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The recently discovered fully charmed tetraquark candidate Xð6900Þ is analyzed within the frameworks
of effective-range expansion, compositeness relation and width saturation, and a coupled multichannel
dynamical study. By taking into account constraints from heavy-quark spin symmetry, the coupled-channel
amplitude including the J=ψJ=ψ , χc0χc0, and χc1χc1 is constructed to fit the experimental di-J=ψ event
distributions around the energy region near 6.9 GeV. Another dynamical two-coupled-channel amplitude
with the J=ψJ=ψ and ψð3770ÞJ=ψ is also considered to describe the same datasets. The three different
theoretical approaches lead to similar conclusions that the two-meson components do not play dominant
roles in the Xð6900Þ. Our determinations of the resonance poles in the complex energy plane from the
refined coupled-channel study are found to be consistent with the experimental analyses. The coupled-
channel amplitudes also have another pole corresponding to a narrow resonance Xð6825Þ that we predict
sitting below the χc0χc0 threshold and of molecular origin. We give predictions to the line shapes of the
χc0χc0 and χc1χc1 channels, which could provide a useful guide for future experimental measurements.
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I. INTRODUCTION

The first fully heavy-flavor tetraquark meson candidate
Xð6900Þwas recently observed in the di-J=ψ spectra by the
LHCb Collaboration [1]. This intriguing observation has
sparked fruitful theoretical discussions [2]. Among the
many interpretations, diquark-antidiquark cluster mecha-
nism in the valence-quark picture is currently the most
popular theoretical model to explain the narrow state
observed around 6.9 GeV [2]. Although different theoreti-
cal methods, including the quark models, QCD sum rules,
and effective Lagrangians, could account for the right mass
of the tetraquark candidate Xð6900Þ without significant
difficulty, its JPC quantum numbers and decay patterns are
still under vivid debate. Our study aims at pushing forward
the clarification of the nature of the Xð6900Þ, its possible
decay patterns, and the extraction of its resonance pole
position from the experimental event distributions by

employing a sophisticated coupled-channel framework
based on general principles of S-matrix theory.
In a series of recent works [3–10], we developed a

theoretical framework that is especially useful for bringing
insight into the inner structures of the resonance states near
some underlying two-hadron thresholds. It is based on the
effective-range expansion (ERE) and the compositeness
relation [3,10–16] and has been widely and successfully
used to study many possible exotic hadrons, such as the
charmed baryon Λcð2545Þ [4], the hidden bottom tetra-
quark candidates Zbð10610Þ=Zbð10650Þ [5], the narrow
state Xð3872Þ [6], the pentaquark candidates Pcð4312Þ,
Pcð4440Þ, Pcð4457Þ [8], and the hidden charm mesons
Zcð3900Þ, Xð4020Þ, χc1ð4140Þ, ψð4260Þ, ψð4660Þ [7].
This formalism is especially powerful for describing elastic
single-channel scattering. Just with the inputs of the mass
and width of the resonance, we can estimate the scattering
length, effective range, and compositeness coefficient [3],
which is the probability of finding the two-hadron compo-
nent inside the resonance. In this work we will first
tentatively apply this formalism to the elastic scattering
processes of χc0χc0, χc1χc1, and ψð3770ÞJ=ψ to explore the
newly observed Xð6900Þ.
Clearly a realistic study needs to include the J=ψJ=ψ

channel, in which the Xð6900Þ is observed by the experi-
ments [1]. A similar situation also happens for the penta-
quark candidates Pcð4312Þ, Pcð4440Þ, Pcð4457Þ, which
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requires one to simultaneously include at least the J=ψp
and ΣcDð�Þ channels [8]. Generally speaking, when the
mass of the resonance is below or rather close to the
underlying two-hadron threshold, other lighter hadronic
degrees of freedom (d.o.f.) usually need to be introduced to
account for the decay width of the observed resonances.
Then a coupled-channel formalism should instead be used
in this situation. A simple but efficient approach based on
the simultaneous requirements of the decay widths and the
compositeness coefficients was developed in Refs. [5,8,9].
The most important merit of this approach is that we can
predict the partial compositeness coefficients (namely, the
probabilities of finding the different components inside the
considered resonance) and the partial decay widths of
the resonance with only minimal inputs, i.e., the total
compositeness of the considered channels, apart from the
mass and width of the resonance from the experimental
determinations. Within the aforementioned formalism we
will perform a three-coupled-channel (J=ψJ=ψ , χc0χc0,
χc1χc1) study and another tentative two-coupled-channel
[J=ψJ=ψ , ψð3770ÞJ=ψ ] one for the Xð6900Þ. We point out
that the quantum numbers JPC ¼ 0þþ are assumed for the
Xð6900Þ throughout, which is also one of the possibilities
for the ground states in the quark model picture [2].
The total compositeness coefficient entering into the

above approach should be provided beforehand, and it is
usually taken as a free parameter in practice. To reach more
definite conclusions on the nature of the Xð6900Þ, we
further construct the scattering amplitudes involving the
J=ψJ=ψ , χc0χc0, and χc1χc1 channels by imposing the
heavy-quark symmetry to reduce the number of free
parameters. We use a general coupled-channel near-thresh-
old (of the χcχc states) parametrization driven by the
presence of a Castillejo-Dalitz-Dyson (CDD) pole [17]
without assuming a specific dynamical model, which is
indeed more general than the ERE [6] or a Flatté para-
metrization [6,18]. The resulting coupled-channel scatter-
ing amplitudes are used to fit the experimental di-J=ψ event
distributions by taking into account the rescattering due to
the two-hadron systems out of a χc0χc0 and χc1χc1 S-wave
source. The resonance pole positions, their couplings to the
J=ψJ=ψ , χc0χc0, χc1χc1 channels, and the compositeness
coefficients can then be obtained. We also give further
predictions for the event distributions of the χc0χc0 and
χc1χc1. Subsequently, similar studies involving the J=ψJ=ψ
and ψð3770ÞJ=ψ channels are also carried out. Our study
also predicts the presence of a resonance just below the
χc0χc0 threshold, named Xð6825Þ, which couples very
strongly with the χc0χc0 and χc1χc1 channels and weakly
to J=ψJ=ψ . As a result, it manifests as a narrow peak at the
χc0χc0 threshold, being mostly a virtual state of χc0χc0
and χc1χc1.
This paper is organized as follows. First the tentative

study of the elastic scattering of χc0χc0, χc1χc1, and
ψð3770ÞJ=ψ based on the ERE is explored to address

the emergence of the Xð6900Þ at its experimental pole
position. Then we combine the decay widths and compos-
iteness relations to perform a three-coupled-channel study
by assuming several different values for the total compos-
iteness coefficients. Next the fits to the experimental
J=ψJ=ψ event distributions with the J=ψJ=ψ , χc0χc0,
and χc1χc1 S-wave coupled-channel scattering amplitudes
are carried out. As a result, the pole positions of the
Xð6900Þ, their coupling strengths, total and partial decay
widths, and compositeness coefficients are determined and
compared to those in the previous approaches. We then
make predictions for the line shapes of the χc0χc0 and
χc1χc1. Another analysis is also provided by including the
coupled J=ψJ=ψ and ψð3770ÞJ=ψ channels, which, how-
ever, is disadvantaged relative to the previous case. Finally
we give a short summary and conclusions.

