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The extent to which the dual meson condensates obtained in the Polyakov-loop enhanced linear sigma
model can indicate deconfining transition is investigated by imposing the twisted boundary conditions.
The influence of the improved unquenching effect, the dependence on the glue potential parametrization,
and the role of the fermion vacuum contribution are focused on at the mean field level. At zero density, the
rapid rise of the dual sigma condensate with T is confirmed, which is more sensitive to the chiral transition
than the increase of the Polyakov loop. For finite isospin chemical potential μI > mπ=2, the dual sigma

condensate shows abnormal thermal behavior which decreases with T below the melting temperature TI3
c of

pion superfluidity. In contrast, the dual pion condensate always increases with T, with the maximum slope

located at TI3
c rather than TP

c , as determined by the Polyakov loop. The dual vector meson condensate for
μI > mπ=2 is also more sensitive to the chiral restoration when considering the fermion vacuum
contribution. The study suggests that the dual condensates calculated in this model are not appropriate
indicators of deconfinement due to some limitations and uncertainty.

DOI: 10.1103/PhysRevD.103.034017

I. INTRODUCTION

Understanding the confinement-deconfinement phase
transition at finite temperature and density is a very
important task in high-energy nuclear physics. However,
it is conceptually difficult to define a relevant order
parameter in QCD. So far, describing the deconfinement
transition is still a subtle problem.
In the heavy quark limit, the expectation value of the

Polyakov loop is the true order parameter for deconfine-
ment, which is directly related to the center symmetry.
Usually, the Polyakov loop is also extensively used to
indicate the quark deconfining transition in lattice QCD
(LQCD) [1–4] and effective models [5], even though
the center symmetry is explicitly broken by dynamical
quarks. Besides the Polyakov loop, some other quantities
or criteria are also proposed and used to determine the
deconfinement transition in the literature. These include the
QCD monopole in the dual Ginzburg-Landau theory [6],
the center vortex [7], the Polyakov-loop fluctuation [8], the
entropy in the framework of a hybrid model [9], the quark
number holonomy based on the topological picture [10,11],
the proposed order parameter accessible with functional
methods [12], and so on.

Inspired by the original paper [13], the dressed Ployakov
loop (DPL) is suggested as an appropriate order parameter
for deconfinement in QCD [14,15]. This quantity is defined
as the first Fourier moment of the quark condensate obtained
under the twisted boundary condition for quarks. In the
lattice gauge theory language, the DPL includes contribu-
tions of infinite closed loops with winding number 1 around
the temporal direction. So, it transforms in the same way as
the Polyakov loop under the center transformation. (The
Polyakov loop only includes the shortest loop contribution.)
For infinite quark masses, the DPL reduces to a PL, since the
spacial fluctuations are suppressed.1

One merit of the DPL is that it interpolates between the
quark condensate and Polyakov loop, which may imply
some intrinsic relation between chiral transition and
deconfinement. Another is that it can also be calculated
in some effective theories or models of QCD. The previous
investigations in LQCD [14–16], the truncated Dyson-
Schwinger equations (tDSE) [18–21], and Nambu–Jona-
Lasinio (NJL)-type models [22–24] all indicate that the
DPL exhibits order-parameter-like behavior, just as the
Polyakov loop does. The coincidence of two phase tran-
sitions, namely Tχ

c ≈ TD
c , is obtained in these studies.

Note that in QCD with light flavors, the explicit chiral
symmetry breaking is small, since the current masses of u
and d quarks are quite small compared to the QCD scale,
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1One can construct many dual observables which belong to
the same class as the Polyakov loop under the center trans-
formation [16,17].
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but the explicit center symmetry breaking is large. This
means that in the real world, the quark condensate is a good
order parameter, but whether the DPL is also a good one is
unclear. There exists the possibility that the DPL is only
sensitive to chiral restoration but insensitive to deconfining
transition. So it is interesting to check to what extent the
DPL can indicate the deconfinement.
Model studies may shed some light on this question.

A particularly noticeable calculation [24] is that the DPL
obtained in NJL is very similar to the lattice result: it
increases with T and changes rapidly near Tχ

c. Since NJL is
a well-known chiral model without gluon fields, such a
rapid rise should have little relation with center symmetry.
Actually, a Ginzburg-Landau analysis [25] manifests that it
is totally driven by chiral transition. The NJL variants with
different confining elements are also used to study the DPL
[26,27]. It is found that the rapid rise of the DPL has no
effect on the change of confining properties of the quark
propagator [26]. By considering gluon degrees of freedom
with center symmetry, it is confirmed that the rapid rise of
the DPL is still determined by chiral restoration rather than
the increase of the Polyakov loop [27], where PNJL [28,29]
is used.2 It is also shown in Ref. [27] that for μI > mπ=2,
the dual pion condensate (DPC) behaves similarly to the
Polyakov loop, while the DPL decreases with T until the
pion condensate melts away. All of these seem to suggest
that the DPL calculated in NJL-type models should not be
regarded as the deconfining order parameter.
This raises a question: Is the DPL merely sensitive to

chiral transition in QCD? If so, using this quantity to
conclude the coincidence of the chiral and deconfinement
transitions should be problematic. In this sense, it is
necessary to first check whether the above NJL conclusion
also holds in other QCD models, especially those with
hadron degrees of freedom. On the other hand, the quark
backreaction on the Polyakov-loop potential is only
roughly included in the PNJL calculation [27]. We note
that an improved Polyakov-loop potential with unquench-
ing effect had been proposed based on the functional
renormalization method of QCD [30–36]. It is interesting
to study whether the main results in Ref. [27] are still robust
when including the quark backreaction effect. Given that,
the main purpose of this work is to try to extract the DPL
and other dual quantities in the Polyakov-loop augmented
linear sigma model (PLσM) of QCD (also known as PQM)
by taking into account the quark-improved glue potential
and comparing it with the previous NJL results [25–27].
PLσM [37] is a popular chiral model which has been

extensively used to explore the QCD phase transitions.
Different from PNJL, this model includes three types
of degrees of freedom: quarks, mesons, and gluons.

The philosophy of PLσM is that quarks and gluons are
relevant objects for T > Tc, while mesons play the dom-
inant role in low temperatures. Compared to NJL, the LσM
part in PLσM has the merit of renormalizability. It is argued
that PLσM is more suitable to study the QCD phase
diagram than PNJL at low baryon density [5]. In the
literature, ðPÞLσM is also frequently employed to study the
inhomogeneous chiral condensates at high baryon density
[38] and the chiral transition in a magnetic field [39].
However, this model is seldom used to study the physics at
imaginary chemical potential.
Since LσM can be viewed as a partially bosonized

version of NJL in a certain sense, the dual observables
related to some quark bilinears may be assessed indirectly
through studying the corresponding meson condensates
in ðPÞLσM by imposing the twisted boundary conditions.
In this article, the DPL and DPC mentioned above are
evaluated in PLσM by researching the dual sigma and pion
condensates at the mean field level. Beyond Ref. [27], the
dual vector meson condensate related to the isospin density
is also calculated.
Unlike (P)NJL, the Dirac-sea contribution is not

necessary for the dynamical chiral symmetry breaking in
ðPÞLσM. There exists subtlety on how to treat this term in
ðPÞLσM, which is ignored in Refs. [37,40] but taken into
account in Ref. [41]. In our calculation, both treatments are
adopted and compared.
The paper is organized as follows: In Sec. II, the dual

meson condensates for both zero μI and μI > mπ=2 in
PLσM are introduced, where the twisted boundary con-
dition is used. The numerical results and discussion are
given in Sec. III. In Sec. IV, we summarize.

