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We calculate the production cross section and the transverse single-spin asymmetry for pion in
p↑ þ p → π0 þ X. Our computation is based on existence of the instanton induced effective quark-gluon
and quark-gluon-pion interactions with a strong spin dependency. In this framework we calculate the
cross section without using fragmentation functions. We compare predictions of the model with data from
RHIC. Our numerical results, based on the instanton liquid model for QCD vacuum, are in agreement with
unpolarized cross section data. The asymmetry grows with the transverse momentum of pion kt in
accordance with experimental observations. It reaches a value ∼10% but at higher kt than experiment
shows.
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I. INTRODUCTION

Transverse single-spin asymmetries (TSSAs) have been
puzzling physicists more than three decades. They are
among the most intriguing observables in hadronic physics
since first FermiLab measurements for pþ Be → Λ↑ þ X
reaction [1]. Since then, TSSA are observed in many
different reactions, including mesons production in pp
and SIDIS. Results of experiments are in contradiction with
predictions from the perturbative quantum chromodynam-
ics (pQCD) and the naive collinear parton model. It was
expected that asymmetries should be extremely small [2].
For comprehensive introduction to the problematic we refer
the reader to review [3]. In this paper we focus on
transverse single-spin asymmetry for pion production in
nucleonnucleon scattering. It is often called analyzing
power and denoted as AN . Such measurements were done
at FermiLab by E581/E704 Collaborations [4]. Later,
similar measurements at higher energy was performed at
RHIC [5]. Unambiguous effects were measured and they
triggered renewed interest on TSSAs.
A popular approach to describe observed spin effects is

based on the extension of the collinear parton model with
inclusion of parton’s transverse motion. It utilizes the
transverse momentum dependent (TMD) factorization

scheme. However, the factorization theorem has not been
proven generally for such case [6]. It has so far only
been proven for some classes of processes: the Drell-
Yan ðqþ q̄ → lþ þ l−Þ [7] and semi-inclusive DIS [8].
kT-dependent factorization is, therefore, an assumption,
although a well-accepted one. Efforts are ongoing to
establish the theoretical basis more firmly. We refer the
reader to papers with discussions of the universality [9–12]
and TMD pdf’s evolution [13,14]. Moreover, the domi-
nance of kT effects among other contributions is disputed.
For example, effects of parton virtuality, target mass
corrections could be of the same order of magnitude as
transverse parton motion [15].
Two mechanisms for TSSA have been proposed in the

framework of noncollinear parton model. The first is the
Collins mechanism, when transversity distribution in com-
bination with spin-dependent, chiral-odd fragmentation
function (FF) can give rise TSSA [16]. The Collins FF
describes the azimuthal asymmetry of a fragmented hadron
in respect to struck quark polarization. Work [17,18] has
suggested that it is difficult to explain the large TSSA
entirely in terms of the Collins effect.
The second mechanism was suggested by Sivers [19].

The idea is that parton distributions are asymmetric in the
intrinsic transverse momentum kT within the proton. The
Sivers effect can exist both for quarks and gluons. This
intrinsic asymmetry is represented by the Sivers function of
the unpolarized partons in a transversely polarized proton.
Calculations based on the Sivers effect for E704 data and
other results can be found in [20,21].
Other direction for investigation is the twist-3 approach.

It was pointed out that three-parton correlators may give
rise to TSSAs [22]. Qiu and Sterman examined higher-twist

*korchagin@impcas.ac.cn
†zhangpm5@mail.sysu.edu.cn
‡Deceased.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 034012 (2021)

2470-0010=2021=103(3)=034012(15) 034012-1 Published by the American Physical Society

https://orcid.org/0000-0002-1424-3156
https://orcid.org/0000-0002-1737-3845
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.034012&domain=pdf&date_stamp=2021-02-15
https://doi.org/10.1103/PhysRevD.103.034012
https://doi.org/10.1103/PhysRevD.103.034012
https://doi.org/10.1103/PhysRevD.103.034012
https://doi.org/10.1103/PhysRevD.103.034012
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


contributions due interference between quark and gluon
fields in the initial polarized proton [23]. Similar study was
performed by Kanazawa and Koike for quark-gluon inter-
ference in the final state[24].
In the present paper we propose an alternative mecha-

nism for TSSA in pp → πX, based on the existence of
novel effective interaction induced by instantons. The
instantons describe sub-barrier transitions between the
classical QCD vacua with different topological charges.
In previous work [25] we calculated TSSA for quark-quark
scattering and showed that such mechanism gives sig-
nificant TSSA. However, generalization of that result to
the case of real hadron scattering is unclear. Calculation
in the standard, pQCD-like way with introduction of
fragmentation functions is not self-consistent. Extraction
of FFs requires an evolution equation and was done in the
framework of pQCD without considering an additional
nonperturbative low-energy interaction. The new vertex
may give significant contribution to the evolution [26].
Reanalyzing data with the new vertex and modified
evolution will not give new information since we will
introduce more parameters.
Fortunately, the low-energy effective interaction gener-

ated by instantons provides us the other solution. It contains
a pion-quark-gluon vertex. In such case, we do not need any
fragmentation function and, as a result, we reduce the
number of parameters in the model. Formation of pion
happens at the short distance of the instanton scale≈0.3 fm,
which is smaller than distances of confinement dynamics.
The other important consequence is breaking of the pQCD
factorization. Scattering of partons and hadronization are
coherent at the instanton scale. It might be a cornerstone of
various phenomena observed in high energy reactions in the
few GeV range for the transferred momentum.
This paper has the following structure. Section II gives a

brief introduction to the instanton generated interaction. In
Sec. III we discuss calculation for pion production cross-
section and then, in Sec. IV, we calculate TSSA. Section V
is dedicated to numerical analysis and discussion.