II. EFFECTIVE-RANGE EXPANSION
FOR THE ELASTIC SCATTERING

The standard ERE formalism for the elastic S-wave two-
body scattering is given by

TðEÞ ¼ 1

− 1
a þ 1

2
rk2 − ik

; ð1Þ

where k represents the three-momentum in the center of
mass (c.m.) frame, and a and r in this case correspond to
the scattering length and the effective range, respectively.
The c.m. three-momentum k in the nonrelativistic limit is
related to the c.m. energy E via

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μmðE −mthÞ

p
; ð2Þ

where the reduced mass μm and the threshold mth are
given by

μm ¼ m1m2

m1 þm2

; mth ¼ m1 þm2; ð3Þ

withm1 andm2 the masses of the two scattering particles. It
is easy to verify that the ERE amplitude in Eq. (1) fulfills
the unitarity relation

ImTðEÞ−1 ¼ −k ðE > mthÞ: ð4Þ

Loosely speaking, the ERE formula in Eq. (1) works well in
the energy region sufficiently near the two-particle thresh-
old. Three main facts may hinder the applicability of the
ERE formalism to the energy region where the resonance
lies: the left-hand cuts, the preexisting bare poles [6,18–20]
(which can also be introduced as CDD poles [17]),
and other important nearby thresholds. Since the exchanges
of the color-singlet light hadrons between the two-
charmonium states are highly suppressed, the contributions
from the left-hand cuts can be safely neglected in the
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two-charmonium scattering. The situation for the CDD
pole is more subtle. If the CDD pole is distant from the two-
particle threshold, this is a favorable situation in which to
apply the ERE formalism in Eq. (1). While, in the special
circumstance in which the CDD pole is close to the
threshold, the ERE formula in Eq. (1) becomes inaccurate
for the description of the near-threshold dynamics [4]. As a
consequence, one should explicitly introduce the CDD pole
terms into the scattering amplitudes. However, it is usually
impracticable to predict whether or not the CDD poles near
the thresholds exist. Alternatively, Refs. [4,5] provide an
indirect but practical way to discern the validity of the ERE
formula. It is obtained in these references that when the
mass of the CDD pole MCDD approaches the threshold mth
the resulting a and r will be linearly and quadratically
inversely proportional to MCDD −mth, respectively, i.e.,

a ∝ MCDD −mth; r ∝
1

ðMCDD −mthÞ2
: ð5Þ

Since other sources could also contribute to the scattering
length,1 it may not be reliable to infer the CDD pole
information from the value of a. In contrast, making a
comparison with the standard strong interaction scale
around 1 fm, a large value of the magnitude for the
effective range r, would strongly hint at the existence of
the near-threshold CDD pole. In other words, the large
effective range r clearly provides an intuitive and practi-
cable criterion for the existence of the CDD pole near
threshold, which also indicates that the ERE formalism in
Eq. (1) probably is invalid for describing the dynamics
around the threshold. On the contrary, if the resulting
magnitude of the effective range r is around 1 fm, it is
unlikely that one would necessarily need to introduce a
CDD pole around the threshold energy region, and the ERE
formula in Eq. (1) would be sufficient to describe the
underlying physics.
Through the analytical continuation one can extrapolate

the amplitudes into the second Riemann sheet (RS), where
the resonance poles lie. The scattering amplitude in the
second RS, TIIðEÞ, takes the form

TIIðEÞ ¼
1

− 1
a þ 1

2
rk2 þ ik

: ð6Þ

The imaginary part of the three-momentum k should be
taken to be positive, i.e., Imk > 0, in Eqs. (1) and (6).
Alternatively, one can still use Eq. (1) for TðEÞ, but for
calculating k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μmðE −mthÞ
p

in the first RS the argu-
ment of the radicand is taken between ½0; 2πÞ, while in the

second RS it is between ½2π; 4πÞ. The resonance pole
ER ¼ MR − iΓR=2, withMR the resonance mass and ΓR the
width, corresponds to the solution of TIIðERÞ−1 ¼ 0, that is,

−
1

a
þ 1

2
rk2R þ ikR ¼ 0: ð7Þ

kR stands for the three-momentum at the pole ER, i.e.,
kR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2μmðER −mthÞ
p

. For simplicity, we introduce kr
and ki to denote the real and imaginary parts of kR,
respectively,

kr ¼ RekR; ki ¼ ImkR; ð8Þ

where ki > 0 is taken, consistently with the convention for
k in Eqs. (1) and (6). It is straightforward to solve Eq. (7) to
obtain a and r in terms of kr and ki. The solutions of a and r
were worked out in Ref. [4],

a ¼ −
2ki
jkRj2

; r ¼ −
1

ki
: ð9Þ

By combining Eqs. (9) and (6), the Laurent expansion of
the S-wave scattering amplitude in the second RS reads [5]

TIIðkÞ ¼
−ki=kr
k − kR

þ…; ð10Þ

where one can easily identify −ki=kr as the residue of the
partial-wave amplitude (PWA) at the pole position in the
variable k. In our previous study [3,5], the compositeness
coefficient X, corresponding to the weight of the two-
particle component inside the resonance, is shown to be
equal to this residue,

X ¼ −
ki
kr

: ð11Þ

It is also proved in Ref. [5] that, when the mass of the
resonance pole lies above the considered threshold [3], X in
the previous equation is bounded within the range [0, 1],
and hence it meets the requirement for a probabilistic
interpretation.
According to Eqs. (9) and (11), once the mass and width

of the resonance are known, the scattering length, effective
range, and compositeness coefficient can be correspond-
ingly predicted under an assumption of single-channel
scattering. This assumption in the present case of interest
on the Xð6900Þ can be considered simplistic since at least
three a priori relevant channels near the nominal mass of
the resonance, the χc0χc0, χc1χc1, and J=ψψð3770Þ, can be
identified. Their thresholds lie at 6829.4, 7021.3, and
6870.6 MeV, respectively, and have c̄ c̄ cc as a valence-
quark composition so that their mutual interactions are
Okubo-Zweig-Iizuka (OZI) allowed.

1The quantum mechanical example of a square well is
analyzed in Refs. [5,21], where one can observe explicitly that
the size of jaj could be very different from the radius R of the
square-well potential due to small changes in its depth.

INSIGHTS INTO THE INNER STRUCTURES OF THE FULLY … PHYS. REV. D 103, 034024 (2021)

034024-3



We give the numerical results in Table I for the χc0χc0
uncoupled scattering, where the two different sets of
masses and widths of the Xð6900Þ from the models I
and II of LHCb [1] are separately analyzed. The values
of the mass and width of the Xð6900Þ resonance from
Ref. [1] are

Model I∶ M ¼ 6905� 11� 7 MeV;

Γ ¼ 80� 19� 33 MeV;

Model II∶ M ¼ 6886� 11� 11 MeV;

Γ ¼ 168� 33� 69 MeV; ð12Þ

where the distinction is based on the treatment of the
nonresonant [with respect to the Xð6900Þ] background. For
both sets, the masses of the Xð6900Þ are below the χc1χc1
threshold, which is 7021.3 MeV, and hence we cannot
interpret the X defined in Eq. (11) as the probability [3].
The scattering length and effective range resulting in the
elastic χc1χc1 channel are found to be

a¼ −0.59� 0.04; r¼ −0.31� 0.02 ðcase IÞ;
a¼ −0.51� 0.05; r¼ −0.28� 0.02 ðcase IIÞ; ð13Þ

given in units of femtometers.
The small value of the X obtained for χc0χc0 scattering

indicates that there is an active extra source of dynamics
beyond the explicitly included channel, for instance,
because of the nearby presence of a CDD pole or due to
other channels not explicitly included or both effects
simultaneously. This could hamper the applicability of
the elastic ERE to reproduce the pole position of the
Xð6900Þ, and further study is required. On the other hand, a
value of X ≃ 1 would perfectly confirm our onset
assumption on the dominance of this channel in order to
justify the single-channel treatment. Therefore, this result
clearly indicates that a coupled-channel analysis is required
for the Xð6900Þ. Similar conclusions can be also made for
case II, although the value of X is larger in this case, as it is
compatible with the previous one at the level of 1 standard
deviation. The mild values for the effective range r imply
that the scenario with a near-threshold CDD pole is
disfavored in the uncoupled case. It should be pointed
out that the total width of the Xð6900Þ state is implicitly
assumed to be saturated by the χc0χc0 or χc1χc1 in this
simplified framework based on assuming the dominance of
only one channel within the elastic ERE. This assumption

could be unrealistic, since the partial decay width to the
J=ψJ=ψ channel is likely non-negligible. Therefore, a
more realistic study requires the information of the partial
decay width to χc0χc0, which will be worked out in the next
section within a coupled-channel analysis after performing
fits to the experimental event distributions.
An analogous discussion is in order when we apply the

