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We combine ALEPH and OPAL results for the spectral distributions measured in τ → π−π0ντ, τ →
2π−πþπ0ντ and τ → π−3π0ντ decays with (i) recent BABAR results for the analogous τ → K−K0ντ
distribution and (ii) estimates of the contributions from other hadronic τ-decay modes obtained using CVC
and electroproduction data, to obtain a new and more precise nonstrange, inclusive vector, isovector
spectral function. The BABAR K−K0 and CVC/electroproduction results provide us with alternate, entirely
data-based input for the contributions of all exclusive modes for which ALEPH and OPAL employed
Monte-Carlo-based estimates. We use the resulting spectral function to determine αsðmτÞ, the strong
coupling at the τ mass scale, employing finite energy sum rules. Using the fixed-order perturbation theory
(FOPT) prescription, we find αsðmτÞ ¼ 0.3077� 0.0075, which corresponds to the five-flavor result
αsðMZÞ ¼ 0.1171� 0.0010 at the Z mass. While we also provide an estimate using contour-improved
perturbation theory (CIPT), we point out that the FOPT prescription is to be preferred for comparison with
other αs determinations employing the MS scheme, especially given the inconsistency between CIPT and
the standard operator product expansion recently pointed out in the literature. Additional experimental
input on the dominant 2π and 4π modes would allow for further improvements to the current analysis.
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I. INTRODUCTION

Since the calculation of the term of order α4s in the Adler
function [1], there has been a revived interest in the
determination of the strong coupling, αsðmτÞ, at the τ
mass scale mτ, from nonstrange hadronic τ decays. Two
LEP experiments, ALEPH [2–4] and OPAL [5] conducted
measurements of hadronic τ decays from which the
inclusive nonstrange vector (V) and axial (A) isovector
spectral functions were extracted with high accuracy as a
function of the squared invariant mass s. A third experi-
ment, CLEO, also used V and A inclusive spectral data in
an early determination of αsðmτÞ [6], but these data have
not been made publicly available.1

Most determinations of αs since Ref. [1] have been based
on the ALEPH data, the most recent of these using the 2013
version of this data [4,8,9], in which an earlier problem [10]
with the data covariance matrix was corrected [4]. An
exception is the determination of αs in Ref. [11], which was
based on the OPAL data. This was later updated in Ref. [12]
for changes in the exclusive-mode τ branching fractions
(BFs) since the original 1998 OPAL publication. The
determinations based on the ALEPH [8] and OPAL [12]
data are consistent with each other, leading Ref. [8] to quote
a weighted average as the best result taking the determi-
nation from both datasets into account. While this weighted
average should be reliable, it was not based on a fit of the
combined ALEPH and OPAL data, and compatibility of the
two αs values does not test the compatibility of the two
datasets directly.2

Clearly, what one would like to do instead is to combine
the two datasets to produce a single dataset whose spectral
functions and corresponding covariance matrices reflectPublished by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1To the best of our knowledge, only data for the decay
τ → π−π0ντ are publicly available [7].

2It is, in any case, important to update and complement these
data with more recent experimental results, where available.
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locally, i.e., in an s-dependent manner, the combined
constraints of the ALEPH and OPAL data. The process
of combining the datasets tests for their compatibility,
and the result is a dataset with smaller errors than either
of the two datasets alone. In this sense, the combined
spectral functions will be the “best available” extracted
from hadronic τ decays. A number of hadronic quantities
useful for hadron phenomenology, such as αs, certain low-
energies constants of chiral perturbation theory and oper-
ator product expansion condensates can then be determined
from the V and A spectral functions.
In this paper, we begin this program by constructing

the combined inclusive nonstrange V spectral function,
and using this to obtain the most precise value of the
strong coupling that can be obtained from the combined
ALEPH and OPAL hadronic τ-decay data in the V channel,
supplemented with eþe− → hadrons cross-section data for
some small but non-negligible residual exclusive modes.
The process of combining the two spectral functions
involves several steps, and includes updating the normal-
izations of exclusive channels using updated BFs, before
the two datasets are combined.
There are two reasons for limiting ourselves to the V

spectral function in this paper. The first is that the V
channel is dominated by the 2π and 4π decay modes, while
the remaining channels, including those for which ALEPH
and OPAL used Monte-Carlo (MC) input, play a much
smaller relative role in the V than in the A channel. For
OPAL, all V-channel modes apart from the dominant 2π
and 4π channels, π−π0, π−3π0 and 2π−πþπ0, are listed as
having a MC source [5]. For ALEPH, MC simulations are
used for the K−K0, KK̄2π and 6πV contributions with the
simulation also used for the part of the ωπ− distribution not
reconstructed in the 2π−πþπ0 mode [2–4].
A second important reason for focusing on the V channel

is that the CVC (conserved vector current) relation3

between the τ-based V spectral function and I ¼ 1 hadronic
eþe− cross section contributions allows almost all of the
smaller, but still numerically relevant, contributions from
exclusive modes other than the dominant 2π and 4π ones
to be significantly improved using recent high-precision
exclusive-mode eþe− → hadrons cross-section data. The
use of CVC and electroproduction data paves the way for
an almost fully experimental, and in this sense improved,
determination of the V spectral function. Such CVC
improvements are, of course, not possible in the A channel,
which, in addition, receives larger relative contribu-
tions from higher-multiplicity exclusive modes for which
exclusive-mode spectral function contributions and cova-
riances were not provided by OPAL and ALEPH.

For these reasons, we postpone a discussion of the A case
to a future work. As far as the determination of αs is
concerned, we found, in previous work, that, while the
addition of the A channel to the analysis provided a
nice consistency check [8,11,12], it did not help reduce
the error on αs. We thus consider the determination of αs
using an updated version of the V spectral function alone to
be of interest.
There are thus two parts to the work reported in this paper.

In the first part, we update the determination of the inclusive
nonstrange V spectral function. This itself involves two
steps. First, we combine, and hence update, the results for the
contributions from the exclusive modes for which ALEPH
and OPAL data is publicly available (the dominant 2π
and 4π modes), using the method employed to combine
exclusive-mode eþe− → hadrons RðsÞ data from different
experiments and described in detail in Ref. [13]. Second, we
use recent results for τ → K−K0ντ, together with CVC and
recent exclusive-mode eþe− → hadrons cross section
results, to improve the determination of the contributions
from the remaining modes, which in this paper we will refer
to as the “residual” modes. In the second part of the paper,
we apply the strategy developed in Refs. [8,11,12] to extract
αsðmτÞ from the improved inclusive V nonstrange spectral
function obtained in the first part.
The determination of αs from V and/or A spectral

functions makes use of finite energy sum rules (FESRs),
which allow us to relate αs at the τ scale through the Adler
function, calculated in QCD perturbation theory, to inte-
grals of the spectral function from threshold to the τ mass
[14–22]. Even so, with the strong coupling at scales around
the τ mass being rather large, these sum rules are “con-
taminated” by nonperturbative effects. These nonperturba-
tive effects are clearly visible in the experimental data,
since the shape of the experimental inclusive spectral
function does not agree with perturbation theory. As a
result of the presence of resonances, the experimental
spectral functions oscillate around the perturbative predic-
tions, with these oscillations remaining visible for s close
to m2

τ . Several methods have been designed for dealing
with these nonperturbative effects. The oldest method
(the “truncated OPE” strategy) employs weight functions
assumed to suppress the effects of the observed “duality
violating” resonant oscillations and assumes the reliability
of a truncation in dimension of operator product expansion
(OPE) contributions required to make the analysis practical
[22,23]. A newer method, the “DV-model strategy,” instead
takes quark-hadron duality violations (DVs), i.e., collective
resonance effects, into account, and requires only very mild
assumptions about the behavior of the OPE [11,24]. While
it is not straightforward to ascertain the reliability of
estimates of nonperturbative effects, self-consistency tests
show that the truncated OPE strategy leads to unreliable
results, with a theoretical uncertainty arising from the
neglect of higher-order OPE terms and of DV contributions

3The notation “CVC” reflects the observation that the charged
V current responsible for nonstrange hadronic τ decays is the
charged member of the same isospin multiplet as the I ¼ 1 part of
the electromagetic current.
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that is not accounted for [25–27]. We will thus employ the
DV-model strategy, which was first developed in Ref. [11]
and thoroughly tested in Refs. [8,11,12], and for which to
date no inconsistencies have been found.4

This paper is organized as follows. In Sec. II we give a
brief overview of FESRs, i.e., the theory needed to extract
αs from spectral function input. Then, in Sec. III, we
review the ALEPH and OPAL datasets, describe in detail
how we combine their publicly available results for the
dominant 2π and 4π modes, and outline the use of new
τ → K−K0ντ data and CVC to improve the determination
of contributions from the remaining residual V exclusive
modes. In Sec. IV we present the results for αsðmτÞ
obtained from DV-model-strategy-based fits to our
updated, inclusive, nonstrange I ¼ 1, V spectral function.
Finally, Sec. V contains our conclusions and prospects for
future progress.

II. THEORY OVERVIEW

In Sec. II A, we briefly recapitulate the use of FESRs
to extract αs from spectral function input and define our
theoretical framework. The choice of sum rules employed
in our fits is discussed in Sec. II B. In Sec. II C we
argue that fixed-order perturbation theory (FOPT) should
be favored over contour-improved perturbation theory
(CIPT) [28,29], if the goal is to convert our result for
αsðmτÞ to a value at the Z mass to be compared to MS
values of αsðMZÞ obtained from other sources. We also
explain how we estimate the systematic error associated
with the necessary truncation of perturbation theory beyond
order α4s.

A. Finite energy sum rules

The sum-rule analysis starts from the current-current
correlation functions

ΠμνðqÞ ¼ i
Z

d4xeiqxh0jTfJμðxÞJ†νð0Þgj0i

¼ ðqμqν − q2gμνÞΠð1Þðq2Þ þ qμqνΠð0Þðq2Þ
¼ ðqμqν − q2gμνÞΠð1þ0Þðq2Þ þ q2gμνΠð0Þðq2Þ;

ð2:1Þ

where Jμ stands for the nonstrange vector (V) current ūγμd
or axial (A) current ūγμγ5d, and the superscripts (0) and
(1) label spin. The decomposition in the third line is useful
because Πð1þ0Þðq2Þ and q2Πð0Þðq2Þ are free of kinematic
singularities. With s ¼ q2, the spectral function

ρð1þ0ÞðsÞ ¼ 1

π
ImΠð1þ0ÞðsÞ; ð2:2Þ

and the known analytical properties of Πð1þ0ÞðzÞ, applica-
tion of Cauchy’s theorem to the contour in Fig. 1 implies
the FESR

IðwÞV=Aðs0Þ≡ 1

s0

Z
s0

0

dswðsÞρð1þ0Þ
V=A ðsÞ

¼ −
1

2πis0

I
jzj¼s0

dzwðzÞΠð1þ0Þ
V=A ðzÞ: ð2:3Þ

The sum rule is valid for any s0 > 0 and any weight wðsÞ
analytic inside and on the contour [14–20]. In this paper,
we will always choose wðzÞ to be polynomial in z.
The flavor-ud V and A spectral functions can be

experimentally determined from the differential versions
of the ratios

RV=A;ud ¼
Γ½τ → ðhadronsÞV=A;udντðγÞ�

Γ½τ → eν̄eντðγÞ�
; ð2:4Þ

of the hadronic decay width induced by the relevant current
to that for the electron mode. Explicitly [30],

dRV=A;udðsÞ
ds

¼ 12π2jVudj2SEW
1

m2
τ

h
wTðs;m2

τÞρð1þ0Þ
V=A;udðsÞ

− wLðs;m2
τÞρð0ÞV=A;udðsÞ

i
; ð2:5Þ

where SEW is a short-distance electroweak correction and

FIG. 1. Analytic structure of Πð1þ0Þðq2Þ in the complex
s ¼ q2 plane. There is a cut on the positive real axis starting
at s ¼ q2 ¼ 4m2

π (a pole at s ¼ q2 ¼ m2
π and a cut starting at

s ¼ 9m2
π) for the V (A) case. The solid curve shows the

contour used in Eq. (2.3).

