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We study theoretically the resonant structure of the double Cabibbo suppressed Dþ → K−KþKþ decay.
We start from an elementary production diagram, considered subleading in previous approaches, which
cannot produce a final K−Kþ pair at the tree level but which we show to be able to provide the strength of
the decay through final meson-meson state interaction. The different meson-meson elementary productions
are related through SU(3), and the final rescattering is implemented from a suitable implementation of
unitary extensions of chiral perturbation theory, which generate dynamically the scalar resonances f0ð980Þ
and a0ð980Þ. We obtain a good agreement with recent experimental data from the LHCb Collaboration with
a minimal freedom in the fit and show the dominance of the a0ð980Þ contribution close to the threshold of
the K−Kþ spectrum.
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I. INTRODUCTION

Weak decay of heavy mesons into hadrons has become
an important source of information on the hadron-hadron
interaction. In particular, the decay of D mesons into three
pseudoscalars has drawn the attention of different groups
with the aim of learning about the meson-meson interaction
[1–6]. These works deal with theD → Kππ decay, which is
Cabibbo favored and is mainly used to learn about the ππ
interaction. Other D decays are studied in Ref. [7], using
the D → πþπþπ− and D → πþKþK− reactions to learn
about the ππ andKK̄ interaction; in Refs. [8,9], interpreting
the Dþ

s → πþπ0η decay; in Ref. [10], studying the single
Cabibbo suppressed Dþ → πþπ0η decay; or in Ref. [11],
studying the Dþ

s → πþπ0a0ð980Þðf0ð980Þ reactions. The
D0 → K−πþη reaction is also studied in Ref. [12] from
which information on the a0ð980Þ and κðK�

0ð700ÞÞ is
obtained.
The reaction that we study here is Dþ → K−KþKþ,

which is doubly Cabibbo suppressed but can teach us much
about the KK̄ interaction, one of the pseudoscalar inter-
action channels most poorly known. The reaction is studied

by the LHCb Collaboration in Ref. [13] and analyzed using
two methods, the standard one, the isobar model, and then
the triple-M model developed in Ref. [14]. The isobar
model is the standard method used in the LHCb analysis
and in most of the experimental collaborations. The full
decay amplitude is written in terms of the only two
independent variables

Tðs12; s13Þ ¼ cNR þ
X
k

ckTkðs12; s13Þ; ð1Þ

where cNR is a nonresonant background term and Tk are
intermediate resonant amplitudes properly parametrized.
The parameters in the different terms and the complex
weights ck are obtained by performing a best fit to the
Dalitz plot data. The method is efficient to extract infor-
mation on the role played by different resonances but has its
limitations. We quote Ref. [14]: “This approach, albeit
largely employed [15], has conceptual limitations. The
outcome of isobar model analyses are resonance parameters
such as fit fractions, masses and widths, which are neither
directly related to any underlying dynamical theory nor
provide clues to the identification of two-body substruc-
tures. Thus, the systematic interpretation of the isobar
model results is rather difficult.”
Steps to make different analyses of the data to allow a

better matching with theoretical tools used in the study of
meson interactions are done in Ref. [16], and tools to use
three-body dynamics have also been used in the D → Kππ
reactions [1,2,17–19]. Yet, the majority of analyses rely
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upon the consideration of two-body amplitudes having one
of the mesons as spectator, and this is also used in Ref. [14].
The fact that the three-body amplitudes can be constructed
from on-shell two-body amplitudes, since of-shell parts are
shown to cancel with contact terms present in the theory,
makes this approach more realistic [20,21]. However, there
are other reasons to neglect terms involving explicitly three
particles interacting because after the interaction of a pair
of mesons in regions where a resonance appears to be
important, the resulting invariant mass of one of the
particles of the pair with the third one does not have a
given value but usually spans a large region of invariant
mass, thus diluting the possible contribution of another
resonance, which, however, is taken into consideration with
the direct interaction of this original pair considering the
third particle as a spectator.
The work of Ref. [14] uses effective Lagrangians to deal

