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Within the framework of nonrelativistic QCD factorization formalism, we compute the helicity
amplitude as well as the decay width of ηQ2 (Q ¼ c, b) electromagnetic decay into two photons up to
next-to-next-to-leading order in αs expansion. For the first time, we verify the validity of nonrelativistic
QCD factorization for the D-wave quarkonium decay at next-to-next-to-leading order. We find that the
OðαsÞ and Oðα2sÞ corrections to the helicity amplitude are negative and moderate, nevertheless both
corrections combine to suppress the leading-order prediction for the decay width significantly. By
approximating the total decay width of ηQ2 as the sum of those for the hadronic decay and the electric E1

transition, we obtain the branching ratios Brðηc2 → 2γÞ ≈ 5 × 10−6 and Brðηb2 → 2γÞ ≈ 4 × 10−7. To
explore the potential measurement on ηQ2, we further evaluate the production cross section of ηQ2 at LHCb
at the lowest order in αs expansion. With the kinematic constraint on the longitudinal rapidity 4.5 > y > 2

and transverse momentum PT > ð2–4ÞmQ for ηQ2, we find the cross section can reach 2–50 nb for ηc2, and
1–22 pb for ηb2. Considering the integrated luminosity L ¼ 10 fb−1 at

ffiffiffi
s

p ¼ 7, 13 TeV, we estimate that
there are several hundreds events of pp → ηc2 → 2γ. Since the background is relatively clean, it is
promising to reconstruct ηc2 through its electromagnetic decay. On the other hand, due to the small
branching ratio and production cross section, it is quite challenging to detect ηb2 → 2γ at LHCb.

DOI: 10.1103/PhysRevD.103.034018

I. INTRODUCTION

Heavy quarkonium, as a multiscale system, is an ideal
laboratory for testing the interplay between perturbative
and nonperturbative QCD. Its mass spectrum has been
predicted by various potential models, and most of the low-
lying quarkonium states have been probed by the experi-
ment. However there still exist some undiscovered states.
Among the missing states in charmonium family, ηc2ð1D2Þ
is the only spin-singlet low-lying D-wave state. A full
understanding on ηc2 in both theory and experiment can
help to illuminate the interquark force and reveal the nature
of the strong interaction.
The mass of ηc2 is predicted to range from 3.80 to

3.88 GeV [1–7], which lies between the DD̄ and the D�D̄
thresholds. Quite different from ψ 00, the decay of ηc2 into
DD̄ is forbidden, which is accounted for by the parity

conservation. Thus ηc2 is a narrow resonance, and its main
decay modes are considered to be hadronic decay and
electric E1 transition, which have been well investigated in
the references.
The electric E1 transition has been known for a long time

[2,7,8] (see also the review in [9]). The hadronic transition
ηc2 → ππηc was evaluated in Ref. [8]. The ηc2 hadronic
decay was studied in Refs. [10,11]. Production through B
meson decay is an important channel to search for
charmonia [12–17]. Based on the nonrelativisitc QCD
(NRQCD) factorization formalism [18], the inclusive ηc2
production in B decay was evaluated and proposed to probe
ηc2 through this channel [19,20]. The decay B− → ηc2K−

has been explored by using the rescattering mechanism in
Ref. [21]. In addition, the ηQ2 electromagnetic decay into
double photons was evaluated by using the instantaneous
Bethe-Salpeter method in Ref. [22]. Unfortunately, no
significant signal has been found till today [23].
The C ¼ þ1 charmonia bear a considerable branching

ratio of electromagnetic decay into double photons, e.g.,
Brðηc → 2γÞ ≈ 1.57 × 10−4, Brðχc0 → 2γÞ ≈ 2.04 × 10−4,
and Brðχc2 → 2γÞ ≈ 2.85 × 10−4 [24], which have been
well measured by the experiment. Although the electric E1
transition ηc2 → hcγ comprises one of the main decay
channel, it is anticipated that the branching ratio for ηc2
electromagnetic decay is of the same magnitude as those in
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ηc and χc. Compared with the hadronic decay, the electro-
magnetic decay has the advantage of bearing a clean
background. Thus we propose to detect ηc2 through
ηc2 → 2γ. In this work, we will evaluate the partial width
of ηQ2 → 2γ (the heavy quark flavor Q ¼ c, b) within the
framework of the well-established NRQCD factorization
formalism.
NRQCD factorization formalism is widely employed to