ERE study to the ψð3700ÞJ=ψ channel, for which the
scattering length a, effective range r (given in units of
femtometers), and compositeness coefficient X are deter-
mined to be

a ¼ −0.39� 0.12; r ¼ −1.12� 0.46;

X ¼ 0.46� 0.18 ðcase IÞ;
a ¼ −0.47� 0.10; r ¼ −0.57� 0.16;

X ¼ 0.83� 0.17 ðcase IIÞ: ð14Þ

The width of the ψð3770Þ is 27.2� 1.0 MeV [22], and we
take it into account by employing a complex mass,
following the approach of Refs. [4,7]. The resulting values
found are now

a ¼ −0.33� 0.18; r ¼ −1.60� 1.06;

X ¼ 0.34� 0.22 ðcase IÞ;
a ¼ −0.50� 0.12; r ¼ −0.64� 0.22

X ¼ 0.80� 0.20 ðcase IIÞ: ð15Þ

Comparing the two sets of values in Eqs. (14) and (15) it is
obvious that the finite-width effects from the ψð3770Þ are
small. The resulting values of a and r are similar to those of
the χc0χc0 case, although the compositeness coefficients
become larger because the threshold of the ψð3770ÞJ=ψ is
closer to the resonance mass. However, the fact that several
important thresholds are involved in this energy region, as
indicated above, warns us that the single-channel ERE is
probably unreliable, which also agrees with the findings in
Sec III A, as explained therein.

III. COUPLED-CHANNEL STUDIES

In the previous discussion, one notices that the coupled-
channel formalism is needed to describe the Xð6900Þ.
We implement two approaches to consider the couplings
between several channels, as we detail next.

TABLE I. Scattering length a, effective range r, and compositeness coefficient X from the ERE study. The two different sets of mass
and width values for the Xð6900Þ are taken from the LHCb determinations [1].

Resonance Mass (MeV) Width (MeV) Threshold (MeV) a (fm) r (fm) X

Xð6900Þ I 6905� 13 80� 38 χc0χc0 (6829.4) −0.18� 0.07 −1.52� 0.69 0.25� 0.11
Xð6900Þ II 6886� 16 168� 77 χc0χc0 (6829.4) −0.32� 0.06 −0.72� 0.26 0.53� 0.16
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A. Three-coupled-channel case

We consider the J=ψJ=ψ (1), χc0χc0 (2), and χc1χc1
(3) three-coupled channels, with the label for every channel
given in parentheses. The contribution from the ηcηc
channel, whose threshold is rather distant from the energy
region of interest around 6.9 GeV, is effectively reabsorbed
into the J=ψJ=ψ channel. In the infinite quark mass limit,
the spin symmetry of the heavy quarks becomes exact,
which in turn predicts special patterns for the heavy-hadron
spectra. For a heavy-quarkonium system with charm
quarks, heavy-quark symmetry predicts that the J=ψ and
ηc will form a spin doublet and the χc0, χc1, χc2, and hc will
form another spin multiplet [23]. These predictions are in
reasonable agreement with the experimental measurements
[22]. To reduce the number of free parameters, we impose
heavy-quark symmetry on the couplings between the
charmonia and the Xð6900Þ state. To be more specific,
the coupling of the J=ψ pair with Xð6900Þ is denoted as ga.
The couplings of the χc0χc0, χc1χc1 and the Xð6900Þ are gb
and gb=

ffiffiffi
3

p
, respectively, since they are the same aside from

a Clebsch-Gordan factor. To properly account for the
threshold effects, we take the masses of the charmonia
according to their physical values [22].
To fix the two couplings ga and gb, we solve the two

equations of the decay width and the compositeness
relation. The partial compositeness coefficient Xj, i.e.,
the fraction of the two-particle state of the jth channel
in the resonance, is given by [3]

Xj ¼ jgjj2
���� dG

ðIIÞ
j ðsRÞ
ds

����; ð16Þ

where gj denotes the coupling strength between the two
particles in the jth channel and the resonance. Depending
on whether the pole lies below (above) the jth-channel
threshold, one should take the two-point one-loop function
GjðsÞ½GII

j ðsÞ� in the first (second) RS. The explicit expres-
sion of GjðsÞ from dimensional regularization by replacing
the divergent term with a subtraction constant takes the
form

GjðsÞ ¼ −
1

16π2

�
aðμ2Þ þ log

m2
2

μ2
− xþ log

xþ − 1

xþ

− x− log
x− − 1

x−

�
;

x� ¼ sþm2
1 −m2

2

2s
� qjðsÞffiffiffi

s
p : ð17Þ

The expression given in Eq. (17) represents GjðsÞ in the
first or physical RS, and its corresponding formula in the
second RS reads [24]

GII
j ðsÞ ¼ GjðsÞ − i

qjðsÞ
4π

ffiffiffi
s

p : ð18Þ

The imaginary part ofGII
j ðsÞ has the opposite sign of that of

GjðsÞ above threshold. In Eq. (17) one has to fixm1 andm2

to the masses of the two particles in this channel. The c.m.
three-momentum in the channel j is qjðsÞ, given by the
standard kinematical expression

qjðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðmj1 þmj2Þ2�½s − ðmj1 −mj2Þ2�

q
2
ffiffiffi
s

p : ð19Þ

The function GjðsÞ is independent of the regularization
scale μ due to the mutual cancellation of the μ dependence
between the first two terms in Eq. (17), and to be more
specific we set μ ¼ 770 MeV throughout this work. Notice

that the derivative of the GðIIÞ
j ðsÞ function is independent of

the subtraction constant term aðμÞ. We note that there are
several proposals in the literature about the extension of
Weinberg’s compositeness relation [11] from the bound
state to the resonance situation [3,12–16]. We refer the
reader to Ref. [7] for further comparisons between different
approaches.
When the mass of the resonance clearly lies above the

threshold of the jth channel, its partial decay width is
calculated by the standard formula [22]

Γj ¼ jgjj2
qjðM2

RÞ
8πM2

R
; ð20Þ

with qjðM2
RÞ being the relativistic c.m. three-momentum at

the resonance mass. In the situation when the mass of the
resonance lies close to or even below the jth threshold,
the above formula is no longer applicable and we introduce
the Lorentzian distribution to account for the finite-width
effect [5,9],

Γj ¼ jgjj2
Z

MRþ2ΓR

mth

dw
qjðw2Þ
16π2w2

ΓR

ðMR − wÞ2 þ Γ2
R=4

; ð21Þ

which naturally recovers the standard decay-width for-
mula (20) in the narrow-width limit for MR > mth. The
equations to fix ga and gb then read