with the weak and strong interaction. For the weak
interaction, the starting point is the diagram of Fig. 1(b),
which involves quark pair annihilation (W annihilation).
The diagram of Fig. 1(a), which involves external emission,
is considered as a possible mechanism, but it does not
provide K−KþKþ upon hadronization of the quarks, and
final state interaction is needed to produce this state. For
this reason, it is neglected in the analysis of Ref. [14], and
the annihilation mechanism of Fig. 1(a) is used as the
starting point. The mesons stemming from the double
hadronization of this mechanism are allowed to follow
final state interaction. The final state interaction of the
mesons in Ref. [14] is done using Lagrangians of
Ref. [22], in which chiral perturbation is used, including
resonances explicitly. Yet, extra unitarization is considered
in Ref. [14], using techniques of the chiral unitary approach
of Refs. [23–25], which justifies that the parameters that

they get from a fit to the data are not the parameters used in
Ref. [22]. The unitarization is, however, done with one
approximation with respect to the former works, using the
K-matrix approach in which the real part of the loop
functions is neglected and only the imaginary part is kept.
The use of the K-matrix approach has one intrinsic
problem, which is that ignoring the real part of the loops
prevents resonances being dynamically generated. This is
why they have to be introduced by hand, and the approach
cannot tell us about the nature of these resonances.
However, resonances like the f0ð980Þ and a0ð980Þ appear
as a consequence of the meson-meson interaction in the
chiral unitary approach of Refs. [23–25], and the consis-
tency of the approach with data gives support to this
picture. We should mention that in a recent work [26] the
authors of Ref. [14] already considered the real parts of
the loops.
In the present approach to the Dþ → K−KþKþ reaction,

we only have three parameters to fit to the data: the global
strength, the strength of the ϕKþ production amplitude, and
a relative phase of the s-wave to p-wave mechanisms.
Since the global strength is irrelevant when we compare to
events in the data, and the global strength of the ϕKþ is
easily determined from the clean peak in the KþK− mass
distribution, our approach has basically 1 degree of free-
dom to fit all the data. This contrasts with the ten free
parameters that one has in the approach of Ref. [14]. The
isobar model has even more parameters.
We have here two of the most important differences

between the work of Ref. [14] and that we present here.
The starting point for us is not the diagram of Fig. 1(b) but
the one of Fig. 1(a). The reason is the following: in the
classification of weak decay topologies of Refs. [27,28],
the order of importance is external emission, internal
emission, W exchange, and annihilation. Given the fact
that the KK̄ interaction at low energies is driven by the
f0ð980Þ and a0ð980Þ resonances, the final state interaction
is very important and does not destroy the order of the
primary decays. In the analysis of the BESIII data for
Dþ

s → πþπ0η, [29], the process removing the ρþη channel
was supposed to proceed via W annihilation with a rate of
an order of magnitude bigger than for usualW-annihilation
processes. Yet, the decay is studied in Ref. [8] with an
approach similar to the one we follow here, and it was
shown that the process proceeded via internal emission and
final state interaction.
Our approach to these weak processes consist in a first

identification of the dominant mechanisms at the quark
level; then, we proceed with hadronization to produce the
mesons that appear in a first step and then consider the final
state interaction of these mesons to produce at the end the
desired final state. We must take into account that the
hadronization, including new qq̄ pairs to produce mesons,
results in a reduction factor in the decay amplitude. Then, in
the mechanism of Fig. 1(b) used in Ref. [14], one has two
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FIG. 1. Elementary Dþ → KþPP process at the quark level.
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hadronizations, while in the mechanism that we have of
Fig. 1(a), there is only one hadronization. All these reasons
justify that we neglect the mechanism of Fig. 1(b) and start
the process with the one of Fig. 1(a). The choice of the
starting mechanism is not innocuous; different initial
meson channels are produced, which upon final state
interaction give rise to the three kaons. This means that
coupled channels have to be used in the approach, as also
done in Ref. [14], but the amount f0ð980Þ or a0ð980Þ
production, for instance, depends on the mechanisms
assumed and the weights by which the different meson
channels appear in the hadronization.
As we mentioned, in the experiment of Ref. [13], two