tackle heavy quarkonium decay and production. Within this
framework, the production cross section or decay width
can be systematically disentangled the short-distance and
long-distance effects, formalized by a double expansion in
powers of heavy quark velocity vQ and strong coupling
constant αs. The perturbative contributions with the scale
larger than the heavy quark mQ is encoded into the short-
distance coefficients (SDCs), while the nonperturbative
effects are contained in the NRQCD long-distance matrix
elements (LDMEs).
Recently, there is a remarkable progress in deducing the

higher-order perturbative corrections for various quarko-
nium decay and production processes [25–41]. It has been
found even though the OðαsÞ corrections to the charmo-
nium electromagnetic decay are moderate, the Oðα2sÞ
corrections can be considerable. Therefore it is mandatory
to include the Oðα2sÞ contributions in our evaluation.
Concretely speaking, we will evaluate the decay width
of ηQ2 → 2γ up to next-to-next-to-leading order (NNLO) in
perturbative αs expansion.
In addition, to provide aid for experimental search for ηQ2

through ηQ2 → 2γ, we will explore the ηQ2 production at
colliders, and estimate the corresponding number of events.
The ηc2 associated production with a photon at B factory has
been obtained in Ref. [42]. The ηc2 þ J=ψ production at B
factory can be found in Ref. [43]. Unfortunately, the cross
sections of both channels are too small to probe ηc2 → 2γ.
Considering the significant luminosity as well as the sizeable
cross sections for quarkonia production at LHC, exemplified
by σðpp → ηc þ XÞ ∼ 0.5 μb with the transverse momen-
tum cut pT > 4mc [44], we anticipate the cross section for
ηc2 production is also considerable. Actually, the
cross section of ηc2 at LHC can be simply estimated by

σðηc2Þ∼ jR00
Dð0Þj2

m4
cjRSð0Þj2×σðηcÞ∼v4c×0.5–5nb. Thus, we expect

that there are a number of events for pp → ηc2 → 2γ, which
renders ηc2 → 2γ a promising channel to probe ηc2.
The remainder of this paper is organized as follows. In

Sec. II, we make a Lorentz decomposition for the amplitude
of ηQ2 → 2γ, and present the decay width in term of the
helicity amplitudes. In Sec. III, we outline the NRQCD
factorization formalism for the helicity amplitude, and
briefly describe the theoretical framework to deduce the
NRQCD SDC. In Sec. IV, we first introduce the technical-
ities encountered in performing loop calculation, and
then present our final results for the SDC. Section V is
devoted to the phenomenological analysis and discussion.

A theoretical prediction on the production cross section of
ηQ2 at LHCb is also contained in this section. We present
our summary in Sec. VI.

II. THEORETICAL FORMULA
FOR THE DECAY WIDTH

The partial width of ηQ2 → 2γ can be expressed in term
of helicity amplitude

ΓγγðηQ2Þ ¼
1

2J þ 1

1

2!

1

8π
½2jA1;1j2 þ 2jA1;−1j2�; ð1Þ

where J ¼ 2 denotes the spin of ηQ2,
1
2!
accounts for the

indistinguishability of the two identical photons, 1
8π corre-

sponds to the phase space factor, and Aλ1;λ2 signifies the
helicity amplitudes of ηQ2 → γðλ1Þγðλ2Þ with λ1;2 ¼ �1

being the helicity of the photons. By invoking the parity
invariance, we only enumerate the independent helicity
amplitudes.1

To extract the helicity amplitudes, we first decompose
the amplitude A of ηQ2 → 2γ by Lorentz invariance. By
Bose symmetry, the transversality for the polarization of
photons, together with the parity conservation, the ampli-
tude can be generically expressed as

A ¼ c1
m4

Q
ϵαβρσϵ�1αϵ

�
2βk1ρpσk1μk1νϵ

μν
H

þ c2
m2

Q
ϵαβμρϵ�1αϵ

�
2βpρϵHμνkν1

þ c3
m2

Q
ðϵαμρσϵ�1αk1ρpσϵHμνϵ

�ν
2

− ϵαμρσϵ�2αk1ρpσϵHμνϵ
�ν
1 Þ; ð2Þ

where p denotes half of the momentum of ηQ2, k1 and k2
signify the momenta of the two outgoing photons, ci
(i ¼ 1, 2, 3) are Lorentz invariants and refer to form factors
of the corresponding Lorentz structure, ϵ1 and ϵ2 represent
the polarization vectors of the photons, and ϵH denotes the
polarization tensor of ηQ2.
It is straightforward to deduce the helicity amplitudes