II. INSTANTON GENERATED INTERACTION

Our calculation for TSSA is based on the presence of
the intrinsic spin-flip during the quark-gluon interaction
already on the quark level. The generating functional for
such nonperturbative interaction was obtained previously
[27]. Later it was generalized in order to preserve the chiral
invariance [28]. The generalized interaction Lagrangian has
the form

LI ¼ −igs
μa
4mq

ψ̄ta½σμνeiγ5 τ⃗·ϕ⃗=Fπ �ψGa
μν; ð1Þ

where gs is the strong coupling constant, μa is the
anomalous quark chromomagnetic moment(AQCM), mq

is the constituent quark mass, ta are SUð3Þ color matrices,

σμν ¼ 1
2
½γμ; γν�. τ⃗ are Pauli matrices acting in the flavor

space, ϕ⃗ is the pion field, Fπ ¼ 93 MeV is the pion decay
constant. Ga

μν is the gluon field strength. This effective
interaction is obtained by expanding t’ Hooft interaction in
the power series in the gluon field strength, assuming a big
spatial size of the gluon fluctuations.
Based on the Lagrangian (1), the full interaction vertex is

Ua
μ ¼ igstaðγμ − σμνqνFðk1; k2; qÞeiγ5 τ⃗·ϕ⃗=Fπ Þ: ð2Þ

The first term γμ corresponds to usual pQCD interaction.
The second term is from effective low-energy action
Eq. (1). k1;2 are the momenta of incoming and outgoing
quarks, q ¼ k2 − k1. The form factor F is calculated in the
instanton liquid model [28,29]:

Fðk1; k2; qÞ ¼
μa
2mq

Φq

�jk1jρc
2

�
Φq

�jk2jρc
2

�
FgðjqjρcÞ;

ΦqðzÞ ¼ −z
d
dz

ðI0ðzÞK0ðzÞ − I1ðzÞK1ðzÞÞ;

FgðzÞ ¼
4

z2
− 2K2ðzÞ; ð3Þ

where are the IνðzÞ and KνðzÞ are the modified Bessel
functions. ρc ≈ 1.67 GeV−1 (1=3 fm) is the average instan-
ton size. In our calculations all quarks are on mass shell,
therefore Φq ¼ 1 and we will omit it further.
The AQCM μa is calculated in the framework of the

instanton liquid model [27] is

μa ¼ −
3πðmqρcÞ2
4αsðρcÞ

: ð4Þ

AQCM in pQCD appears at higher order αs corrections.
Therefore, it has a small value μpQCD ¼ αs=2π ≈ 10−2. In
contrast, the instanton generated AQCM is of the order of 1.
Moreover, instanton liquid model gives the sign of AQCM
and, in its turn, determines the sign of observed TSSA.
Equation (4) is obtained in the massless chiral limit. One
should not be confused that the μa increases with the quark
mass.mq is the constituent mass and this equation could not
be applied for heavy c, b, and t quarks.
If we expand the exponent in Eq. (2) into series and cut it

on the second term, we get three types of vertices: traditional
perturbative, chromomagnetic, and the vertex with pion,

Ua
μ ¼ igsta

�
γμ − σμνqνFðk1; k2; qÞ

− i
τ⃗ ϕ⃗

Fπ
γ5σμνqνFðk1; k2; qÞ

�
: ð5Þ

We neglect the higher order terms. Their contribution to the
cross section is expected to be suppressed in the large Nc
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limit by factor 1=Nc becauseFπ ∼
ffiffiffiffiffiffi
Nc

p
[30]. Moreover, due

to increasing of the final particles number, it should be
suppressed at large xF where TSSA is observed.

III. CALCULATION OF CROSS SECTION

We are interested in process p↑p → πX. Three parton
subprocesses give contribution to the cross section. They
are shown on Fig. 1. The diagram (a) was calculated before
in [31] using an assumption that the pion fragments in the
same kinematic region as the quark qþ, i.e., the pion and
quark flight approximately in the same direction. In the
present work we implement more rigorous calculation
for the phase space and calculate additional contributions
shown on panels (b) and (c) of Fig. 1. The contribution
(b) has the chromomagnetic vertex on the bottom quark line
instead of the perturbative one. The diagram (c) qþ q →
2π þ 2q is essentially different. In our model we have the
pion directly in the interaction vertex and should consider
the process where the pion is inside of an unobserved
inclusive state X. As the first step we study the partonic
cross section and its features. Then we calculate the hadron
cross section as convolution of partonic one with parton
densities.

A. Parton cross section

In massless limit the parton cross section is

dσ̂ ¼ jMj2
2ŝ

dR̂i; ð6Þ

where dR̂i is the phase space for i number of particles.
In our case it can be three dR̂3 and four dR̂4. We use the hat
symbol to emphasize that the phase space is expressed in
terms of momenta and energies calculated in the parton
c.m. frame. This frame moves in respect to the hadron c.m.
frame. ŝ is the total energy of colliding partons.
In calculation we use the following Sudakov decom-

position for momentum vectors:

k ¼ xpþ þ βkp− þ k⊥;
qþ ¼ αþpþ þ βþp− þ qþ⊥;
q− ¼ α−pþ þ β−p− þ q−⊥;
q ¼ αpþ þ βp− þ q⊥;
l ¼ αlpþ þ zp− þ l⊥: ð7Þ

x and z are parts of longitudinal momentum of the initial
quarks carried by k and l pions correspondingly. pþ and p−
are light-cone vectors:

pþ ¼ ð
ffiffiffî
s

p
=2;

ffiffiffî
s

p
=2; 0⊥Þ; p− ¼ ð

ffiffiffî
s

p
=2;−

ffiffiffî
s

p
=2; 0⊥Þ;

ŝ ¼ ðpþ þ p−Þ2; p2þ ¼ p2
− ¼ 0: ð8Þ

Using this momenta decomposition the phase space dR̂3

becomes

dR̂3 ¼
1

4ð2πÞ5
dxd2k⊥d2q⊥
xð1 − xÞŝ : ð9Þ

Integration over the transverse transferred momenta q⊥ can
be transformed to integration over the invariant mass
M2

k ¼ ðkþ qþÞ2:

dR̂3 ¼
1

27π5
dxd2k⊥
x2ŝ

Z
E2
sph

0

dM2
k

Z
π

0

dϕ̃; ð10Þ

where Esph is the sphaleron energy, ϕ̃ is the azimuthal angle
of an auxiliary vector q̃⊥ ¼ xq⊥ − k⊥ (see Appendix A for
details).
Sphaleron energy Esph ¼ 3π

2ρc
[28,32] determines the

height of potential barriers between different topological
vacuums. Instanton describes tunneling through that
barrier, therefore the instanton induced vertex works only
at energies less than the height of the barrier.
For diagram Fig. 1(c) we need the 4-particle phase space.