II. DUAL CONDENSATES IN PLσM WITH
TWISTED BOUNDARY CONDITION

A. Two-flavor PLσM at finite μ and μI
We adopt the following Lagrangian density of the two-

flavor PLσM [42]:

L ¼ q̄S−10 qþ 1

2
ð∂μσÞ2 þ

1

2
ð∂μπ⃗Þ2 −Uðσ; π⃗Þ

−
1

4
ωμνωμν −

1

4
R⃗μνR⃗μν þ

1

2
m2

vðωμωμ þ R⃗μ · R⃗μÞ
− UðΦ; Φ̄; TÞ; ð1Þ

with

S−10 ¼ iγμDμ−gðσþ iγ5τ⃗ · π⃗Þ−gωγμωμ−gργμτ⃗ · R⃗μ; ð2Þ

where q denotes the quark field, τ⃗ is the Pauli matrix in the
flavor space,

Dμ ¼ ∂μ − iAμ; and Aμ ¼ δμ0A
0; ð3Þ

2The dual quark condensate in PNJL is first calculated by
Kashiwa in Ref. [22], where the role of vector interaction is
addressed.
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with A0 ¼ −iA4. The gauge coupling g is absorbed in
AμðxÞ ¼ gAμ

aðxÞ λa2 , where Aμ
aðxÞ is the gluon field and λa

are the Gell-Mann matrices. The mesonic potential U is
given as

Uðσ; π⃗Þ ¼ λðσ2 þ π⃗2 − v2Þ2=4 − hσ; ð4Þ

wherein σ and π⃗ are the isoscalar-scalar and isovector-
pseudoscalar meson fields. The vector meson degrees
of freedom are also taken into account, and ωμν and R⃗μν

are the field tensors of ω and ρ mesons, respectively.
The term UðΦ; Φ̄; TÞ is the Polyakov-loop potential,
which respects the Zð3Þ center symmetry. Here
Φ½hA4i� is the Polyakov-loop variable, and Φ̄ is the
conjugate of Φ.
In PLσM, the quark chemical potential μ is introduced

in the same way as in QCD. However, the introduction
of μI is quite different. Under the isospin Uð1ÞI3 trans-
formation, the quark and pion fields change in the follow-
ing way:

q → eiτ3θq; q† → e−iτ3θq†; π� → e∓i2θπ�: ð5Þ

The corresponding conserved current takes the form

J3μ ¼ q̄τ3γμqþ 2iðπ−∂μπþ − πþ∂μπ−Þ; ð6Þ

where

π� ¼ π1 � iπ2: ð7Þ

Accordingly, μI can be introduced by adding the term
μII3 to the Hamiltonian, where the associated conserved
charge is

I3 ¼
Z

d3x⃗ðq̄τ3γ0qþ π1∂tπ2 − π2∂tπ1Þ: ð8Þ

The Lagrangian density [Eq. (1)] is then modified at
finite μ and μI by the following replacements:

S−10 → S−10 þ γ0μ̂ ð9Þ
and

ð∂μπ⃗Þ2 → ð∂μπ0Þ2 þ ðð∂μ þ 2μIδ
0
μÞπþÞð∂μ þ 2μIδ

0
μÞπ−;

ð10Þ
where

μ̂ ¼
�
μu

μd

�
¼

�
μþ μI

μ − μI

�
: ð11Þ

The reason for the appearance of μ2Iπþπ− in Eq. (10) is that
the generalized momenta of pion fields have been inte-
grated out according to the standard derivation [43].
The phase diagram of a two-flavor LσM at finite μ, μI ,

and T has been investigated in Ref. [44], where the pion
superfluid phase is also studied. Note that the effects of the
Polyakov-loop dynamics and vector mesons are all ignored
in that work. Taking into account these elements and
following the treatment in Ref. [45], we derive the mean
field thermal potential of PLσM at finite μ and μI:

Ω ¼ −2Nc

Z
d3p
ð2πÞ3 ½E

−
p þ Eþ

p �θðΛ2 − p⃗2Þ − 2T
Z

d3p
ð2πÞ3 fln½1þ 3ðΦþ Φ̄e−ðE−

p−μ0ÞβÞe−ðE−
p−μ0Þβ þ e−3ðE−

p−μ0Þβ�

þ ln½1þ 3ðΦ̄þΦe−ðE−
pþμ0ÞβÞe−ðE−

pþμ0Þβ þ e−3ðE−
pþμ0ÞÞβ� þ ln½1þ 3ðΦþ Φ̄e−ðE

þ
p−μ0ÞβÞe−ðEþ

p−μ0Þβ þ e−3ðE
þ
p−μ0Þβ�

þ ln½1þ 3ðΦ̄þΦe−ðE
þ
pþμ0ÞβÞe−ðEþ

pþμ0Þβ þ e−3ðE
þ
pþμ0Þβ�g − 2μIπ

2 −
1

2
ðM2

ωω
2 þM2

ρR2Þ þUðσ; πÞ þ UðΦ; Φ̄; TÞ; ð12Þ

with the quasiparticle energy E�
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp � μ0IÞ2 þ N2

q
and Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

p
, in which the two energy gaps are

defined as

M ¼ gσ; ð13Þ

N ¼ gπ: ð14Þ

Here (also in the following), σ and π refer to the vacuum
expectation values (VEVs) of the sigma and charged pion
mesons, and the latter is defined as

π ¼ hπþieiθ0 ¼ hπ−ie−iθ0 : ð15Þ

Nonzero π indicates the spontaneous breaking of theUð1ÞI3
symmetry, and the phase factor θ0 is the breaking direction.
μ0 and μ0I are the shifted quark and isospin chemical
potentials:

μ0 ¼ μ − gωω; μ0I ¼ μI − gρρ; ð16Þ

where ω and ρ denote the VEVs of ω and ρ0 mesons,

ω ¼ hω0i; ρ ¼ hR3
0i; ð17Þ

respectively. Following Ref. [42], the momentum cutoff Λ
is used in Eq. (12).
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In this paper, we only consider the situation with
finite μI and vanishing μ. In this case, Φ is strictly equal
to Φ̄ [45], and it is free from the sign problem even in
the lattice simulation. The reason for the latter is that
τ2γ5Dγ5τ2 ¼ D†, which ensures detD ≥ 0 [46], whereD is
the Dirac operator. Minimizing the thermal dynamical
potential [Eq. (12)], the motion equations for the mean
fields σ, π, Φ, and ρ are determined by

∂Ω
∂σ ¼ 0;

∂Ω
∂π ¼ 0;

∂Ω
∂Φ ¼ 0;

∂Ω
∂ρ ¼ 0: ð18Þ

This set of equations is then solved for the fields σ, π, Φ,
and ρ as functions of T and μI.