Aλ1;λ2 from Eq. (2). To carry out the calculation, it is
convenient to construct the explicit expressions of the
polarization tensor ϵH and polarization vectors ϵ1 and ϵ2
[46]. We define the polarization vectors

1Note that the relation Aλ1;λ2 ¼ ð−1ÞJAλ2;λ1 , which is con-
strained by the exchange symmetry for the two identical photons,
and the P parity further enforces the restriction Aλ1;λ2 ¼
−A−λ1;−λ2 for ηQ2 [45], therefore we have A1;−1 ¼
−A1;−1 ¼ 0. We will demonstrate the vanishment of A1;−1
through an explicit evaluation in the following.
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ϵμþ ¼ 1ffiffiffi
2

p ð0;−1;−i; 0Þ; ϵμ− ¼ 1ffiffiffi
2

p ð0;þ1;−i; 0Þ;

ϵμ0 ¼ ð0; 0; 0; 1Þ: ð3Þ

The five polarization tensors of ηQ2 are readily expressed as

ϵμνH�2 ¼ ϵμ�ϵ
ν
�; ð4aÞ

ϵμνH�1 ¼
1ffiffiffi
2

p ðϵμ�ϵν0 þ ϵμ0ϵ
ν
�Þ; ð4bÞ

ϵμνH�0 ¼
1ffiffiffi
6

p ðϵμþϵν− þ 2ϵμ0ϵ
ν
0 þ ϵμ−ϵ

νþÞ: ð4cÞ

If assuming the photon with momentum k1 is outgoing in
the positive z direction, its polarization vector ϵ1 equals to
ϵþ for helicity þ1, and ϵ− for helicity −1, while the helicity
polarization vector of the backward photon is just reversed.
Substituting the explicit expressions Eqs. (3) and (4) into

Eq. (2), we obtain the helicity amplitudes in term of the
three form factors

A1;1 ¼ −
2iffiffiffi
6

p ðc1 − c2 þ c3Þ; ð5aÞ

A1;−1 ¼ 0; ð5bÞ

where A1;−1 explicitly vanishes.

III. NRQCD FACTORIZATION FORMALISM
FOR THE HELICITY AMPLITUDE

Owing to the strong interaction inner the hadron ηQ2, the
helicity amplitude A1;1 is nonperturbative. Fortunately, we
can employ the NRQCD factorization formalism to fac-
torize the helicity amplitude into [18]

A1;1 ¼ C1;1ðμFÞ
h0jχ†K1D2

ψðμFÞjηQ2i
m5=2

Q

ð1þOðv2ÞÞ; ð6Þ

where C1;1 represents the perturbative SDC, which depicts a
heavy quark pair annihilation into double photons, μF
signifies the factorization scale, and

K1D2
¼

�
−
i
2

�
2
�
D
↔i

D
↔j

−
1

3
D
↔2

δij
�
ϵijH; ð7Þ

with ϵH being the polarization tensor of ηQ2. LDME
h0jχ†K1D2

ψðμFÞjηc2i deciphering the nonperturbative
effect in the hadron is process independent, and can be
related to the second derivative of the radial wave function
at the origin through

h0jχ†K1D2
ψðμFÞjηQ2i ¼

ffiffiffiffiffiffiffiffi
5Nc

8π

r
R00

DðμFÞ; ð8Þ

where the wave functions at the origin should be promoted
as a scale-dependent quantity in the field theoretical
context. For simplicity, we will suppress the μF dependence
in SDC and LDME when it will not bring confusion.
To get the helicity amplitude, we must determine the

SDC. Since the SDC is irrelevant to the nonperturbative
hadronization effect, it can be computed through the
standard matching technique. Concretely, we can replace
the physical meson ηQ2 with a heavy quark pair QQ̄,
carrying the same quantum number as 1D2. The factoriza-
tion formalism is also valid to the free quark state
QQ̄ð1D2Þ, therefore after the replacement, Eq. (6) becomes