4Criticism of the DV-model strategy in Ref. [9] was refuted in
Ref. [25].
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wTðs; s0Þ ¼
�
1 −

s
s0

�
2
�
1þ 2

s
s0

�
;

wLðs; s0Þ ¼ 2
s
s0

�
1 −

s
s0

�
2

: ð2:6Þ

With the exception of the known pion-pole part of ρð0ÞA;ud,

the spectral functions ρð0ÞV=A;ud are chirally suppressed,

ρð0ÞV=A;udðsÞ ¼ O½ðmd ∓ muÞ2�, and can be neglected in

the nonstrange case. The spectral functions ρð1þ0Þ
V=A;udðsÞ

can thus be determined directly from dRV=A;udðsÞ=ds for
any positive value of s ≤ m2

τ , allowing us to apply the
FESR (2.3) for arbitrary s0 ≤ m2

τ and arbitrary analytic
weight wðsÞ to the data. As in Ref. [8], we will denote
the experimental spectral integral on the left-hand side of

Eq. (2.3) by IðwÞV=A; exðs0Þ and the theoretical representation

of the contour integral on the right-hand side by IðwÞV=A;thðs0Þ.
For large enough jsj ¼ s0, and sufficiently far away

from the positive real axis, Πð1þ0ÞðsÞ can be approximated
by the OPE

Πð1þ0Þ
OPE ðzÞ ¼

X∞
k¼0

C2kðzÞ
ð−zÞk ; ð2:7Þ

where the logarithmic z dependence of the OPE coefficients
C2k can be calculated in perturbation theory.
For the k ¼ 0 term, it is convenient to consider, instead

of ΠðzÞ, the Adler function DðzÞ≡ −zdΠðzÞ=dz, which is
finite and independent of the renormalization scale μ.
Accordingly, the k ¼ 0 contribution to the right-hand side
of Eq. (2.3) can be expressed in terms of the Adler function
via partial integration. The k ¼ 0 contribution D0ðzÞ to
DðzÞ takes the form

D0ðzÞ≡ −z
dC0ðzÞ
dz

¼ 1

4π2
X∞
n¼0

�
αsðμ2Þ

π

�
n Xnþ1

m¼1

mcnm

�
log

−z
μ2

�
m−1

;

ð2:8Þ

where the coefficients cnm are known to order α4s [1].
The independence of D0ðzÞ on μ implies that only the
coefficients cn1 are independent; the cnm with m > 1 can
be expressed in terms of cn1 through use of the renorm-
alization group.5 In the MS scheme, c01 ¼ c11 ¼ 1,
c21 ¼ 1.63982, c31 ¼ 6.37101 and c41 ¼ 49.07570, for
three flavors [1]. While c51 is not known at present, we
will use the estimate c51 ¼ 283 of Ref. [32], with a 50%
uncertainty. For the running of αs we use the four-loop MS

β-function, but we have checked that using five-loop
running instead [33,34] leads to differences of order
10−4 or less in our results for αsðmτÞ.
The C2k with k ≥ 1 are different for the V and A

channels, and, for k > 1, contain nonperturbative D ¼
2k condensate contributions. As in Refs. [11,12], we will
neglect purely perturbative quark-mass contributions to
C2k, k ≥ 1, as they are numerically very small for the
nonstrange FERSs we consider in this paper. We will also
neglect the z-dependence of the coefficients C2k for k > 1.
For a more detailed discussion of our treatment of the
D > 0 OPE contributions, we refer to Ref. [11].
Perturbation theory, and in general the OPE, breaks

down near the positive real s ¼ q2 axis [35]. If this were
not the case, Eq. (2.3) would establish a direct corres-
pondence between the OPE and the resonant behavior of
the experimental spectral function, generally referred to as
quark-hadron duality. We account for the breakdown of this
duality by replacing the right-hand side of Eq. (2.3) by

−
1

2πis0

I
jzj¼s0

dzwðzÞ
�
Πð1þ0Þ

OPE ðzÞ þ ΔðzÞ
�
; ð2:9Þ

with

ΔðzÞ≡ Πð1þ0ÞðzÞ − Πð1þ0Þ
OPE ðzÞ; ð2:10Þ

where ΔðzÞ≡ ΔV=AðzÞ defines the quark-hadron duality

violating contribution to Πð1þ0ÞðzÞ≡ Πð1þ0Þ
V=A ðzÞ. If ΔðzÞ

decays fast enough for jzj → ∞, Eq. (2.9) can be rewritten
as [36]

IðwÞth ðs0Þ ¼ −
1

2πis0

I
jsj¼s0

dzwðzÞΠð1þ0Þ
OPE ðzÞ

−
1

s0

Z
∞

s0

dswðsÞ 1
π
ImΔðsÞ: ð2:11Þ

The imaginary parts 1
π ImΔV=AðsÞ can be interpreted as the

duality-violating parts ρDVV=AðsÞ of the V=A spectral func-
tions, and represent the resonance-induced, oscillatory
parts of the spectral functions not captured by the OPE.
In Ref. [24], we developed a theoretical frame-

work for quark-hadron duality violations in terms of a
generalized Borel–Laplace transform of Πðq2Þ and hyper-
asymptotics, building on earlier work [37–40]. In the
chiral limit, and assuming that for high energies the
spectrum becomes Regge-like in the Nc → ∞ limit, we
showed that the asymptotic form of ρDVV=AðsÞ for large s can
be parametrized as

ρDVV=AðsÞ ¼
1

π
ImΔV=AðsÞ ¼ e−δV=A−γV=As sinðαV=A þ βV=AsÞ;

ð2:12Þ5See for instance Ref. [31].
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up to slowly varying logarithmic corrections in the
argument of the sine factor, and with γ ∼ 1=Nc small but
nonzero.6 The parameters βV=A are directly related to the
Regge slopes in the V and A channels, and the parameters
γV=A to the (asymptotic) ratio of the width and the mass of
the resonances in those channels. While the framework of
Ref. [24] is rather general, and the derivation of Eq. (2.12)
is based on generally accepted conjectures about QCD
(primarily Regge behavior), it does not provide a deriva-
tion from first principles. This introduces a certain model
dependence in our analysis which, however, can be
tested by fits to the data. Such tests, in particular, will
provide information about the values of s above which
this asymptotic form is likely to be sufficiently accurate.
We emphasize, however, that modifications to the para-
metrization of Eq. (2.12) are constrained by the general
framework of Ref. [24].
Equation (2.12) introduces, in addition to αs and the

D ≥ 4 OPE condensates, four new parameters in each
channel: δV=A; γV=A, αV=A and βV=A. This can be compared
to the truncated-OPE approach in which DVs are neglected.
Since resonance-induced oscillations are clearly visible in
the experimental spectral data, and their dynamical effect is
comparable in size to the αs-dependent dynamical effect of
perturbative corrections to the (αs-independent) parton
model contribution [25], this approach also assumes a
model: one in which the parameters δV=A are effectively set
to infinity by hand. This is a stronger assumption, and one
that has been shown to fail a number of subsequent, more
stringent data-based tests [25,26].
In summary, as in Refs. [11,12], we will assume that

Eq. (2.12) holds for s ≥ smin, with smin to be determined
from fits to the data. This assumes of course that the
smin for which this assumption is valid includes a region
below m2

τ, i.e., that both the OPE (2.7) and the DV
parametrization (2.12) can be used in some interval
below m2

τ.

B. Choice of weight functions and the OPE

The logarithmic s dependence of the OPE coefficients
CDðsÞ is calculable in perturbation theory. Because the
running of αs becomes visible only at nonleading order in
αs, this s dependence is an Oðα2sÞ effect in the chiral limit.
Such effects were found to be safely negligible for D > 0
in the sum-rule analysis of the OPAL data reported in
Ref. [11], and we will thus ignore them for D > 0 in the
present analysis as well. With this simplification, a term in a
weight wðzÞ proportional to the monomial zn picks out the
D > 0 OPE contribution with D ¼ 2k ¼ 2ðnþ 1Þ in the
sum rule (2.3).7 The choice of a polynomial weight wðzÞ

thus projects the sum rule on a finite number of D > 0
terms in the OPE.
In this paper, we will consider the weights wðzÞ ¼

wnðz=s0Þ with

w0ðyÞ ¼ 1;

w2ðyÞ ¼ 1 − y2;

w3ðyÞ ¼ ð1 − yÞ2ð1þ 2yÞ;
w4ðyÞ ¼ ð1 − y2Þ2; ð2:13Þ

where the subscript indicates the degree of the polynomial.
These weights explore OPE terms with D ≤ 10, and form a
linearly independent basis for polynomials up to degree
four without a linear term. The weight w0ðyÞ projects
only the D ¼ 0 term of the OPE (i.e., pure perturbation
theory), the weight w2ðyÞ projects, in addition, D ¼ 6,
w3ðyÞ projects D ¼ 0, D ¼ 6 and D ¼ 8, while w4ðyÞ
projects D ¼ 0, D ¼ 6 and D ¼ 10. As the OPE itself
diverges as an expansion in 1=z, it is safer to include sum
rules with low-degree weights such as w0ðyÞ and w2ðyÞ in
the analysis, and check for consistency among sum rules
with different weights. We note that w3ðs=s0Þ ¼ wTðs; s0Þ,
cf. Eq. (2.6).
None of these weights contain a term linear in z, and thus

the D ¼ 4 OPE term does not contribute to the sum rules
with these weights. This choice is motivated by the results
of Ref. [43], in which a renormalon-model-based study
suggested that perturbation theory is particularly unstable
for sum rules with weights containing such a linear term.8

The weights w2;3;4ðyÞ are “pinched,” i.e., they have
zeroes at z ¼ s0, and thus suppress contributions from
the region near the timelike point z ¼ s0 on the contour,
and hence also the relative importance of integrated DV
contributions [45,46]. The weight w2ðyÞ has a single zero at
z ¼ s0 (a single pinch), while the weights w3ðyÞ and w4ðyÞ
are doubly pinched, i.e., have a double zero at z ¼ s0.

C. Perturbative uncertainties and FOPT vs CIPT

It has become common practice to consider different
resummations of perturbation theory in order to obtain
insight into the effect of neglecting terms beyond those
explicitly included in evaluating the D ¼ 0 (i.e., perturba-
tive) contribution to the right-hand side of Eq. (2.3). The
two most commonly used resummation prescriptions are
fixed-order perturbation theory (FOPT), in which the scale
μ in Eq. (2.8) is chosen to be fixed at μ2 ¼ s0, and contour-
improved perturbation theory (CIPT) [28,29], a partial
resummation obtained by choosing μ2 equal to −z point
by point along the contour. In the CIPT prescription, the

6This form was first introduced in Ref. [41], and subsequently
used in Refs. [8,11,12,36,42].

7The D ¼ 0 term, perturbation theory, contributes for all n.

8Earlier considerations along the same lines can be found in
Refs. [11,31,32]. The results of Ref. [43] have been recently
corroborated within an alternate approach to estimating higher
order effects in Ref. [44].
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coupling is run along the contour jzj ¼ s0, using the four-
(or five-)loop beta function; as a result, only terms with
m ¼ 1 survive in Eq. (2.8). The two prescriptions lead to
significantly different values of αs, with the difference
being comparable to the combination of all other errors
[8,12], but more significant, since the results obtained with
different prescriptions using the same data are highly
correlated.
The choice of such a prescription is entangled with the

choice of renormalization scheme, since the choice of
scheme also affects higher orders in perturbation theory.
Both FOPT and CIPT prescriptions are usually considered
to be MS schemes, but clearly, if the choice between FOPT
and CIPT is rephrased as a choice of scheme, these two
schemes are different. Since αs is not a physically meas-
urable quantity, ideally, one would like to choose a scheme,
and a prescription, which corresponds to the scheme chosen
to quote other determinations of αs (such as that from Z
decay itself), so that a direct comparison is possible at MZ.
In our case, the experimental quantities from which we

determine αs are the spectral integrals I
ðwÞ
ex ðs0Þ, in which s0

is varied between s0 ¼ smin and s0 ¼ m2
τ . Apart from DVs,

which appear in a transseries beyond the OPE, these
quantities are then expressed in terms of the OPE, which
at D ¼ 0 is parametrized by αsðμÞ and the ratio of scales
s0=μ2, while atD ≥ 4 also the condensates enter. This leads

to the theoretical representations IðwÞth ðs0; s0=μ2;αsðμÞÞ,
which are then to be equated with IðwÞex ðs0Þ. Since

IðwÞex ðs0Þ is an observable with a single physical scale, s0,
the natural choice is to choose the scale μ equal to the scale
of the observable, i.e., to choose μ2 ¼ s0.