B. Two-flavor PLσM at finite μI
with twisted boundary condition

To calculate the dual observables, we must adopt the
twisted boundary condition in the time direction for quarks:

qðx; β ¼ 1=TÞ ¼ eiϕqðx; 0Þ; ð19Þ

where ϕ ranges from zero to 2π. Under this condition, the
modified quark chemical potential μ0 in Eq. (12) should
be replaced by iTðϕ − πÞ [14,17,22], which is nothing
but an imaginary baryon chemical potential. There is no
sign problem for purely imaginary baryon chemical poten-
tial, since

detDðμÞ ¼ det½γ5DðμÞγ5� ¼ det�Dð−μ�Þ: ð20Þ

For details on lattice simulations at finite μI and imaginary
μ, please refer to Refs. [47,48].
Strictly speaking, μ0 at ϕ ≠ π should contain an imagi-

nary part gωω, even when μ is zero.3 Such a term is ignored
in our calculation. It has been shown in Ref. [22] that a
similar term in PNJL has little effect on DPL near Tχ

c. Note
that μ0I is always real because the imaginary parts of μ0u and
μ0d cancel each other out. This means that ρ is still real for
ϕ ≠ π. This quantity resembles the isospin density in NJL
with vector interactions [27].
In the standard definition of DPL [14,15], the twisted

boundary condition is imposed on the Dirac operator Dϕ,
and the bracket h· · ·i still keeps the antiperiodic condition
with ϕ ¼ π. So in our calculation, Φ as a function of T and
μI is first obtained by solving Eq. (18) using the physical
boundary condition.4 The other quantities, such as σðϕÞ,

πðϕÞ, and ρðϕÞ are then determined by the following
coupled equations:

∂Ω
∂σðϕÞ ¼ 0;

∂Ω
∂πðϕÞ ¼ 0;

∂Ω
∂ρðϕÞ ¼ 0; ð21Þ

with Φ keeping its value for ϕ ¼ π. Such a treatment is
consistent with Refs. [22,27].

C. Dual meson condensates at finite μI
According to Ref. [14], the DPL is defined as

Σð1Þ
σ ¼ −

Z
2π

0

dϕ
2π

e−iϕhq̄qiϕ; ð22Þ

where hq̄qiϕ is the generalized quark condensate. Similarly,
the dual pion condensate

Σð1Þ
π ¼ −

Z
2π

0

dϕ
2π

e−iϕhq̄iγ5τ1qiϕ ð23Þ

is introduced in Ref. [27]. Both of these (and also the dual
density proposed in Ref. [17]) are gauge invariant, which
means they merely include contributions of closed loops
with winding number 1. As mentioned, they belong to the
same class as the Polyakov loop under the Zð3Þ center
transformation.
Following Eqs. (22) and (23), we can construct the dual

sigma condensate (DσC) and the dual pion condensate
(DπC) in PLσM, namely

Σ1
σ ¼

Z
2π

0

dϕ
2π

e−iϕσðϕÞ ð24Þ

and

Σ1
π ¼

Z
2π

0

dϕ
2π

e−iϕπðϕÞ: ð25Þ

Since the VEVs of meson fields are gauge invariant, the
first moments of σðϕÞ and πðϕÞ also belong to the same
class as PL under the center transformation. Evidently, the

DσC and DπC correspond to Σð1Þ
σ and Σð1Þ

π , respectively.
The main task of this work is to test whether these dual
meson condensates could be used as order parameters for
deconfinement in PLσM.
Besides the DσC and DπC, we can also define the dual

vector meson condensate (DρC) in PLσM, namely

Σ1
ρ ¼ −

Z
2π

0

dϕ
2π

e−iϕρðϕÞ: ð26Þ

This quantity is nonzero at finite T and μI (or zero T for
μI > mπ=2). As mentioned, ρðϕÞ corresponds to the isospin
density hq̄γ0τ3qiϕ in QCD or NJL with vector interactions.

3In PLσM, ω is closely related to the dual density proposed in
Ref. [17].

4Note that to calculate the DPL, the Roberge-Weiss
periodicity—namely ΩðθÞ ¼ Ωðθ þ 2π=3Þ at finite imaginary
chemical potential μ ¼ iθT—must be broken explicitly; other-
wise, the DPL always remains zero [17,49]. This might lead to
some uncertainty on the DPL calculation (see related discus-
sions in Ref. [49]).
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In this sense, Σ1
ρ is analogous to the dual density proposed

in Ref. [17]. It is interesting to check whether this dual
isospin density can be used to indicate the deconfining
transition.

D. Polyakov-loop potential with
the quark backreaction effect

Wewill focus on the improved unquenching effect on the
dual meson condensates in PLσM by comparing two types
of Polyakov-loop potential which take into account the
quark backreaction in different ways.
The first is that proposed early in Ref. [29] (we denote

it as Uold), which has been extensively used. The Uold
is obtained by replacing the original parameter T0 ¼
270 MeV in the Yang-Mills Polyakov-loop potential
UYM with T0 ∼ 200 MeV. Such a rescaling, which was
adopted just for comparison with the available LQCD data,
was argued to be justified [37]: the presence of quarks leads
to an Nf-dependent decrease of ΛQCD at zero T, which
translates into an Nf-dependent decrease of T0 at finite T.
In this sense, the rescaled T0ðNfÞmay have the uncertainty
of tens ofMeV [37]. Since the Uold only works well for the
old LQCD data, we think that the quark backreaction effect
is only roughly included in it.
Another type is the improved Polyakov-loop potential

(we denote it as Uglue) suggested in Ref. [32], which is
based on the functional renormalization group method by
incorporating the unquenching effect. It was found that the
inclusion of quarks alters the whole glue potential but keeps
its form as the function of the traced Polyakov loop [32].
This means that the Uglue can be mapped to the UYM via a
rescaling of the whole temperature scale in terms of the
reduced temperature

t ¼ T − Tc

Tc
: ð27Þ

Namely, the improved glue potential Uglue is given by

Uglue

T4
ðtglue;ϕ; ϕ̄Þ ¼

UYM

T4
ðtYM;ϕ; ϕ̄Þ ð28Þ

through the relation

tYMðtglueÞ ¼ 0.57tglue: ð29Þ

The TYM
c in UYM is just the critical Yang-Mills temperature

T0 ¼ 270 MeV, and the Tglue
c in Uglue needs to be deter-

mined by fitting the lattice data. In the PLσM with Uglue,

the Tglue
c is treated as an open parameter [30–33,35,36] in

the range of 180 MeV ≤ Tglue
c ≤ 270 MeV, which mainly

depends on the choice of mσ.
The Uold and Uglue mentioned above are all based on the

parametrization of UYM. The logarithmic and polynomial

forms of UYM are quite popular in the literature (for more
details, see Refs. [30,31]). It was shown in Ref. [30] that the
logarithmic UYM is in the best agreement with the lattice
data for the pure gauge theory, and the 2þ 1 flavor PLσM
using the logarithmic Uglue (U

log
glue) with Tglue

c ¼ 210 MeV
and mσ ¼ 500 MeV can reproduce the new LQCD data
quite well (in the mean field level without the vacuum
contribution). Note that the logarithmic Uold (U log

old) with
T0 ¼ 200 MeV was adopted to calculate the DPL in
the two-flavor PNJL [22,27]. For comparison, we mainly
adopt the logarithmic potential with the same T0=T

glue
c in

this paper.
To check the parametrization dependence, the DσC is

also calculated using the polynomial Uglue (Upol
glue), which

had been employed in the two-flavor PLσM to calculate the
QCD pressure and interaction measure in Ref. [31].