A1;1ð1D2Þ ¼ C1;1
h0jχ†K1D2

ψ jQQ̄ð1D2Þi
m5=2

Q

; ð9Þ

where we have suppressed the factorization scale and the
high-order relativistic corrections. The SDC in Eq. (9) is
exactly the same as in Eq. (6). Since the amplitudeA1;1 and
matrix element are now perturbative, both sides of Eq. (9)
are calculable. In principle, one can solve the SDC C1;1 in
any prescribed αs order.
In the following, we briefly describe the procedure to

evaluate the perturbative helicity amplitude A1;1ð1D2Þ. We
assign the momenta of the Q and Q̄ quarks to be

p1 ¼ pþ q;

p2 ¼ p − q; ð10Þ

where p and q represent half of the total momentum and the
relative momentum of the QQ̄ pair, respectively. The on
shell condition enforces that

p2 ¼ p2
1 ¼ p2

2 ¼ m2
Q;

p · q ¼ 0: ð11Þ

In our calculation, we first evaluate the amplitude A of
QQ̄ → 2γ, then employ the covariant spin projector to
extract the spin-singlet component of the QQ̄. To be
consistent with the decay width formula (1), we utilize
the nonrelativistically normalized spin-singlet/color-singlet
projector [47], which reads

Π0 ¼
ð=pþ =qþmQÞð=pþmQÞγ5ð=p − =q −mQÞ

8
ffiffiffi
2

p
m3

Q

⊗
1cffiffiffiffiffiffi
Nc

p :

ð12Þ

The L ¼ 2 orbital partial wave can be projected out by
differentiating the color-singlet/spin-singlet quark amplitude
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with respect to the relative momentum q, followed by setting
q to zero

Að1D2Þ ¼ ϵHμν
jqj2
2!

∂2

∂qμ∂qν Tr½Π
0A�jq¼0: ð13Þ

Now, we have collected all the necessary ingredients to
calculate the amplitude of QQ̄ð1D2Þ → 2γ. Subsequently,
we can pick up the Lorentz invariant form factor ci through
Eq. (2), and obtain the perturbative helicity amplitude with
the aid of Eq. (5). Meanwhile, the perturbative NRQCD
matrix element h0jχ†K1D2

ψ jQQ̄ð1D2Þi can also be carried
out at a desired αs order. At lowest order in αs, we have

h0jχ†K1D2
ψ jQQ̄ð1D2Þi ¼

ffiffiffiffiffiffiffiffi
2Nc

p
jqj2: ð14Þ

Finally, it is straightforward to determine the SDC C1;1 at a
prescribed αs order through Eq. (9).
For the future convenience, we reexpress the partial

width of ηQ2 → 2γ in terms of the SDC

ΓγγðηQ2Þ ¼
1

5

1

8π
jC1;1j2

jh0jχ†K1D2
ψ jηc2ij2

m5
Q

: ð15Þ

IV. SDC UP TO NNLO

In this section, we first describe the computational
technicalities utilized to evaluate the perturbative amplitude
in detail, then present our main results for the SDC C1;1.
We employ FeynArts [48] to generate the Feynman

diagrams and the corresponding amplitude for QQ̄ → 2γ.
The representative Feynman diagrams are illustrated in
Fig. 1. We employ the spin-singlet/color-singlet projector
(12) and apply the recipe as specified in (13) to project out
the intended amplitude for QQ̄ð1D2Þ → 2γ up to two-loop
level. Subsequently, the packages FeynCalc [49,50] and
FormLink [51,52] are employed to perform the Dirac trace
and Lorentz contraction.

For the NLO and NNLO corrections, we carry out the
derivative of the amplitude with regard to the relative
momentum q prior to perform loop integration, which
amounts to directly extract the contribution from the hard
region. We employ the package APART [53] and FIRE [54] to
conduct partial fraction and the corresponding integration-
by-part reduction. Finally, we have 3 one-loop master
integrals (MIs) and 80 two-loop MIs. There exist some
complex-valued two-loop integrals originating from the
gg → γγ subprocess (since their Feynman diagrams are of
the same topological structure as the well-known light-by-
light scattering for two photons, in this work, we will call
this class of diagrams light-by-light (lbl), as illustrated in
Fig. 1, which are relatively hard to carry out numerically. It
deserves mentioning that although the MIs encountered
here are almost the same sets as in the processes ηc → 2γ
and χc → 2γ, the computation complexity is much more
involved. Since we have taken the second derivative of
the amplitude with respect to the relative momentum q,
some coefficients of the MIs are relatively larger as well
as more divergent in 1=ϵ expansion compared with those in
ηc and χc decay. Thus, to reach the desired precision, we
must perform numerical integration over the MIs to higher
accuracy.
For the real-valued MIs, we directly use CUBPACK/