9 This corresponds
directly to the way the scale is chosen for other determi-
nations of αs. For instance, the hadronic Z-decay rate can
be expressed perturbatively in terms of αsðμÞ in the MS
scheme, and in that case, the natural choice of scale is
μ ¼ MZ. This leads us to conclude that, in the case of
hadronic τ decays, the prescription most directly compa-
rable with other determinations is FOPT. We emphasize
that we do not claim to know which prescription, at a given
order, gives the best approximation to the QCD answer for

IðwÞex ðs0Þ. This may depend on the weight w, and on the
order in perturbation theory [43]. The point is to choose a
scheme that corresponds most closely to the scheme
employed in other determinations of αs at the Z-mass.
Of course, it is necessary to estimate the systematic
uncertainty inherent in the truncation of perturbation

theory, and we will return to this point at the end of this
subsection.
Before we do this, we present an additional reason for

using FOPT as the prescription to be used in the FESR
determination of αs from hadronic τ decays. It is well
known that perturbation theory for the Adler function, and

for the quantities IðwÞth ðs0Þ, is not convergent. Attempts to go
beyond perturbation theory using Borel resummation
techniques lead to ambiguities in the Borel sum that
necessitate the introduction of D > 0 terms in the OPE
[47]. The most well-known example is that of the leading
infrared renormalon in massless QCD. This leads to the
D ¼ 2k ¼ 4 term in Eq. (2.7), which removes the ambi-
guity associated with this renormalon. The appearance of
D > 0 terms in Eq. (2.7) is thus intricately connected to
resummations of perturbation theory.
In Ref. [48], it was shown that, in general, the FOPT

and CIPT series lead to different Borel sums, with
different analytical properties. Moreover, it was pointed
out that this different analytical behavior of the Borel

sums for IðwÞth ðs0Þ appears to invalidate the correspon-
dence between infrared renormalons and the D > 0
terms in the OPE in the case of CIPT. The Borel
sum for the CIPT series does not allow for the usual
renormalon ambiguities that in the case of FOPT are in
one-to-one correspondence with terms in the OPE. Thus,
there is a mismatch between the use of CIPT, and the
representation of Πð1þ0ÞðzÞ by the OPE, Eq. (2.7). This
mismatch between the Borel sum and the OPE does not
happen in FOPT.
This observation casts strong doubts on the consistency

of using the OPE (2.7) in the case of CIPT. Again, this does
not settle the issue of whether the (Borel sum of) FOPT or
CIPT provides a better approximation to QCD. But it does
imply that it is theoretically inconsistent to apply the OPE
in the form (2.7) if one uses CIPT in the evaluation of
the D ¼ 0 perturbative contributions, and therefore casts
doubts on all CIPT-based extractions of αs. We are thus led
to the conclusion that FOPT should be taken as the
preferred choice for analyzing hadronic τ decays using
the OPE. While we will provide determinations of αsðmτÞ
employing both FOPT and CIPT (ignoring the OPE subtle-
ties in the case of CIPT) we will quote the FOPT value as
our final result, to be compared with other MS determi-
nations of αs. We will also give a CIPT value based on fits

to IðwÞex ðs0Þ, allowing the reader to compare to earlier CIPT
results and assess the impact of changes in the input
inclusive V spectral function.
We will determine the systematic error associated with

the use and truncation of perturbation theory for our FOPT
value of αsðmτÞ as follows. First, as already indicated in
Sec. II A, we will vary the estimated value for c51 ¼ 283 by
plus or minus 50%. This interval for c51 includes all
estimates available in the literature by a rather wide margin.

9While the technical trick that leads to the expressions for
IðwÞth ðs0Þ involves the contour integral over the circle jzj ¼ s0, this
trick has little to do with the experimental quantities IðwÞex ðs0Þ from
which we determine αs, and the contour can, of course, be
deformed to radii larger and/or smaller than s0, apart from the
endpoints just above and below the timelike axis.
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The variation by �50% was proposed in Ref. [32], and
the estimate of Ref. [1] falls well inside this interval.
Subsequent estimates of both the central value and the
uncertainty of c51 are also generously covered by the
�50% variation [49,50]. This choice of range, of course,
provides an estimate only for the impact of the uncer-
tainty in the value of the unknown coefficient c51, and
might constitute an underestimate of the total perturbative
error. At present, the perturbative expansion for the Adler
function has been calculated to order α4s. An alternate,
potentially more conservative, estimate of the perturba-
tive error can thus also be obtained by omitting the Oðα4sÞ
contribution altogether, i.e., by setting c4m ¼ 0 (as well
as cnm ¼ 0 for all n > 4) in Eq. (2.8). Finally, since our
FOPT determination employs a range of s0 varying
between smin and m2

τ , a third sensible estimate of the
perturbative error can be obtained by considering, instead
of just μ2 ¼ s0, also the alternate choices μ2 ¼ smin,
μ2 ¼ m2

τ and μ2 ¼ 2s0 for the scale μ. We will take
the largest of the variations in αs obtained by applying
all three methods above as our best estimate for the
systematic error associated with the necessary truncation
of perturbation theory. We do not combine the errors
obtained by using these three methods, as this would
correspond to a double-counting of the estimated pertur-
bative uncertainties. We will, however, add an indepen-
dent measure of the uncertainty associated with the use of
perturbation theory based on the comparison of the
central values obtained from fits with different weights,
as explained in more detail in Sec. IV C.

III. DATA

In this section, we construct an updated version of the
inclusive, nonstrange V spectral function, ρud;VðsÞ, using
publicly available ALEPH [2–4,51] and OPAL [5] τ data
for the contributions of the dominant 2π and 4π exclu-
sive modes, recent BABAR τ-decay results [52] for the
contribution of the K−K0 mode, and eþe− → hadrons
cross-section data as input to CVC evaluations of the
contributions of the remaining exclusive modes.
In Refs. [2–5], the inclusive V and A invariant-mass-

squared distributions were constructed as sums of (i) the
measured (and publicly available) distributions for the main
exclusive modes in the channel and (ii) the sum of small
contributions from the remaining “residual” exclusive
modes. The publicly available exclusive-mode distributions
are normalized to then-current exclusive-mode BFs. While
the accompanying inclusive-sum correlation matrices
include the contributions from then-current exclusive-mode
BF uncertainties and correlations for the main exclusive
modes, the exclusive-mode correlation matrices are pro-
vided with the BF-uncertainty-induced contributions omit-
ted, allowing subsequently improved BF information for
these modes to be incorporated at a later time.

The V channel modes for which ALEPH and OPAL
provide exclusive-mode distribution and correlation infor-
mation are π−π0, π−3π0 and π−πþπ−π0. For the A channel,
ALEPH provides distribution and correlation information
for only the two 3π modes, 2π−πþ and π−2π0, while OPAL
provides this information, in addition, for one of the
three 5π modes, 2π−πþ2π0. While all exclusive-mode
distributions are normalized to then-current values of the
corresponding exclusive-mode BFs, the s-dependences of
some of the residual-mode distributions are taken from
Monte Carlo. For OPAL, this is true for all but the
π−π0ωð→ non − 3πÞ residual A mode. For ALEPH, the
use of the Monte Carlo simulations is explicitly identified
as entering the 6π, K−K0, KK̄ππ and π−ωð→ non − 3πÞ
contributions to the V channel and the KK̄π and KK̄ππ
contributions to the A channel. Since the information made
publicly available by ALEPH and OPAL does not include
the individual BF-normalized residual exclusive-mode
distributions used by the collaborations in determining
their final inclusive-sum results, it is not possible to update
those residual-mode contributions to reflect subsequent
improvements in our knowledge of the exclusive-mode BFs
and/or new information on the s-dependence of exclusive-
mode distributions for which Monte Carlo was previously
employed. Improvements to the residual-mode contri-
butions must, therefore, come from other sources. The
dominant V and A channel modes (those for which both
ALEPH and OPAL exclusive-mode distributions are avail-
able) represent 98.0% of the inclusive V channel BF and
94.2% of the continuum inclusive A channel BF.
Improving the treatment of residual-mode contributions

is much easier for the V channel than for the A channel. The
reason is that, strongly motivated by the drive to improve
the determination of the Standard-Model hadronic vacuum
polarization contribution to the anomalous magnetic
moment of the muon, there has been an intensive program
of collider and B-factory experiments aimed at determining
the eþe− → hadrons cross sections for all exclusive
modes contributing to the inclusive RðsÞ ratio in the region
below s ≃ 4 GeV2. A sizeable fraction of these exclusive
modes can be uniquely classified as either I ¼ 0 or
I ¼ 1 using G-parity. The CVC relation between the bare
cross section for the electroproduction of the neutral
member, X0, of the exclusive-mode isotriplet X, σbXðsÞ≡
σb½eþe− → X0�, and the contribution of the charged isospin
partner, X−, to ρud;VðsÞ,

½ρud;VðsÞ�X− ¼ sσbXðsÞ
8π3α2EM

ð3:1Þ

then allows the cross section results for those exclusive
residual modes with I ¼ 1 to be used to determine the
corresponding exclusive residual-mode contributions to
ρud;VðsÞ. Equation (3.1) is valid up to isospin-breaking
(IB) corrections which, in the absence of narrow interfering
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resonances, should be of the order a percent or so, and
hence numerically negligible on the scale of the
experimental errors on the already small residual-mode
contributions. This strategy, of using CVC to improve
the determination of an otherwise poorly determined V
exclusive-mode τ spectral function contribution, was pio-
neered by ALEPH [51], which used the BABAR Dalitz-
plot-analysis separation of I ¼ 0 and I ¼ 1 contributions to
the eþe− → KK̄π cross sections [53] to determine the V
part of the τ → KK̄πντ distribution, and hence the sepa-
ration of that distribution into its V and A components.
The CVC relation allows us to dramatically improve the
vast majority of the residual-mode contributions to the V
spectral function. This is especially helpful in the case
of contributions from higher-multiplicity modes, whose
τ-decay distributions lie at higher s, increasingly close to
the τ kinematic endpoint, and with, as a result, increasingly
reduced statistical precision.
The main V residual mode for which such a CVC

improvement is not possible is K−K0, where the eþe− →
KK̄ cross sections contain both I ¼ 0 and I ¼ 1 contri-
butions, and it is not possible to identify only the I ¼ 1
component. Fortunately, for this channel, BABAR [52]
has recently published a rather precise determination
of the unit-normalized τ → K−KSντ number distribution,
allowing the residual-mode K−K0 contribution to ρud;VðsÞ,
to be determined directly, without the use of CVC.
Using CVC and the recent BABAR τK−K0 results,

99.95% by BF of the inclusive V spectral function can
be determined directly from experiment. The remaining
0.05% represents only 2.4% by BF of the already small sum
of residual-mode contributions. CVC improvements are, of
course, impossible for A channel residual-mode distribu-
tions. This, and the larger relative role played by residual-
mode contributions in the A channel, are the primary
reasons for our focus on the V channel in this paper.
The rest of this section is organized as follows. First, in

Sec. III A, we specify the sources of external input
employed in our update of ρud;VðsÞ. Next, in Sec. III B,
we outline the procedure used for combining the publicly
available data from ALEPH and OPAL for the dominant
2π and 4π exclusive-modes, following closely that
described in Ref. [13] for combining exclusive-mode
eþe− cross sections from different experiments. Details
of our updates of the individual residual exclusive-mode
contributions are provided in Sec. III C. Finally, the
resulting updated version of ρud;VðsÞ, is presented in
Sec. III D.

A. External input

As noted above, we employ publicly available results
for the nonresidual (π−π0, π−3π0 and π−πþπ−π0) exclu-
sive-mode distributions and correlations provided by the
ALEPH [2–4,51] and OPAL [5] collaborations.

ALEPH quotes results in the form of exclusive-mode,
BF-normalized contributions, dBXðsÞ=ds, to the differ-
ential BF distribution dBðsÞ=ds. The corresponding con-
tributions to ρud;VðsÞ, ρXud;VðsÞ, follow from

ρXud;VðsÞ ¼
m2

τ

12π2BeSEWjVudj2wTðs;m2
τÞ
dBXðsÞ
ds

¼ BXm2
τ

12π2BeSEWjVudj2wTðs;m2
τÞ

1

NX

dNXðsÞ
ds

ð3:2Þ

where BX is the BF for exclusive mode X, 1
NX

dNXðsÞ
ds is the

corresponding experimental unit-normalized number dis-
tribution, and Be is the τ− → e−ντν̄e BF. ALEPH results for
dBXðsÞ=ds are updated by rescaling to the current value
of BX. Current values of the external parameters, Be, SEW,
Vud and mτ are then used to obtain the updated results
for ρXud;VðsÞ.
OPAL quotes results in the form of the exclusive-

mode contributions ρXud;VðsÞ. These were obtained from
the experimentally measured unit-normalized number dis-
tributions via Eq. (3.2), using then-current values of the
exclusive-mode BFs, BX, and the external inputs Be, SEW,
Vud and mτ. The underlying unit-normalized distributions
are reconstituted using the values for the exclusive-mode
BFs and external inputs quoted by OPAL, and converted to
equivalent updated versions of the ρXud;VðsÞ using current
values for these inputs.
We employ the following values for the external param-

eters appearing in Eq. (3.2): for Be, the lepton-universality-
improved HFLAV 2019 [54] result Be ¼ 0.17814ð22Þ;
for mτ and jVudj, the PDG 2020 [55] results mτ ¼
1.77686ð12Þ GeV and jVudj ¼ 0.97370ð14Þ; and, for
SEW, the result SEW ¼ 1.0201ð3Þ [56].
For the exclusive-mode BFs and the correlations

between them we employ HFLAV 2019 [54] results.
Note that HFLAV quotes a result for the π−πþπ−π0 BF
which excludes K0 contributions but not the small “wrong-
current” A π−π0ωð→ πþπ−Þ contribution. The V part of the
π−πþπ−π0 BF is obtained by removing this A “contami-
nation” using the HFLAV π−π0ω BF and 2020 PDG [55]
result for the IB ω → π−πþ BF. Similar wrong-current
corrections are made to the correlations between the BFs.
Specifics of the experimental inputs used in the deter-

mination of the residual-mode contributions to ρud;VðsÞ are
detailed in Sec. III C below.