Using Sudakov decomposition (7) it is

dR̂4 ¼
dxdzd2k⊥d2l⊥d2q⊥

8ð2πÞ8ŝxð1 − xÞzð1 − zÞ : ð11Þ

Similar to dR̂3, we change integration over transverse
momenta to integration over the invariant mass M2

l ¼
ðlþ q−Þ2, d2l⊥ → dM2

l dϕ. Notice that here we replace
d2l⊥, not d2q⊥,

dR̂4 ¼
dxdzd2k⊥d2q⊥dM2

l

211π7ŝxð1 − xÞ : ð12Þ

Next step is calculation transition amplitudes Mða;b;cÞ.
A letter corresponds to a panel on Fig. 1. The amplitude
for the first diagram Fig. 1(a) is

(a) (b) (c)

FIG. 1. Contributions to the pion production cross section and
notation for momenta. The small dot denotes the perturbative
vertex. The white blob is for the instanton induced interaction,
it corresponds to the second term in Eq. (5). The shaded blob
corresponds to the last term in Eq. (5) with the pion. Sub-figures
correspond to scattering amplitudes Mða;b;cÞ respectively.

INSTANTON INDUCED TRANSVERSE SINGLE SPIN … PHYS. REV. D 103, 034012 (2021)

034012-3



jMðaÞj2 ¼
X
f;s;c

gs
Cðq2Þ
Fπ

ðūqþσμλqλγ5taupþÞ

× ðūq−iγνta
0
up−

ÞDaa0
μν ðq2Þ × ½H:c:�; ð13Þ

where
P

f;s;c short-notes averaging over spin, color,
and flavor summation for corresponded pion(π0, π�).
Daa0

μν ðq2Þ ¼ −igμνδaa
0
=q2 is the gluon propagator. Cðq2Þ

can be thought as an effective coupling:

Cðq2Þ ¼ gs
μa
2mq

Fgðq2Þ ¼ −
3π3=2ρ2cmq

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αsðρcÞ

p Fgðq2Þ: ð14Þ

Note that αs in the nonperturbative vertex is taken at the
instanton size scale. This is the reason why we keep one gs
inside of Cðq2Þ and another, from perturbative vertex,
outside. They supposed to be taken at different scales.
Further, we will omit writing q-dependency of C for
shortness.
We are interested in forward scattering. At such kin-

ematics, for simplicity of calculation, we use Gribov’s
decomposition for gμν in the gluon propagator.

gμν ¼
2pþμp−ν

ŝ
þ 2pþνp−μ

ŝ
þ g⊥μν ≈

2pþμp−ν

ŝ
: ð15Þ

Such decomposition allows us to isolate the leading
contributions to an amplitude in the power of ŝ and
factorize fermion traces. Using it we get for the amplitude
(see Appendix B)

jMðaÞj2 ¼
X
f

8

9
g2s

C2

F2
π

ŝ2ð1 − xÞ
q2⊥

: ð16Þ

We keep the sum over flavor to indicate that expressions for
π�, π0 are different.
In the case of the diagram Fig. 1(b), the difference is only

in the trace over the bottom line,

jMðbÞj2 ¼
X
f;s;c

C2

Fπ
ðūqþσμλqλγ5taupþÞ

× ðūq−iσνρqρta
0
up−

ÞDaa0
μν ðqÞ × ½H:c:�

¼
X
f

8

9

C4

F2
π
ŝ2ð1 − xÞ: ð17Þ

Notice that now the amplitude is proportional to C2,
not gsC.
The amplitude for the two pion contribution qþ q →

2π þ 2q Fig. 1(c) is very similar to the case with one pion
vertex. Now, the trace over the bottom fermion line is
similar to the upper one.

jMðcÞj2 ¼
X
f;s;c

−
C2

F2
π
ðūqþσμλqλγ5taupþÞ

× ðūq−σνρqργ5ta
0
up−

ÞDaa0
μν × ½H:c:�

¼
X
f

8C4

9F4
π
ŝ2ð1 − xÞð1 − zÞ: ð18Þ

Final formulas for contributions to the parton cross section
shown on Fig. 1 are

dσ̂ðaÞ ¼
X
f

Z
0

E2
sph

dM2
k

Z
0

π

dϕ̃
g2sC2

9ð2πÞ5F2
π

1 − x
q2⊥x2

dxd2k⊥; ð19Þ

dσ̂ðbÞ ¼
X
f

Z
0

E2
sph

dM2
k

Z
0

π

dϕ̃
C4

9ð2πÞ5F2
π

1 − x
x2

dxd2k⊥; ð20Þ

dσ̂ðcÞ ¼
X
f

Z
0

E2
sph

dM2
k

Z
0

π

dϕ̃
C4E2

sph

9210π7F4
π

ð1−xÞ
x2

dxd2k⊥: ð21Þ

The detailed derivation of this equation is given in
Appendix B.

B. pp → πX cross section

The next step is to calculate observables on the hadron
level. Differential hadron cross section is a convolution
of parton distribution functions (PDF) and the parton
cross section

Ek
dσ
d3k

¼
X
f

Z
xmax
a

xmin
a

dxa

Z
xmax
b

xmin
b

dxbfðxaÞfðxbÞ
2Ekffiffiffi
s

p
xa

dσ̂
dxd2k⊥

:

ð22Þ

The flavor sum
P

f indicates the proper summation for a
corresponding pion. The explicit formula for the π0

production cross section is

Ek
dσ
d3k

¼ 3

ZZ
dxadxbðfuðxaÞ þ fdðxaÞÞ

× ðfuðxbÞ þ fdðxbÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2T þ x2F

p
xa

dσ̂ðcÞ
dxd2k⊥

þ
ZZ

dxadxbðfuðxaÞ þ fdðxaÞÞ

× ðfuðxbÞ þ fdðxbÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2T þ x2F

p
xa

ðdσ̂ðaÞ þ dσ̂ðbÞÞ
dxd2k⊥

:

ð23Þ

KORCHAGIN, KOCHELEV, and ZHANG PHYS. REV. D 103, 034012 (2021)

034012-4



Factor 3 in the first line is the result of summation over
unobserved pions (π�; π0) in inclusive state X, produced
from the bottom vertex Fig. 1(c). In the case of πþ
production the cross section is