HCUBATURE [55,56] to carry out the integration. In contrast
to the application of sector decomposition to the Euclidean
region, the singularities encountered in the physical region
lie inside, rather than sit on, the integration boundary,
which renders the integration hard to be numerically
evaluated. To overcome this difficulty, we conduct inte-
gration contour deformation via the variable transformation
prior to decomposing the sectors [57], and determine the
integration contour through optimizing a set of contour
parameters [38]. For more technical details, we refer the
readers to Refs. [38,41].
The lbl Feynman diagrams are both gauge invariant and

free of any UV and IR divergences in sum. In contrast, for
the non-lbl diagrams, there exist UV divergence at one
loop, and both UVand IR divergences at two loop. The UV
divergence originates from the integration over the loop

FIG. 1. The representative Feynman diagrams for QQ̄ð1D2Þ → 2γ through order α2s.
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momentum, which can be eliminated through the standard
renormalization procedure. We implement the on shell
renormalization for the heavy quark wave function and
mass up to Oðα2sÞ [58–60], and MS renormalization for the
strong coupling constant. Thus, the ultimate amplitude is
completely UV finite. There remains a piece of unremoved
IR divergence, nevertheless this IR pole can be factored
into the NRQCD LDME, so that the NRQCD SDC
becomes IR finite. As a consequence, both of the
LDME and the corresponding two-loop SDC C1;1 bear
ln μF dependence, nevertheless their product must be
independent of factorization scale through Oðα2sÞ.
After some hard work, we finally obtain the SDC C1;1

expanded in power of the strong coupling constant αs

C1;1 ¼
4

ffiffiffi
6

p
π

3
ffiffiffiffiffiffiffimQ

p αe2Q

�
1þ CF

αs
π
Δð1Þ

þ α2s
π2

�
CF

β0
4
Δð1Þ ln

μ2R
m2

Q
þ Δð2Þ

��
; ð16Þ

where α denotes the electromagnetic coupling constant,
eQ signifies the electric charge of the heavy quark,
β0 ¼ 11

3
CA − 2

3
ðnL þ nHÞ corresponds to the one loop

coefficient of the QCD β function, where nH ¼ 1, and
nL signifies the number of the active quark flavor (nL ¼ 3

for ηc2, and nL ¼ 4 for ηb2), andCF ¼ 4
3
; CA ¼ 3 are SUð3Þ

color factors. The exact occurrence of the ln μ2R is
demanded by the renormalization group invariance.
Δð1Þ and Δð2Þ correspond to the OðαsÞ and Oðα2sÞ

corrections to the SDC. The expression of Δð1Þ is analyti-
cally obtained

Δð1Þ ¼ 3

8
π2 − 6 ln 2 − 1: ð17Þ

Δð2Þ can be expressed as

Δð2Þ ¼ −
π2

10
CFðCA þ 2CFÞ ln

μF
mQ

þ Δð2Þ
reg þ Δð2Þ

lbl : ð18Þ

The coefficient of the factorization scale dependence ln μF
term corresponds to the anomalous dimension of the
NRQCD operator in Eq. (6), which is consistent with
the result in Ref. [61],2 and thereby the NRQCD factori-
zation is verified in ηQ2 electromagnetic decay. The terms

of Δð2Þ
reg and Δ

ð2Þ
lbl in (18) represent the contributions from the

regular and “light-by-light” Feynman diagrams, which are
illustrated in Fig. 1.