B. Combining the ALEPH and OPAL 2π
and 4π data

We begin with the updated versions of the ALEPH
and OPAL exclusive-mode distributions, ρXud;VðsÞ, with
X ¼ π−π0, π−3π0 and π−πþπ−π0, obtained as outlined in
the previous subsection. Ideally, we would like to combine
the results for each of these exclusive modes separately,
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first combining the ALEPH and OPAL unit-normalized
number distributions (which are independent of the BFs)
and then multiplying the resulting combined exclusive
distributions by the corresponding BFs. It turns out,
however, that this is not possible. The reason is that the
correlation matrices for the π−3π0 and π−πþπ−π0 distri-
butions for both experiments have zero eigenvalues, i.e.,
100% correlations between different bins, and hence are not
invertible. This prevents us from combining the ALEPH
and OPAL data for the individual 4π modes in the manner
described below. If, however, we first sum the contributions
from all three modes, we find that the correlation matrices
for the resulting three-mode-sums are well behaved for both
ALEPH and OPAL. We thus combine the ALEPH and
OPAL exclusive-mode results by first summing, for each
experiment separately, the contribution to ρud;VðsÞ and the
corresponding covariance matrices from π−π0, π−3π0 and
π−πþπ−π0, using updated versions of the exclusive-mode
BFs, and then combining those results using the method
outlined below.
Following Ref. [13], we choose a number of clusters,

distributed over the interval 0 < s ≤ m2
τ . We assign a

number of consecutive ALEPH and OPAL data points to
each clusterm,m ¼ 1;…; Ncl, with Ncl the total number of
clusters; Nm will be the total number of data points in
cluster m. If the collective ALEPH and OPAL data points
are parametrized by pairs ðsi; diÞ, where di is the ALEPH
or OPAL data point for the spectral function assigned to
the s-value si, we define weighted cluster averages

sðmÞ ¼
X
i∈m

si
σ2i

,X
i∈m

1

σ2i
; ð3:3Þ

where the sum is over all data points in cluster m and σ2i is
the variance of di, i.e., the σ2i are the diagonal elements
of the covariance matrix Cij for the spectral-function
data points di. The set of sðmÞ then constitutes the values
of s at which the combined spectral function ρðmÞ will be
defined.
The values of ρðmÞ will be determined by linear inter-

polation, minimizing

χ2ðρÞ ¼
XN
i¼1

XN
j¼1

ðdi − Rðsi; ρÞÞC−1
ij ðdj − Rðsj; ρÞÞ; ð3:4Þ

where N ¼ PNcl
m¼1Nm is the total number of (ALEPH and

OPAL) data points, and the piece-wise linear function
Rðs; ρÞ is defined by

Rðs; ρÞ ¼ ρðmÞ þ s − sðmÞ

sðmþ1Þ − sðmÞ

�
ρðmþ1Þ − ρðmÞ

�
;

sðmÞ ≤ s ≤ sðmþ1Þ; 1 ≤ m < Ncl; ð3:5Þ

where ρ is the vector of fit parameters ρðmÞ, m ¼ 1;…; Ncl.
At the boundaries, we extrapolate:

Rðs; ρÞ ¼ ρðNcl−1Þ þ s − sðNcl−1Þ

sðNclÞ − sðNcl−1Þ

�
ρðNclÞ − ρðNcl−1Þ

�
;

s ≥ sðNclÞ;

Rðs; ρÞ ¼ ρð1Þ þ s − sð1Þ

sð2Þ − sð1Þ

�
ρð2Þ − ρð1Þ

�
;

s ≤ sð1Þ: ð3:6Þ

Minimizing χ2ðρÞ yields the linear equations

XN
i¼1

XN
j¼1

ðdi − Rðsi; ρÞÞC−1
ij

∂Rðsj; ρÞ
∂ρðmÞ ¼ 0; 1 ≤ m ≤ Ncl;

ð3:7Þ

which can be solved for the ρðmÞ, with the cluster covari-
ance matrix Cmn given by

C−1mn ¼
XN
i¼1

XN
j¼1

∂Rðsi; ρÞ
∂ρðmÞ C−1

ij

∂Rðsj; ρÞ
∂ρðnÞ : ð3:8Þ

The procedure for combining exclusive spectral func-
tions followed in Ref. [13] is more complicated than the
one outlined above. The inclusion of uncertainties in the
BFs in the covariance matrices can lead to a bias in the fit
[57], and the method employed in Ref. [13] adjusts for this
bias [58]. However, for this to work, we would need to
combine each channel separately, because multiplication by
the exclusive-mode BF is needed in each channel to turn the
normalized distribution into the corresponding contribution
to ρud;VðsÞ. This path is not available to us, because, as
explained above, only the sum of the π−π0, π−3π0 and
π−πþπ−π0 spectral distributions can be combined. This
sum incorporates three different branching fractions, one
for each exclusive channel. The effect of the BF uncer-
tainties is, however, very small numerically. We have
checked that their inclusion changes central values of
the combined three-mode contribution to ρud;VðsÞ by less
than 0.5%, while the errors on this contribution are about
one percent larger with than without inclusion of BF
uncertainties, and the cluster values sðmÞ are essentially
unaffected. It is thus safe to ignore potential bias issues
associated with the incorporation of BF uncertainties. The
same is true for the impact of the uncertainties in the
external normalizing factors Vud, SEW, and Be. The errors
on Vud and SEW are completely negligible, while the error
on Be, at about 0.1% is small enough that it does not lead
to a discernible bias.
In order to obtain an optimal combined dataset, one

needs to choose the clusters judiciously. Clearly, the
maximum number of clusters one can choose is equal to
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the sum of the total number of ALEPH and OPAL data
points. However, such a choice is not useful. One would
find a χ2 per degree of freedom (dof) much smaller than
one, but this is not what one expects if one averages two
independent experiments. Since both ALEPH and OPAL
measured the spectral function over the same range in s, the
number of clusters should be chosen not larger than the
number of data points in each of the experiments, and,
given that these two experiments are independent,10 one
expects a χ2=dof of order one. The goal is thus to choose a
set of clusters not larger than the number of data points in
either experiment that leads to a value of χ2ðρÞ=dof ≈ 1. Of
course, narrower clusters should be used in regions where
the spectral function changes rapidly, such as around the
ρ-meson peak.
In addition to the “global” χ2ðρÞ function defined in

Eq. (3.4), we have also looked at χ2ðmÞ, the “local” χ2

function for each cluster, since the local χ2ðmÞ values may

reveal discrepancies in the datasets that are hidden in the
global χ2. The local χ2ðmÞ is defined as in Eq. (3.4), but with
both the data points ðsi; diÞ and the data covariance matrix
restricted to those data points contained in cluster m. We
then evaluate all χ2ðmÞ on the solution ρðmÞ, m ¼ 1;…; Ncl,

obtained by minimizing the global χ2ðρÞ. Clearly, the
global χ2ðρÞ is not equal to the sum over all clusters of
the local χ2ðmÞ, because the full data covariance matrix C

contains entries correlating data points in different clus-
ters. If, for a cluster k, χ2ðkÞ=dof > 1, this indicates a

fluctuation or a local discrepancy between the ALEPH
and OPAL data.
At this stage, we will have obtained a partially inclusive

combined spectral function and associated covariance
matrix for the sum of the π−π0, π−3π0 and π−πþπ−π0
modes. We still need to add the residual-mode contribu-
tions to obtain our final, updated version of ρud;VðsÞ. The
determination of the residual-mode contributions is detailed
in the next subsection.

C. Residual mode updates

In this section we provide details of the input used to
update the residual exclusive-mode contributions to
ρud;VðsÞ, i.e., all modes other than π−π0, π−3π0 or
π−πþπ−π0. The modes considered in this work are (i) those
included in both the OPAL and ALEPH analyses,
π−ωð→ non − 3πÞ, K−K0, ηπ−π0, KK̄π, 3π−2πþπ0, and
2π−πþ3π0, (ii) those included in the ALEPH analysis but
not the OPAL analysis, ð3πÞ−ωð→ non − 3πÞ and KK̄ππ,
and (iii) small additional π−5π0 and ηωπ þ η4π contribu-
tions inferrable from the corresponding eþe− cross sections

using CVC, and not included in either of the OPAL or
ALEPH analyses.
Note that, where the eþe− → hadrons cross sections

used to infer, via CVC, the corresponding contributions to
ρud;VðsÞ, are given in dressed form in the original pub-
lications, these have been corrected for vacuum polariza-
tion effects to obtain the corresponding bare cross sections
required as input to the CVC relation. Statistical and
systematic errors on the cross sections are those reported
in the relevant references. Additional information, if any,
provided by the collaborations is specified below.
All results for τ exclusive-mode BFs quoted below are

obtained using basis-mode BF and correlation information
from the 2019 HFLAV compilation [54].
We now turn to a more detailed discussion of the

determination of the residual exclusive-mode contribu-
tions to ρud;VðsÞ. The discussion is organized mode by
mode, in the order of decreasing residual-mode BF.
Readers interested only in the final result for the inclusive
spectral function may skip these details and jump directly
to Sec. III D below.

1. The π −ωð→ non− 3πÞ contribution
The π−ωð→ non − 3πÞ contribution to ρud;VðsÞ is

obtained using CVC, BABAR results [59] for the eþe− →
π0ω cross sections, and the 2020 PDG value, 0.107(6), for
the ω → non − 3π BF. The BABAR cross sections are in
good agreement with, and have significantly smaller errors
than, those reported by SND [60]. The BABAR results
produce a CVC prediction of 0.0188(19) for the τ → π−ωντ
BF, in excellent agreement with the HFLAV 2019 result,
0.01955(65). The contribution to ρud;VðsÞ implied by the
BABAR cross sections has been rescaled by the ratio of
the HFLAV to the CVC BF to normalize it to the
HFLAV 2019 τ BF. The BF corresponding to the resulting
π−ωð→ non − 3πÞ contribution to ρud;VðsÞ is 0.00209(14).

2. The ηπ −π0 contribution

The eþe− → ηπþπ− cross sections have been measured
by SND [61,62], BABAR [63,64] and CMD-3 [65], with the
results from all three collaborations in excellent agreement
(see, for example, Fig. 7 of Ref. [65]). Since CMD-3 has
provided us with the corresponding covariances [66], we
employ the CMD-3 [65] cross-section data as input to our
CVC determination of the ηπ−π0 contribution to ρud;VðsÞ.
As noted by CMD-3, the SND, BABAR and CMD-3 cross
sections produce CVC predictions for the τ → ηπ−π0ντ BF,
0.00156(11), 0.00163(8) and 0.00168(13), respectively,
which are in good agreement, but which lie between 1.3
and 2.3 σ high compared to the corresponding HFLAV
2019 result, 0.001386(72). Since the HFLAV 2019 τ
average is strongly dominated by a single (Belle [67])
experiment, we have normalized the residual-mode ηπ−π0

contribution using a BF value, 0.00153(12) obtained by
10Correlations introduced by the use of the same BFs for both

experiments are negligibly small.
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averaging, with PDG-style error inflation, the results of the
three CVC predictions and the HFLAV 2019 result.

3. The K −K0 contribution

The K−K0 contribution to ρud;VðsÞ is obtained using
BABAR results [52] for the unit-normalized τ → K−Ksντ
number distribution, normalized to the HFLAV 2019 value
of the τ → K−K0ντ BF, 0.001483(34).

4. The KK̄π contribution

Determining the KK̄π contribution to ρud;VðsÞ is less
straightforward since the measured distribution in τ →
KK̄πντ is a sum of V and A contributions, while the
eþe− → KK̄π cross sections are sums of I ¼ 0 and I ¼ 1

contributions. The V and A contributions to τ → KK̄πντ
cannot be separated without an angular analysis, which has
not been carried out to date. BABAR [53], however, has
succeeded in using a Dalitz-plot analysis to separate the
I ¼ 0 and I ¼ 1 parts of the eþe− → KK� → KK̄π cross
sections, which, with the smaller eþe− → π0ϕ → π0KK̄
contributions, dominate the eþe− → KK̄π cross section at
CM energies below mτ. ALEPH [51] has previously used
the I ¼ 1 V cross sections extracted in this analysis,
together with CVC, to determine the V component of
the τ → KK̄πντ BF. Following the ALEPH strategy, we
obtain the sum of the contributions from the three KK̄π
states to ρud;VðsÞ using CVC, the I ¼ 1 eþe− → KK� →
KK̄π and eþe− → π0ϕ cross sections measured by BABAR
[53], standard vacuum-polarization corrections to convert
these to the corresponding bare cross sections, and the 2020
PDG value for the ϕ → KK̄ BF.11

5. The 6π contributions

The sum of the three 6π mode contributions to ρud;VðsÞ is
obtained using CVC in conjunction with the measured
eþe− → 6π and πþπ−π0η cross sections. The πþπ−π0η
cross sections are required because the IB η → πþπ−π0 and
3π0 decays cause the G-parity negative, I ¼ 0 πþπ−π0η
state to also populate the experimental 2π−2πþ2π0 and
π−πþ4π0 distributions. These “wrong current” contribu-
tions must be removed in order to obtain the I ¼ 1
components of these distributions to which the CVC
relation may be applied. We employ BABAR [68] and
CMD-3 [69] results for the eþe− → 3π−3πþ cross sec-
tions, BABAR [68] results for the unsubtracted eþe− →
2π−2πþ2π0 cross sections, the preliminary SND results
reported in Ref. [70] for the unsubtracted eþe− →
π−πþ4π0 cross sections, and CMD-3 [71] and SND [72]

results for the eþe− → πþπ−π0η cross sections. The three-
mode I ¼ 1 6π cross section sum produces a CVC
prediction of 0.000280(35) for the sum of the V compo-
nents of the τ → 3π−2πþπ0ντ, τ → 2π−πþ3π0ντ and
τ → π−5π0ντ BFs.