methods of analysis were made, the first one using the
isobar model and the other one using the formalism of
Ref. [14]. The problems using the isobar model which are
exposed in Ref. [14] are further evidenced in the study done
in Ref. [13]. Indeed, when using the isobar model, three
options, A, B, and C, are used. In model A, they include the
ϕKþ, f0ð980ÞKþ, and f0ð1370ÞKþ channels. In model B,
they add a nonresonant amplitude. In model C, they replace
the f0ð1370ÞKþ channel by the a0ð980ÞKþ one. They note
that both models B and C are equally acceptable. This
means that this type of analysis cannot tell us about the
relevance of the a0ð980Þ resonance in this reaction. On the
contrary, the analysis done there using the model of
Ref. [14] shows a dominant role played by the a0ð980Þ
resonance. Incidentally, we should also mention that by
using fully unitarized amplitudes in coupled channels in the
approach that we follow we do not have to worry about
background. The amplitudes contain the resonance pole but
provide at the same time background terms away from the
resonance peaks.
The strategy of our work, which is widely used (see

Ref. [30] for a review on this issue), is to establish the
dominant mechanisms at the quark level that produce the
desired number of mesons after hadronization including qq̄
pairs with the quantum numbers of the vacuum. Then, all
pairs of mesons are allowed to undergo final state inter-
action, keeping a third particle as a spectator. The ampli-
tudes are properly symmetrized to account for the identity
of the particles. The final sate interaction requires to use the
meson-meson scattering amplitudes, which we take from
the prior study with the chiral unitary approach. This
method has a minimum input, basically a global strength
and some relative strength from the s-wave to p-wave
amplitudes. An agreement with data with this minimum
input is considered as giving support for the chiral unitary
approach to the meson-meson interaction and in particular
for the nature of some of the resonances that it provides as
dynamically generated from the meson interaction rather
than genuine states of particular quark configurations. The
good agreement with data that we will show in the present
work will then give support to this kind of molecular
picture for the f0ð980Þ and a0ð980Þ resonances, which

adds to the support from many other reactions where these
states are produced [30].
This is not the place for a review of the abundant work on

the scalar resonances, but a few comments on our present
perspective can be opportune. Early work on the nature of
the σðf0ð500ÞÞ, f0ð980Þ, and a0ð980Þ resonances is done
in Refs. [31–40]. Data on meson scattering, γγ → ππ,
ϕ → π0π0γ, π0ηγ, etc., are studied, and while the input
and technical details are different, there is a basic coinci-
dence that these resonances are not ordinary qq̄ states.
The σ meson was originally introduced by Schwinger [41]
long before the advent of QCD and played a crucial role for
the construction of a chirally symmetric pion-nucleon
Lagrangian in the linear sigma model of Gell-Mann and
Levy [42]. Later, the light scalars were accommodated
within a qqq̄ q̄ picture within the MIT quark bag model
[43]. Some phenomenological consequences of the four-
quark picture can be found in Refs. [44,45]. Early works
such as Refs. [31–33] would emphasize that, even starting
from a qq̄ seed, when this couples to meson-meson
components, the meson cloud takes a predominant role
in low energy reactions, emphasizing the non-qq̄ nature of
these states. Recent works on different reactions conclude
the four-quark nature of these resonances [46–48] by
showing inconsistencies on the use of direct coupling of
the resonances to qq̄ components. A unifying picture that
shares the basic conclusions of former and recent works is
the chiral unitary approach [49–52]. The work starts by
acknowledging that the chiral Lagrangians [53,54] imple-
ment an effective representation of QCD at low energy in
terms of the Goldstone mesons as elementary fields. The
contents of the chiral Lagrangians are extended to inter-
mediate energies by using them as kernels in different
unitary approaches in coupled channels using the Bethe-
Salpeter equation in Refs. [49–52], dispersion relations in
Ref. [23], or the inverse amplitude method in Ref. [24] (see
a recent comparison of these methods in Ref. [55]).
Independent of the method, the unitarization in coupled
channels gives rise to meson-meson scattering amplitudes,
with good analytical properties, exact unitarity, and singu-
larities that show up as poles in the Riemann complex
plane. The σðf0ð500ÞÞ, f0ð980Þ, and a0ð980Þ appear as
poles of these scattering matrices in this approach. The
predictions, compared with the data, are very good, not
only in meson-meson phase shifts but also in a large
amount of different reactions, including ϕ → ππγ, πηγ,
γγ → ππ, weak decays of D and B mesons, etc. (see
reviews in Refs. [30,56–58]). Given the fact that the
low-lying scalar resonances are obtained from the
meson-meson interaction and not from the quark-quark
interaction, these resonances are usually referred to as
dynamically generated resonances, to emphasize the fact
that the meson-meson interaction is what produces them in
this approach. The approach thus shares with Refs. [46–48]
the conclusion that there is not direct coupling to qq̄
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components. This fact is interpreted in these latter works
as a proof that the f0ð500Þ, f0ð980Þ, and a0ð980Þ are
four-quark states. Certainly, the picture stemming from
the meson-meson interaction can also be interpreted in this
way since two mesons would have four quarks, but the
knowledge of the actual and detailed quark composition is
unnecessary in that picture because all reactions where
these resonances are produced proceed via the primary
production of the basic meson-meson components followed
by their posterior interaction where the resonances are
generated. The meson-meson wave functions in coordinate
space are also unnecessary to study any reaction, but the
formalism to evaluate them has been developed and applied
for some cases [59,60].