X ¼ X1 þ X2 þ X3

¼ jgaj2
���� dGII

1 ðsRÞ
ds

����þ jgbj2
���� dGII

2 ðsRÞ
ds

����þ jgbj2
3

���� dG3ðsRÞ
ds

����
ð22Þ

and
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Γ¼Γ1þΓ2þΓ3

¼ jgaj2
q1ðM2

RÞ
8πM2

R

þjgbj2
Z

MRþ2ΓR

mth;2

dw
q2ðw2Þ
16π2w2

ΓR

ðMR−wÞ2þΓ2
R=4

þjgbj2
3

Z
MRþ2ΓR

mth;3

dw
q3ðw2Þ
16π2w2

ΓR

ðMR−wÞ2þΓ2
R=4

; ð23Þ

where the 1=3 factors in X3 and Γ3 correspond to the
Clebsch-Gordan coefficient from the angular-momentum
superposition. Equations (22) and (23) can uniquely
determine the coupling strengths jgaj and jgbj as a function
of the total compositeness X. In terms of these couplings
we can then calculate the partial decay widths and
compositeness coefficients for the J=ψJ=ψ , χc0χc0, and
χc1χc1 channels. The results are summarized in Table II,
where X in Eq. (22) should be taken as an external
input (which we also fix below by implementing a
coupled-channel dynamical study). It is found that there
is a maximum value of X, which is 0.4 for the case I and 0.9
for the case II, that allows Eqs. (22) and (23) to have
solutions. We have tried several different values for the X.
Larger values of X lead to a smaller magnitude of jgaj and a
bigger one for jgbj. As a result, the partial decay width of
the J=ψJ=ψ channel becomes smaller and the decay width
of χc0χc0 tends to increase. Since the threshold of the χc1χc1
is clearly higher than the resonance mass, its partial decay
width is always very small. With increasing values of X,
the partial compositeness coefficient of the χc0χc0 also
becomes larger, while the compositeness values for
J=ψJ=ψ and χc1χc1 always remain small.2 An analogous

analysis by taking the channels J=ψJ=ψ and ψð3770ÞJ=ψ
is discussed in Sec. III B.
To reach a more definite conclusion using the above

approach, it is necessary to pin down the value of the total
compositeness coefficient X, which is, however, not known
in advance. Another way to proceed is to further constrain
the coupling strengths ga and gb, which will in turn give
more definite values for the X. In the following, we perform
fits to the J=ψJ=ψ invariant-mass distributions from the
LHCb Collaboration [1] in order to obtain more definite
values for the couplings and the resonance pole position.
Assuming the quantum numbers JPC ¼ 0þþ for the

Xð6900Þ, the three channels J=ψJ=ψ (1), χc0χc0 (2), and
χc1χc1 (3), are all in the S wave. The coupled-channel
scattering amplitudes take the form [25]

T ðsÞ ¼ ½1 − VðsÞ ·GðsÞ�−1 · VðsÞ; ð24Þ

where the right-hand cut is generated through the diagonal
matrix GðsÞ, whose diagonal matrix elements are the
functions GjðsÞ given in Eq. (17). As a result, Eq. (24)
satisfies unitarity [25,26]. The interacting kernel VðsÞ is
given by

VðsÞ ¼

0
BB@

0 b12 b13

b12
b22
M2

J=ψ
ðs−M2

CDDÞ b23
M2

J=ψ
ðs−M2

CDDÞ

b13
b23
M2

J=ψ
ðs−M2

CDDÞ b33
M2

J=ψ
ðs−M2

CDDÞ

1
CCA; ð25Þ

where the bij parameters are dimensionless. There is a
normalization difference between the unitarized phenom-
enological amplitude T in Eq. (24) and the ERE amplitude
T in Eq. (1). They are related by T ¼ 8π

ffiffiffi
s

p
T. To reduce

the free parameters, we impose the heavy-quark symmetry
to constrain the parameters in the perturbative amplitudes

b13 ¼
b12ffiffiffi
3

p ; b23 ¼
b22ffiffiffi
3

p ; b33 ¼
b22
3

; ð26Þ

where the Clebsch-Gordan coefficients of the angular
momenta for χc0χc0 and χc1χc1 have been taken into

TABLE II. The solutions of Eqs. (22) and (23). The total compositeness coefficient X should be provided as an external input. The
maximum values of X for Eqs. (22) and (23) admitting solutions are 0.4 for case I and 0.9 for case II, respectively.

Channel jgaj (GeV) jgbj (GeV) Γ1 (MeV) Γ2 (MeV) Γ3 (MeV) X1 X2 X3

Xð6900Þ I
X ¼ 0.1 7.1þ2.2

−2.1 6.8þ0.6
−0.8 64.7þ42.5

−33.4 15.2þ5.3
−4.6 0.1þ0.3

−0.1 0.02þ0.02
−0.01 0.06þ0.01

−0.01 0.01þ0.00
−0.00

X ¼ 0.4 0.6þ5.7
−0.5 15.4þ0.5

−0.5 0.4þ49.7
−0.4 79.2þ11.1

−12.5 0.4þ1.8
−0.4 0.00þ0.02

−0.01 0.33þ0.01
−0.01 0.07þ0.01

−0.01

Xð6900Þ II
X ¼ 0.1 11.3þ2.7

−3.5 5.0þ1.6
−3.1 160.7þ83.3

−83.6 7.0þ6.8
−6.1 0.3þ0.1

−0.3 0.06þ0.03
−0.03 0.03þ0.03

−0.03 0.01þ0.01
−0.01

X ¼ 0.4 8.9þ3.0
−5.5 15.0þ0.5

−1.0 100.9þ79.0
−86.2 64.3þ13.7

−16.9 2.8þ3.7
−2.6 0.04þ0.03

−0.03 0.31þ0.03
−0.03 0.06þ0.01

−0.01
X ¼ 0.9 1.0þ6.6

−1.0 23.7þ1.5
−1.4 1.3þ71.9

−1.3 159.9þ44.4
−38.9 6.8þ10.1

−4.8 0.00þ0.03
−0.00 0.76þ0.02

−0.02 0.14þ0.01
−0.02

2Despite the threshold for χc1χc1 being clearly larger thanMR,
we have still calculated the compositeness for this channel
because its resulting values are clearly meaningful. This is
because they are driven by jgbj2=3, with gb being the same as
for χc0χc0, times the modulus squared of the derivative of the
χc1χc1 G3ðsÞ function. The latter is also necessarily smaller than
for χc0χc0 because its threshold is farther from the resonance pole
position.
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account. We point out that general parametrizations of the
perturbative amplitudes VðsÞ have been exploited by
introducing polynomial terms, and it turns out that the
successful fits generally prefer the form of s −M2

CDD in the
VðsÞ for the χc0χc0 and χc1χc1 scattering amplitudes, which
corresponds to a single CDD pole associated with the
unique resonance around it. For the mixing amplitudes
J=ψJ=ψ → χc0χc0; χc1χc1 we find that it is enough to take
the constant terms to obtain reasonable fits, as shown in
Eq. (25). This fact indicates a smooth direct interaction
kernel involving the J=ψJ=ψ channel with the other
channels, as expected for a far-threshold channel relevant
only in providing the total decay width of the resonance.
The formula to describe the experimental J=ψJ=ψ event

distributions reads

dN ðsÞ
d
ffiffiffi
s

p ¼ jB1ðsÞj2
qJ=ψJ=ψ ðsÞ

M2
J=ψ

; ð27Þ

where the production amplitudes are given by the general
parametrization [26]

BðsÞ ¼ ½1 − VðsÞ · GðsÞ�−1 · P: ð28Þ

In this equation P is the vector of production vertexes,
which is taken as the constant array

P ¼

0
B@

d1
d2
d3

1
CA; ð29Þ

subsequently modulated by the final-state interactions
driven by the χc0χc0 and χc1χc1 strong rescattering
[27,28]. The production parameters dj are dimensionless
due to the introduction of the M2

