
 

Exploring the Tan contact term in Yang-Mills theory

Ouraman Hajizadeh,1 Markus Q. Huber ,2 Axel Maas ,1 and Jan M. Pawlowski3,4
1Institute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria

2Institut für Theoretische Physik, Justus-Liebig-Universität Giessen,
Heinrich-Buff-Ring 16, 35392 Giessen, Germany

3Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16,
69120 Heidelberg, Germany

4ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, 64291 Darmstadt, Germany

(Received 8 October 2019; accepted 5 February 2021; published 25 February 2021)

Reliably computing the free energy in a gauge theory like QCD is a challenging and resource-demanding
endeavor. We explore the possibility to obtain the associated thermodynamic anomaly from two-point
functions based on a conjectured relation. This conjecture is triggered by the relation to the Tan contact in
condensed matter systems. For this investigation we use state-of-the-art results for the Yang-Mills gluon
two-point function from the lattice and the functional renormalization group, as well as novel Dyson-
Schwinger results at finite temperature computed in the present work. This allows for a first, qualitative, test
of this conjecture. The results from all methods reveal the same nontrivial temperature behavior of the
subleading large momentum dependence of the gluon propagator relevant for the conjectured relation. The
comparison with the expected behavior for SU(2) Yang-Mills theory is encouraging to further pursue this
approach.
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I. INTRODUCTION

Thermodynamic observables including, e.g., density
correlations are among the most prominent observables
that provide information about the phase structure of
heavy-ion collisions. Their computations rely on access
to the bulk thermodynamic information of the system. This
information is encoded in the free energy, whose determi-
nation at finite temperature and density is of prime interest.
At large densities functional approaches such as the func-
tional renormalization group (FRG) and Dyson-Schwinger
equations (DSEs) circumvent the eminent sign problem that
at present prevents lattice simulations in this regime.
However, while the part of correlations and thermodynam-
ics that comes from the matter fluctuations does not pose
problems in functional approaches, the access to the
thermodynamics of gauge fluctuations poses a formidable
challenge beyond perturbation theory. At its root it is
related to the relevant momentum-scale running of the
thermodynamic potentials such as the free energy. Even
though by now functional methods have reached high
quantitative precision, such a computation still remains a

demanding calculation in terms of resources. This asks for
approaches that reduce the computational effort.
Such an alternative may be provided by a computation in

terms of the Tan contact [1,2]; for a discussion in Yang-
Mills theory see Ref. [3]. Essentially, it boils down to the
idea, reviewed in Sec. II, that the thermodynamic part could
be encoded in a simple way in the high-momentum
behavior of the two-point correlation functions. These
are much simpler to determine reliably. While the extracted
part still needs some processing to obtain the free energy,
drastic features, e.g., phase transitions, should manifest
themselves already directly in the unprocessed data. The
aim of the present work is to explore exactly this possibility.
To this end, we use the Landau gauge gluon propagator

of SU(2) Yang-Mills theory at finite temperature. This
theory undergoes a second-order phase transition at a well-
established critical temperature. Furthermore, its free
energy is known quite well. It is thus an ideal test bed
for a new method. We use for this purpose the gluon
propagator as obtained using lattice methods, the functional
renormalization group, and Dyson-Schwinger equations.
The results are shown in Sec. III.
The Tan contact term is related in a straightforward way to

the thermodynamic anomaly. This is exploited in Sec. IV,
where in a proof-of-principle style the anomaly is deter-
mined. There it will also be discussed what further steps are
required to make this a quantitatively competitive approach.
In fact, the results show that interesting features of the

thermodynamics are already manifest for the unprocessed
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data. These results are encouraging in that this is possible
and may be a promising future avenue, as is concluded
in Sec. V.