E. Model parameters in the matter sector

The parameters g, λ, v2, and h in the matter sector are
specified to reproduce the following vacuum properties:

σ ¼ fπ , m2
π ¼ h=fπ , m0

q ¼ gfπ, and m2
σ ¼ ∂2ΩMF∂σ2 , where

mπ ¼ 138 MeV, fπ ¼ 93 MeV, and m0
q ¼ 300 MeV are

adopted according to Refs. [30,31,40]. We mainly focus
on mσ ¼ 600 MeV in this paper. For simplicity, gω ¼ gρ
is assumed,5 which is fixed as 0.25g. We have checked
that our main conclusion is insensitive to gρ. As in
Ref. [42], we also assume the common vector meson
masses (mω ¼ mρ ¼ 770 MeV).
We will perform calculations in the standard (extended)

mean field level without (with) the fermion vacuum loop
contribution. In the standard mean field (sMF) calculation,
λ ¼ ðm2

σ −m2
πÞ=ð2f2πÞ and v2 ¼ f2π − h=ðλfπÞ [40]. In the

extended mean field (eMF) study, parameters λ and v2

depend on the regularization method. Two methods—
namely, the direct UV momentum cutoff and the dimen-
sional regularization—are employed and compared for
zero μI in the eMF calculations. We choose the “standard”
momentum cutoff Λ ¼ 600 MeV in the first method.6 The
corresponding parameters λ and v2 for mσ ¼ 600 MeV are
fixed as 2.02 and −ð0.649Þ2 GeV2, respectively. In the
second method, the renormalized vacuum contribution

Ωreg
qq̄ ¼ −

NcNf

8π2
m4

q ln

�
mq

M

�
ð30Þ

is included in the thermodynamical potential [41], where
M is an arbitrary renormalization scale parameter.

5In general, gω is different from gρ, which may lead to flavor
mixing at finite μI [50].

6It was found that the results using dimensional regularization
can be reproduced quite well by using the sharp momentum
cutoff Λ ¼ 600 MeV [44,51].
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The parameters λ and v2 are all M-dependent in this
method, namely

λ ¼ 9f3πg4 − 2hπ2 þ 2fπmσ
2π2 þ 12f3πg4 lnðfπgM Þ

4f3ππ2
; ð31Þ

v2 ¼ 2fπ2ð3fπ3g4 − 3hπ2 þ fπmσ
2π2Þ

9f3πg4 − 2hπ2 þ 2fπmσ
2π2 þ 12f3πg4 lnðfπgM Þ ; ð32Þ

but the mean-field physical thermodynamical potential is
M-independent.
To check the mσ-dependence, following Ref. [30], we

also adopt mσ ¼ 400; 500 MeV in the sMF calculations by
using U log

glue. Note that in the eMF study, we find that the
sigma condensate has no real solution for ϕ near 2π or 0
oncemσ < 500 MeV. This is why we do not show the eMF
results for a small mσ in this paper.

III. NUMERICAL RESULTS AND DISCUSSIONS

In Secs. III A and III B, the dual meson condensates
at zero and finite μI , respectively, are studied in detail,
where mσ ¼ 600 MeV is chosen and the logarithmic
glue potentials U log

old with T0 ¼ 200 MeV and U log
glue with

Tglue
c ¼ 210 MeV are adopted. The dependence on the

parametrization of the glue potential is given in Sec. III C.
In Sec. III D, we investigate the dependence on the sigma
meson mass. The discussion is given in Sec. III E.

A. Dual sigma condensate for zero μI in PLσM

The thermal properties of the DσC and its relation with
the sigma condensate and the expectation value of the
traced Polyakov loop are first investigated at zero μI in the
two-flavor PLσM. The following six cases are focused on:
cases a and b correspond to the sMF calculations using U log

old

and U log
glue, respectively, while cases c and d (cases e and f)

correspond to the eMF calculations with the UV cutoff

(dimensional regularization) method using U log
old and U log

glue,
respectively.

1. ϕ-dependence of the sigma condensate

Figure 1 shows the sMF results for the sigma condensate
as a function of the twisted angle ϕ at different temper-
atures. Panels (a) and (b) in Fig. 1 correspond to cases a and
b, respectively. Figure 2 shows the eMF results for the
sigma condensate as a function of ϕ at different temper-
atures. Panels (c)–(f) in Fig. 2 correspond to cases c–f,
respectively.
As expected, both Figs. 1 and 2 display that the sigma

condensate does not exhibit the Roberge-Weiss periodicity.
All panels in Figs. 1 and 2 show that at low temperatures, σ
is insensitive to ϕ and the line of σðϕÞ almost keeps flat;
with increasing T, σ decreases in the fermion-like region
(ϕ ∼ π) but increases in the boson-like region (ϕ ∼ 0 or 2π).
These features are qualitatively consistent with those of
the generalized quark condensate obtained in LQCD [14],
the truncated Dyson-Schwinger method [19], and PNJL
[22,27]. On the other hand, Fig. 2 shows that the sigma
condensate obtained using the UV cutoff Λ ¼ 600 MeV is
almost quantitatively consistent with that obtained using
dimension regularization when the same glue potential is
adopted.

2. Thermal property of the dual sigma condensate

The sMF (eMF) results for the dual sigma condensate Σ1
σ,

the Polyakov-loop expectation value Φ, and the sigma
condensate σ and T-derivatives of these quantities as
functions of T are shown in Figs. 3 and 4 (Figs. 5 and 6),
respectively, which are obtained under the same conditions
as adopted in Fig. 1 (Fig. 2). In the following, A0 is used to
denote the T-derivative of the quantity A.
Both Figs. 3 and 5 indicate that Σ1

σ increases monoton-
ically with T, which remains quite small at low temperature
and raises rapidly in the chiral transition region, no matter

(a) (b)

FIG. 1. The sMF results for the twisted angle dependence of the sigma condensate σ at zero μI and different temperatures in the
two-flavor PLσMwith mσ ¼ 600 MeV. Panels (a) and (b) show results for cases a and b, respectively: cases a and b correspond to sMF
calculations using U log

old with T0 ¼ 200 MeV and U log
glue with Tglue

c ¼ 210 MeV, respectively.
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whether the Dirac sea contribution and/or the improved
unquenching effect are included or not. This implies that at
zero μI, the DσC calculated in PLσM really behaves like
the DPL obtained in LQCD and other methods.
We use the T-derivative maximum of an order parameter

to identify the crossover critical temperature. Both panels in
Fig. 4 show that Φ0, −σ0, and Σ1

σ
0 each have double peaks:

one is at or near the deconfining crossover temperature TP
c ,

and another is at the chiral crossover temperature Tχ
c. Here,

TP
c and Tχ

c are determined by the maximum slopes of Φ
and −σ, respectively. In contrast to Figs. 4(a) and 4(b)
indicates that both the chiral and deconfining transitions
become milder and the difference between Tχ

c and TP
c gets

larger owing to the improved unquenching effect.

