞ: ðC8Þ

FIG. 14. Diagrams of the operators listed in Eqs. (C1)–(C8). As discussed in the main text, this representation of GTS permits four
classes of operators that can be constructed: classes 2, 3, 4, and 6. The locations of the three quarks within the unit cube are depicted with
a circle, square, and diamond.
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APPENDIX D: ADDITIONAL DATA

In this Appendix, we provide additional data for the
other ensembles that are not given in the main text.

Table XI gives detailed prior and posterior information
from the Bayesian fits of Sec. V. Figures 15 and 16
give the fit curves and residuals from the joint fit

FIG. 15. Similar to Fig. 2 but for the 0.15 fm ensemble.

TABLE XI. Bayesian fit priors and posteriors from fits to Eqs. (4.1), (4.6), and (4.13) on the 0.15, 0.12, and 0.09 fm ensembles. All
posterior uncertainties are estimated with 1000 bootstrap samples. The symbol “δ” denotes that the mass difference Mi −Mi−1 is fit
instead of the absolute massMi. For the even-parity sector,M1 ¼ MN , and the masses in order of increasing i areMΔ0

1
,MΔ0

2
, andMr;1. In

the odd-parity sector, the masses Mi correspond directly to M−;i.

aMN aδMΔ0
1

aδMΔ0
2

aδMr;1 aM−;1 aδM−;2 aδM−;3 aδM−;4

0.15 fm prior 0.715(40) 0.220(76) 0.114(38) 0.30(15) 1.06(15) 0.150(75) 0.150(75) 0.30(15)
0.15 fm posterior 0.7582(30) 0.157(18) 0.107(12) 0.311(75) 0.938(39) 0.121(10) 0.132(29) 0.303(52)
0.12 fm prior 0.572(30) 0.176(60) 0.06(3) 0.24(12) 0.85(12) 0.12(6) 0.12(6) 0.24(12)
0.12 fm posterior 0.5954(27) 0.210(31) 0.057(13) 0.236(33) 0.783(44) 0.128(36) 0.117(27) 0.264(47)
0.09 fm prior 0.430(22) 0.132(45) 0.028(28) 0.18(9) 0.64(9) 0.090(45) 0.090(45) 0.18(9)
0.09 fm posterior 0.4308(30) 0.143(22) 0.033(16) 0.191(42) 0.627(21) 0.089(21) 0.088(22) 0.182(23)
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with Bayesian priors, analogous to Fig. 2. Figures 17
and 18 give the effective masses of correlators
both before and after subtraction of excited states,

analogous to Fig. 3. Figure 19 gives the lowest
eigenvalue after applying the GEVP in Eq. (4.14),
analogous to Fig. 9.

FIG. 16. Similar to Fig. 2 but for the 0.09 fm ensemble.
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FIG. 17. Similar to Fig. 3 but for the 0.15 fm ensemble.
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FIG. 18. Similar to Fig. 3 but for the 0.09 fm ensemble.

FIG. 19. Similar to Fig. 9 but for the 0.15 fm ensemble (left) and the 0.09 fm ensemble (right).
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