Furthermore, we can organize the Δð2Þ
reg and Δð2Þ

lbl accord-
ing to the color structure,

Δð2Þ
reg ¼ C2

FsA þ CFCAsNA þ nLCFTFsL þ nHCFTFsH;

ð19Þ

where the color factor TF ¼ 1
2
,

sA ¼ −5.8455; sNA ¼ −4.3701;

sL ¼ 1.4464; sH ¼ 0.0161; ð20Þ

and

Δð2Þ
lbl ¼ ð0.0002þ 0.0056iÞnHCFTF

þ ð0.2136 − 0.0082iÞCFTF

XnL
i

e2i
e2Q

; ð21Þ

where ei represents the electric charge of the ith light flavor.
By setting the renormalization scale μR ¼ mQ and

factorization scale μF ¼ 1 GeV, we get the radiative
corrections to C1;1 at various perturbative orders,

C1;1 ¼
4

ffiffiffi
6

p
π

3
ffiffiffiffiffiffiffimQ

p αe2Qð1 − 0.62αs − rα2sÞ; ð22Þ

where r ¼ 2.12þ 0.0005i for ηc2 and r ¼ 1.11þ 0.005i
for ηb2. We find that both the OðαsÞ and Oðα2sÞ corrections
to the helicity amplitude are negative as well as moderate.
It seems that the perturbative expansion for ηQ2 → 2γ
exhibits a decent convergence, however as will be found,
the radiative corrections accurate up to Oðα2sÞ change the
LO decay width considerably.
For completeness, it is necessary to deduce the explicit

expression of decay width. Applying the formula Eq. (15)
and the expression of helicity amplitude in Eq. (16), we
readily obtain the decay width of ηQ2 → 2γ through Oðα2sÞ

ΓγγðηQ2Þ ¼
4πα2e4Q

15

jh0jχ†K1D2
ψðμFÞjηc2ij2
m6

Q

×

�
1þ αs

π
2CFΔð1Þ þ α2s

π2

�
C2
FΔð1Þ2

þ CF
β0
2
Δð1Þ ln

μ2R
m2

Q
þ 2ReΔð2Þ

��
; ð23Þ

where the symbol Re signifies the real part of the argument.

V. PHENOMENOLOGY

A. Predictions for the decay width

To make concrete prediction, we first choose the
input parameters. We take the heavy quark mass to be

2In Ref. [61], the authors computed the anomalous dimensions
of spin-single and spin-triplet currents for heavy quark pair with
arbitrary orbital angular momentum. The anomalous dimension
of 1D2 can be obtained by utilizing Eq. (40) in Ref. [61] with
color-singlet Wilson coefficients of the potentials given in
Refs. [62–65].
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mc ¼ 1.68 GeV and mb ¼ 4.78 GeV, which correspond to
the two-loop charm quark and bottom quark pole masses
converted from the corresponding MS masses [66]. We
evaluate the electromagnetic coupling constant as αð2mcÞ ≈
1
132

and αð2mbÞ ≈ 1
131

by the formulas in Ref. [67], and
evaluate αs at each energy scale by RunDec [66].
The NRQCD LDME is related to the second derivative

of the 1D radial wave function at the origin in Eq. (8),
which is well determined by the nonrelativistic potential
model. From Eq. (8), we get

jh0jχ†K1D2
ψ jηc2ij2 ¼

5Nc

8π
R00

DðμFÞ2 ≈
5Nc

8π
× 0.0329

¼ 0.0196 GeV7;

jh0jχ†K1D2
ψ jηb2ij2 ¼

5Nc

8π
R00

DðμFÞ2 ≈
5Nc

8π
× 0.8394

¼ 0.5010 GeV7; ð24Þ

where we have approximated the scale-dependent R00
DðμFÞ

with R00
D from the Cornell potential model [68,69]. The

approximation will unavoidably render the decay width to
develop a μF dependence. Actually, the scale independence
can be recovered if we evolute the LDMEs from some scale
mQvQ to μF by applying the renormalizaiton group,
however the manipulation may be questionable due to
the evolution in the nonperturbative energy range.
Fortunately, as will be found, the decay width is insensitive
to the factorization scale, this observation, to some extent,
qualifies our approximation in Eq. (24).
With these input parameters, we present our predictions

for the decay widths of ηc2=ηb2 → 2γ at various levels of
accuracy in αs in Table I. The uncertainties affiliated with
the decay width are estimated by varying μR from mQ to
2mQ with the central values evaluated at

ffiffiffi
2

p
mQ.

3 From the
table, we have several observations. First, the NNLO decay

width is much smaller than the LO one for the channel
ηc2 → 2γ, which is accounted for by the sizeable and
negative OðαsÞ and Oðα2sÞ radiative corrections. Second,
the decay width is insensitive to the factorization scale μF
(we stress that μF ¼ 1 GeV may be a little small for
perturbative prediction; however, the conclusion will not
change by adjusting μF). Third, the decay width of
ηb2 → 2γ is considerably smaller than the case of ηc2,
which is mainly caused by the heavier quark mass and
smaller electric charge for bottom quark.
We can also predict the branching ratio of ηQ2 → 2γ.