J=ψ in Eq. (27).
Again we impose the heavy-quark symmetry to further

constrain the vertexes so that d3 ¼ d2=
ffiffiffi
3

p
. To be consistent

with the assumption in Eq. (25) that the J=ψJ=ψ channel is
weakly coupled to the Xð6900Þ state, we set the production
vertex d1 to zero and allow d2 to vary only in the fits. It is
pointed out that when releasing d1 the fits indeed prefer
very large ratios of d2=d1 but typically give extremely large
uncertainties, showing strong correlation between the two
parameters. Therefore, our treatment to fix d1 ¼ 0 not only
is motivated by the scattering amplitude (25) but also helps
to stabilize the various fits.
For the subtraction constant, its natural value can be

estimated by matching the functions GjðsÞ calculated in
dimensional regularization and with a three-momentum
cutoff qmax at threshold, as explained in Refs. [26,29,30].
This leads to

aðμÞ ¼ −2 log

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

q2max

s !
þ � � � ≃ −3.0 ð30Þ

by taking μ ¼ qmax ¼ 1.0 GeV andm ¼ mχc0 . We will take
a universal value for the subtraction constants in the three
channels (since masses are rather similar) and fix it to the
one given in Eq. (30). It is further verified that other natural
values ranging from −3 to −2 lead to quite similar results,
as explicitly shown later.
Regarding the parameter MCDD, we have scanned its

values around the range of 6.9 GeV so that the other free
parameters are fitted for every value of MCDD fixed, and
then there is a clear minimum for the resulting χ2. To obtain
the stable fits, we fix MCDD at the values providing the
minimum of χ2 from the scanning process.
We focus on the experimental data in the energy region

around 6.9 GeV [1], which amount to 12 data points, as
shown in Fig. 1. We take the background contributions
from the experimental analyses [1], called there models I
and II, to distinguish the two different types of fits that we
then perform and which are denoted by fits I and II,
respectively.3 In the fits the free parameters within our
approach are finally b12, b22 in VðsÞ (25) and d2 in PðsÞ
(29), with MCDD determined as explained.

FIG. 1. The J=ψJ=ψ event distribution with the data points
taken from Ref. [1] is shown. The blue and red dotted lines
represent the background contributions extracted from models I
and II in Ref. [1], respectively. The shaded areas correspond to
the error bands at the 1 standard deviation by using the
parameters shown in Table III. The histogram given by the green
line is obtained by averaging the blue solid line over the bin width
for fit I. The left and right vertical lines correspond to the
thresholds of χc0χc0 and χc1χc1, respectively.

3Here “background” denotes all the other contributions in the
experimental analysis by the LHCb Collaboration [1] that do not
correspond to the resonance signal of the Xð6900Þ. The latter is
analyzed here within a more sophisticated coupled-channel
framework. The main difference between models I and II in
Ref. [1] is that the latter reproduces a dip in the data at around
6.75 GeV.
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We give the outputs of the central fits in Table III, labeled
as fit I and fit II. For each fit performed MCDD is fixed to
some value and, as indicated above, after this scanning
there is a clear minimum in the χ2 for the values MCDD ¼
6910 and 6885 MeV in fits I and II, respectively. With the
fitted parameters, we then calculate the resonance pole
positions, their residues, and the compositeness coeffi-
cients. The resonance poles lie in the complex energy plane
of an unphysical RS, which can be accessed via the
analytical extrapolation of the GjðsÞ functions. Different
unphysical RSs of the coupled-channel scattering ampli-
tudes in Eq. (24) can be accessed by properly taking GjðsÞ
orGII

j ðsÞ for different channels. The second RS is labeled as
ð−;þ;þÞ, where the plus (minus) sign in the jth entry
indicates taking GjðsÞ (GII

j ðsÞÞ in the jth channel. In this
convention, the first, third, fourth, and fifth sheets are
labeled as ðþ;þ;þÞ, ð−;−;þÞ, ðþ;−;þÞ, and ð−;−;−Þ,
respectively. The most relevant resonance poles are found
to lie in the third RS (which connects continuously with the
physical RS between the χc0χc0 and χc1χc1 thresholds). The
matrix elements of the scattering matrix in the unphysical
RS around the resonance pole region can be written as

T kjðsÞ ¼
γkγj

s −M2
pole

þ � � � ; ð31Þ

where γk;j¼1;2;3 are the couplings of the resonance to the
corresponding channels and can then be obtained by
working out the residue of the PWAs at the resonance
pole Mpole. The omitted terms in Eq. (31) are the regular
parts in the s −M2

pole Laurent expansion. The pole posi-
tions and the resonance couplings jγi¼1;2;3j to the different
channels are summarized in Table IV. The partial compos-
iteness coefficients Xi¼1;2;3 can be calculated via Eq. (16),
and the results are also given in Table IV. The total
compositeness X is given simply by the sum of Xi¼1;2;3.
The masses and widths of the resonances from fits I and II

are very compatible with the experimental determinations
[1] given in Eq. (12). As a result, when taking the masses
and widths from the pole positions of the resonances, the
ERE parameters in Table I change only very slightly.
Let us stress the small value obtained for the total

compositeness with X < 0.2 for the two fits. This fact
clearly indicates the dominance of a bare component for the
Xð6900Þ and the small weight of the two-hadronic com-
ponents in its nature. This conclusion has been reached
without assuming any specific dynamical model, instead
relying on a general S-matrix parametrization, Eqs. (24)
and (25). The smallness of X is a reflection of the value of
MCDD lying so close to the resonance mass [6,20]. This is
the basic point stressed in Morgan’s counting-pole criterion
on the nature of a resonance [19,20], because it drives to the
proliferation of similar pole positions in different RSs [20].
We have checked to ensure that this is the case here too, and
poles are found in different RSs associated with the
inelastic channel χc1χc1, with little variation in their
positions, as required by this criterion.
The resulting fits are plotted in Fig. 1, where the error

bands at 1 standard deviation for fit I (blue solid line) and
fit II (red dashed line) are provided. The blue and red dotted
lines in Fig. 1 represent the background contributions of
models I and II, respectively, extracted from Ref. [1]. A
cusp effect is clearly seen at the threshold of the χc0χc0
indicated by the vertical left line, while the right one
corresponds to the χc1χc1 threshold. However, this narrow
peak washes out when performing the averages over the
width around 27 MeVof the experimental energy bins. This
is explicitly shown by the histogram in Fig. 1, which results
were obtained by performing the average inside each bin
width. So as not to overload the plot, only the histogram
obtained in this way for fit I is explicitly shown. The
histogram from fit II shows quite a similar trend.
Indeed, we have checked to see that this remarkable cusp

effect in the J=ψJ=ψ event distribution obtained with our
results is unveiling the presence of a pole quite close to the

TABLE III. Fits I and II obtained with background contributions taken from models I and II in Ref. [1], respectively. The entries
marked with asterisks are fixed during the fits, as explained in the text; cf. Eq. (30) and the full paragraph following it.MCDD is given in
units of MeV, and the parameters b22, b12, and d2 are dimensionless.

χ2=d:o:f aðμÞ MCDD b22 b12 d2

Fit I 1.6=ð12 − 3Þ −3.0� 6910� 10817þ8378
−2096 151þ153

−99 2213þ2106
−316

Fit II 4.9=ð12 − 3Þ −3.0� 6885� 21085þ15141
−7359 484þ239

−112 3646þ1325
−714

TABLE IV. The resonance poles of the Xð6900Þ in the third Riemann sheet from the three-coupled-channel fits are given. jγi¼1;2;3j
represent the resonance couplings to the J=ψJ=ψ ; χc0χc0 and χc1χc1 channels, respectively. Xi¼1;2;3 denote the partial compositeness
coefficients, i.e., the probabilities of finding the J=ψJ=ψ , χc0χc0 and χc1χc1 components in the Xð6900Þ state, respectively.