(c) (d)

(e) (f)

FIG. 2. The eMF results for the twisted angle dependence of the sigma condensate σ at zero μI and different temperatures in the two-
flavor PLσM with mσ ¼ 600 MeV. Panels (c)–(f) show results for cases c–f, respectively: cases c and d (e and f) correspond to eMF
calculations using the UV cutoff Λ ¼ 600 MeV (dimensional regularization) by adopting U log

old with T0 ¼ 200 MeV and U log
glue with

Tglue
c ¼ 210 MeV, respectively.

(a) (b)

FIG. 3. The sMF results for the Polyakov loop, the sigma condensate, and the dual sigma condensate as functions of T for zero μI in
the two-flavor PLσM. Panels (a) and (b) correspond to cases a and b described in the caption of Fig. 1, respectively.
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We use Tdσ
c to denote the position of the maximum of

Σ1
σ
0. Both panels in Fig. 4 clearly show that Tdσ

c ≈ Tχ
c. This

means that the DσC changes more swiftly near Tχ
c rather

than TP
c , as demonstrated in Fig. 3. Actually, we see that the

T-dependence of Σ1
σ
0 is more similar to that of −σ0 than to

that of Φ0. This suggests that the DσC is more sensitive to
chiral transition, and thus it seems that using it as a
deconfining order parameter is questionable. One may
argue that the first small peak in Σ1

σ
0 can be used to indicate

the deconfining pseudocritical temperature TP
c . Since the

small peak in −σ0 can do this too, it seems that there is no
reason to regard the Σ1

σ as the deconfining order parameter.
In other words, the DσC provides no more information on
deconfining transition compared to the sigma condensate.
We then turn to eMF calculations. Figures 5 and 6 show

that under the same condition, the results using the UV
cutoff accord quite well with that using dimensional
regularization, especially in the low-temperature region:

(a) (b)

FIG. 4. Similar to Fig. 3, but for T-derivatives of the Polyakov loop, the sigma condensate, and the dual sigma condensate as functions
of T.

(c) (d)

(e) (f)

FIG. 5. The eMF results for the Polyakov loop, the sigma condensate, and the dual sigma condensate as functions of T for zero μI in
the two-flavor PLσM. Panels (c)–(f) correspond to cases c–f described in the caption of Fig. 2, respectively.
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Both methods give almost the same TP
c , and the error for

the crossover Tχ
c due to the cutoff is within 3% compared to

the cutoff-independent result. This supports the claim in
Refs. [44,51] that the eMF calculation with a sharp
600 MeV cutoff was found to well reproduce results using
dimensional regularization. Figure 5 shows that the DσC
also exhibits a similar T-dependence to the Polyakov loop.
Figure 6 displays that −σ0 and Σ1

σ
0 each still have double

peaks, but Φ0 has only one. This change owes to the
smoother chiral transition due to the fermion vacuum
contribution. Compared to Figs. 4 and 6 displays that
the Tχ

c is rather higher, which is ∼200 MeV, and the
separation of chiral and deconfining transitions is quite
large (Tχ

c − TP
c ∼ 35–50 MeV). Note that Fig. 6 indicates

that the T-dependence of Σ1
σ
0 is still very similar to that

of −σ0, and thus Tdσ
c ≈ Tχ

c. Both Figs. 5 and 6 show that
the deconfining crossover becomes broader owing to the
improved unquenching effect. Compared to the case using
U log
old, we see that the peak of Σ1

σ
0 near TP

c is obviously lower

than that near Tχ
c when U log

glue is used under the same
condition. This is consistent with the sMF results shown
in Fig. 4.
In PLσM, the difference between Tχ

c and TP
c can become

smaller by choosing a smallmσ , which can lead to a steeper
chiral transition [30]. Thus, Tdσ

c ≈ Tχ
c should still hold for a

smaller mσ, since decreasing mσ has a mild influence on
the Polyakov loop. The mσ-dependence will be addressed
in Sec. III D. Of course, when mσ is small enough, the
chiral and deconfining transitions may coincide. In this
paper, we do not consider such a special case with (almost)
degenerate chiral and Ployakov-loop critical temperatures.
Actually, the new lattice study suggests that the Polyakov
loop still remains quite small (∼0.1) near Tχ

c, and the
pseudocritical temperature TP

c determined by the lattice
Polyakov loop is significantly larger than Tχ

c.
The coincidence of Tdσ

c and Tχ
c in both sMF and eMF

calculations implies that the rapid increase of DσCwith T is
mainly driven by the swift drop of σ rather than the increase
of Φ. In this sense, it might be not appropriate to regard the
DσC as the deconfining order parameter, at least in PLσM.
Such a conclusion is robust when considering the improved
quark backreaction effect in this model, since the deconfin-
ing transition is softened.
Moreover, we confirm that the DσC obtained in LσM

shows a similar T-dependence to that in PLσM, even
though the center symmetric glue potential is not consi-
dered. In this case, the only peak of the T-derivative of the
DσC is located exactly at Tχ

c in the chiral limit, which is
similar to the DPL slope calculated in NJL [25]. This
implies that the rapid rise of DσC in LσM is also totally
driven by chiral transition. Since the DσC in ðPÞLσM is

(c) (d)

(e) (f)

FIG. 6. Similar to Fig. 5, but for T-derivatives of the Polyakov loop, the sigma condensate, and the dual sigma condensate as
functions of T.
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the counterpart of the DPL in (P)NJL, we conclude that
the main result in Refs. [25,26] that the DPL obtained in
NJL-type models without center symmetry only reflects
the chiral transition is also supported in LσM with the
quark field. Moreover, Figs. 3–6 demonstrate that such a
conclusion is still valid in PLσM.

B. Dual meson condensates for nonzero μI in PLσM

We then extend the study to μI > mπ=2 to check
how the DσC evolves with T when the sigma condensate
is suppressed by the pion condensate in PLσM. In
addition, thermal properties of the DπC and DρC are
also investigated. The cases a–d mentioned in Sec. III A
are focused on here. Since the dimensional regularization
cannot be used directly in the presence of the pion
condensate, we choose only the UV cutoff method in
the eMF calculations. The cutoff Λ ¼ 600 MeV is still
chosen, since it works quite well at zero μI. In the
following, TI3

c is used to denote the melting temperature
of pion superfluidity.

1. ϕ-dependences of the meson condensates

The generalized meson condensates σ, π, and ρ
as functions of ϕ in cases a–d at μI ¼ 80 MeV for

different temperatures are shown in Figs. 7–9,
respectively.7

Figure 7 displays that in the fermion-like region, σðϕÞ is
a concave line for T > TI3

c but a convex one for T < TI3
c , no

matter whether the vacuum term is included or not. This is
distinct with Figs. 1 and 2, where only concave curves
emerge. The difference can be traced back to the fact that
σðϕ ∼ πÞ first increases and then decreases8 with T near
TI3
c . Moreover, Fig. 7 shows that the thermal behavior of σ

in the boson-like region is sensitive to the fermion vacuum

(a) (b)

(c) (d)

FIG. 7. Twisted angle dependences of the sigma condensate σ at μI ¼ 80 MeV for different temperatures in the two-flavor PLσMwith
mσ ¼ 600 MeV. Panels (a)–(d) correspond to cases a–d, respectively. The meanings of cases a–d are same as those described in the
captions of Figs. 1 and 2.