II. FORMALISM

As briefly discussed in the Introduction, the possible
elementary quark topologies at tree level for the Dþ →
K−PP process, where PP stands for a pseudoscalar meson
pair, are depicted in Fig. 1. Note that PP in Fig. 1(a) cannot
be KþK− at the tree level since it cannot be produced from
d̄d, but the KþK− pair can be produced via final state
interaction (FSI) of the pseudoscalar pair. This necessity for
FSI was the main reason for neglecting the diagram (a) in
Ref. [14], which is the basis of the LHCb experimental
analysis in Ref. [13]. However, our position in the present
work is opposite, and we are going to argue why we
expect the (a) diagram to be dominant. First, diagram
(b) represents annihilation, and since the D have spin zero,
the W-annihilation diagram is suppressed by helicity
conservation at the light quark vertex [28]. In addition,
diagram (b) requires two hadronizations, each of which
reduces the width by about 1 order of magnitude [61].
Furthermore, diagram (a) relies upon external emission,
which has the largest strength for weak interaction [28].
Indeed, one quark is operative, and the other one remains a
spectator, which implies a one-body operator, versus the
two-body operator required in the annihilation, and is color
favored. On the other hand, the FSI interaction necessary to
produce final KþK− is actually required at low invariant
masses since that region is very influenced by the a0ð980Þ
and f0ð980Þ resonances, which are dynamically generated
within the chiral unitary approach (UChPT) from the final
PP interaction, as explained in the Introduction. We will
come back to the implementation of the FSI through the
UChPT amplitudes in the second part of this section, but
first, we address the calculation of the elementary produc-
tion at the quark level in Fig. 1(a).
While the d̄ quark remains as a spectator, the c quark

becomes a d through the emission of a W boson, which
eventually creates the us̄ of a Kþ. Note that this process
involves two Cabibbo suppressed weak transitions
(Wcd and Wus). The final d̄d pair then hadronizes into
a final pseudoscalar meson pair, which is implemented by

producing an extra q̄q with the 3P0 model [62–64].
The weight of the different allowed pseudoscalar pairs
produced in the hadronization can be related, up to a global
normalization factor, using the following SUð3Þ arguments.
Let jHi be the flavor state of the final hadronic part after

the quark-antiquark pair is produced in the hadronization:

jHi≡ jdðūuþ d̄dþ s̄sÞd̄i: ð2Þ

It can be written as

jHi ¼
X3
i¼1

jdq̄iqid̄i ¼
X3
i¼1

jM2iMi2i ¼ jðM2Þ22i; ð3Þ

where we have defined

q≡
0
B@

u

d

s

1
CA and M≡ qq̄⊺ ¼

0
B@

uū ud̄ us̄

dū dd̄ ds̄

sū sd̄ ss̄

1
CA: ð4Þ

The strength of SUð3Þ comes into play when we
associate the matrix M to the usual SUð3Þ matrix contain-
ing the pseudoscalar mesons,

M⇒P≡

0
BBB@

π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p πþ Kþ

π− − 1ffiffi
2

p π0þ ηffiffi
3

p þ η0ffiffi
6

p K0

K− K̄0 − ηffiffi
3

p þ 2η0ffiffi
6

p

1
CCCA;

where we have used ideal mixing between the singlet and
octet to give η and η0 [65]. Then, the matrix element
required in Eq. (3) is