12

6. The KK̄ππ contributions

No direct experimental determination of the KK̄ππ
contributions to ρud;VðsÞ is currently available. Even
were τ → KK̄ππντ distribution results publicly available,
no obvious strategy exists for splitting this distribution into
its separate V and A parts. The BF situation is, moreover,
incomplete for τ → KK̄ππντ decays, with HFLAV listing
BFs for only two of the five possible KK̄ππτ modes [54].
The experimental situation is more complete for

eþe− → KK̄ππ, with cross sections available for all six
KK̄ππ final states. These cross sections are, however, at-
present-unknown admixtures of I ¼ 0 and I ¼ 1 contribu-
tions, with no known method for separating the I ¼ 0 and
I ¼ 1 components. This precludes a CVC determination
of the KK̄ππ contribution to ρud;VðsÞ. The unseparated
I ¼ 0þ 1 cross sections, and the resulting full I ¼ 0þ 1
six-mode sum, are, however, rather accurately known. In
what follows we rely on the results for this sum obtained in
Ref. [13] as part of the recent dispersive determination of
the hadronic vacuum polarization contribution to the
anomalous magnetic moment of the muon, and provided
to us by the authors [73].
In Ref. [2–4,51], ALEPH employed a maximally

conservative approach to the KK̄ππ contribution to
ρud;VðsÞ, assigning 50� 50% of the V þ A τ → KK̄ππντ
distribution to ρud;VðsÞ. With current HFLAV 2019 values,
the sum of the two currently known τ → KK̄ππντ BFs
(those for τ → π−π0K0K̄0ντ and τ → π−π0K−Kþντ) is
0.0004154(1207). The ALEPH choice would thus corre-
spond to a V contribution to the all-modes τ → KK̄ππντ BF
sum, from these two modes only, of 0.000208(60)(208),
where the first error is 50% of the error on the HFLAV

11For reference, this produces a CVC expectation of 0.00073(9)
for the V part of the sum of the three τ → KK̄πντ BFs. This
represents 16.4� 2.2% of the 0.00444(26) HFLAV 2019 result for
the 3-mode V þ A BF sum.

12This cannot be compared to the corresponding HFLAV 2019
version for this three-mode sum since the BF for τ → π−5π0ντ
has not yet been measured. The HFLAV 2019 results for the
remaining two τ → 6πντ BFs, in addition, have non-negligible A
contributions which must be subtracted in order to identify the
purely V contributions. The “wrong current” A contributions to
the G-parity-positive 6π states are the result of IB η → 3π decays,
which cause A 2π−πþη and π−2π0η states to populate the
experimental 3π−2πþπ0 and 2π−πþ3π0 distributions. Using
HFLAV 2019 results for the unsubtracted 6π BFs (excluding
K0 contributions) and the two 3πη BFs, together with 2020 PDG
values for the η → πþπ−π0 and η → 3π0 BFs, one finds for the V
contributions to the τ → 3π−2πþπ0ντ and τ → 2π−πþ3π0ντ BFs
the results 0.000113(10) and 0.000077(28), respectively. The
CVC prediction for the 3-mode τ → 6πντ V BF sum thus
corresponds to a V contribution of 0.000090(46) to the BF of
τ → π−5π0ντ.
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V þ A sum and the second represents the assigned 100%
uncertainty on the separation of the V þ A sum into V and
A components.
In contrast, if one makes the analogous maximally

conservative assessment and assigns 50� 50% of the
six-mode sum of I ¼ 0þ 1 eþe− → KK̄ππ cross sections
to I ¼ 1, the CVC relation yields a sum of the contributions
from all KK̄ππ modes to ρud;VðsÞ which corresponds to an
all-modes V τ → KK̄ππντ BF sum of 0.000154(5)(154),
where the second error reflects the assigned, maximally
conservative 100% I ¼ 0=1 separation uncertainty. Since
this constraint on the V KK̄ππ contribution is stronger than
that resulting from the alternate maximally conservative
assessment based on the two measured τ → KK̄ππντ BFs,
we employ the CVC assessment and assign as the KK̄ππ
contribution to ρud;VðsÞ, 50� 50% of the result obtained by
applying the CVC relation to the full six-mode I ¼ 0þ 1

eþe− → KK̄ππ cross section sum. The CVC determination
has the additional advantage that it includes contributions
from all KK̄ππ modes, even those for which the corre-
sponding τ BFs are currently unknown.

7. The ð3πÞ−ωð→ non− 3πÞ contributions
Contributions to ρud;VðsÞ from the last of the V residual

modes considered by ALEPH, ð3πÞ−ωð→ non − 3πÞ, can
be obtained from the corresponding ð3πÞ−ωð→ 3πÞ con-
tributions using the known values of the ω → 3π and
ω → non − 3π BFs.While the relevant τ-decay distributions
have not yet been measured, BABAR [68] has determined
both the eþe− → π−πþπ0ωð→ π−πþπ0Þ contribution to the
eþe− → 2π−2πþ2π0 cross sections and the “wrong-current”
I ¼ 0 ωð→ π−πþπ0Þηð→ π−πþπ0Þ component of that con-
tribution [74]. We subtract this wrong-current contribution
to obtain the I ¼ 1 contributions to the π−πþπ0ωð→
π−πþπ0Þ cross sections, use 2020 PDG versions of the ω-
decay BFs to obtain the corresponding I ¼ 1 contributions
to the π−πþπ0ωð→ non − 3πÞ cross sections, and the CVC
relation to determine the corresponding contributions
to ρud;VðsÞ.
3π0ωð→ 3πÞ contributions are also, in principle,

present in the eþe− → π−πþ4π0 cross sections. The pre-
liminary SND results for the latter [70] do not include an
assessment of the eþe− → 3π0ωð→ 3πÞ substate contribu-
tion. The following argument, however, shows these con-
tributions, though not measured, must be small enough to
be ignored in our CVC determination of the residual-mode
ð3πÞ−ωð→ non − 3πÞ contribution to ρud;VðsÞ.
Explicitly, HFLAV 2019 results for the BFs of the

τ → 2π−πþωντ and τ → π−2π0ωντ modes yield a value
of 0.000155(18) for the τ → ð3πÞ−ωντ BF sum. Applying
the CVC relation to the I ¼ 1 component of the BABAR
eþe− → π−πþπ0ωð→ π−πþπ0Þ cross sections, one finds a
CVC prediction for the contribution to the two-mode τ BF
sum of 0.000172(25), compatible within errors with the full

2-mode τ → ð3πÞ−ω HFLAV BF result. We conclude that
I ¼ 1 3π0ωð→ π−πþπ0Þ contributions to the eþe− →
π−πþ4π0 cross sections, which would produce a further
increase in the CVC prediction for the full 2-mode τ BF
sum, must be numerically small. We thus determine the
ð3πÞ−ωð→ non − 3πÞ contribution to ρud;VðsÞ by (i) apply-
ing the CVC relation to the I ¼ 1 part of the BABAR results
for the eþe− → π−πþπ0ωð→ π−πþπ0Þ cross sections,
(ii) dividing those result by the ω → 3π BF [55] to obtain
the corresponding all-modes τ → ð3πÞ−ωντ contribution to
ρud;VðsÞ, (iii) rescaling this result to normalize it to the
HFLAV 2019 result for the τ → ð3πÞ−ωντ BF, and
(iv) multiplying this result by the ω → non − 3π BF [55]
to obtain the final ð3πÞ−ωð→ non − 3πÞ contribution.

8. The π − ηωð→ non− 3πÞ and η4π contributions

The final V residual-mode contribution we consider is
that produced by the π−ηωð→ non − 3πÞ and ηð4πÞ−
modes. This is evaluated using CVC and BABAR results
for the eþe− → π0ηω [75], eþe− → η2π−2πþ [76] and
eþe− → ηπ−πþ2π0 [75] cross sections. SND results with
significantly larger errors, also exist for the eþe− → π0ηω
cross sections [77].
The results of Ref. [75] show that the contribution from

eþe− → π0ηωð→ 3πÞ saturates the eþe− → ηπ−πþ2π0

cross section below s ¼ m2
τ. We thus take the sum of

eþe− → η2π−2πþ and eþe− → π0ηω cross sections as
input to the CVC relation, obtaining, as a result, the
sum of ηð4πÞ− and π−ηωð→ non − 3πÞ contributions to
ρud;VðsÞ, which we identify by the short-hand label ηωπη4π
in what follows.
The resulting contribution to ρud;VðsÞ corresponds to a

very small, 0.0000017(2), result for the associated τ BF
sum. This provides further support for the expectation that
contributions from additional higher-multiplicity V residual
modes not included in the present analysis will be entirely
numerically negligible in the region below s ¼ m2

τ.

D. The inclusive V nonstrange spectral function

The main decision to be made when combining the data
into clusters is the choice of the clusters themselves. One
possibility is the basis of the strategy used in Ref. [13]. In
this strategy, small groups of data points consecutive in s
are assigned to clusters, after which each cluster is assigned
an s value according to Eq. (3.3). The algorithm described
in Sec. III B is then applied. The choice of clusters can then
be varied to find the combination which has both a χ2=dof
close to unity and small errors on the sum-rule integrals
IðwÞex ðs0Þ. A choice of too few data points per cluster could
lead to an erratic point-to-point behavior that would not
reflect any gain of information, while a choice of too many
data points per cluster could lead to a loss of information.
However, we should keep in mind that we are concerned
with only two datasets for the 2π þ 4π contribution to the
spectral function that will be combined, with one dataset
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(ALEPH) being more precise than the other (OPAL). It is
then reasonable to consider a combination largely based on
the ALEPH energy bins, such that the majority of clusters
contains at least one ALEPH data point. The cluster sizes
near the ρ peak will be narrower and widen with increasing
s, since the ALEPH bin widths increase with s in the region
above the ρ peak.
In order to construct the full covariance matrix C to be

used in the fit of Eq. (3.4) we first combine the covariances
for the 2π and 4πdB=ds distributions from ALEPH and
OPAL, assuming at this stage no correlations between the
two datasets. Then BF errors, as well as their correlations,
are added into the full covariance matrix. This introduces
correlations between ALEPH and OPAL. With the full
covariance matrix and a choice of clusters in hand, the fit to
Eq. (3.4) can be carried out.
Our final combination contains 68 clusters (a number

not too far below the 79 bins of the 2013 ALEPH dataset)
and yields a χ2 per degree of freedom close to the
unity:

χ2min=dof ¼ 1.144; ð3:9Þ

with a good p value of 15%. The result of this fit,
together with the ALEPH and OPAL datasets is shown
in Fig. 2, where the error bars are the noninflated errors
obtained from Eq. (3.8), and the blue band represents
the inflated errors obtained through local-χ2 inflation.13

The local p value for each cluster is shown in Fig. 3.
In the rest of this paper, we will choose to work with
noninflated errors. One expects fluctuations in p value
when combining these two datasets, and the local p
value is never unacceptably small.14 There is thus no
reason to assume that values of the local χ2=dof signal
discrepancies between the ALEPH and OPAL data.
As we will see in Sec. IV, inflating the errors has
no effect on αs.
We explored different choices of the clusters, with the

number of clusters Ncl ranging from 52 to 79 (the latter
equaling the number of bins in the ALEPH dataset). We
found no significantly better fits with Ncl > 68. This is not

FIG. 2. Result of the fit for the 68-cluster combination of the 2π þ 4π channels. The error bars represents noninflated errors while
inflated errors are represented by the blue band.

13By “local-χ2 inflation” we mean rescaling the errors on those
clustered data points with local χ2=dof greater than 1 so the
modified local χ2=dof values become equal to 1.