Mass (MeV) Width=2 (MeV) jγ1j (GeV) jγ2j (GeV) jγ3j (GeV) X1 X2 X3 X ¼P3
i¼1 Xi

Fit I 6907þ5
−3 33þ14

−10 4.6þ2.5
−2.8 9.7þ1.4

−2.6 5.6þ0.8
−1.5 0.01þ0.01

−0.01 0.13þ0.04
−0.06 0.03þ0.01

−0.01 0.17þ0.04
−0.07

Fit II 6892þ2
−2 80þ24

−17 10.3þ1.8
−1.4 6.9þ1.4

−1.9 4.0þ0.8
−1.1 0.05þ0.02

−0.01 0.06þ0.03
−0.03 0.01þ0.01

−0.01 0.13þ0.03
−0.03
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χc0χc0 threshold which enhances its contributions. Of
course, future experimental measurements with higher
statistics and better energy resolution in the narrow energy
region around the χc0χc0 threshold will then be crucial in
order to definitely discriminate this possible cusp effect and
associated resonance. The existence of this new fully
charmed tetraquark resonance, which we name Xð6825Þ,
is a neat prediction of our dynamical approach that should
be considered in future experimental searches.
The pole of the Xð6825Þ lies in the fourth RS, ðþ;−;þÞ,

and its positions and residues obtained from the different
fits are (primes are affixed to all the symbols referring to
this resonance)4

Values for fit I∶

E0
R ¼ 6827.0þ1.6

−4.8 − i1.1þ1.3
−1.0 ; jγ01j ¼ 1.4þ0.6

−0.9 ;

jγ02j ¼ 11.9þ3.2
−3.1 ; jγ03j ¼ 6.8þ1.8

−1.8 ;

Values for fit II∶

E0
R ¼ 6820.6þ3.0

−2.7 − i4.0þ1.7
−1.6 ; jγ01j ¼ 2.5þ0.5

−0.6 ;

jγ02j ¼ 15.8þ0.7
−0.6 ; jγ03j ¼ 9.1þ0.4

−0.4 ; ð32Þ

where E0
R is given in MeV and the residues are given in

GeV. Comparing them to the residues of the Xð6900Þ in
Table IV, we see that the Xð6825Þ couples even more
strongly to the χc0χc0 and χc1χc1 channels. The couplings to
these channels follow the rule that jγ03j ≈ jγ02j=

ffiffiffi
3

p
, accord-

ing to the heavy-quark symmetry. However, the coupling to
J=ψJ=ψ is much weaker and this fact explains the much
smaller width of the Xð6825Þ, identified as minus twice the
imaginary part of its pole position, as compared with the
Xð6900Þ. One can semiquantitatively understand the mag-
nitude of the ratio jγ1=γ01j by assuming dominance of the
J=ψJ=ψ decay width for the Xð6825Þ and Xð6900Þ. In this
way, according to Eq. (20) one has

���� γ1γ01
���� ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðM0

RÞΓ
qðMRÞΓ0

s
; ð33Þ

whose central value is equal to 5.3 and 4.3 for fits I and II,
respectively. These figures are pretty much compatible with
the numbers of jγ1=γ01j given in Table IV and Eq. (32). The
facts that the pole couples strongly to the χc0χc0 and χc1χc1
channels and that it lies so close to the χc0χc0 threshold in
the ðþ;−;þÞ sheet are clear indications that the Xð6825Þ is
a virtual state made up predominantly of these channels
(loosely speaking, this is usually referred as “molecular
origin”). Regarding the application of Morgan’s

counting-pole criterion, the pole position of this resonance
lies only in the sheet indicated, which is also in agreement
with this interpretation. Indeed, in the limit of b12 → 0,
while keeping the values for b22, MCDD, and aðμÞ from the
fits, the coupling to J=ψJ=ψ is zero and the pole becomes a
pure virtual state, around 6827 and 6825 MeV for fits I and
II, respectively. Another interesting limit is to take the mass
of the χc1 equal to the physical mass of the χc0. Then the
pole moves to the first RS and it is a bound state. From this
point if b12 is taken back to its fit value in Table III, then this
bound state becomes a resonance in the second RS due to
the coupling to J=ψJ=ψ with finite width. By continuously
increasing the mass of the χc1, the jump of the pole to the
fourth RS is seen slightly above the χc0χc0 threshold and
then, after a small increase in mχc1 , the pole turns left and
finally evolves up to its final position in Eq. (32) below the
two χc0 threshold for the physical mass of the χc1.
Due to the large couplings of the Xð6825Þ to χc0χc0 and

χc1χc1 one would expect a prominent peak at the χc0χc0
threshold in the PWAs involving these channels. However,
its form is asymmetric because of the χc0χc0 threshold. The
predictions for the scattering amplitudes from different fits
are shown explicitly in Fig. 2, where the shaded areas
correspond to the error bands at the 1σ level from fits I and
II in Table III. Strong cusp effects around the χc0χc0
threshold are clearly seen in all the scattering amplitudes,
though, as expected, this peak is much less prominent for
T11. It is much more relevant for the T12 and T13, and huge
in the diagonal T22 and T33. Of course, this hierarchy is not
more than a reflection of the sizes of the jγ0ij given in
Eq. (33). It is also visible in Fig. 2 that the peak at the cusp
is broader for fit II than for fit I. Regarding the Xð6900Þ in
Fig. 2, for fit I the resonant enhancement obviously shows
up in the amplitudes J=ψJ=ψ → J=ψJ=ψ , χc0χc0 and
χc1χc1, while in the transition amplitudes χ0;1χ0;1 →
χ0;1χ0;1 the resonance manifests as a dip due to the
destructive interference with the Xð6825Þ. For the fit II
case, except for J=ψJ=ψ → J=ψJ=ψ, the Xð6900Þ barely
shows any structure in the scattering amplitudes, which
seems to be consistent with the rather large widths from fit
II [we can say that the wide Xð6900Þ for fit II is eaten up by
the Xð6825Þ strong signal in the amplitudes involving the
channels χc0χc0 and χc1χc1].
Other fits by taking different values of the subtraction

constants aðμÞ are also obtained. To make a clear com-
parison of the fits in Table III, the values of MCDD of fits I
and II will be fixed at the same values as shown in the
previous table. For fit IA when fixing aðμÞ ¼ −2.5, the
fitted parameters, χ2, resonance pole position ER, and X are
(in order) b22 ¼ 5234.6, b12 ¼ 155.0 and d2 ¼ 1229.7,
χ2 ¼ 3.5, ER ¼ 6925 − i41 MeV and X ¼ 0.11. In the
same way, for fit IIA we have b22 ¼ 3442.7, b12 ¼
200.0 and d2 ¼ 1549.6, χ2 ¼ 7.7, ER ¼ 6909 −
i99 MeV and X ¼ 0.23. We now take aðμÞ ¼ −3.5, which
is below the nominal value −3. Fit IB and its results are

4The fourth RS ðþ;−;þÞ connects continuously with the
second RS ð−;þ;þÞ by crossing the physical s axis above the
χc0χc0 threshold. In turn the second RS connects continuously
with the physical one below the same threshold.
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b22 ¼ 45382.3, b12 ¼ 538.0 and d2 ¼ 3353.1, χ2 ¼ 3.5,
ER ¼ 6923 − i42 MeV and X ¼ 0.04. For fit IIB one has
b22 ¼ 46782.2, b12 ¼ 871.3 and d2 ¼ 5734.4, χ2 ¼ 10.1,
ER ¼ 6879.5 − i104 MeV and X ¼ 0.09. Here we show
only the most relevant resonance poles found in the
third RS for the Xð6900Þ. It is noticeable that in all cases
the total compositeness coefficients X clearly remain small,
the pole positions vary only moderately, and the χ2 gets
worse by around a factor of 2. The resulting curves
obtained in the scenarios of fits IA/B and IIA/B are not
explicitly shown, since they look quite similar as those
from fits I and II, respectively. In this way, we verify
that different fits by taking different values for the
subtraction constants aðμÞ within the same type of back-
ground contributions lead to rather similar results for the
di-J=ψ event distributions, while the two different types of
fits by using different models for the background, as
provided by the LHCb analyses [1], give obviously differ-
ent results.
Since now the total compositeness coefficient X is

known from the fits, it is interesting to redo the analyses
by combining Eqs. (22) and (23). For case I when fixing
X ¼ 0.17, the solutions of Eqs. (22) and (23) read

jgaj ¼ 6.2 GeV; jgbj ¼ 9.5 GeV; Γ1 ¼ 49.7 MeV;