ðP2Þ22 ¼ π−πþ þ 1

2
π0π0 þ 1

3
ηη −

ffiffiffi
2

3

r
π0ηþ K0K̄0: ð5Þ

Note that, as mentioned above, no KþK− pair is possible
in the hadronization from d̄d, and then it must necessarily
be produced in the final state interaction from the five
possible pseudoscalar pairs, π−πþ, π0π0, ηη, π0η, and
K0K̄0, as depicted in Fig. 2.
Note that we are not including the scalar f0ð980Þ and

a0ð980Þ resonances as explicit degrees of freedom but they
arise naturally in the nonlinear dynamics involved when
implementing unitarity in coupled channels starting from a
lowest-order tree-level meson-meson chiral potential.
This effectively accounts for the resummation shown in
Fig. 2, and it is the basis of the UChPT. In the scalar sector,
there are several different ways to implement these ideas
like the Bethe-Salpeter equation [49], the inverse amplitude
method [24,66], or the N/D method [23], but all of them
provide similar results. Since in the present work we are
going to compare with experimental data from the LHCb
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Collaboration, which involves K−Kþ invariant masses up
to 1375 MeV, we use the amplitudes from the N/D
approach [23], which provides the largest range of predict-
ability among the aforementioned approaches. All theses
approaches rely upon mainly one free parameter coming
from the regularization, either a cutoff or a subtraction
constant, which is determined from a fit to meson-meson
scattering data. The N/D method of Ref. [23] is able to
extend the applicability range up to higher energies by
including in the interaction kernel, in addition to the
lowest-order ChPT amplitudes, the s-channel exchange
of scalar resonances in a chiral symmetric invariant way.
These tree-level resonances constitute an octet with mass
around 1.4 GeV and a singlet around 1 GeV, which barely
changes the dynamical origin of the a0ð980Þ and f0ð980Þ
but improves the amplitude close to 1400 MeV. In any
case, all of the UChPTapproaches provide similar results in
the region around 1 GeV. In Fig. 3, we show some spin 0
and isospin I ¼ 0 and I ¼ 1 meson-meson scattering
amplitudes,1 which will be needed in the present work.
The energy range involved in the present work is from the
KþK− threshold, 987 MeV, till MD −mK ¼ 1375 MeV.
We can clearly see the shapes for the f0ð980Þ and a0ð980Þ,
but note that these shapes are far from being just Breit-
Wigners, and this is one of the strong points of UChPT; it
provides not only the pole structure of the resonances but
the actual scattering amplitude. The a0ð980Þ actually
corresponds to a cusp at the KK̄ threshold.
We can then write the amplitude corresponding to the

process in Fig. 2. If we use the label 1 for the Kþ coming
directly from the Dþ, label 2 for the K−, and 3 for the other
Kþ (see Fig. 2), it can be written as

Tðs23Þ ¼ C
X5
i¼1

hiGiðs23Þti;KþK−ðs23Þ; ð6Þ

where sij ¼ ðpi þ pjÞ2. In Eq. (6), the sum runs over the
five PP allowed channels in Eq. (5), C is an arbitrary global
normalization factor to be fitted later on to the experimental

LHCb data, hi are the numerical coefficients in front of
each PP channel in Eq. (5), ti;KþK− stands for the unitarized
ðPPÞi → KþK− amplitude in the s wave explained above,
and Gi is the loop function for two pseudoscalar mesons
regularized with the same subtraction constant used in the
evaluation of ti;KþK− .
We can theoretically filter the different isospin contri-

butions, taking into account that π−πþ, π0π0, and ηη
contribute only to I ¼ 0 and π0η contributes only to
I ¼ 1. The K0K̄0 pair contributes to both isospins, but
taking into account the isospin decomposition of the
different KK̄ states,

jKþK−i ¼ −
1ffiffiffi
2

p jKK̄iI¼1;I3¼0 −
1ffiffiffi
2

p jKK̄iI¼0;I3¼0;