According to current theoretical computation, ηc2 decay
predominately through the electric E1 transition and
hadronic decay. If we assume that the ηQ2 decay is saturated
by these two decay patterns, then we can approximate the
total decay width through [11]

ΓtotalðηQ2Þ ≈ ΓðηQ2 → LHÞ þ ΓðηQ2 → γhQÞ; ð25Þ

where LH denotes the abbreviation for light hadrons. The
hadronic decay width of ηQ2 up to NLO has been known for
a long time [11], and the prediction for electromagnetic E1
transition of 1D2→1 P1 from Cornell potential model can
be found in Refs. [2,8]. Thus, we readily obtain the total
decay width Γtotalðηc2Þ ¼ 142.1þ 303.0 ¼ 445.1 keV and
Γtotalðηb2Þ ¼ 3.8þ 25.3 ¼ 29.1 keV, where we have
reevaluated the hadronic decay width with the parameters
selected in this work. Consequently, the branching ratio
of ηQ2 → 2γ is illustrated in Table I. It is significant that
Brðηb2 → 2γÞ is much smaller than Brðηc → 2γÞ, which
renders the search for ηb2 through its electromagnetic decay
quite challenging.

B. ηQ2 production at colliders

In the following, we will evaluate the production cross
section of ηQ2 at the B factory and LHC. The ηc2 associated
production with a photon at the B factory has been studied
in Ref. [42], and the corresponding cross section at lowest
order in αs expansion is given by

σðeþe−→ηc2þγÞ¼80πα3e4cð1−4m2
c=sÞ

s2m5
c

jR00
Dð0Þj2; ð26Þ

TABLE I. NRQCD predictions for the decay width of ηQ2 → 2γ at various levels of accuracy in αs. We take the two-loop quark pole
masses mc ¼ 1.68 GeV and mb ¼ 4.78 GeV. The NRQCD LDMEs are evaluated by the Cornell potential model. The errors are
estimated by sliding the renormalization scale μR from mQ to 2mQ with center value μR ¼ ffiffiffi

2
p

mQ. By taking the total decay width as
ΓtotalðηcÞ ≈ 445.1 keV and ΓtotalðηbÞ ≈ 29.1 keV, we also present the branching ratio BrðηQ2 → 2γÞ.

μF ¼ 1 GeV μF ¼ mQ

Γγγ in unit of eV LO NLO NNLO BrðηQ2 → 2γÞ NNLO BrðηQ2 → 2γÞ
ηc2 → 2γ 8.28 5.68þ0.25

−0.34 2.61þ0.70
−1.04 5.9−2.3þ1.6 × 10−6 2.11þ0.81

−1.23 4.7−2.7þ1.8 × 10−6

ηb2 → 2γ 0.025 0.019þ0.001
−0.001 0.014þ0.001

−0.001 4.7−0.4þ0.3 × 10−7 0.011þ0.001
−0.002 3.9−0.5þ0.4 × 10−7

3In this work, we do not consider the uncertainty originating
from the heavy quark pole mass, which is expected to be
considerably greater than that from varying the renormalization
as well as the NRQCD factorization scales. For more discussion
about the heavy quark pole mass, we refer the interested readers
to Refs. [70–73]
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where
ffiffiffi
s

p ¼ 10.58 GeV is the center-of-mass (CM) energy
at the B factory. With the aforementioned input parameters,
we immediately arrive at σðeþe− → ηc2 þ γÞ ¼ 1.49 fb.
Due to the small cross section and branching ratio, it seems
impossible to detect ηc2 through its electromagnetic decay
at the B factory.
Now we turn to the hadron collider LHC, where a greater

number of quarkonia can be produced due to the consid-
erable production cross section, e.g., the cross section of ηc
can reach around 0.5 μb through single parton scattering
[44]. For pp → ηQ2 þ X, the differential cross section
through single parton scattering can be factorized as