II. SETUP

The basic idea of how to transfer the Tan contact term
formalism [1,2] from solid state physics and ultracold
atoms (e.g., Refs. [4–8]) to particle physics has been
outlined in Ref. [3]. It essentially boils down to the fact
that the high-momentum behavior of a propagator
DðT; p0; p⃗Þ, i.e., at momenta p ≫ ΛYM, depending on
both the temperature T and the momentum p, should
behave essentially as

DðT; p2
0; p⃗

2Þ ⟶
p2=T2→∞ Z

1
D0ðp2

0
þp⃗2Þ þ ΔΓTðp2

0; p⃗
2Þ ; ð1aÞ

with

ΔΓT ¼ Δm2
∞ðTÞ þ CðTÞD0ðp2

0 þ p⃗2Þ þO

�
1

p4

�
: ð1bÞ

In Eq. (1), D0 is the vacuum propagator and Z is a total
normalization of the propagator.
The coefficient CðTÞ is the analogue of the Tan contact

term in condensed matter systems as introduced in Ref. [3].
By construction, the Tan contact term satisfies CðT ¼ 0Þ ¼
0 if the fit form (1) describes the propagator perfectly. Note
also that the Tan contact in Eq. (1) is not RG invariant: it
runs with twice the anomalous dimension of the propagator.
An RG-invariant form is easily achieved by multiplication
with the wave function renormalization squared. As
we concentrate on the comparison between functional
approaches and the lattice, this is not important for us.
The temperature-dependent term Δm2

∞ðTÞ is a potential
contribution to the inverse propagator for asymptotically
large momenta. In the present work we consider the gluon
propagator, but it should be noted that this term is not to be
confused with the chromoelectric and chromomagnetic
thermal screening masses. The Slavnov-Taylor identity
(STI) (gauge consistency) together with regularity excludes
a termΔm2

∞ in the vacuum; for discussions see Ref. [9–16].
In functional methods, one typically employs a momentum
cutoff in the UV. With this numerically convenient choice
of regularization, the STI may be satisfied only approx-
imately within truncations, i.e., Δm2

∞ðT ¼ 0Þ ≈ 0.
At finite T, the STIs cannot be used straightforwardly to

exclude such a term. However, lattice results at asymptotic
momenta (see Appendix A) show that it is negligible
compared to other thermodynamic scales. Consequently,
it does not affect the qualitative behavior of the Tan contact
term, and we drop it from now on. This also entails that the
presence of such terms in the functional results would be a
truncation artifact. We have checked that Δm2

∞ðTÞ is

negligible for the transverse (scaling) propagators which
is in line with the observation of gauge consistency of the
scaling solution in the vacuum [14,16,17]. In turn, the
longitudinal propagator shows a larger Δm2

∞ðTÞ=T. Still,
this contribution is significantly smaller than the Debye
mass. In summary, we neglect these terms in the following.
As we are interested in high energies, we setD0 to be the

one-loop resummed gluon propagator

D0ðp2; μ2Þ ¼ 1

p2ð1þ ω2 ln p2

μ2
Þ1322

; ð2Þ

which entails Z ¼ 1. The quantity ω also involves the
coupling g. To accommodate for different renormalization
prescriptions, we fit ω2 to the zero-temperature propagator
for the different methods rather than use some prescribed
value. This approach describes the gluon propagator above
2 GeV at zero temperature for all methods at the 1–2%
level. In this regime also the propagators from all methods
coincide at this level of precision.
In addition, the thermal gluon propagator splits into a

longitudinal chromoelectric one and a transverse chromo-
magnetic one with respect to the four-velocity of the heat
bath. Accordingly, we use Eq. (1) independently for both,
thus computing a chromoelectric and chromomagnetic Tan
contact, CLðTÞ and C⊥ðTÞ respectively. To be in the
asymptotic regime, we use only data above jp⃗j > 2 GeV
and the zeroth Matsubara frequency, though at these
energies the approximation DðT; p2

0; p⃗
2Þ ≈DðT; 0; p2

0 þ
p⃗2Þ holds well anyway [18].
For the lattice case, we use the data from Ref. [19] with

some additional statistics and two additional lattice dis-
cretizations at T=Tc ¼ 0.9 and T=Tc ¼ 1.1with an 8 × 403

lattice. For the zero-temperature form (2) data from
Ref. [20] are used. This entails statistical errors on the
fit parameters Z and ω, which were propagated to the
fit of CðTÞ. While ω ¼ 0.82þ0.04

−0.03 is essentially β indepen-
dent, Z was interpolated for different β values by
Z01.50

þ0.06
−0.03ðln βÞ−1.11

þ0.01
−0.04 , where Z0 is the arbitrarily chosen

renormalization prescription at zero temperature at fixed
μ ¼ 2 GeV. In all cases fits where done along spatial
diagonals, which are least affected by discretization effects
at high momenta [20].
For the FRG, we use the results from Ref. [15]. The

vacuum results yield Z ¼ 2.69Z0 and ω ¼ 0.795 at
μ ¼ 2 GeV. The value for ω agrees well with the lattice
result.
We also extract the Tan contact term from DSE results.