14Only one p value, equal to 0.0077, is smaller than 1%.
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surprising, because 68 is not much less than the total
number of ALEPH data points, which form the more
precise dataset. In fact, we found equally good fits with
Ncl < 68. However, we wish to have sufficiently many

values of IðwÞexpðs0Þ available to probe stability of the sum-

rule fits to IðwÞexpðs0Þ (cf. Sec. IV), and thus do not want to
choose Ncl too small.
With the combined 2π þ 4π spectral function in hand,

the residual modes we need to add to obtain the inclusive
spectral function, in order of decreasing BF size, are
π−ωð→ non − 3πÞ, K−K0, ηπ−π0, KK̄π−, 6π, KK̄2π,
ð3πÞ−ωð→ non − 3πÞ and ηωπη4π. In order to add these
modes, a linear interpolation to the cluster sðmÞ values is
performed individually for each mode. In the left panel
of Fig. 4 the individual contribution to the spectral
function for each residual mode is shown, while the right
panel shows the cumulative effect, beginning with the
π−ωð→ non − 3πÞ contribution, then adding K−K0, then

ηπ−π0, and so on. From these figures we also see that the
residual modes ð3πÞ−ωð→ non − 3πÞ and ηωπη4π with
the smallest BFs already give negligible contributions to
the inclusive spectral function total. This observation
supports the conclusion already noted above that omitted
contributions from yet-higher-multiplicity modes can be
safely neglected in the region up to s ¼ m2

τ relevant to the
current analysis.
Finally, the inclusive spectral function ρud;VðsÞ is given

by the sum of the contributions from the combined 2π þ 4π
and interpolated residual modes. Figure 5 shows the
individual contributions as well as the sum. Notice that
the residual modes give only a small contribution, which,
moreover, is located toward the end of the τ-decay
spectrum. The final spectral function is displayed in

FIG. 5. The nonstrange V combined spectral function. Total
residual-mode contribution (yellow triangles), 2π þ 4π contribu-
tion (blue circles) and the total inclusive spectral function (green
squares). The inset shows a blow up of the sum of residual-mode
contributions above s ¼ 1 GeV2.

FIG. 4. Residual modes contributions to the spectral function. Left panel: individual modes; right panel: cumulative residual-
mode sums.

FIG. 3. p-value distribution by cluster for the 68-cluster
combination shown in Fig. 2.
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Table I with inflated and noninflated errors for the 2π þ 4π
contribution.15

Having obtained the combined inclusive spectral func-

tion, we can compare the moments IðwÞex ðs0Þ which result to
those obtained using the ALEPH and OPAL versions of
ρud;VðsÞ. We expect these to be consistent with one another,
of course, but also expect the errors for the combined case
to be the smallest. In Table II we compare values of the

IðwÞex ðs0Þ for w ¼ w0, w2 and w3 at s0 ¼ s�0 ≈ 1.5 GeV2 and
s0 ¼ s��0 ≈ 2.9 GeV2. With the binning of the three datasets
being somewhat different, the central values cannot be
directly compared, because the spectral moments in the
table have been computed at slightly different s0 values on
each line. However, the errors can be compared, as they
vary only very slowly with s0. The table thus indicates the
gain in precision for spectral moments obtained from using
the combined spectral function, instead of the ALEPH or
OPAL spectral functions. It should also be borne in mind
that the errors quoted for the ALEPH and OPAL entries in
this table do not include additional, difficult-to-quantify
systematic uncertainties associated with the use by ALEPH
and OPAL of MC for the s-dependences of some of the
residual exclusive-mode ρud;VðsÞ contributions. This addi-
tional systematic is absent from the evaluations of the
spectral moments using our updated ρud;VðsÞ since the
s-dependences of the numerically relevant contributions
from all but the very small residual KK̄ππ mode (where,
instead, maximally conservative experimental constraints
are used) are now based on direct experimental input.

IV. THE STRONG COUPLING

In this section, we turn to the determination of αsðmτÞ
from the V nonstrange spectral function (and associated
covariances) obtained in the previous section. We first
briefly outline our strategy in Sec. IVA, then present our
results in Sec. IV B. Further analysis and discussion of
these results is contained in Sec. IV C.

A. Strategy

The V spectral integrals IðwÞexpðs0Þ for successive values of
s0 are highly correlated. Very strong correlations also exist

between IðwÞexpðs0Þ with different weights w. We find that it is

TABLE I. Total inclusive spectral function multiplied by 2π2. First errors are inflated errors, while second errors
are not inflated. We recall that the parton-model value for 2π2ρud;VðsÞ is 1

2
.

s 2π2ρud;VðsÞ s 2π2ρud;VðsÞ s 2π2ρud;VðsÞ s 2π2ρud;VðsÞ
0.038 0.000(00)(00) 0.106 0.024(04)(04) 0.139 0.049(06)(06) 0.174 0.082(07)(07)
0.211 0.131(09)(07) 0.238 0.150(10)(07) 0.265 0.190(16)(09) 0.288 0.236(11)(11)
0.310 0.290(26)(10) 0.337 0.360(24)(11) 0.364 0.470(25)(14) 0.400 0.647(16)(16)
0.436 0.926(20)(20) 0.463 1.208(24)(24) 0.489 1.583(42)(31) 0.512 1.942(37)(37)
0.536 2.372(63)(38) 0.562 2.668(52)(32) 0.588 2.733(32)(32) 0.622 2.417(33)(33)
0.661 1.832(29)(29) 0.688 1.478(22)(22) 0.714 1.195(21)(21) 0.751 0.905(19)(19)
0.787 0.700(17)(17) 0.814 0.599(16)(16) 0.853 0.484(14)(14) 0.886 0.413(12)(12)
0.912 0.382(10)(10) 0.939 0.343(11)(10) 0.976 0.310(10)(10) 1.012 0.272(10)(10)
1.038 0.273(10)(10) 1.065 0.267(10)(10) 1.100 0.257(12)(09) 1.137 0.254(09)(09)
1.164 0.243(10)(09) 1.197 0.251(10)(10) 1.237 0.248(09)(09) 1.263 0.259(09)(09)
1.290 0.266(10)(10) 1.325 0.276(10)(10) 1.362 0.284(10)(10) 1.389 0.279(13)(10)
1.425 0.299(18)(11) 1.460 0.291(10)(10) 1.488 0.292(13)(10) 1.515 0.305(11)(11)
1.549 0.298(15)(11) 1.586 0.319(11)(11) 1.614 0.319(11)(11) 1.648 0.313(11)(11)
1.685 0.335(12)(12) 1.726 0.355(13)(13) 1.775 0.394(13)(13) 1.825 0.413(15)(15)
1.874 0.461(17)(14) 1.923 0.488(18)(15) 1.978 0.541(31)(18) 2.049 0.589(20)(20)
2.111 0.618(46)(24) 2.156 0.640(23)(21) 2.251 0.664(30)(22) 2.353 0.696(25)(25)
2.501 0.681(29)(29) 2.692 0.594(44)(44) 2.882 0.474(79)(64) 3.057 0.383(78)(78)

TABLE II. Comparison of the spectral moments IðwÞex ðs0Þ for
w ¼ w0,w ¼ w2 andw ¼ w3 at twovalues of s0, for the combined,
the ALEPH, and the OPAL versions of the nonstrange V spectral
function. We choose s�0 to be the closest value larger than or equal
to 1.5 GeV2 for each case (combined, ALEPH, OPAL), and s��0 to
be the closest value smaller than or equal to 2.9 GeV2 for each
case. Note that, because the values of s�0 and s��0 are slightly
different for the three cases, the central values cannot be directly
compared. The errors can, however, be compared, as they vary
slowly with s0.

Combined ALEPH OPAL

Iðw0Þ
ex ðs�0Þ 0.03137(14) 0.03145(17) 0.03140(46)
Iðw0Þ
ex ðs��0 Þ 0.02952(29) 0.03133(65) 0.03030(170)

Iðw2Þ
ex ðs�0Þ 0.02362(10) 0.02370(13) 0.02371(23)
Iðw2Þ
ex ðs��0 Þ 0.02016(8) 0.02081(14) 0.02038(27)

Iðw3Þ
ex ðs�0Þ 0.01774(8) 0.01783(11) 0.01788(17)
Iðw3Þ
ex ðs��0 Þ 0.01574(6) 0.01614(8) 0.01580(14)

15The associated 68 × 68 covariance matrix, which we do not
display for lack of space, can be requested from the authors.
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possible to carry out standard χ2 fits taking into account
all correlations when we limit ourselves to the weight w0,
while this is not the case when fits to combinations of
two different weights over the same interval in s0 are
considered.
We will thus carry out two types of fits. First, since

we need sensitivity to the DV parameters in Eq. (2.12) [11],
we will always include the spectral integrals with
the unpinched weight w0 in our fits. Our most basic fit

is a single-weight χ2 fit to Iðw0Þ
exp ðs0Þ over an interval

s0 ∈ ½smin; smax�, where we will always choose smax equal
to the largest of the cluster sðmÞ values. Since this is a
nonlinear fit, errors determined from the second-derivative
matrix at χ2min are not necessarily very meaningful, and we
instead determine errors by varying each parameter such
that χ2 ¼ χ2min þ 1. In all cases, we find that these errors are
approximately symmetric, and so take the average of the
negative and positive errors as our estimate for the error on
each parameter. Because correlations are fully taken into
account, we will also provide the p value of these fits, and
use this to determine optimal values of smin.
In the second class of fit, we carry out combined two-

weight fits to Iðw0Þ
exp ðs0Þ and one of the IðwnÞ

exp ðs0Þ, with n ¼ 2,
3 or 4. These fits serve as consistency checks on the fits to

Iðw0Þ
exp ðs0Þ alone. For these fits, the combined two-weight
correlation matrix is too singular to allow a fully correlated
fit to be carried out. Thus, as in Refs. [8,11,12], we carry out
“block-diagonal” fits, using a quadratic form in which all
correlations between different s0 values for each spectral
integral are retained, but not those between spectral integrals
with different weights. All correlations are fully included
after the fit, when we obtain parameter error estimates for
such block-diagonal fits by linear error propagation, as
summarized in the appendix of Ref. [11]. To distinguish
it from a true χ2 function, we will refer to the quadratic
form minimized in this type of fit as the fit quality Q2.
The distinction is relevant since Q2 is, in general, not a
χ2-distributed quantity. While this makes it more difficult to
characterize, in a quantitative manner, the quality of such a
fit, the relative “goodness” of two such fits involving the
same pair of weights, but different values of smin, can still be
assessed by comparing the optimized results for their Q2

values per degree of freedom. We emphasize again that the
full data covariance matrix, including now also correlations
between spectral moments with different weights, is taken
into account in the error propagation.
A final complication is caused by the fact that the

correlation matrices for Iðw3Þ
exp ðs0Þ and Iðw4Þ

exp ðs0Þ turn out to
have very small eigenvalues, for the relevant values of smin,
precluding even the block-diagonal fits with these moments
if the full set of cluster values sðmÞ is used for the s0 values
in the fit. It turns out that this problem can be solved by
“thinning” the data, as will be described in more detail in

the following subsection. We emphasize again that these
two-moment fits serve primarily as consistency checks on

the fully correlated fits to Iðw0Þ
exp ðs0Þ.

B. Results

We begin with fits to Iðw0Þ
exp ðs0Þ, using Eq. (2.3) with the

right-hand side of this equation replaced by Eq. (2.11) with
w ¼ w0 ¼ 1. For the reasons explained in Sec. II C we will
focus on FOPT, although we will briefly quote values
obtained using CIPT as well.

The results of our FOPT fits to Iðw0Þ
exp ðs0Þ are shown in

Table III for a range of smin values lying between 1.3246
and 1.9779 GeV2. The dependence of the fit results on smin
is also displayed in Fig. 6 for αsðmτÞ, and Fig. 7 for the DV
parameters. Our first task is to determine the range of
values of smin from which to obtain our best estimate of
αsðmτÞ. This selection is based on several observations.
First, while all p values are acceptable, those for smin ∈
½1.4251; 1.9779� GeV2 are very good. Second, all fit
parameters, including, in particular α and β, become stable
for smin ≥ 1.5490 GeV2, while the fits become distinctly
less accurate for smin ≥ 1.8249 GeV2, as the number of
data points available to the fit becomes smaller.16 Finally,
we observe that the p value abruptly drops for smin ¼
1.3886 GeV2 and becomes systematically smaller if smin is
lowered below this value, signaling the expected break-
down of the theory description for low s0. The results of our
fits are based on the spectral function without error inflation
in the combined 2 π þ 4 π channels. Inflating the errors
only produces even higher p values while leaving the fit
parameters essentially unchanged. For example, for the fit
with smin ¼ 1.5863 GeV2 with error inflation we find a p
value of 88% and αsðmτÞ ¼ 0.3053ð66Þ, to be compared
with 76% and αsðmτÞ ¼ 0.3056ð64Þ given in Table III.
Results for the parameters obtained from fits with

nearby smin are, of course, highly correlated.17 We will
take the correlated average of the parameter values at
smin ¼ 1.5490 GeV2, 1.6136 GeV2, 1.6849 GeV2 and
1.7752 GeV2 as our best estimate for the value of each
parameter, thinning out the seven points on the interval
between 1.5490 GeV2 and 1.7752 GeV2 to lessen the
impact of the very strong correlations between the param-
eter values at neighboring smin. With this strategy, we find
the parameter values (statistical errors only)

16For the fit with smin ¼ 1.9779 GeV2, though the result for
the DV parameter γ is compatible with being positive within
errors, the central value is negative, which is not allowed
theoretically, as it renders the sum rule (2.11) ill defined. We
take this as a sign that, at such large smin, the limited range of s0
available is not sufficient for a reliable fit. We omit these results
from Figs. 6 and 7.