Ek
dσ
d3k

¼ 6

ZZ
dxadxbfuðxaÞðfuðxbÞ þ fdðxbÞÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2T þ x2F

p
xa

dσ̂ðcÞ
dxd2k⊥

þ 2

ZZ
dxadxbfuðxaÞðfuðxbÞ þ fdðxbÞÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2T þ x2F

p
xa

ðdσ̂ðaÞ þ dσ̂ðbÞÞ
dxd2k⊥

: ð24Þ

π− cross section is given by replacing fuðxaÞ → fdðxaÞ.
In order to determine integration limits for xa;b, notice

that one could reduce 2 → 3 and 2 → 4 parton subpro-
cesses to the 2 → 2 case if combines all particles except
the detected pion into an effective particle with the mass
square X2. We could not neglect this invariant mass since it
is of order of s. From

ŝþ t̂þ û ¼ X2; ð25Þ

one could relate xa and xb. Using X2 ≥ 0, maximum and
minimum values for xa and xb are (see Appendix C):

xmin
a ¼ 4x2F

4xF − x2T
; xmax

a ¼ 1; ð26Þ

xmin
b ¼ k2⊥=x

xað1 − xÞs ; xmax
b ¼ 1; ð27Þ

where x ¼ xF=xa.

IV. SINGLE-SPIN ASYMMETRY

Consider scattering of the proton with transverse polari-
zation vector a⃗ and momentum pþ and other unpolarized
proton with momentum p−. In semi-inclusive process the
pion with momentum k is produced.
For the TSSA calculation it is crucial to define a

coordinate system, because the sign of TSSA depends
on it. We choose the standard right-hand coordinate system.
The initial polarized proton moves in þz direction and its
polarization vector is along y axis, Fig. 2. Positive TSSA
means that more pions are produced inþx half-space when
the proton has spin in þy direction.
Transverse single spin asymmetry (or analyzing power)

is defined as

AN ¼ dσ↑ − dσ↓
dσ↑ þ dσ↓

¼ dΔσ
2dσ

: ð28Þ

Arrows ↑ and ↓ denote the spin polarization vector of
the proton in þy and −y direction correspondingly. We
consider only tree-level diagrams for the unpolarized
cross section in the denominator of Eq. (28). As it will
be shown later, it is enough to reproduce cross section data.
Moreover, we expect that higher orders are suppressed by
instanton density and αs.
Polarized parton cross section is related with hadron

cross section as a convolution with polarized PDFs.

dσ↑ ¼
X
f

ZZ
dxadxbfa↑=A↑ðxaÞfðxbÞdσ̂↑ ð29Þ

Δσ ¼ ΔTfa=A ⊗ fb ⊗ Δσ̂: ð30Þ

ΔTfa=A is the transversity distribution—the difference
between the probabilities to find parton a polarized parallel
and antiparallel to the polarization of hadron A.
Transverse polarization state can be represented as

superposition of helicity states:

j↑↓i ¼ 1ffiffiffi
2

p ðjþi � ij−iÞ: ð31Þ

Using this we can rewrite the difference of amplitudes with
opposite transverse polarizations as a product of helicity
amplitudes:

jM↑j2 − jM↓j2 ¼ 2ImðMþM�
−Þ: ð32Þ

�mean helicity of initial parton in the polarized proton. We
sum over polarization of other particles. M� has five parts
shown on Fig. 3. Until now both Mþ and M− contain
spin-flip and non-flip amplitudes. But only the interference
between spin-flip (a,d,e) and non-flip(b,c) diagrams sur-
vives in TSSA. In this light, one could think aboutMþM�

−
as a product of spin-flip and non-flip amplitudes. Leading
contribution into Δσ comes from interference between (a)
and (bþ c) diagrams. We expect that the interference
between (bþ c) and (dþ e) diagrams is suppressed due
to additional αs. Moreover, because they have the same
structure, phase shift between them is small.

FIG. 2. Kinematics of TSSA. The polarized proton with the
momentum pþ moves inþz. The polarization vector a is inþy or
−y direction. The pion momentum lies in zx plane.
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Upper line should have an odd number of chromomag-
netic vertices and the bottom line—an even number or all
perturbative. First we look at the case with all perturbative
vertices on the bottom line.
We use the momentum notation that is shown on Fig. 4.

Sudakov’s decomposition for momentum vectors is as
before, Eq. (7). A new vector q0 is decomposed as:

q0 ¼ α0pþ þ β0p− þ q0⊥: ð33Þ

Δσ̂ is proportional to the interference of spin flip and
nonflip diagrams Eq. (32)

Δσ̂ ¼ 1

2ŝ
2 · 2

X
s;c

Im½AþðB1− þ B2−Þ��dR̂3: ð34Þ

Factor 1=2ŝ is the flux of initial particles. In the numerator
first factor 2 appears because AþðB1− þ B2−Þ� ¼
A�

−ðB1þ þ B2þÞ [33] and the second from Eq. (32).P
s;c symbolically denotes averaging over spin and color

states. Three-particles phase space dR̂3 was calculated
before.
Using Gribov decomposition for gμν we factorize dia-

grams to upper and lower parts. The interference between
first and second diagram on the Fig. 4 is

AþB�
1− ¼ 1

2 · 9

�
2

ŝ

�
3

g3s
C3

F2
π

Z
d4q0
ð2πÞ4

×
Tr½tatbtc�Tr½ta0tb0 tc0 �δaa0δbb0δcc0 ðU1DÞ
q2q20ðq−q0Þ2ðpþ þq0− kÞ2ðp− −q0Þ2

: ð35Þ

U1 and D are products of gamma matrices corresponded
upper and bottom fermion lines respectively. Factors 2 and
9 in the denominator are from averaging over spins of the
unpolarized quark and over color states. The color trace is

Tr½tatbtc�Tr½ta0tb0tc0 �δaa0δbb0δcc0 ¼ −2=3: ð36Þ

We calculate the imaginary part by putting fermions in the
loop on mass shell. After collecting all i and signs in
vertices

ImðAB�
1Þ ¼ −

2=3
2 · 9

�
2

ŝ

�
3

g3s
C3

F2
π

Z
d2q0⊥dα0dβ0

ð2πÞ4
ŝð−2πiÞ2
2 · 2i

×
δððp− − q0Þ2Þδððpþ þ q0 − kÞ2ÞU1D

q2q20ðq0 − qÞ2

¼ −
g3s

54ŝ4π2
C3

F2
π

Z
d2q0⊥
ð1 − xÞ

U1D
q2⊥q20⊥ðq0⊥ − q⊥Þ2

;

ð37Þ

where d4q0 ¼ ŝ
2
dα0dβ0d2q0⊥ was used. Notice that the

loop integral in AB�
1 is restricted by the sphaleron energy,

similar to the phase space integral, ðpþ þ q0Þ2 < E2
sph.