Although they are obtained from a much simpler truncation
than the FRG results, the high-momentum behavior is
determined sufficiently well to extract the relevant infor-
mation as shown below. Details of the DSE calculations can
be found in Appendix B. Their fit parameters are Z ¼
1.78Z0 and ω ¼ 0.752, again in good agreement with the
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other methods. The respective gluon propagators are the
most modern finite-temperature Yang-Mills ones obtained
from Dyson-Schwinger equations and constitute an impor-
tant step towards a full DSE analysis of QCD without
further input at finite temperature and density. Older results
were reviewed in Ref. [11]. For a calculation based on a
variational approach see Ref. [21].
The temperatures are taken from the respective works as

well, i.e., we did not additionally try to fix any scales
independently. This yields agreement of the spatial-
diagonal lattice data and the DSE and FRG results from
2 GeV up to 12 GeV at the percent level and thus for the
whole range of relevant momenta in this work.

III. RESULTS

At finite temperature, we find that the fits work well at
the few-percent level in all cases. However, results from the
lattice for the two temperatures T=Tc ¼ 0.9 and T=Tc ¼
1.1 with 10 times more statistics reveal that Eq. (1) is
insufficient if at that level of statistics a subpercent fit is
desired. Rather, CðTÞ needs then to be replaced by some
extended form, e.g.,CðTÞ þ p2DðTÞ; see also Appendix A.
A similar result is obtained in the FRG and DSE cases.
However, for the present purpose, and without a major
effort for creating more statistics for the lattice, we content
ourselves here with fits at the 2–3% level, which at low
statistics is also the statistical accuracy of the lattice results,
allowing for agreement within errors. Note that for the
continuum results the fit stops working above roughly
T=Tc ≈ 5. This is expected, as when T becomes larger,
eventually screening effects will propagate to larger
momenta which are not included in the fit ansatz (1).
The results are shown in Fig. 1. First of all, it is visible

that the general agreement between lattice and functional
methods is satisfactory, except for the DSE in the transverse

case at high temperatures. Also, at this level of statistics no
statistically significant dependency on lattice parameters is
visible. Then, there are a number of visible trends which are
quite different for the transverse and the longitudinal Tan
contact term.
The probably most significant one is the difference

between the transverse one and the longitudinal one at
high temperatures. The transverse one starts to rise from
essentially zero somewhere around t ¼ T=Tc ≈ 0.8 for the
lattice data, levels off shortly after t≳ 1, and stays constant
up to t ≈ 3. There is no significant change happening at the
phase transition. The functional results switch on smoothly,
but follow the same trend. However, above t≳ 2.5, the
functional methods yield again a slow rise of the Tan
contact term.
The longitudinal one is quite different. Up to t ≈ 1, the

lattice results are compatible with zero. There is a slight
systematic, though not statistically satisfactory trend to
nonzero values above t ¼ 1. However, at large temper-
atures the Tan contact term rises quicker than quadratically
with temperature. Except for the smoothing of the tran-
sition, this behavior is also seen in the functional results,
this time with no particular impact at t≳ 3.
In comparison to the low-momentum behavior [15,19],

this provides a consistent picture. There, the transverse
propagator also shows no substantial impact of the phase
transition, while the longitudinal one seems to do so. At the
same time, the impact at high temperatures is also stronger
for the longitudinal one.
This leads us to the following picture: the transverse sector

carries nontrivial thermodynamic behavior, which is sensi-
tive to the interactions which create a strongly interacting
phase above the phase transition for a range of a few Tc. The
bulk thermodynamics is manifested in the longitudinal
degrees of freedom, including both the phase transition
and the Stefan-Boltzmann trend at high temperatures.
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FIG. 1. Tan contact of Yang-Mills propagators from the lattice, the FRG and DSEs. (a) Transverse C⊥ ðTÞ as a function of the
temperature. (b) Longitudinal CL ðTÞ as a function of temperature.
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IV. ANOMALY FROM THE TAN CONTACT TERM