7The reason for choosing μI ¼ 80 MeV in our calculations is
that in a quite narrow window around this value, the sigma
condensate is still comparable to the pion condensate T < TI3

c
even if the former is suppressed obviously by the latter. For
μI ≫ mπ=2, we confirm that the sigma condensate becomes
negligible for T < TI3

c and the melting of pion condensate
becomes very steep, which is similar to the PNJL result [45];
the maximum slope of the dual pion condensate is still located
near TI3

c .
8This is also observed in Ref. [45] and other chiral model

studies [52,53]. The reason for such an anomaly is that compared
to the decline of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ π2

p
, π drops more significantly with T

near TI3
c .
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term: it decreases (increases) with T without (with) the
fermion vacuum term.
Figure 8 shows that the ϕ-dependence of π is analogous

to that of σ displayed in Figs. 1 and 2. The similarity can
be understood in this way: For μI > mπ=2, the sigma
condensate partially turns into the pion condensate, and
thus the latter inherits some properties of the former.
Consequently, such a transformation leads to an obvious
modification of σðϕÞ, as demonstrated in Fig. 7.
The ϕ-dependence of the density ρ is shown in Fig. 9.

We see that this quantity is also insensitive to ϕ at low
temperatures. All panels in Fig. 9 display that with
increasing T, ρ decreases near ϕ ∼ π but increases around
ϕ ∼ 0. Thus, only convex lines appear in Fig. 9.
Note that as functions of ϕ, the condensates π and σ in

PLσM with the vacuum contribution are qualitatively con-
sistent with the corresponding PNJL results in Ref. [27].

2. Thermal behaviors of dual meson condensates

The Polyakov loop, the sigma and pion condensates, the
dual sigma and pion condensates, and the dual isospin
density as functions of temperature at μI ¼ 80 MeV are
shown in Fig. 10, where panels (a)–(d) correspond to cases
a–d, respectively. The T-derivatives of these quantities are
displayed in Fig. 11.
Figure 10 shows that the T-dependences of the Polyakov

loop and of sigma and pion condensates are all analogous to

those obtained in PNJL [45]. In particular, with increasingT,
the sigma condensate almost keeps unchanged or even
increases slowly up to TI3

c and then declines. As mentioned,
the unnatural thermal behavior of σ is due to the fast dropping
of π [52,53]. Figure 10 indicates that the DπC and DρC
always increase with T, which resemble the Polyakov loop.
In contrast, panels (a)–(c) display that theDσC first decreases
with T up to TI3

c and then increases, which is quite different
from the Polyakov loop; Panel (d) shows that the DσC keeps
almost unchanged for T < TI3

c and increases quickly with T
for T > TI3

c . Note that in case d, the DσC first decreases
(slowly) with T, as is also observed for a smaller μI.
The abnormal T-dependence of Σ1

σ can be directly
attributed to the nonconcave lines of σðϕÞ displayed in
Fig. 7, or the unusual T-dependence of σ mentioned above.
Figure 10 clearly shows that when σ increases with T, Σ1

σ

decreases, and vice versa. This gives further evidence that
Σ1
σ is quite sensitive to σ but not Φ (at least in this model),

since the latter always increases with T. Actually, panels (c)
and (d) show that the absolute value of Σ1

σ remains very
small in the temperature range TP

c < T < TI3
c where Φ has

already become large enough. Such an anomaly is also
in agreement with the PNJL result [27], where the DPL
exhibits similar thermal behavior.
Accordingly, the maximum slope of Σ1

σ is still located
around Tχ

c, as shown in Fig. 11. Figure 11(a) displays that

(a) (b)

(c) (d)

FIG. 8. Similar to Fig. 7, but for the twisted angle dependences of the pion condensate π.
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(a) (b)

(c) (d)

FIG. 10. The Polyakov loop, the sigma and pion condensates, the dual sigma and pion condensates, and the dual isospin density as
functions of T at μI ¼ 80 MeV in the two-flavor PLσMwith mσ ¼ 600 MeV. Panels (a)–(d) correspond to cases a–d, respectively. The
meanings of cases a–d are same as those described in the captions of Figs. 1 and 2.

(a) (b)

(c) (d)

FIG. 9. Similar to Fig. 7, but for the twisted angle dependences of the isospin density ρ.
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−π0, Σ1
π
0, and Φ0 each have one peak (and a bump near Tχ

c),
and the corresponding critical temperatures TI3

c , Tdπ
c , and

TP
c are almost identical. Note that Tdπ

c ≈ TP
c here is just a

coincidence. We see that −σ0 and Σ1
σ
0 each have a dip at TI3

c .
Compared to Figs. 11(a) and 11(b) indicates that the chiral
restoration, the deconfining transition, and the melting of
the pion condensate all become milder and the correspond-
ing critical temperatures become smaller due to the
improved unquenching effect. We see that the separation
between TP

c and TI3
c gets larger, but Tdπ

c ≈ TI3
c still holds in

Fig. 11(b). The eMF results shown in Figs. 11(c) and 11(d)
display that Tdπ

c is considerably larger than TP
c but still

equal to TI3
c . In contrast to Fig. 11(c), the peak of Σ1

π
0 (π0)

near TP
c is significantly lower than that near TI3

c (at TI3
c ) due

to the improved quark backreaction effect. Thus, all panels
in Fig. 11 indicate that Tdπ

c just denotes the melting
temperature of pion condensate, even though Σ1

π behaves
like the Polyakov loop. We see that the T-dependences of
the dual pion condensate and its T-derivative shown in
Figs. 10 and 11 are similar to those of the dual sigma
condensate and its slope displayed in Figs. 3 and 4,
respectively. This is also in agreement with the PNJL
results in Ref. [27].
Let us turn to the quantity DρC. We use Tρ

c to denote the
highest peak of Σ1

ρ
0. Figure 11(a) displays that Σ1

ρ
0 peaks

near TP
c (or TI3

c ) and Tχ
c, and the first peak is only slightly

higher than the second, and thus Tρ
c ≈ TP

c or Tρ
c ≈ TI3

c .
However, Fig. 11(b) shows clearly that Tρ

c ≈ Tχ
c, since the

deconfining transition becomes smoother. So, the sMF
calculations suggest that the DρC is more sensitive to chiral
or deconfining transition depending on model parameters.
The eMF results in Figs. 11(c) and 11(d) show that the DρC
is more sensitive to chiral transition: we see that the slope
of Σ1

ρ at T
χ
c is obviously larger than that at TP

c , but there is
no obvious peak near Tχ

c, since the slope still increases
slowly with T for T > Tχ

c.