For the upper fermion line we have

U1 ¼ ūpþð−Þq0⊥p−γ5ðpþ þ q0 − =kÞðq⊥ − q0⊥Þp−

× ðpþ þ q − =kÞγ5p−q⊥upþðþÞ
¼ −2ð1 − xÞ2ŝ3ðq20⊥qx − q2⊥q0xÞ; ð38Þ

where subscript x denotes the component of a vector along
x-axis. uð�Þ is the spinor for a quark in the corresponded
helicity state. For the bottom quark line with all perturba-
tive vertices the trace is

D ¼ Tr½ðp− − qÞpþp−pþðp− − q0Þpþ� ¼ 2ŝ3: ð39Þ

The second contribution shown on Fig. 4 is given by
the formula:

ImAB�
2 ¼−

g3s
54ŝ4π2

C3

F2
π

Z
d2q0⊥

U2D
q2⊥q20⊥ðq0⊥−q⊥Þ2

; ð40Þ

U2 ¼ ūpþð−Þq0⊥p−ðpþ þ q0⊥Þðq⊥ − q0⊥Þp−γ5

× ðpþ þ q − =kÞγ5p−q⊥upþðþÞ
¼ 2ð1 − xÞŝ3ðq20⊥qx − q2⊥q0xÞ: ð41Þ

The absence of additional (1 − x) in the trace U2 in
comparison with U1 is compensated by lack of (1 − x)
in denominator of Eq. (40). The trace D is the same.
Therefore, ImðAB�

1Þ and ImðAB�
2Þ differ by the sign and

integration limits over d2q0⊥. Loop integral in AB1 is
limited by the sphaleron energy. In contrast, the loop
integral in AB2 does not have such limit. Because the
integrands are the same in an absolute value and with
opposite sign, we can exclude part of the integration region

(a) (b) (c) (d) (e)

FIG. 3. The set of considered diagrams that give contributions
to the total scattering amplitude. Notation for interaction vertices
is similar to Fig. 1.

FIG. 4. The leading contribution to TSSA. The left loop
diagram we denote as B1, the right one as B2. The tree-level
diagram is A.
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where they are canceled out. Nonzero contribution comes
from region where ðpþ þ q0Þ2 > E2

sph.
Combining these observations, the final result is

dΔσ̂
dxd2k⊥

¼ g3s
27 · 26π7

C3

F2
π

Z
E2
sph

0

dM2
k

Z
π

0

dϕ̃
Z

d2q0⊥

× θðM2
0 − E2

sphÞ
ð1 − xÞ
x2

ðqxq20⊥ − q0xq2⊥Þ
q2⊥q20⊥ðq0⊥ − q⊥Þ2

;

ð42Þ
where M2

0 ¼ ðpþ þ q0Þ2.
We also calculated contributions to TSSA from diagrams

with chromomagnetic vertices on the bottom line (Fig. 5).
There are three possible combinations which give for
the trace:

D1 ¼ 2s3ðq⊥ · q0⊥Þ; ð43Þ

D2 ¼ 2s3ðq2 − ðq⊥ · q0⊥ÞÞ; ð44Þ

D3 ¼ 2s3ðq20 − ðq⊥ · q0⊥ÞÞ: ð45Þ

One should substitute this expressions instead of D in
Eq. (37) and Eq. (40), replacing accordingly couplings gs
and C.

V. NUMERICAL RESULTS AND DISCUSSION

For numerical estimations we use parameters provided
by the instanton liquid model for QCD vacuum [28,29]. We
choose Fπ ¼ 93 MeV, mq ¼ 90 MeV, ρc ¼ 1.6 GeV−1

(0.32 fm). It corresponds to AQCM with the value μa ¼
−0.45 and αðρcÞ ≈ 0.6. For perturbative coupling we use

αsðq2Þ ¼
4π

9 lnðq2=Λ2
QCDÞ

θðq2 − 1=ρ2cÞ; ð46Þ

where ΛQCD ¼ 200 MeV. Choice of ΛQCD does not affect
significantly numerical results. The step-function θ “switches
off” perturbative interaction at momenta lower than the
instanton scale. It regularizes the cross section, removing
Landau pole, and effectively works as a phenomenological
gluon mass. Such procedure can be justified in terms of the
potential between quarks. In the Cornell potential the linear
termstarts to dominate theCoulomb-like term fromonegluon
exchange at distances more than 0.3 fm.
First, we will discuss results for parton cross section

and TSSA in qq → π0X to demonstrate dynamics not

affected by PDFs. Further we use kt ¼ k⊥. Figure 6 shows
contributions of different diagrams from Fig. 1 to the π0

production cross section. One could see that at chosen
parameters contributions of diagrams (a) and (c) are of the
same order while the contribution from (b) is smaller.
The slope of the cross section with kt is determined by the
shape of the form factor Fg. All three contributions have a
similar dependency on x. As expected, at high kt the
diagram (a) with the perturbative vertex dominates.
Esph in Eq. (19) determines minimal kt at which the

whole quark-pion system has nonzero transverse momen-
tum. When jktj > Esph=2, the exchanged gluon has
to have nonzero transverse momentum q⊥ at any x. At
jktj ≤ Esph=2, momenta q⊥ can be zero and we get
divergence. We avoid this by the cut of the perturbative
coupling αs described above. This determines transition

1) 2)D( D( D( 3)

FIG. 5. Additional contributions to TSSA from diagrams with
chromomagnetic vertices on the bottom line.