While the Tan contact term in solid state physics and
ultracold atoms encodes the thermodynamics, it is in itself
not yet equivalent to a thermodynamic potential. However,
it is linked to the thermodynamic anomaly AðTÞ (see e.g.,
Ref. [22]),

AðTÞ ¼ βðgðTÞÞCðTÞ ð3Þ

wherein βðgÞ is the β function and gðTÞ the temperature-
dependent running coupling evaluated at the temperature.
An analogous derivation in Yang-Mills theory faces several
intricacies. First of all this concerns the unphysical nature
of gluon fields in comparison to that in solid state and
ultracold atomic systems. This leads us to negative norm
states in the Fock space as well as the occurrence of ghost
fields. Accordingly, a Yang-Mills analogue of the relation
(3) will involve C⊥; CL and Cghost and the respective β
functions β⊥; βL; βghost as well as additional normalization
factors. The latter differ in the strongly correlated low-
temperature regime with T ≲ Tc. Being short of the full
resolution of the different ingredients of the Yang-Mills
relation we here discuss the chromomagnetic and chromo-
electric parts of this relation. They are given by

A⊥=LðTÞ ≈ −βðgðTÞÞC⊥=LðTÞ; ð4Þ

where we will use the same β function for chromomagnetic
and chromoelectric parts and take the normalization factors
to unity.
Note that the left-hand side of Eq. (4) is related to an

observable: the thermodynamic or trace anomaly in Yang-
Mills theory, derived from the expectation value of the trace
of the energy-momentum tensor (EMT). The expectation
value trace and similarly correlation functions of the EMT
can be computed within functional methods from closed

diagrammatic formulas; see Refs. [23,24] for the two-point
correlation function of the EMT. These diagrammatic
representations are proportional to αsðTÞ ¼ g2ðTÞ=ð4πÞ
[and its scale derivative βðgðTÞÞ], where αsðTÞ is linked
to scheme-dependent vertex couplings.
However, the left-hand side of Eq. (4) is scheme inde-

pendent and hence the scheme dependences on the right-
hand side need to cancel. This implies that the Tan contact
term is scheme dependent. In addition, the miniMOM or
Taylor scheme [25,26] employed in the calculation of the
gluon propagators yields a multivalued β function and its
precise determination in lattice calculations requires high
statistics. While the former can be remedied by using the
temperature-dependent correct branch, the latter precludes us
yet from a full determination within each method separately.
Also, as will be seen, the Tan contact term needs to be
determined at much higher precision in the low-temperature
domain.
However, as a proof of principle, we will use here an

analytic, temperature-independent coupling motivated by
analytic perturbation theory,

αðpÞ ¼ π
ln Λ2

c
Λ2
YM

ln Λ2
cþp2

Λ2
YM

ð5Þ

taking Λ2
c ¼ 1.21 GeV2 for the cutoff momentum and

Λ2
YM ¼ 0.81 GeV2 for the scale. Similar and more elabo-

rate fits have been used within functional methods for
vertex couplings as present in the computations of corre-
lations of the EMT. For the theoretical setup, definitions
and analytic fits see, e.g., Refs. [14,16,25–40]. Note that the
use of Eq. (5) will necessarily upset the overall scale of the
result as we do not use matched schemes. The choice of
coupling here has little qualitative impact; see Appendix C.

cT/T
0 0.5 1 1.5 2 2.5 3 3.5

4
(T

)/
T

  
A

0

500

Method

Lattice

FRG

DSE

Transverse anomaly

(a)
cT/T

0 0.5 1 1.5 2 2.5 3 3.5

4
(T

)/
T

L
A

0

500

Longitudinal anomaly

(b)