C. Dependence on the parametrization

To check the impact of the parametrization, we also
study the DσC in PLσM using the improved polynomial
glue potential Upol

glue, which was adopted in Ref. [31].
Following Ref. [31], the dimensional regularization is
employed, and the parameters m0

q ¼ 300 MeV, mσ ¼
540 MeV, and Tglue

c ¼ 210 MeV are chosen in our eMF
calculation.
In Fig. 12, we show the resulting Polyakov loop, sigma

condensate, and DσC and their T-derivatives as functions
of T for zero μI . Note that besides the case with
mσ ¼ 540 MeV, the eMF results for mσ ¼ 500 MeV are

(a) (b)

(c) (d)

FIG. 11. Similar to Fig. 10, but for T-derivatives of the Polyakov loop, the sigma and pion condensates, the dual sigma and pion
condensates, and the dual isospin density as functions of T.
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also displayed in Fig. 12 for comparison, and the sigma
mass dependence will be discussed in the next section.
Differently from results using U log

glue, Fig. 12(a) shows thatΦ
increases more smoothly with T near TP

c . Consequently,
Φ0, −σ0, and Σ1

σ
0 each only peak near Tχ

c, as displayed in
Fig. 12(b). We thus still obtain Tdc

c ≈ Tχ
c, since Σ1

σ
0 has no

peak near TP
c . The eMF results using the polynomial glue

potential strongly suggest that the DσC cannot be used to
indicate the deconfining transition. This conclusion is also
robust in the sMF calculation using Upol

glue due to the similar
deconfining transition but the steeper chiral transition.
Similarly, we verify that the T-derivatives of DσC, DπC,

and DρC have no peaks induced by the Polyakov loop
when Upol

glue is used for μI ¼ 80 MeV. Thus, in the poly-
nomial parametrization of the glue potential, none of the
three dual condensates obtained in PLσM can be used as
indicators of deconfining transition.

D. Dependence on the sigma meson mass

The sigma meson, f0ð500Þ [previously denoted
f0ð600Þ] is a rather broad resonance, ð400 − 550Þ−
ið200–350Þ MeV. In Ref. [30], mσ ¼ ð400–600Þ MeV is
considered as the reasonable range in the sMF calculation.
We stress that our main conclusion will not change if a
smallermσ is adopted in sMF calculations. It is well known
that decreasing mσ in ðPÞLσM makes the chiral transition
steeper, and thus the DσC should increases more swiftly
near Tχ

c. As demonstrated in Ref. [30], the deconfining
transition region shrinks with decreasing mσ, but decreas-
ing Tglue

c broadens it towards lower temperatures. Thus,
the influence of decreasing mσ on the evolution of the
Polyakov loop is mild. This means that the highest peak
of the DσC slope in the sMF calculation should still be
near Tχ

c.

Actually, it was found in Ref. [30] that in order to
reproduce the lattice pressure, the Tglue

c should be lowered
when decreasing mσ and vice versa: besides the parameter
set mσ ¼ 500 MeV and Tglue

c ¼ 210 MeV, the optimal
Tglue
c for mσ ¼ 400ð600Þ MeV is 180(250) MeV in the

2þ 1 flavor case with the improved glue potential U log
glue. In

Fig. 13, we show the sMF results for T-derivatives of the
Polyakov loop, the sigma condensate, and the dual sigma
condensates as functions of T at vanishing μI in the two-
flavor PLσM using the above three sets of parameters. As
expected, we see that with decreasing mσ , Tχ

c moves
towards lower temperatures and the chiral transition
become steeper. In all three cases, the peak of Σ1

σ
0 near

Tχ
c is significantly higher than that near TP

c , and thus
the relation Tdσ

c ≈ Tχ
c always holds. Actually, comparing

Fig. 4(b) with Fig. 13(b) (both panels share the same Tglue
c ),

we can see that the chiral transition is quite sensitive to the
choice of mσ, but the conclusion Tdσ

c ≈ Tχ
c is not. Similarly,

comparing Fig. 4(b) with Fig. 13(c) (both panels share
the same mσ), we can see that the deconfining transition is
quite sensitive to the choice of Tglue

c , but the conclusion
Tdσ
c ≈ Tχ

c is not.
In the eMF calculation, we have studied cases with mσ ¼

540 and 600 MeV, which is near the upper mass limit of
f0ð500Þ. We have also tried to perform the eMF calculation
at zero μI for smaller sigma mesonmasses. In Fig. 12(b), one
can see that the peak of Σ1

σ
0 near Tχ

c tends to vanish when the
sigma meson mass is reduced from 540 MeV to 500 MeV.
Actually, the values of σðϕÞ around ϕ ∼ 2π and 0 become
complex when T ≳ 204 MeV for mσ ¼ 500 MeV. We find
that near the boson-like region (ϕ ∼ 2π; 0), σðϕÞ has no real
solutions about mσ < 500 MeV when T is near and above
Tχ
c, no matter what logarithmic or polynomial glue potential

is used. Thus, in this case, the DσC cannot be calculated

(a) (b)

FIG. 12. (a) T-dependences of the eMF results for the Polyakov loop, the sigma condensate, and the dual sigma condensate, and
(b) their T-derivatives at zero μI in the two-flavor PLσM using the improved polynomial glue potential, Upol

glue. The dimensional

regularization is adopted, and Tglue
c ¼ 210 MeV andmσ ¼ 540 MeV are chosen according to Ref. [31] (thick lines). The eMF results for

mσ ¼ 500 MeV are also shown for comparison (thin lines); the dual sigma condensate and its slope are plotted only up to T ¼ 204 MeV
in this case, since σðϕÞ becomes complex near the boson-like region (ϕ ∼ 2π; 0) for T ≳ 204 MeV.
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according to the definition in Eq. (24). This may reflect some
limitation of the current method for the calculation of the
dual observables, and we do not address this issue in this
paper. Note that there is no such problem in the sMF
calculation for mσ < 500 MeV, as shown in Fig. 13.
On the other hand, we also perform the sMF (eMF)

calculation using mσ ¼ 500ð700Þ MeV at μI ¼ 80 MeV.
We confirm that the obtained results are qualitatively
consistent with the corresponding sMF (eMF) calculations
for mσ ¼ 600 MeV shown in Figs. 10 and 11.