(a) (d)

(b) (e)

(c) (f)

FIG. 6. Differential cross section qq → π0X as function of kt
(left column) and x (right column). Solid line is for the
contribution of Fig. 1(a). Dashed line is Fig. 1(b). The dotted
line is for the two pion process Fig. 1(c). Parameters are as
described in the text.
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from “flat” behavior of the cross section at small
kt < 1.5 GeV to falling.
Figure 7 shows asymmetry for parton scattering. It is

evident that TSSA changes the sign at some kt. It is due to
the counteracting of two terms in Eq. (42): qxq20 and q0xq

2.
At small kt the first term dominates. q grows with kt and the
second term overcomes the first one. TSSA reach high
value ∼10% at high x and kt. However, for small kt, AN has
peak at smaller x and at bigger x it changes sign.
Figure 8 demonstrates contribution to TSSA from

diagrams with chromomagnetic vertices on the bottom
line from Fig. 5. These contributions are almost canceled
out and the final result does not change significantly.
In order to calculate hadron cross section and asymmetry,

we use set of PDFs provided by NNPDFCollaboration [34].
Results on figures are obtained with NLO parton densities
(valence+sea quarks) taken at the scale Q2 ¼ 1 GeV.
Our results for cross section is depicted on Fig. 9

and shows agreement with data at RHIC. Similar pQCD

calculations usually are sensitive to a choice of fragmenta-
tion functions and scale. Good agreement of forward
rapidity data and NLO pQCD calculation was reported
in [35]. However, there DSS fragmentation function [36]
has been used, which includes previous RHIC data for
fitting. Results of calculation with other fragmentation
function, which do not include RHIC forward rapidity
data to analysis, usually underestimate the cross section by
factor 2 [36]. Overall, for RHIC forward kinematics our
model gives predictions similar to pQCD but using less
parameters.
Now let us look at TSSA. In a nonrelativistic framework

transverse and longitudinal polarized distributions are
equal, ΔTf ¼ ΔLf, since rotations in spin space between
different basis commute with spatial operations. However,
relativistically ΔTf and ΔLf are different. Therefore any
difference between helicity and transversity PDFs is related
to the relativistic nature of parton dynamics inside hadrons.
Unfortunately, polarized transverse distribution is poorly
known [37]. Instead we use the helicity parton densities
ΔLf from NNPDF as an estimation. There are evidences
that longitudinal and transverse distributions are the same
order [38–40]. Moreover, nucleon’s tensor charge has
strong scale dependency and as a result the transversity
distribution may inherit this strong evolution [38,41]. In our
estimations we do not consider evolution for transversity
and unpolarized pdf.
Figure 10 shows results for AN at RHIC energies for

the neutral pion. Our model predictions are close to data
at η ¼ 3.3 and slightly underestimate it. At higher rapidity
discrepancy becomes bigger. AN rises with xF with
maximum asymmetry ≈10% at xF ¼ 0.8. Despite the fact
that the model gives the correct trend of growing asym-
metry, theoretical curves are shifted in kt in comparison
with experimental points. One sees a dependency on

k=1 GeV

k=2 GeV

k=4 GeV

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

x

AN

x=0.2

x=0.5

x=0.8

0 2 4 6 8
–0.05

0.00

0.05

0.10

kt, GeV

AN

FIG. 7. Pion production asymmetry from scattering of con-
stituent quarks. Left: TSSA as function of x for different x. Right:
TSSA as function of k⊥ for x ¼ 0.2, 0.5, 0.8.

Full

D

D1

D2

D3

0.0 0.2 0.4 0.6 0.8 1.0
0.02

0.00

0.02

0.04

0.06

0.08

0.10

q+q 0+X, kt=3 GeV

x

AN

FIG. 8. Contribution of diagrams with AQCM vertex on the
bottom line to the parton level TSSA. Solid line is total result,
long dashed line is result with perturbative bottom vertices. Lines
denoted Di correspond to contributions depicted on Fig. 5.

=3.68

=4

=3.8

=3.3

1.0 1.5 2.0 2.5 3.0 3.5
10–6

10–4

0.01

1

100

p+p 0+X at s =200 GeV

kt , GeV

E
d

d3 k
, µb GeV–2

FIG. 9. Differential cross section for π0 production vs kt for
RHIC. Data are from [5,35].
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pseudorapidity, however data do not have such effect. The
reason for such behavior in our model is that for the same
xF, kt decreases with η. It is evident from Fig. 7 that if kt is
1–2 GeV asymmetry becomes small or changes the sign.
This is what happens at η ¼ 3.7 when xF ≈ 0.4 on Fig. 10.
In the case η ¼ 3.3 it occurs at lower xF and is not so
noticeable.
Figure 11 shows predictions of our model at different xF.

Results from the fit of the Sivers function [43] and twist-3
fit from [44] are also shown. Notice that our model, in
contrast with others, demonstrates asymmetry growing
with kt. Similar to Fig. 10, our theoretical curves are
shifted to higher kt in respect with data points. A possible
reason for “shifted” results is an interference with other

diagrams that we neglected in calculation. This effect
requires further study.
An additional contribution to TSSA induced by instan-

tons was suggested in the papers [45] and [46,47]. It is
based on the results from [48], where the effects of
instantons in the nonpolarized DIS process were calculated.
In this mechanism the effect arises from phase shift in the
quark propagator in the instanton field. This contribution
might be complementary to the effect calculated here.
Interplay between them could be the reason for overall shift
of TSSA to the region of higher kt.
Results for the cross section are sensitive to the value of

constituent quark mass mq, because the nonperturbative
coupling is proportional to mq. In order to describe cross
section data we takemq ¼ 90 MeV. It is in agreement with
the single instanton approximation where mq ¼ 86 MeV
[49]. However, constituent quark masses from the
Diakonov-Petrov model (mq ¼ 350 MeV) [28] and mean
field approximation (mq ¼ 170 MeV) [29] are too big.
The question how does the proposed mechanism inter-

play with the factorization approach requires additional
study. In our model fragmentation and hard rescattering
are coherent. It is clear that instanton generated vertices are
suppressed at high enough kt, factorization restores and
fragmentation must appear from some other process, not
coherent with hard rescattering. If we assume that this
incoherent process is completely contained in fitted frag-
mentation functions, it is impossible to study the inter-
mediate kinematic region where both of them at work. We
need a model for fragmentation. A possible answer is to
calculate fragmentation functions in framework of our
model in a way, similar to NJL models [50,51]. If the
model gives reasonable results for fragmentation function,
it will be possible to study the interplay between coherent
and incoherent regimes.