jK0K̄0i ¼ 1ffiffiffi
2

p jKK̄iI¼1;I3¼0 −
1ffiffiffi
2

p jKK̄iI¼0;I3¼0; ð7Þ

it suffices to substitute, in Eq. (6),

tK0K̄0;KþK− →
1

2
ðtK0K̄0;KþK− þ tKþK−;KþK−Þ ð8Þ

for I ¼ 0 and

tK0K̄0;KþK− →
1

2
ðtK0K̄0;KþK− − tKþK−;KþK−Þ ð9Þ

for I ¼ 1.
To the I ¼ 0 amplitude in Eq. (6), we must add the

contribution from the ϕð1020Þ meson, which, being a

+K
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−K

P
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P

FIG. 2. Final state interaction of the Dþ → KþPP process to
get Dþ → K−KþKþ.
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1In Fig. 1 of Ref. [67], a comparison with several scattering
data obtained using these amplitudes can be seen.
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genuine q̄q resonance in the p-wave, is not included in the
aforementioned meson-meson scattering amplitudes. Since
the amplitude is going to span a large invariant mass region,
we consider a full relativistic amplitude as in Ref. [12],

Tϕðs23; s12Þ ¼ D
s13 − s12

s23 −m2
ϕ þ imϕΓϕð ffiffiffiffiffiffi

s23
p Þ ; ð10Þ

where s13 ¼ M2
D þ 3m2

K − s12 − s23, D is a complex arbi-
trary normalization factor to be fitted later on, and we use
an energy-dependent p-wave ϕ width

ΓϕðmÞ ¼ Γo
mϕ

m
p3ðmÞ
p3ðmϕÞ

B2ðmÞ; ð11Þ

where Γo is the total width of the ϕ, pðmÞ is the K
momentum in the ϕ rest frame for a ϕ invariant massm, and
BðmÞ is the p-wave Blatt-Weisskopf barrier penetration
factor [68] given by

BðmÞ ¼
�
1þ ðRpðmϕÞÞ2
1þ ðRpðmÞÞ2

�
1=2

: ð12Þ

In Eq. (12), R stands for the range parameter of the ϕ a
typical value of R ¼ 1.5 GeV−1, although it is not very
relevant.
Finally, the three-body distribution for the Dþ →

K−KþKþ decay is given by

d2Γ
ds12ds23

¼ 1

32ð2πÞ3M3
D

1

2
jMj2; ð13Þ

where M is the total Dþ → K−KþKþ amplitude consid-
ered adding Eqs. (6) and (10), which must be properly
symmetrized (exchanging the labels 1 ↔ 3) since we have
two identical Kþ in the final state,

Mðs23; s12Þ ¼ Tðs23Þ þ Tϕðs23; s12Þ þ ð1 ↔ 3Þ: ð14Þ

from where the KþK− spectrum can be obtained as

dΓ
dsKþK−

¼
Z

smax
23

smin
23

ds23
d2Γ

ds12ds23
: ð15Þ

In the results section, we will also evaluate the KþKþ
distribution, which is given by

dΓ
dsKþKþ

¼
Z

smax
23

smin
23

ds23
d2Γ

ds13ds23
; ð16Þ

This requires to write s12 in terms of s12 and s23, which is
done by means of s12 ¼ M2

D þ 3m2
K − s13 − s23.

III. RESULTS

Our model has three parameters: one for the global
normalization C in Eq. (6) and two for the global weight
of the ϕ meson amplitude, complex D in Eq. (10), which
we fit to the experimental [13] KþK− distribution [only
Fig. 4(a)]. The other parts in Fig. 4 represent the KþKþ

distribution and the distributions shighKþK− and slowKþK− where,

according to Ref. [13], shighKþK− and slowKþK− represent the
highest and lowest values among s12 and s23; see Fig. 5.
Theoretically, we evaluate the slowKþK− distribution including
θðs23 − s12Þ in the integrand of Eq. (15), with θ the step
function.
In all the figures, the dots represent the LHCb exper-

imental data [13], the solid line represents our full model,
the dotted line represents the phase-space, the dashed
line represents the I ¼ 0 contribution, and the dashed-
dotted line represents the I ¼ 1. The experimental data in
Ref. [13] are not corrected for setup acceptance; however
phase-space curves weighted by the efficiency for the
different plots in Fig. 4 are provided in the experimental
paper. Therefore, we have renormalized each experimental
datum such that the phase space agrees with the theoretical
three-body distribution.
A first observation from Fig. 4 is that our model fits