FIG. 2. The anomaly obtained from the Tan contact term from the lattice, the FRG and DSEs. (a) Transverse anomaly A⊥ðTÞ as a
function of the temperature. (b) Longitudinal anomaly ALðTÞ as a function of temperature.
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The results are shown in Fig. 2. The lattice results, albeit
with large errors, are consistent with the temperature
dependence of the anomaly, showing a peak around the
phase transition, and a slow decrease towards large temper-
atures. At low temperatures, the Tan contact term is
compatible with zero within the errors, and so is necessarily
the anomaly. Moreover, we deduce from Fig. 2 that the
overall normalization of Eq. (4) is nontrivial as the trace
anomaly AYM in Yang-Mills obeys AYM ≲ 3 (see e.g.,
Ref. [41]), while A⊥=L ≲ 103. Both functional results show
a quite similar behavior at high temperatures, but tend to have
the peak at far too low temperatures. This is likely partly
because this temperature regime is in the deep infrared,
where the β function is not dominated by its perturbative
behavior. Here, a determination of the β function in a
consistent scheme would likely cure these problems.
Nonetheless, the anomaly shows qualitatively the

expected behavior, indicating that the Tan contact term
may indeed be a suitable approach to obtain thermody-
namic information from propagators.

V. CONCLUSIONS

We have extracted for the first time the Tan contact term
for Yang-Mills theory from the gluon propagator. We see
that known thermodynamic features, the phase transition,
the asymptotic Stefan-Boltzmann behavior, and the
strongly interacting liquid behavior, imprint themselves
qualitatively in the Tan contact term. We also see that the
various effects distribute themselves among the transverse
and longitudinal degrees of freedom differently. While the
strong-interaction regime above the phase transition seems
to be encoded in the chromomagnetic sector, the critical
and bulk behavior seems to be carried by the chromo-
electric sector. This agrees with observations in the infrared
[19]. It has also been shown that it is, in principle, possible
to use the Tan contact term to determine the anomaly and
thus thermodynamic bulk properties.
The obvious steps to be taken from here are to improve

statistics and systematics on the lattice and to compare to
further results from other sources, e.g., hard-thermal loop
calculations or results from dimensionally reduced calcu-
lations [42,43]. Another issue is contributions from the
ghost, which at first sight seems to be inert to temperature
[15,19,44,45]. For a reconstruction of the thermodynamic
potential in full it is required to find the correct normali-
zation, a suitable scheme and sufficient precision to
determine the anomaly. Finally, an extension to finite
density is of high interest. Here, QCD-like theories without
a sign problem, e.g., two-color QCD or G2-QCD, could
also be interesting testing grounds.
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APPENDIX A: ULTRAVIOLET PROPERTIES
AT FINITE TEMPERATURE

Gauge invariance in terms of the STIs forbids constant
terms such as Δm2

∞ in the vacuum. For more details in the
present context see Refs. [9–16]. Δm2

∞ ¼ 0 can be imple-
mented in the vacuum in functional methods and holds
trivially on the lattice. At finite temperature, gauge invari-
ance, or rather gauge consistency in terms of the STIs,
cannot be used straightforwardly to show the existence or
disappearance of Δm2

∞. Moreover, if present, Δm2
∞ is not

necessarily the same for transverse and longitudinal propa-
gators. We also emphasize that the Δm2

∞ (defined for
p⃗2 → ∞) are not the magnetic or Debye screening masses.
We have investigated the transverse and longitudinal

Δm2
∞ terms on the lattice, which are shown in Fig. 3. The

propagators approach the vacuum-resummed one-loop
behavior well for the whole temperature range used in this
work: both, the transverse and longitudinal Δm2

∞, are
negligible for a fit in the intermediate-momentum regime
used for the extraction of the Tan contacts C⊥=LðTÞ.
Consequently, they were dropped.
As in the main text, the data shown in Fig. 3 is

restricted to the body-diagonal momenta, which are least
affected by discretization artifacts [20]. Nonetheless, there
are two kinds of deviations. At the largest momenta, a
deviation from the one-loop case seems to occur.
However, this is a discretization artifact, which is also
seen in the vacuum [20]. In addition, there seems to be a
multiplicative offset when extracting the logarithmic
behavior. This is due to the fact that for the renormal-
ization the vacuum results are used, as in the main text,
which have an aspect ratio of 1. This is not the case at
finite temperature, which introduces an additional effect.
It decreases with better discretization, as is visible when
making the lattice finer at fixed temperature. Because the
contact term in the main text is, within errors, not
affected by the discretization, this is irrelevant.
What still could be considered, and is compatible with

the data, is a running mass which runs at least as fast as
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the anomalous kinetic part. To investigate this, we
considered the possibility