17We have calculated the correlations between the parameter
values obtained from different fits with the method discussed in
Appendix A of Ref. [11].
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αsðmτÞ ¼ 0.3077ð65Þ; ðw0; FOPTÞ
δ ¼ 3.51ð28Þ;
γ ¼ 0.57ð17Þ GeV−2;

α ¼ −1.31ð48Þ;
β ¼ 3.81ð26Þ GeV−2: ð4:1Þ

The points used in obtaining these averages are those
marked in red and purple in the shaded regions of Figs. 6
and 7, respectively.

We note that taking a straight average of the seven values
inside the yellow window in Fig. 6 between smin ¼ 1.5490
and 1.7752 GeV2, and taking the smallest parameter error
on this interval as the error on this average yields
αsðmτÞ ¼ 0.3080ð64Þ, a result almost identical to that in
Eq. (4.1).18 We will take the result shown in Eq. (4.1) as our
central value, with the slightly larger error shown there.

The fit to Iðw0Þ
exp ðs0Þ for smin ¼ 1.5490 GeV2 is displayed

in the left panel of Fig. 8. The right panel of the same figure
shows a comparison of the representation for ρud;VðsÞ
obtained using the parameters of this fit with the combined
experimental result obtained in Sec. III.
We have also carried out these fits using the CIPT

prescription for the D ¼ 0 perturbative contributions,
finding the values (again, statistical errors only)

αsðmτÞ ¼ 0.3239ð87Þ; ðw0; CIPTÞ
δ ¼ 3.35ð28Þ;
γ ¼ 0.65ð18Þ GeV−2;

α ¼ −1.33ð49Þ;
β ¼ 3.80ð26Þ GeV−2: ð4:2Þ

FIG. 6. αsðmτÞ of Table III as a function of smin. The yellow
area correspond to the average reported in Eq. (4.1); this average
is computed from the data points indicated in red (see text). The
thin vertical dashed line separates the regions in which the p
values shown in Table III are smaller than 16% (to the left), from
the region where they are larger than 45% (to the right).

TABLE III. Results of fits to Iðw0Þ
exp ðs0Þ employing the combined spectral function with 68 clusters, with

smax ¼ 3.0574 GeV2, smin in GeV2 and β and γ in GeV−2.

smin χ2=dof p value αsðmτÞ δ γ α β

1.3246 30.71=22 0.10 0.3263(72) 3.48(22) 0.55(14) −0.39ð30Þ 2.93(17)
1.3619 28.56=21 0.12 0.3232(71) 3.46(23) 0.57(15) −0.18ð32Þ 3.04(18)
1.3886 26.63=20 0.15 0.3206(70) 3.45(23) 0.58(15) −0.04ð34Þ 3.15(19)
1.4251 17.96=19 0.53 0.3149(65) 3.43(25) 0.60(16) −0.55ð35Þ 3.41(19)
1.4602 17.91=18 0.46 0.3145(67) 3.43(25) 0.60(16) −0.59ð40Þ 3.43(22)
1.4877 16.43=17 0.49 0.3123(67) 3.44(26) 0.60(16) −0.81ð42Þ 3.55(23)
1.5154 12.69=16 0.70 0.3091(64) 3.48(28) 0.58(17) −1.18ð44Þ 3.73(24)
1.5490 12.57=15 0.64 0.3085(66) 3.50(28) 0.58(17) −1.26ð48Þ 3.77(26)
1.5863 9.97=14 0.76 0.3056(64) 3.61(30) 0.52(18) −1.62ð51Þ 3.95(26)
1.6136 7.65=13 0.87 0.3084(72) 3.49(31) 0.58(18) −1.29ð59Þ 3.79(30)
1.6479 6.52=12 0.89 0.3109(82) 3.32(35) 0.66(20) −1.00ð68Þ 3.65(35)
1.6849 6.27=11 0.85 0.3097(83) 3.43(40) 0.61(22) −1.13ð71Þ 3.71(36)
1.7256 5.71=10 0.84 0.3072(83) 3.66(49) 0.50(25) −1.38ð75Þ 3.83(37)
1.7752 5.51=9 0.79 0.3056(87) 3.84(62) 0.42(30) −1.54ð80Þ 3.90(39)
1.8249 5.33=8 0.72 0.308(11) 3.56(95) 0.54(44) −1.36ð96Þ 3.82(47)
1.8744 4.15=7 0.76 0.302(11) 4.3(1.0) 0.22(45) −1.74ð91Þ 4.00(44)
1.9230 4.13=6 0.66 0.301(12) 4.4(1.2) 0.18(52) −1.77ð92Þ 4.01(45)
1.9779 0.676=5 0.98 0.294(10) 5.4(1.1) −0.19ð45Þ −1.58ð85Þ 3.97(41)

18If instead we take a correlated average of five αs values
taking every other point starting from smin ¼ 1.5154 GeV2, we
find a value αsðmτÞ ¼ 0.3060ð62Þ. Thus, if we enlarge the
window in Fig. 6 by one point on each end of the yellow
“plateau,” we find that our fits are stable: the central value moves
by about one-fourth of the error in Eq. (4.1), and the error is
essentially unchanged. The p value for our correlated averages of
values inside these windows (enlarged or not) are always good.
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We do not show figures equivalent to Figs. 6, 7 and 8, as
they would look very similar. As is the case in all τ-based αs
determinations, the CIPT value is about 5 percent larger
than the FOPT value. The statistical error on the FOPT and
CIPT values are about 2.1 and 2.6 percent, respectively. We
note that the DV-parameter values are not significantly
different between the FOPT and CIPT fits.
In Table IV, we present the results for the block-diagonal

simultaneous fits to Iðw0Þ
exp ðs0Þ and Iðw2Þ

exp ðs0Þ, restricting our
attention to the seven values of smin used in obtaining

the results in Eqs. (4.1) above. Taking a straight average
of the seven values between smin ¼ 1.5490 GeV2 and
1.7752 GeV2, and taking the smallest parameter error on
this interval as the error on this average, we find the
parameter values (statistical errors only)19
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FIG. 8. The spectral moment Iðw0Þ
exp ðs0Þ from the fit with smin ¼ 1.5490 GeV2 in Table III (left panel), and the resulting spectral function

(right panel), multiplied by 2π2. The black symbols denote data points, the red solid curve the fit, and the green dashed curve the OPE
part of the fit.

FIG. 7. DV parameters of Table III as a function of smin. The blue areas correspond to the averages reported in Eq. (4.1); these
averages are computed from the data points indicated in purple (see text). β and γ are in GeV−2. The thin vertical dashed line
separates the regions in which the p values shown in Table III are smaller than 16% (to the left), from the region where they are
larger than 45% (to the right).

19As we have seen in the case of Iðw0Þ
exp ðs0Þ, this simplified

averaging procedure produces a very good approximation to the
fully correlated average we computed in that case.
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αsðmτÞ ¼ 0.3091ð69Þ; ðw0 & w2; FOPTÞ
δ ¼ 3.51ð29Þ;
γ ¼ 0.58ð18Þ GeV−2;

α ¼ −1.35ð58Þ;
β ¼ 3.81ð30Þ GeV−2;

c6 ¼ −0.0059ð13Þ GeV6: ð4:3Þ

These parameter values are in excellent agreement with
those in Eq. (4.1); of course, c6 is new.
In the case of simultaneous block-diagonal fits to

Iðw0Þ
exp ðs0Þ and IðwnÞ

exp ðs0Þ with n ¼ 3, 4, we find that the
correlation matrices for the spectral moments with the
doubly pinched weights w3;4 have very small eigenvalues,
leading to unstable fits with very large Q2 values (equal to
about 16 per degree of freedom for smin ∼ 1.6 GeV2). The
smallest eigenvalue in each such case is around 10−10,
orders of magnitude smaller than the smallest eigenvalue

for the set of Iðw2Þ
exp ðs0Þ or Iðw0Þ

exp ðs0Þ integrals, which are
around 10−6 and 10−5, respectively. We find that if we
“thin” the set of integrals used in the fit, starting at a given
smin and including only every second, third, etc., of the
available higher s0, the Q2=dof drops rapidly to a value
below 1, and the fit stabilizes as we increase the degree of

thinning.20 Tables Vand VI show the results of these fits for
the cases n ¼ 3 and n ¼ 4, always thinning by a factor 3.
Comparing the results of Tables III, IV, V and VI, we find
good consistency among all these fits. Using the simplified
averaging procedure employed above for n ¼ 2, we find
the following parameter values (statistical errors only)

w0 &w3 w0 &w4

αsðmτÞ ¼ 0.3080ð70Þ 0.3079ð70Þ ðFOPTÞ;
δ¼ 3.43ð34Þ 3.41ð34Þ;
γ ¼ 0.63ð21Þ 0.64ð21Þ ½GeV−2�;
α¼ −1.71ð62Þ − 1.68ð62Þ;
β ¼ 4.01ð33Þ 3.99ð33Þ ½GeV−2�;
c6 ¼ −0.0070ð12Þ − 0.0068ð12Þ ½GeV6�;
c8 ¼ 0.0122ð20Þ — ½GeV8�;
c10 ¼— 0.0153ð33Þ ½GeV10�: ð4:4Þ

where the first, respectively, second, column corresponds to

a simultaneous fit to Iðw0Þ
exp ðs0Þ and Iðw3Þ

exp ðs0Þ, respectively,

TABLE IV. Results of block-diagonal fits to Iðw0Þ
exp ðs0Þ and Iðw2Þ

exp ðs0Þ employing the combined spectral function with
68 clusters, with smax ¼ 3.0574 GeV2, smin in GeV2, β and γ in GeV−2, c6 in GeV6. Errors have been computed
using linear error propagation.

smin Q2=dof αsðmτÞ δ γ α β 102c6

1.5490 26.2=34 0.3085(67) 3.49(28) 0.58(17) −1.44ð52Þ 3.85(27) −0.60ð12Þ
1.5863 22.7=32 0.3073(69) 3.50(29) 0.58(18) −1.57ð58Þ 3.92(30) −0.62ð13Þ
1.6136 18.5=30 0.3101(80) 3.36(31) 0.65(18) −1.24ð68Þ 3.76(35) −0.55ð17Þ
1.6479 15.5=28 0.3117(89) 3.31(35) 0.67(20) −1.08ð78Þ 3.68(40) −0.52ð20Þ
1.6849 15.1=26 0.3106(90) 3.42(40) 0.62(21) −1.20ð81Þ 3.74(41) −0.55ð20Þ
1.7256 13.7=24 0.3082(90) 3.70(48) 0.49(24) −1.44ð85Þ 3.85(42) −0.62ð19Þ
1.7752 13.5=22 0.3076(97) 3.76(61) 0.46(29) −1.50ð91Þ 3.88(45) −0.64ð21Þ

TABLE V. Results of block-diagonal fits to Iðw0Þ
exp ðs0Þ and Iðw3Þ

exp ðs0Þ employing the combined spectral function with
68 clusters, with smax ¼ 3.0574 GeV2, smin in GeV2, β and γ in GeV−2, c6 in GeV6, c8 in GeV8. Errors have been

computed using linear error propagation. For each fit, every third value of Iðw0Þ
exp ðs0Þ and Iðw3Þ

exp ðs0Þ was used, starting
from s0 ¼ smin.

smin Q2=dof αsðmτÞ δ γ α β 102c6 102c8

1.5490 3.23=7 0.3070(70) 3.37(34) 0.66(21) −1.80ð62Þ 4.05(33) −0.71ð12Þ 1.23(20)
1.5863 2.11=7 0.3068(74) 3.37(34) 0.66(21) −1.88ð73Þ 4.10(38) −0.72ð13Þ 1.25(22)
1.6136 2.19=5 0.3097(83) 3.38(35) 0.64(21) −1.55ð83Þ 3.92(43) −0.66ð15Þ 1.15(28)
1.6479 1.96=5 0.3076(82) 3.44(41) 0.63(23) −1.72ð83Þ 4.01(43) −0.71ð15Þ 1.24(27)
1.6849 1.33=5 0.3048(80) 3.62(46) 0.54(25) −2.13ð89Þ 4.22(45) −0.78ð14Þ 1.37(26)
1.7256 2.03=3 0.311(11) 3.41(70) 0.63(34) −1.40ð1.06Þ 3.85(53) −0.65ð23Þ 1.12(43)
1.7752 1.81=3 0.309(11) 3.4(1.0) 0.66(48) −1.52ð1.09Þ 3.91(54) −0.68ð25Þ 1.19(50)

20The smallest eigenvalue of the correlation matrices for
Iðw3;4Þ
exp ðs0Þ increases to about 10−6 if we thin by a factor 3.
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Iðw0Þ
exp ðs0Þ and Iðw4Þ

exp ðs0Þ. The results for those parameters also
determined in the earlier fits also show good consistency
with the values obtained in those earlier fits, reported in
Eqs. (4.1) and (4.3). In addition, the values for the OPE
coefficient c6 shown in Tables Vand VI are consistent with
those shown in Table IV. This constitutes an additional
nontrivial consistency check.
We end this subsection with a comment. For reasons

already explained, we did not construct the axial equivalent
of the new inclusive spectral function ρud;V obtained in
Sec. III, and thus did not carry out simultaneous fits to the V
and A spectral functions. This precludes us from testing
consistency between vector and axial channels, and from
carrying out tests based on the Weinberg sum rules, as we
did in Refs. [8,11,12]. Here we point out that such tests
were always successful in the separate analyses of the
ALEPH and OPAL nonstrange inclusive spectral functions.
We also note that our most precise results for αs were
always obtained from purely V channel fits.