dσðpp → ηQ2 þ XÞ ¼
X
i;j

Z
dx1dx2fi=pðx1Þfj=pðx2Þ

× dσ̂ðiþ j → cc̄ð1D2Þ þ XÞ

×
jh0jχ†K1D2

ψðμFÞjηQ2ij2
m7

Q
; ð27Þ

where we have neglected the color-octet contribution,
fi=pðxÞ represents the parton distribution function of a
proton, and dσ̂ denotes the partonic cross section. Since the
gluon distribution is overwhelming in the proton at small
momentum fraction x, we expect that the gluon scattering
will denominate the cross section. Thus, it is reasonable
for us to consider gluon-gluon partonic scattering to
estimate the cross section of ηQ2. In addition, we will
carry out the partonic cross section dσ̂ at lowest order in αs.
For concreteness, we consider the production of ηQ2 at
LHCb detector, where a kinematic constraint on the
longitudinal rapidity of ηQ2 4.5 > y > 2 is implemented.
We further take a transverse momentum PT cut for the ηQ2

to guarantee the validity of the factorization formula (27).
In our computation, we employ CTEQ14 PDF sets [74] for
the proton PDF.
In Table II, we present the theoretical predictions for the

cross section of ηQ2 at two benchmark CM energy
ffiffiffi
s

p ¼ 7,
13 TeV with various transverse momentum cutoffs for ηQ2.
From the table, we find the cross section of ηb2 is smaller
than that of ηc2 by roughly three order of magnitude. Taking
into account the luminosity at LHCb, we can estimate the

number of events for ηQ2 production. With the integrated
luminosity L ¼ 10 fb−1 at each CM energy, there are
107–108 ηc2 and 104–105 ηb2 event produced at LHCb.
Therefore, LHCb will be an ideal platform to probe ηQ2.
Furthermore, multiplying the branching ratio of ηQ2 → 2γ,
we predict that there are several hundreds of double-photon
events through pp → ηc2 → 2γ, which is a promising
channel to probe this undiscovered charmonium. In con-
trast, the ηb2 is proved to be hard to detect through its
electromagnetic decay at LHCb.
Finally, we must admit that the cross sections for ηQ2

production at LHCb may be changed by high-order
radiative corrections as well as by the contributions from
various color-octet components in ηQ2, hence the theoreti-
cal predictions in Table II are only a rough estimation. In
addition, we have set a PT cut for ηQ2 to guarantee the
validity of Eq. (27); however, a great number of ηQ2 may be
produced in smaller PT range, therefore the cross sections
for ηQ2 at LHCb may be underestimate.

VI. SUMMARY

Applying the NRQCD factorization formalism, we
evaluate the ηQ2 electromagnetic decay into double photons
up to Oðα2sÞ radiative corrections. For the first time, we
scrutinize the validity of the NRQCD factorization for D-
wave quakonium decay at NNLO. Both the OðαsÞ and
Oðα2sÞ corrections to the decay width of ηQ2 → 2γ are
negative. Although the radiative corrections to the helicity
amplitude are moderate, the corrections change the LO
decay width significantly, especially for ηc2. By assuming
ηQ2 decay is saturated by the electric E1 transition and the
hadronic decay, we obtain the branching ratios Brðηc2 →
2γÞ ≈ 5 × 10−6 and Brðηb2 → 2γÞ ≈ 4 × 10−7. We have
also studied the ηQ2 production at LHCb. By imposing
kinematic restriction on the longitudinal rapidity and
transverse momentum of ηQ2, we predict the cross sections
to be 2–50 nb for ηc2 and 1–22 pb for ηb2 for various
transverse momentum cutoffs. Thus, it is promising to
observe ηc2 through its electromagnetic decay at LHCb,
while quite challenging to detect ηb2 at the current
integrated luminosity.

TABLE II. The cross sections of ηc2 and ηb2 at the lowest order in αs expansion at LHCb. By taking the CM colliding energy
ffiffiffi
s

p ¼ 7,
13 TeV, we evaluate the integrated cross sections with ηQ2 longitudinal rapidity constraint 4.5 > y > 2 and transverse momentum
PT cut.

ffiffiffi
s

p ¼ 7 TeV
ffiffiffi
s

p ¼ 13 TeV

PT cut

σ in unit of nb PT > 2mQ PT > 3mQ PT > 4mQ PT > 2mQ PT > 2mQ PT > 4mQ

σðpp → ηc2 þ XÞ 24.7 5.1 1.4 47.8 10.5 3.0
σðpp → ηb2 þ XÞ × 103 8.7 1.5 0.3 21.5 4.0 1.0
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