E. Discussions

Our calculations suggest that the slope of the dual sigma
condensate at zero μI in PLσM depends on the parametriza-
tion of the glue potential: It exhibits double peaks for the
logarithmic parametrization, and the highest one is deter-
mined by chiral transition rather than the increase of the
Polyakov-loop expectation value; on the other hand, it has
only one peak which is determined by chiral transition for
the polynomial parametrization. As a function of T, the slope
of the dual sigma condensate behaves like the T-derivative of
the minus sigma condensate rather than that of the Polyakov
loop. Namely, the dual sigma condensate just reflects the
same phase transition information as the sigma condensate
does. In this sense, it seems that the dual meson condensates
obtained in the two-flavor PLσM of QCD are not qualified

order parameters for deconfinement, even when the center
symmetry is considered. This conclusion is consistent with
(P)NJL studies [25–27]. Our study suggests that this con-
clusion is favored by the quark-improved glue potential.
Moreover, such a conclusion is also verified at finite μI.
The similar results in PLσM=PNJL may be indicative for

QCD. First, the center symmetry breaking is large due to
the light quarks. So it is very likely that some dual
observables, such as the DPL or DσC, are insensitive to
deconfinement or Polyakov loop, unless the dynamical
quarks are heavy enough. Second, formally, the definition
of the DPL (DσC) is naturally related to the quark (sigma)
condensate. Thus, it is not strange that the DPL (DσC) is
more sensitive to the chiral transition. Such a viewpoint is
supported by the recent study of Dirac-mode expansion at
finite imaginary chemical potential [54]: it shows that even
VEVs of some quark bilinears can be expressed as the
Polyakov loop and its conjugate for large quark masses; the
quark number density (also the quark condensate) is still
strongly dependent on low-lying Dirac-modes for small
quark masses.9 Thus, it might be misleading to conclude

(a) (b)

(c)

FIG. 13. Similar to Fig. 4(b), but for (a) mσ ¼ 400 MeV and Tglue
c ¼ 180 MeV, (b) mσ ¼ 500 MeV and Tglue

c ¼ 210 MeV, and
(c) mσ ¼ 600 MeV and Tglue

c ¼ 250 MeV.

9It is reported in Ref. [54] that the sign of the quark number
density is insensitive to low-lying Dirac modes, which supports
the quark number holonomy [10] as the deconfinement indicator.
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the coincidence of chiral restoration and deconfinement
through studying the DPL (DσC).
Of course, the PLσM and PNJL are just simple models,

which may only partially reflect the possible relation
between the (dynamically) center symmetry breaking
and a dual observable existing in QCD. Especially, as
modified chiral models PLσM and PNJL are still more
sensitive to chiral dynamics by construction, even the
Polyakov-loop dynamics is included by considering the
improved quark backreaction effect. So, the conclusion
obtained in ðPÞLσM=ðPÞNJL that the DPL or DσC may
only be suitable to indicate chiral transition may not be
really true in QCD. In addition, the investigations in PLσM
and PNJL do not exclude the possibility that some dual
observables may be sensitive to deconfinement but insen-
sitive to chiral transition.
In addition, there exists uncertainty on how to calculate

the dual quark condensate. As mentioned, σðϕÞ in full QCD
has the Roberge-Weiss symmetry, which leads to zero Σð1Þ

σ

according to the integration in Eq. (24). One way to evade
this problem is to break the Roberge-Weiss symmetry by
hand, and the ordinary method is to first fix the gauge
configuration under the antiperiodic boundary condition
and then use it for other ϕ [15]. However, there is no
justification for such a method so far. To avoid this
uncertainty, it was proposed recently to use the Roberge-
Weiss periodic σðϕÞ to perform the integration (24) with a
modified integral range ϕ ∈ ð−π=3; π=3Þ in Ref. [49]. The
PNJL study suggests that the resulting dual quark con-
densate Σð1ÞðTÞ behaves like the quark condensate, but
Σð3ÞðTÞ behaves like the Polyakov loop (for more details,
see Ref. [49]).
Generally, deconfinement is associated with the libera-

tion of degrees of freedom, manifested by the rapid rise in
bulk thermodynamical quantities, such as the pressure,
energy density, etc. Among them, the appropriate combi-
nations of fluctuations and correlations of different con-
served quantum numbers—for example, χB2 − χB4 and
χBS31 − χBS11—directly probe the liberation of quark degrees
of freedom [55,56]. It is interesting to study whether dual
observables constructed from these bulk thermodynamical
quantities are sensitive to deconfinement. There is a
discussion on the dual pressure as the order parameter in
Ref. [57]. Further investigation on this topic is needed
which is beyond the scope of this paper.
Note that recent lattice calculations [3,4] show that

in the temperature region where the quark condensate
drops rapidly, the renormalized Polyakov loop is still
very small (∼0.1 near Tχ

c) and changes quite mildly. This
implies that there might be no obvious connection
between the chiral and deconfining transitions described
in terms of these quantities. In contrast, the Polyakov
loop calculated in effective models is relatively large
near Tχ

c, reaching unity quickly. This big discrepancy has
been discussed recently by Pisarski and Skokov in the

chiral matrix model [58],10 and the reason is still unclear.
It was argued that the difference can be partially
attributed to the fact that ΦðhA0iÞ > hΦi [30]. On the
other hand, the entropy of static quarks calculated in
lattice simulation [4] suggests that the deconfinement
and chiral transitions happen at similar temperatures.
Thus, whether the chiral and deconfining transitions
have a close relation or not is still a subtle problem, and
the sensitive probe of deconfinement needs to be further
investigated.

IV. CONCLUSION

Dual meson condensates as the possible order parame-
ters for center symmetry are tested in PLσM. To our
knowledge, this is the first paper employing the PLσM
at finite imaginary chemical potential. We mainly study the
thermal property of the dual sigma condensate. The dual
pion and vector meson condensates at μI > mπ=2 are also
investigated. We focus on roles of the fermion vacuum loop
contribution, the parametrization of the glue potential, and
the improved unquenching effect.
At zero density, we find that the DσC really behaves like

the thin or dressed Polyakov loop. The T-derivative of the
DσC may have double or single peaks, which depends on
the parametrization of the glue potential. We verify that the
peak structure of the slope of the DσC is quite similar to
that of the sigma condensate but not the Polyakov loop. So,
the crossover temperature determined by the DσC just
indicates chiral restoration rather than deconfining transi-
tion. This conclusion is favored by the quark-improved
glue potential, since the deconfining crossover is softened,
no matter whether the fermion vacuum contribution is
included or not. Qualitatively, the evolution of the DσC
with T in PLσM is consistent with that obtained in the LσM
without the glue potential.
For μI > mπ=2, the DσC shows abnormal thermal

behavior: it first decreases or almost remains unchanged
with T and then increases, which is distinct with the
Polyakov loop. We reveal that with increasing T, the
DσC increases if σ decreases, and vice versa. The anomaly
gives further evidence that the DσC is quite sensitive to
chiral dynamics but not center symmetry. In contrast, the
DπC and DρC still exhibit similar T-dependence to the
Polyakov loop. We confirm that the maximum slope of
the DπC does not indicate the deconfining crossover, but
the restoration of Uð1ÞI3 symmetry. Without the fermion
vacuum contribution, whether the DρC is more sensitive to
chiral or deconfining transition depends on the model
parameters: it is more sensitive to chiral transition when
the improved unquenching effect is considered; when

10The deconfining crossover temperature TP
c extracted from

the Polyakov loop is almost the same as Tχ
c in this model, which

can be achieved by using a quite small mσð< 400 MeVÞ.
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including the Dirac sea contribution, the rapid rise of the
DρC is also more sensitive to chiral restoration.
We thus conclude that the dual meson condensates are

not appropriate order parameters for deconfinement in
PLσM (also in LσM). Our results are qualitatively con-
sistent with the calculations in NJL at zero density [25,26]
and PNJL at μI > mπ=2 [27]. We argue that the reason can
be attributed to either the fact that the explicit center
symmetry breaking is large due to light quarks and thus not
all the dual observables are qualified order parameters for

deconfinement, or the limitation of simple models in which
some intrinsic connection between the center symmetry
and a dual observable is ignored.
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