C. Analysis

To finalize our result for αsðmτÞ, an estimate is required
for the error resulting from the use of the four- or five-
loop-truncated perturbation theory. This is obtained
following the approach outlined at the end of Sec. II C.

We focus on the single-weight fit to Iðw0Þ
exp ðs0Þ with

smin ¼ 1.5490 GeV2.
It turns out that among the various strategies for

estimating this error discussed in Sec. II C, varying c51
by �50% around the central value c51 ¼ 283 yields the
largest, and thus most conservative, estimate of the trun-
cation error. Symmetrizing the slightly asymmetric result
produces an uncertainty of �0.0026 on αsðmτÞ. Alternate
error estimates based on removing order-α5s terms (i.e.,
setting c5m ¼ 0), or removing both order-α4s and order-α5s
terms (i.e., setting both c4m ¼ 0 and c5m ¼ 0) lead to
differences equal to or smaller than the differences obtained
from the 50% variation in c51 noted above.
These observations apply to the perturbative represen-

tation for Iðw0Þ
th ðs0Þ, and do not necessarily apply to

spectral moments with other weights. Since moments
with different weights have different perturbative
behaviors [43,44], we will take the difference between
the values of αs in Eqs. (4.1) and (4.3) to reflect an
independent source of perturbative error. We multiply this
difference by a factor two to take into account the fact that
one of the two weights entering the fit leading to
Eq. (4.3), w0, was also used in obtaining the results
quoted in Eqs. (4.1). This leads to an additional pertur-
bative uncertainty of �0.0028 on αs.
Combining the statistical error of Eq. (4.1) and the

two perturbative uncertainties discussed above in
quadrature, we obtain our final result for αs at the τ mass
scale:

αsðmτÞ ¼ 0.3077� 0.0065stat � 0.0038pert

¼ 0.3077� 0.0075 ðnf ¼ 3; FOPTÞ; ð4:5Þ

where the subscripts “stat" and “pert” refer to the statistical
and the perturbative error, respectively.
As we explained in Sec. II, the τ scale is sufficiently

low that nonperturbative effects are expected to be

potentially non-negligible. For Iðw0Þ
exp ðs0Þ nonperturbative

contributions are generated by DVs, corresponding to the
second term on the right-hand side of Eq. (2.11). It is
interesting to quantify these effects. Even though the
moment is dominated by perturbation theory, we find that

the nonperturbative part of Iðw0Þ
th ðs0Þ, which is the moment

most sensitive to nonperturbative effects, oscillates with
an amplitude typically of order 20% of the αs-dependent
part of the perturbative contribution (obtained by sub-
tracting the αs-independent parton-model piece) with
varying s0.
The nonperturbative effect is thus small but significant,

and this is not surprising. The nonperturbative part
accounts for the oscillation seen in the spectral function
in Fig. 8 (red curve), which cannot be accounted for by the
OPE (green dashed curve). We believe that it is unlikely
that any variation of the DV ansatz (2.12) that does an
equally good job of fitting the data would lead to a variation

TABLE VI. Results of block-diagonal fits to Iðw0Þ
exp ðs0Þ and Iðw4Þ

exp ðs0Þ employing the combined spectral function
with 68 clusters, with smax ¼ 3.0574 GeV2, smin in GeV2, β and γ in GeV−2, c6 in GeV6, c10 in GeV10. For each fit,

every third value of Iðw0Þ
exp ðs0Þ and Iðw3Þ

exp ðs0Þ was used, starting from s0 ¼ smin.

smin Q2=dof αsðmτÞ δ γ α β 102c6 102c10

1.5490 2.89=7 0.3069(70) 3.37(34) 0.66(21) −1.79ð62Þ 4.04(33) −0.69ð12Þ 1.56(33)
1.5863 1.80=7 0.3065(74) 3.37(34) 0.66(21) −1.87ð73Þ 4.09(38) −0.70ð13Þ 1.60(38)
1.6136 1.90=5 0.3097(83) 3.38(35) 0.64(21) −1.52ð84Þ 3.91(44) −0.64ð16Þ 1.41(48)
1.6479 1.70=5 0.3076(82) 3.43(41) 0.63(23) −1.69ð83Þ 3.99(43) −0.69ð16Þ 1.57(48)
1.6849 1.10=5 0.3046(80) 3.61(46) 0.55(25) −2.11ð89Þ 4.21(45) −0.76ð15Þ 1.83(47)
1.7256 1.75=3 0.311(11) 3.39(70) 0.64(34) −1.3ð1.1Þ 3.82(53) −0.62ð24Þ 1.34(83)
1.7752 1.56=3 0.309(11) 3.3(1.0) 0.68(48) −1.5ð1.1Þ 3.89(55) −0.65ð27Þ 1.4(1.0)
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in αs larger than the error we obtained in Eq. (4.5).21 It is
clear that the data show the existence of nonzero DVs and,
while a first-principles derivation from QCD does not exist,
the main features of a DV ansatz cannot be taken to be
arbitrary. As already pointed out in Sec. II, a minimal set of
assumptions, based on commonly accepted properties of
QCD such as, e.g., Regge behavior, leads to the para-
metrization (2.12) [24].
In fact, we have quantitative information on this issue,

from the fits involving IðwnÞ
exp ðs0Þwith n ¼ 2, 3, 4, because of

the single pinch in w2, and the double pinch in w3;4, which
suppress DVs at different rates. Comparing the values of
αsðmτÞ in Eqs. (4.3) and (4.4) to the value in Eq. (4.1), we
see that the central value of αsðmτÞ varies by no more than
0.0004, i.e., 0.13% of the central value, to be compared
with the 2.3% relative error in Eq. (4.5). Such variations are
much smaller than we would expect were the larger DV
contributions to the w0 sum rule to have been incorrectly
represented by the DV ansatz Eq. (2.12).
Running the result of Eq. (4.5) to the Z-mass scale using

the standard self-consistent combination of five-loop run-
ning [33,34] with four-loop matching [78,79] at the charm
and bottom thresholds (2mcðmcÞ and 2mbðmbÞ, respec-
tively, with MS masses from the PDG [55]) we obtain the
corresponding nf ¼ 5 result

αsðmZÞ ¼ 0.1171� 0.0010 ðnf ¼ 5; FOPTÞ: ð4:6Þ

With five-loop running and four-loop matching the uncer-
tainty due to the running is very small. If we perform the
matching at mcðmcÞ and mbðmbÞ we find a shift of just
0.00009, which does not contribute to the final uncertainty.
To conclude this section, we compare our new value of

αsðmτÞ given in Eq. (4.5) with those obtained from analyses
of the ALEPH data [8], the OPAL data [12], and from
eþe− → hadrons below 2 GeV [80], where the latter was
based on the combined electroproduction spectral data of
Ref. [13]. These previously obtained values are

αsðmτÞ ¼ 0.325� 0.018 ðOPALdataÞ;
αsðmτÞ ¼ 0.296� 0.010 ðALEPHdataÞ;
αsðmτÞ ¼ 0.298� 0.017 ðeþe− dataÞ: ð4:7Þ

Previously, we quoted a weighted average of the two
τ-based values in Eq. (4.7), of the ALEPH-based and
OPAL-based results, αsðmτÞ ¼ 0.303� 0.009, as our best
determination from τ decays. This value and the values

shown in Eq. (4.7) are in good agreement with our new,
more precise value in Eq. (4.5).
A direct comparison with other recent determinations of

αs from τ decays [4,9] is problematic because they are all
based on the truncated OPE strategy, which was shown in
Refs. [25,26] to be contaminated by uncontrolled system-
atic effects arising mainly from the neglect of unknown
higher-order terms in the OPE in Refs. [4–6,9]. The values
of Refs. [4,9] are also highly correlated, since they are
based on the same general strategy and the same ALEPH
dataset. We note that the values of Refs. [4,9] are signifi-
cantly larger than ours αsðmZÞ ¼ 0.1199� 0.0015, from
Ref. [4] and αsðmZÞ ¼ 0.1197� 0.0015, from Ref. [9].

V. CONCLUSION

The determination of the strong coupling from hadronic
τ decays has the potential to provide one of the most precise
values among the many determinations from different
methods that have appeared in the literature. It thus makes
sense to aim for a determination from the combined
experimental information available, and this is what we
set out to do in this paper. This led us to construct a new
nonstrange vector, isovector spectral function, which is
presented in Table I and Fig. 5.
In order to construct this spectral function, we combined

the τ → π−π0ντ, τ → 2π−πþπ0ντ and τ → π−3π0ντ exper-
imental data available from the ALEPH and OPAL col-
laborations, using the method employed before in Ref. [13].
The sum of these contributions constitutes 98% of the
spectral function as measured by branching fraction.
Details of the contributions from the remaining exclusive

channels, a number of which were estimated using Monte-
Carlo, were not provided by ALEPH or OPAL. We have
replaced the estimates for these residual-mode contribu-
tions using recent τ results for theK−K0 mode and the large
amount of data now available, via CVC, from electro-
production experiments for the remaining residual modes,
with conservative estimates of the systematic errors asso-
ciated with this approach. As measured by the spectral
moments shown in Table II, this leads to a more accurate
determination of the spectral function ρud;VðsÞ, especially
in the upper part of the τ kinematic range. This is a
consequence of the fact that electroproduction data are
not kinematically limited near the τ mass. We emphasize
that the inclusive spectral function which results is a sum of
s-dependent exclusive-mode contributions, all of which are
now obtained from experiment and none of which require
Monte-Carlo input any more.
One of the most important applications of this new

combined dataset is a determination of the strong coupling
αs at the τ mass scale. We employed previously developed
methods using finite-energy sum rules to extract a new
estimate of the MS value of αsðmτÞ from these data, which,
when evolved to the Z mass scale, produces a five-flavor

21Contrary to claims in the literature, use of the truncated-OPE
strategy (which ignores DVs, as well as certain higher dimension
OPE contributions) in sum-rule fits to moments of the sum of the
V and A spectral functions can lead to systematic effects of order
10% in αsðmτÞ [25].
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result with an estimated precision of about 0.8%. Our final
result is αsðmZÞ ¼ 0.1171� 0.0010. We also revisited the
question of how to best estimate the effect of truncating the
perturbative expansion for the moments involved in these
sum rules, arguing that, for a direct comparison with values
obtained from other methods, the fixed-order resummation
scheme is the appropriate one. Because the perturbative
Adler function is known to a high order, α4s , and the QCD β
function is known to an even higher order, α5s , we arrived at
a systematic error reflecting the use of perturbation theory
which is quite small, 1.2% at the τ mass. We did not carry
out an analysis of the perturbative error for CIPT, because
of the issues discussed in Sec. II C. For the same reasons,
we emphasize that averaging the FOPTand CIPT values, or
taking their difference as a measure of the perturbative
error, would be misleading.
In order to carry out the analysis, we had to rely on the

DV ansatz (2.12), and this introduces a model element into
our framework. We note in this regard that, while no
derivation of Eq. (2.12) from QCD exists, there are strong
theoretical arguments supporting this ansatz based on
commonly accepted conjectures about the spectrum of
QCD [24], cf., Sec. II A. The consistency of the results
of the fits presented above, which employ spectral moments
with varying degrees of DV suppression, moreover, sup-
ports the consistency of our approach, as discussed in more
detail in Sec. IV C.
Our approach can be subjected to further tests when

more precise τ-decay data become available. With the
strategy employed above, more precise data for just
the low-multiplicity decay channels τ → π−π0ντ, τ →
2π−πþπ0ντ and τ → π−3π0ντ would produce further
improvements to the inclusive nonstrange vector isovector
spectral function and allow for much higher precision tests
of our framework. High-precision data for τ → π−π0ντ are,

in fact, already available [81], implying that similar data for
the two four-pion channels would potentially have a
significant impact on the determination of αs from non-
strange hadronic τ decays.
Finally, the new spectral function can also be used in

other applications. It can be used to put constraints on
low-energy constants in chiral perturbation theory, with
next-to-next-to-leading-order theoretical representations
being available [82–84]. Additional low-energy constants
would become accessible were an updated nonstrange axial
vector spectral function to be obtained. Such an update is,
however, more difficult, given the absence of any analogue
of the electroproduction data used in improving many of
the vector residual-mode contributions. We leave the
consideration of the axial channel to future work.
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