VI. CONCLUSION

We calculated TSSA and cross section for pion produc-
tion in pp scattering at RHIC energies using the instanton
induced effective interaction. The proposed framework
requires less parameters in comparison with the traditional
pQCD approach where one needs parametrize and fit the
pion fragmentation function.
Predictions of the model for cross section are consistent

with experimental data. Our model produces the big
asymmetry at RHIC kinematics, the same magnitude as
in experiment. However it is shifted to the region of higher
kt in respect to data. Remarkable outcome of our approach
is increase of the asymmetry with transverse momenta of a
final particle at given kinematics. This grow is replaced by a
slow decrease at kt > 5 GeV. Such behavior comes from
a rather soft powerlike form factor of effective vertices and
a small average size of instanton, ρc ≈ 1=3 fm, in QCD
vacuum. Similar dependence of asymmetry in kt is seen in

< >=3.68

< >=3.7

< >=3.3

0.2 0.4 0.6 0.8
–0.05

0.00

0.05

0.10

0.15

0.20

p+p 0+X at s =200 GeV

xF

AN

FIG. 10. TSSA for π0 production on RHIC, data are from
[35,42].

FIG. 11. TSSA at individual xF bins. Data are from [42].
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experiment and was not expected in the models based on
TMD factorization and ad hoc parametrization of Sivers
and Collins functions.
Another feature of the approach is that AN does not

depend on c.m. energy. The energy independence of TSSA
is observed experimentally and in contradiction with naive
expectation that spin effects in strong interaction should
vanish at high energy. Moreover, the sign of the TSSA is
defined by the sign of AQCM.
Proposed mechanism breaks factorization and can

not be treated as an additional contribution to the
Sivers distribution function or to the Collins fragmentation
function. In framework of this model, asymmetry in
SIDIS and pp is generated by distinct diagrams and in
general could be different. If this effect has place,
Sivers and Collins functions are not universal at small
transversal momenta. This phenomenon requires further
study.

ACKNOWLEDGMENTS

The study was supported by the National Natural Science
Foundation of China, Grants No. 11975320 (P. M. Z.) and
No. 11875296 (N. Korchagin). N. K. thanks the Chinese
Academy of Sciences Presidents International Fellowship
Initiative for the support via Grants No. 2020PM0073.

APPENDIX A: PHASE SPACE

In this appendix we give details of phase space calcu-
lation for 3- and 4-particle final state. Although it is a
standard calculation that can be found in textbooks, in our
model phase space is limited.
The phase space for three massless particles with

momenta qþ, q− and k is

dR̂3 ¼
ð2πÞ4
ð2πÞ9

δ4ðpþ þ p− − k − q− − qþÞd3kd3qþd3q−
2Eqþ2Eq−2Ek

¼ 1

ð2πÞ5 δðq
2
−Þ

d3k
2Ek

d3qþ
2Eqþ

¼ 1

ð2πÞ5 δðk
2Þδðq2þÞδðq2−Þd4kd4qþ; ðA1Þ

where we used d3p=2E ¼ d4pδðp2Þ and delta function to
remove integration over d4q−. Ei is the energy of a
corresponding particle.
We use the decomposition of momenta vectors on light

cone vectors pþ and p−, Eq. (7). From the decomposition
and energy-momentum conservation we get the following
relations:

k2 ¼ xβkŝ − k2⊥;
ðp− − qÞ2 ¼ αðβ − 1Þŝ − q2⊥;

ðpþ þ q − kÞ2 ¼ ð1þ α − xÞðβ − βkÞŝ − ðq⊥ − k⊥Þ2;
αþ ¼ 1þ α − x ≈ 1 − x;

β− ¼ 1 − β ≈ 1; α ¼ −α−;

β ¼ βk þ βþ: ðA2Þ

⊥ denotes 2-dimensional Euclidean vectors which are
transverse to the beam axis z. Using this decomposition,
we rewrite dR̂3 as

dR̂3¼
ŝ2

4ð2πÞ5
dxd2k⊥d2q⊥
jxαþðβ−1Þŝ3j≈

1

4ð2πÞ5
dxd2k⊥d2q⊥
xð1−xÞŝ ; ðA3Þ

where dβ ≈ dβþ has been used.
The next step is to change the integration variable

d2q⊥ → dM2
kdϕ. Mk is the invariant mass of the pion k

and qþ quark:

M2
k ¼ ðpþ þ qÞ2 ¼ ð1þ αÞβŝ − q2⊥: ðA4Þ

Using

α ≪ 1; β ¼ βþ þ βk ¼
q2þ⊥

ð1 − xþ αÞŝþ
k2⊥
xŝ

ðA5Þ

we get that

M2
k ¼

ðq⊥ − k⊥Þ2
ð1 − xÞ þ k2⊥

x
− q2⊥ ¼ ðxq⊥ − k⊥Þ2

xð1 − xÞ : ðA6Þ

If we define a new perpendicular vector q̃⊥ as

q̃2⊥ ¼ ðxq⊥ − k⊥Þ2; ðA7Þ

we easily can change the integration variable:

d2q⊥ ¼ d2q̃⊥
x2

¼ ð1 − xÞ
x

Z
E2
sph

0

dM2
k

Z
π

0

dϕ̃: ðA8Þ

Esph ¼ 3π
2ρc

is the sphaleron energy which determines the
height of potential barriers between different vacuums. The
sphaleron energy restricts allowed phase space. The final
result for the 3-particle phase space is

dR̂3 ¼
1

27π5
dxd2k⊥
x2ŝ

Z
E2
sph

0

dM2
k

Z
π

0

dϕ̃: ðA9Þ

Next, we need the 4-particle phase space for diagram
Fig. 1(c). It is given by
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dR̂4 ¼
ð2πÞ4
ð2πÞ12

×
δ4ðpþ þ p− − l− k− q− − qþÞd3kd3ld3qþd3q−

2Eqþ2Eq−2Ek2El
:

ðA10Þ

Using the following relations

l2 ¼ zαlŝ − l2⊥; k2 ¼ xβkŝ − k2⊥;
αþ ¼ 1þ α − x ≈ 1 − x; β− ¼ 1 − β − z ≈ 1 − z;

α ¼ −α− − αl; β ¼ βk þ βþ;

βþ ¼ q2þ⊥
αþŝ

; qþ⊥ ¼ q⊥ − k⊥; βk ¼
k2

xŝ
; ðA11Þ

we rewrite the expression for the phase space as

dR̂4 ¼
ŝ3

23ð2πÞ8
dxd2k⊥dzd2l⊥d2q⊥

ŝ4jαþβ−zxj

≈
dxdzd2k⊥d2l⊥d2q⊥

8ð2πÞ8ŝxð1 − xÞzð1 − zÞ : ðA12Þ

Now we are going to change the integration variable
d2l⊥ → dM2

l dϕ, where Ml is the invariant mass of the l
pion and q− quark system. Notice that here we replace
d2l⊥, not d2q⊥.