Γ2 ¼ 30.1 MeV; Γ3 ¼ 0.2 MeV;

X1 ¼ 0.018; X2 ¼ 0.126; X3 ¼ 0.026; ð34Þ

which agree well with the fit I results from the sophisticated
coupled-channel study in Table IV. For case II when fixing
X ¼ 0.13, the solutions of Eqs. (22) and (23) are

jgaj ¼ 11.1 GeV; jgbj ¼ 6.7 GeV;

Γ1 ¼ 154.7 MeV; Γ2 ¼ 12.8 MeV; Γ3 ¼ 0.5 MeV;

X1 ¼ 0.06; X2 ¼ 0.06; X3 ¼ 0.01; ð35Þ

which are also in good accord with the fit II results in
Table IV. When obtaining the values in Eqs. (34) and (35),
we take the masses and widths of the Xð6900Þ from the
experimental analyses in Ref. [1]. These equations also
provide the partial decay widths of the Xð6900Þ to the
different channels. It is worth pointing out that, when using
the masses and widths of the resonances from our fits in
Table IV, the agreement of the residues and partial
compositeness coefficients turns out to be excellent.
Therefore, we provide here a solid demonstration that
the coupled-channel methods by utilizing the composite-
ness relations and the decay widths—namely, Eqs. (22) and
(23)—indeed offer a very convenient and reliable approach
to studying the resonance dynamics.
When we consider the results in Table I from the single-

channel ERE study, it seems that the compositeness
coefficients predicted by the elastic ERE are larger and
in contradiction to the results in Table IV from the coupled-
channel fits. However, it should be stressed that in the
elastic ERE study the total width of the Xð6900Þ is assumed
to be saturated by the χc0χc0 channel, which does not seem

FIG. 2. Our predictions for the scattering amplitudes. The top left and right panels show the amplitudes of J=ψJ=ψ → J=ψJ=ψ and
J=ψJ=ψ → χc0χc0. The bottom left and right panels give predictions for the amplitudes of J=ψJ=ψ → χc1χc1 and χc0χc0 → χc0χc0,
respectively. Since the heavy-quark symmetry is imposed, the shapes of the amplitudes involving χc1 look rather similar to those with χc0
and we do not explicitly show other amplitudes.
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to be consistent with the partial decay width predicted by
the coupling/residue in Table IV. To be more specific, we
calculate next the partial decay width to χc0χc0, Γ2, by
removing from the central values of the total width in
Table IV the easily calculable J=ψJ=ψ decay widths in
terms of the central values of jγ1j; cf. Eq. (20), with jγ1j
substituted for jg1j. The relative uncertainty for the resulting
Γ2 is estimated as twice the relative error for jγ2j (because it
depends quadratically on the coupling). We then obtain the
values

Γ2 ¼ 40þ11
−20 MeVðfit IÞ; Γ2 ¼ 26þ11

−14 MeVðfit IIÞ: ð36Þ

By taking these realistic partial decay widths, the central
values for the single-channel ERE parameters turn out to be

a¼−0.10 fm; r¼−3.0 fm; X¼ 0.13ðfit IÞ ð37Þ

and

a¼−0.09 fm; r¼−4.1 fm; X¼ 0.10 ðfit IIÞ: ð38Þ

It is clear that the compositeness coefficients from the ERE
are now much smaller than in Table I, as they should be,
and indeed they are fairly compatible with the results for X2

in Table IV from the fits.
Therefore, after taking a more sophisticated coupled-

channel analysis, our results confirm the findings of
Ref. [1] for the Xð6900Þ. The resonance pole positions
from fits I and II are very compatible with the masses and
widths determined in models I and II in Ref. [1], respec-
tively. As a novelty, our coupled-channel study provides
new information on the couplings of the χc0χc0 and χc1χc1,
which in turn allows us to calculate the partial composite-
ness coefficients; cf. Eqs. (34) and (35). Furthermore, the
coupled-channel analyses also enable us to predict the line
shapes of the distributions of the χc0χc0 and χc1χc1, as
shown in Fig. 3, which could provide useful guidelines for
the experimental study in the next step. Future measure-
ments on the distributions of the χc0χc0 and χc1χc1 will
definitely be helpful for discriminating among different
scenarios proposed here and for reaching a more definite

conclusion for the properties of the Xð6900Þ state, since the
χc0χc0 and χc1χc1 event distributions look very different for
fits I and II, particularly for the former channel.

B. Coupled-channel systems with ψð3770ÞJ=ψ
Other channels that one could include in the coupled-

channel study are the ψð2SÞJ=ψ and ψð3770ÞJ=ψ [2],
since their mutual interactions and those with the
channels J=ψJ=ψ , χc0χc0, and χc1χc1 are OZI allowed.
As a complementary study to the discussions in the
previous section, coupled-channel analyses including the
ψð3770ÞJ=ψ channel (whose threshold is 6870.6 MeV
[22]) will be further explored. We cannot afford to
study simultaneously all four channels J=ψJ=ψ , χc0χc0,
χc1χc1, and ψð3770ÞJ=ψ due to the proliferation of free
parameters.5 Because of this, and also due to the fact that
the threshold of ψð2SÞJ=ψ is at 6783.0 MeV [22] below the
energy region for the resonance signal at the lower end of
Fig. 1, we do not further consider this channel.
We again consider the quantum numbers JPC ¼ 0þþ

for the Xð6900Þ and study the S-wave scattering with the
two coupled channels J=ψJ=ψ (1) and ψð3770ÞJ=ψ (2).
We follow the same formalism as in the previous section
and write the perturbative kernel as

V̂ðsÞ ¼
� 0 b̂12

b̂12
b̂22
M2

J=ψ
ðs − M̂2

CDDÞ
�
; ð39Þ

where the hat symbol is introduced over the parameters in
order to distinguish them from those in Eq. (25) that are
used for the three-coupled-channel case. We use this same
convention to distinguish everything between these two
scenarios. Needless to say, the unitarized scattering ampli-
tudes and the production amplitudes will be constructed
according to Eqs. (24) and (28), respectively, with the
obvious changes of the corresponding thresholds and

FIG. 3. Our predictions for the distributions of (left panel) χc0χc0 and (right panel) χc1χc1.

5At least four more free parameters would be needed when
following a similar scheme as before—namely, b12, b14, b22, b24,
b44, d2, and d4, with the subscript 4 referring to the ψð3770ÞJ=ψ
channel.
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relevant parameters. The subtraction constant âðμÞ is fixed
by taking qmax ¼ 1 GeV and m ¼ mψð3770Þ, which leads to
âðμÞ ¼ −3.2. Taking exactly the same background terms
and fit strategies as the previous three-channel study, we
give the parameters from the two-channel fits in Table V.
This fit is not well fixed, as one can clearly infer because of
the large uncertainties in the free parameters b̂12, b̂22, and
d̂2 written in Table V, which are essentially undetermined
due to their large mutual correlations. Furthermore, the fit is
also unstable around the threshold of the ψð3770ÞJ=ψ ,
giving rise to quite different J=ψJ=ψ event distributions in
this energy region that somewhat wash out when averaging
along the width of the experimental bin. This fact poten-
tially disfavors this type of fits in relation to the three-
coupled-channel ones.
Nonetheless, we give for reference the resulting reso-

nance poles, residues, and compositeness coefficients for the
two-coupled-channel fits in Table VI so that some trends are
common to all the explored fits of this kind. One can observe
that the CDD locations for fits I and II are similar in
Tables IV and VI and that they lie almost on top of the
resonance mass. Indeed, the pole positions given are also
close to each other, with the biggest difference being the
discrepancy between the masses of the resonance in the fit II
case, although it is much smaller than the rather large width
of the resonance, so this fact is not really relevant. It is also
the case in the two-coupled-channel analysis that virtual
poles are present close to the ψð3770ÞJ=ψ threshold at
around 6855 for fits I and II, similarly to the Xð6825Þ in the
three-coupled-channel case. The conclusion that the
Xð6900Þ resonance originated mainly from the bare CDD
pole in our study is quite robust, regardless of the dynamical
channels included near the energy region around 6.9 GeV.
As amatter of fact, thevalue of X̂ in the two-coupled-channel
study is even smaller than in the three-coupled-channel case.
For the two-coupled-channel case X̂1 is the largest, with a
much smaller X̂2, while for the three-coupled-channel
scattering the opposite situation occurs.