ΔΓT ¼
1

ðp2
0þ p⃗2ÞD0ðp2

0þ p⃗2ÞΔm
2ðTÞþCðTÞD0ðp2

0þ p⃗2Þ;

ðA1Þ
i.e., a mass that runs with the same anomalous dimension
as the kinetic term. To be able to disentangle the two
contributions sufficiently, we use for this purpose only
the momentum range [1.5, 4] GeV rather than the range
in the main text. Otherwise, the very different momentum
running tends to dominate the fit results too much.

Unsurprisingly, with the additional degree of freedom,
these fits work even better than the ones in the main text,
yielding agreement within statistical errors.
The result is shown in Fig. 4. As is visible, the (by

construction) positive-definite mass term is within errors
compatible with zero below the phase transition. Above, it
steeply rises to a finite value, and remains there. The
contact term is reduced, and switches on somewhat later
than without the mass term, but shows the same qualitative
behavior as in the main text. It is thus clear that the
additional degree of freedom in the fit just allows for a split
of the temperature dependency of the propagator between
both terms, but once the Tan contact term starts to dominate
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FIG. 3. The high-momentum tail of the transverse (top) and longitudinal (bottom) gluon propagator (left) at various temperatures,
compared to the zero-temperature behavior and the resummed one-loop vacuum behavior (2), where the band reflects the uncertainty in
ω. The right-hand side extracts the logarithmic running. Results are from Refs. [19,20] with two new additional parameter sets
(T=Tc ¼ 0.9 and 1.1). The soft modes are shown. Due to the simple relation of hard modes to soft modes at high momentum [18], hard
modes behave in the same way. For comparison, deviations from the resummed one-loop behavior with different hard masses are shown
in the right column.

HAJIZADEH, HUBER, MAAS, and PAWLOWSKI PHYS. REV. D 103, 034023 (2021)

034023-6



at high temperature, it is clearly seen. As there is thus no
qualitative influence of more degrees of freedom in the fit,
we conclude that the qualitative behavior in the main text is
genuine. A true quantitative description would certainly
require much better statistics to resolve the momentum
dependence, and possibly further subleading terms.
Performing the same for the results from functional

methods leads to similar results. Note that in functional
approaches truncation artifacts may mix with such terms;
for further discussions see Refs. [9–16].

APPENDIX B: PROPAGATORS FROM
DYSON-SCHWINGER EQUATIONS

The truncation used for the calculation of the propagators
from their DSEs is described in the following. The

equations that were solved are the ones for the ghost
and gluon propagators truncated to one-loop without tad-
poles. The only remaining higher n-point functions are the
ghost-gluon and three-gluon vertices. The former is taken
as bare, which is within the context of the present work
sufficient since we are only interested in the high-
momentum behavior. The deviation from a bare vertex is
known to be a bump around 1 GeV which falls off quickly
[15,45,46].
The three-gluon vertex plays a crucial role for the gluon

propagator. It is not only quantitatively relevant, but the
existence of a solution for the gluon propagator also
depends strongly on its properties. Here, the following
model adapted from Ref. [47] was used for dressing the
tree-level tensor:

CAAAðp0; q0; p⃗; q⃗Þ ¼
Gðp̄2Þ
ZTðp̄2Þ

p̄2

p̄2 þ Λ2
s

�
−Gðp̄2Þ3 Λ2

3g

Λ2
3g þ p2

Λ2
3g

Λ2
3g þ q2

Λ2
3g

Λ2
3g þ ðpþ qÞ2 þ

Gðp̄2Þ
ZTðp̄2Þ

p̄2

p̄2 þ Λ2
s

�
: ðB1Þ
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FIG. 4. Results for the extended fit form (A1). Top panels show the Tan contact terms and bottom panels the effective masses. Left
panels show the transverse case and right panels the longitudinal case.
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The momentum p̄2 is ðp2 þ q2 þ ðpþ qÞ2Þ=2 and p and
q are four-momenta. G and ZT are the ghost and the
transverse gluon dressing functions, respectively. The first
term in the parentheses determines the IR behavior of the
vertex, and the second the UV behavior. The term in front
of the parentheses accounts for missing perturbative higher-
loop contributions relevant for the resummed one-loop
behavior [40,48,49]. The model contains two scales which
are fixed as Λs ¼ Λ3g ¼ 0.741 GeV.
The integral kernels for the Dyson-Schwinger equations