reasonably well the whole spectrum of the KþK− and
KþKþ distributions [recall that we have only fitted the data
of Fig. 4(a)]. This is remarkable, given the little freedom in
the fit: just the global normalization factor and the relative
complex weight of the ϕð1020Þ. The rest is given from
the nontrivial unitarization model implied in Eq. (6). It is
also worth recalling again that there is no KþK− in the
elementary production vertex of Fig. 1(a) and thus all the
strength is coming from the FSI starting with meson-meson
channels other than KþK−.
On the other hand, by looking at the different isospin

contributions in Fig. 4, we see that the I ¼ 1 contribution
dominates over the I ¼ 0 one. In particular, close to
threshold, the accumulation of the strength with respect
to the phase space is mainly due to the I ¼ 1 amplitude, i.e.,
the effect of the a0ð980Þ. This is more clearly manifest if we
look at Fig. 6, in which we zoom in the KþK− mass
distribution near the threshold, including, in addition to the
theoretical curves of Fig. 4(a), the contribution considering
only the ϕmeson, only the I ¼ 0without the ϕ, and the full
model removing the ϕ. This is also more clearly seen if we
theoretically remove the phase space by plotting, in Fig. 7,
the different isospin contributions from the FSI terms, i.e.,
without the ϕ, to the squared amplitude jMj2 of Eq. (13)
without the 1 ↔ 3 symmetrization, i.e., M≡ Tðs23Þ, as a
function of s23. Note that if we included the ϕ meson or the
symmetrization, the amplitude would also depend on the
s12 variable. We see that close to threshold, indicated by
the vertical dotted line, the strength is essentially dominated
by the a0 contribution. Below threshold, the shapes of the

L. ROCA and E. OSET PHYS. REV. D 103, 034020 (2021)

034020-6



a0 and f0 are clearly visible in this plot but are not
accessible when considering the actual phase space. In
Fig. 6, at low invariant masses, we see a pattern for the

f0ð980Þ and a0ð980Þ contributions different than what was
found in Ref. [14]. In both approaches, a dominance of the
a0ð980Þ contribution is found. In Ref. [14], a destructive
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FIG. 4. Invariant mass distributions in comparison with the experimental data from Ref. [13].
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interference between the a0 and f0 contributions was
reported. We find a different pattern. The addition of
the f0ð980Þ resonance increases the contribution of the
a0ð980Þ at low invariant masses but subtracts for invariant
masses higher than 1020 MeV. The interference of the
I ¼ 0 and I ¼ 1 contributions is made possible in the pre-
sent work because both contributions appear in the vari-
ables s12 and s23.

IV. CONCLUSIONS

We show theoretically that the Dþ → K−KþKþ decay
can be understood from the mechanism that accounts for
the final state interaction of an initial pseudoscalar pair [see
Fig. 1(a)]. Indeed,K−KþKþ in the final state is not possible
at the tree level, and hence the rescattering is mandatory.
At this point, we take advantage of the unitary extensions

of chiral perturbation theory, which generate dynamically
the f0ð980Þ and a0ð980Þ resonances, without the need to
include them as explicit degrees of freedom, and provide
the full meson-meson scattering amplitudes, not only the
resonances. The relative weights of the initial production of
the meson-meson pairs are obtained from SU(3) arguments,
and then for the unitarization, we use the UChPT ampli-
tudes from the N/D method, which allows us to extend
the range of applicability to the whole final KþK− mass
spectrum in this decay. With a minimal freedom, just the
global normalization and the weight and phase of the
ϕð1020Þ contribution, we are able to fit experimental data
on theKþK− invariant mass distribution. We also show that
the dominant contribution close to threshold comes from
the I ¼ 1 [hence, the a0ð980Þ] contribution in clear
dominance over the I ¼ 0 one [the f0ð980Þ�. The remark-
able agreement is a step in favor of considering this
mechanism as the leading one in this decay, at odds with
other considerations as in the experimental analysis [13]
based on the work in Ref. [14], which advocates for the
dominance of the mechanism in Fig. 1(b), and to reinforce
the dynamical origin of the a0ð980Þ and f0ð980Þ.
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