Another interesting fact that points toward a preference
for the three-coupled-channel case over the two-coupled-
channel one is the magnitude of the couplings jγ2j and jγ̂2j.
If one compares their central values given in Tables IV and
VI, the result is that the values for jγ2j are around a factor of
5 (fit I) and 3.5 (fit II) larger than for jγ̂2j. This is quite a
difference and it indicates that the Xð6900Þ seems to couple
much more strongly to χc0χc0, and also to χc1χc1, than to
ψð3770ÞJ=ψ . This result would justify considering the
reduction of possible channels more realistic in the three-
coupled-channel scenario than in the two-coupled-channel
one. The smallness of the residue jγ̂2j is caused because of
the large value of the parameter b̂22, which tends to be more
than an order of magnitude larger than b22.
It is also interesting to redo the analyses of the saturation

of width and compositeness in Eqs. (22) and (23) in terms
of the channels J=ψJ=ψ and ψð3770ÞJ=ψ . By imposing
the total compositeness coefficients from the fits in Table V,
it is straightforward to solve the equations that follow from
the saturation of the width and compositeness. The sol-
utions are

X̂ from fit IA∶

jĝ1j ¼ 7.9 GeV; jĝ2j ¼ 2.5 GeV; Γ̂1 ¼ 78.6 MeV;

Γ̂2 ¼ 1.4 MeV; X̂1 ¼ 0.03; X̂2 ¼ 0.01; ð40Þ

X̂ from fit IIA∶

jĝ1j ¼ 11.5 GeV; jĝ2j ¼ 2.2 GeV; Γ̂1 ¼ 167.0MeV;

Γ̂2 ¼ 1.0 MeV; X̂1 ¼ 0.06; X̂2 ¼ 0.01; ð41Þ

which are consistent with the results for fits Î and ÎI given in
Table VI. To obtain these values the experimental masses
and widths of the Xð6900Þ from Ref. [1] are used. We
further verify that the results are barely affected when the
masses and widths are taken from the resonance poles
given in Table VI.

TABLE V. Results from the two-channel fits including the J=ψJ=ψ and ψð3770ÞJ=ψ .

χ2=d:o:f âðμÞ M̂CDD b̂22 b̂12 d̂2

Fit Î 2.8=ð12 − 3Þ −3.2� 6900� ð2.4þ4.6
−1.7Þ × 105 1303þ1243

−597 7825þ6318
−3495

Fit ÎI 2.4=ð12 − 3Þ −3.2� 6880� ð1.5þ1.8
−0.6Þ × 105 1356þ741

−305 9675þ4674
−2043

TABLE VI. Resonance poles of the Xð6900Þ in the third Riemann sheet from the dynamical study including the J=ψJ=ψ and
ψð3770ÞJ=ψ channels are shown. jγ̂i¼1;2j stand for the resonance couplings to the J=ψJ=ψ and ψð3770ÞJ=ψ channels, respectively.
X̂i¼1;2 are the partial compositeness coefficients of the J=ψJ=ψ and ψð3770ÞJ=ψ , respectively.

Mass (MeV) Width=2 (MeV) jγ̂1j (GeV) jγ̂2j (GeV) X̂1 X̂2 X̂ ¼P2
i¼1 X̂i

Fit Î 6900þ2
−1 44þ20

−16 8.2þ1.7
−1.6 1.9þ1.5

−0.9 0.03þ0.01
−0.01 0.01þ0.01

−0.00 0.04þ0.02
−0.01

Fit ÎI 6877þ1
−2 78þ21

−14 11.1þ1.4
−1.1 2.0þ0.6

−0.7 0.06þ0.02
−0.01 0.01þ0.00

−0.00 0.07þ0.02
−0.01

ZHI-HUI GUO and J. A. OLLER PHYS. REV. D 103, 034024 (2021)

034024-12



As mentioned above a more sophisticated coupled-
channel analysis would be to simultaneously include the
four dynamical channels J=ψJ=ψ (1), χc0χc0 (2), χc1χc1
(3), and ψð3770ÞJ=ψ (4). The biggest challenge in this case
is the large number of free parameters. To perform a check
of stability of our previous results with the three-coupled
channels, we treat the ψð3770ÞJ=ψ channel in a perturba-
tive manner similar to the J=ψJ=ψ , so that b14 ¼ b44 ¼ 0

and b12, b24, and d2 are allowed to float, with b34¼b24=
ffiffiffi
3

p
,

b13 ¼ b12=
ffiffiffi
3

p
, and d3 ¼ d2=

ffiffiffi
3

p
, because of the heavy-

quark symmetry. In this way, only one additional free
parameter is needed; see the discussion in Sec. III A. The
resulting parameters and the results from such four-channel
fits turn out to be almost identical to the values in Tables III
and IV, respectively, which points favorably toward the
stability of the results from the three-coupled-channel study.
Alternatively, we could switch the roles of the

χc0χc0; χc1χc1 channels and the ψð3770ÞJ=ψ one and
include the two former channels perturbatively in the
two-coupled-channel study. However, the fit does not
become more stable than the previous one with only the
J=ψJ=ψ and ψð3770ÞJ=ψ channels, and the fit results are
essentially the same as in Table VI (despite having one
more free parameter). Therefore, we do not dwell further on
these results and refer to the discussion above.

IV. CONCLUSIONS

In this work we focus on the narrow peak named
Xð6900Þ around 6.9 GeV observed in the J=ψJ=ψ event
distributions from the LHCb measurements [1], which is
the first discovered fully heavy-flavored tetraquark candi-
date. Several different theoretical approaches, including
effective-range expansion, a combination of the compos-
iteness relations, and saturation of the decay width, as well
as unitarized phenomenological amplitudes, are used to
investigate the Xð6900Þ state. It is remarkable that different
theoretical methods lead to similar conclusions for the

Xð6900Þ: the J=ψJ=ψ , χc0χc0, χc1χc1, and ψð3770ÞJ=ψ
components do not play dominant roles in the Xð6900Þ.
The most important component should be a bare or
elementary one, e.g., a compact four-charm-quark state
or another microscopic degree of freedom. This is due to
the presence of a CDD pole lying almost on top of the
resonance mass, which makes the compositeness X very
small, and to the applicability of the Morgan’s counting-
pole criterion, with similar poles lying in different Riemann
sheets. We have also provided the resulting pole positions,
couplings to the different channels, and partial as well as
total compositeness coefficients. A prediction for the
coupled-channel dynamics between the χc0χc0 and χc1χc1
channels is the emergence of a virtual state just below the
χc0χc0 threshold that couples strongly to those channels and
weakly to the J=ψJ=ψ channel, making its width very
small. We name this state Xð6825Þ. Its presence could be
ascertained experimentally by improving the energy reso-
lution and the statistics of the J=ψJ=ψ event distribution in
future experiments.
Our sophisticated coupled-channel study confirms that

two different types of resonance poles can be obtained for
the Xð6900Þ by taking two estimates of the background
contributions from the LHCb [1]. Different line shapes for
the χc0χc0 and χc1χc1 distributions are predicted. Future
experimental measurements on the χc0χc0 and χc1χc1 will
definitely be helpful to further pinning down the properties
of the Xð6900Þ.
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