can be found, e.g., in Ref. [50]. Here they were derived with
DoFun [51–53], and the equations were solved with
CrasyDSE [54]. Quadratic divergences in the gluon propa-
gator DSE were renormalized via second renormalization
conditions chosen as the value of the propagators at zero
momentum [40,55,56]. For the employed truncation this
leaves some ambiguity in how to select these conditions,
but at the scales of relevance here it is expected that such
effects are subleading.
The overall scale was set for the lowest calculated

temperature by matching the UV tail to FRG results.
The relative scales for the other temperatures were set
by matching the perturbative couplings.
The resulting dressing functions for the gluon propa-

gators are shown in Fig. 5 for selected temperatures.
Clearly, the present truncation cannot capture the IR
behavior but reproduces the momentum and temperature
dependencies qualitatively. Both, in the FRG and the DSE
computation of the propagators the computation of the
nontrivial A0 background has not been taken into account.
This background A0 ≠ 0 is the equation of motion and is

directly linked to the vanishing of the Polyakov loop in the
confining phase [57–61]; for perturbative computations
within the background see Ref. [62].
In Ref. [15] it has been argued that this should lead to

deviations of the chromoelectric propagators in functional
approaches from the chromoelectric lattice propagators (as
they are computed on different a background) for temper-
atures with

0.5Tc ≲ T ≲ 1.3Tc: ðB2Þ

Indeed this expectation is confirmed by the data; see
Fig. 5(b).

APPENDIX C: INFLUENCE OF THE RUNNING
COUPLING ON THE ANOMALY

The anomaly (3) depends on the choice of coupling,
which, in turn, depends on a choice of scheme. Of course,
at sufficiently high temperature where the expression
βðgðTÞÞ is dominated by the first two perturbative terms
all results will coincide. That is expected to happen above a
temperature of roughly 2 GeV ≈ 6.7Tc. In addition, for
temperatures below 0.5Tc the Tan contact term is essen-
tially zero, and thus the behavior of the running coupling
becomes irrelevant as well.
To illustrate the situation, consider a running coupling

consistent with our FRG results, which is fitted with very
high accuracy by a modified fit form from Ref. [63]
given by

αðpÞ ¼
ð0.314p4 þ 0.877p2 þ 1Þð0.935p2ð 1

log ð0.818p2Þ −
1

0.818p2−1Þ þ 0.0229Þ
0.302p6 þ 0.0983p4 þ 0.179p2 þ 0.00745

: ðC1Þ
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FIG. 5. Gluon propagator dressings for selected temperatures from the FRG (continuous), DSEs (dashed) and lattice simulations
[18,19]. For reference the vacuum result from the FRG is shown in black. (a) Chromo-magnetic gluon propagator dressings for selected
temperatures. (b) Chromo-electric gluon propagator dressings for selected temperatures.
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Units on the fit coefficients have been suppressed. The
ratio of this coupling to the one used in the main text
[Eq. (5)] and of the relevant function βðgðTÞÞ in Eq. (4) is
shown in Fig. 6. The difference at temperatures above
1.5Tc is just a few tens of percent, with little dependence on
the temperature. The relative sizes at large temperatures are
dominated by the different runnings and therefore the ratio
approaches one slowly. The situation is more drastic below
this temperature, as here the running coupling (C1) has a
maximum around p ≈ 270 MeV and is thus double valued.
Here we always chose the positive branch. More severe is
that the β function has a zero crossing. This implies that the
anomaly would vanish at this temperature. The existence of
this maximum is, however, a subtle question, and appears
to be scheme dependent. This makes it clear that the relative
scheme dependence of the Tan contact term in relation to
the running coupling needs to be resolved to get a
quantitative result for the anomaly.
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