M2
l ¼ ðp− − qÞ2 ¼ −αð1 − βÞŝ − q2⊥ ≈ ðα− þ αlÞŝ − q2⊥

¼ ðzq−⊥ − ð1 − zÞl⊥Þ2
zð1 − zÞ − q2⊥ ¼ ðzq⊥ þ l⊥Þ2

zð1 − zÞ ; ðA13Þ

where we used α− ¼ q2−⊥
β−ŝ

≈ ðq⊥þl⊥Þ2
ð1−zÞŝ and αl ¼ l2⊥

zŝ. If we define

a new momentum n⊥ ¼ zq⊥ þ l⊥, then we can change
integration variable:

Z
d2l⊥ ¼

Z
d2n⊥¼

Z
2π

0

dϕn

Z
dn2⊥
2

¼ zð1− zÞπ
Z
0

E2
Sph

dM2
l ;

ðA14Þ

where integration over the angle has been performed,
because the amplitude does not depend on it. The final
result is

dR̂4 ¼
dxdzd2k⊥d2q⊥dM2

l

211π7ŝxð1 − xÞ : ðA15Þ

Later, in analogy with dR̂3 case, we can replace d2q⊥ →
dM2

kdϕ̃.

APPENDIX B: AMPLITUDES AND PARTON
CROSS SECTIONS

In this appendix we give the details of amplitudes and
cross section calculation. The expression for the amplitude
shown on Fig. 1(a) is

jMðaÞj2 ¼
X
f

X
s;c

gs
Cðq2Þ
Fπ

ðūqþtaσμνqνγ5upþÞ

× ðūq−iγνta
0
up−

ÞDaa0
μν ðqÞ × ½H:c:�; ðB1Þ

Cðq2Þ ¼ gs
μa
2mq

Fgðq2Þ ¼ −
3π3=2ρ2cmq

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αsðρcÞ

p Fgðq2Þ; ðB2Þ

Daa0
μν ¼ −i

gμνδaa
0

q2
: ðB3Þ

Note that αs in Cðq2Þ is taken at the instanton size scale. gs
in perturbative vertex is taken at scale q2. We omit writing
q2 dependency further.
For a forward scattering, for simplicity of calculation,

we use Gribov’s decomposition for gμν:

gμν ¼
2pþμp−ν

ŝ
þ 2pþνp−μ

ŝ
þ g⊥μν ≈

2pþμp−ν

ŝ
: ðB4Þ

It allows us to make the following replacement:

Daa0
μν ¼ −i

2pþμp−ν

ŝ
δaa

0

q2
: ðB5Þ

That replacement isolates the leading contributions to the
amplitude in power of ŝ. It leads to the substitution in trace
formulas:

γμ → p−; σμνqν → p−q⊥ for the upper fermionic line;

γμ → pþ; σμνqν → pþq⊥ for the bottom line; ðB6Þ

which factorize traces over fermion lines. Using it we get

jMðaÞj2 ¼
X
f

1

4

Tr½tatb�Tr½ta0tb0 �δaa0δbb0
9

g2s
C2

F2
π

4

ŝ2
1

q4

× Tr½qþðp−qγ5Þpþð−γ5qp−Þ�Tr½q−pþp−pþ�

¼
X
f

2

4 · 9
g2s

C2

F2
π

16ŝ2ð1 − xÞq2⊥
q4⊥

; ðB7Þ

where the traces are

Tr½qþðp−q⊥γ5Þpþð−γ5q⊥p−Þ�
¼ q2⊥Tr½qþp−pþp−�
¼ 2q2⊥ð1 − xþ αÞŝ2 ≈ 2q2⊥ð1 − xÞŝ2; ðB8Þ
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Tr½q−pþp−pþ� ¼ 4 · 2q−pþ
ŝ
2
¼ 2ð1 − βÞŝ2 ≈ 2ŝ2: ðB9Þ

We keep the sum over flavor to indicate, that expressions
for π�, π0 are different.
In the case with the nonperturbative vertex at the bottom

line Fig. 1(b), the corresponding trace is

Tr½q−pþq⊥p−q⊥pþ� ¼ q2⊥Tr½q−pþp−pþ�
¼ 2ð1 − βÞŝ2q2⊥ ≈ 2q2⊥ŝ2: ðB10Þ

Repeating similar calculations we get

jMðbÞj2 ¼
X
f

2

4 · 9
C4

F2
π

16ŝ2ð1 − xÞq4⊥
q4⊥

: ðB11Þ

The amplitude for the two pion contribution 2q → 2π2q
Fig. 1(c) is very similar to the case with one pion vertex.
The difference is only in the trace over the bottom fermion
line, which becomes similar to the upper line.

jMðcÞj2 ¼
X
f

X
s;c

−
C2

F2
π
ðūqþσμλqλγ5taupþÞðūq−σνρqργ5ta

0
up−

ÞDaa0
μν ðq2Þ × ½H:c:�

¼
X
f

C4

F4
π

Tr½tatb�Tr½ta0tb0 �
4 × 9

δaa
0
δbb

0 4

ŝ2
Tr½qþðp−q⊥γ5Þpþð−γ5q⊥p−Þ�Tr½q−ðpþq⊥γ5Þp−ð−γ5q⊥pþÞ�

¼
X
f

8ŝ2C4

9F4
π
q4⊥

ð1 − xÞð1 − zÞ
q4⊥

: ðB12Þ

Final formulas for the parton cross section are

dσ̂ðaÞ ¼
X
f

Z
0

E2
sph

dM2
k

Z
0

π

dϕ̃
g2sC2

9ð2πÞ5F2
π

1−x
q2⊥x2

dxd2k⊥; ðB13Þ

dσ̂ðbÞ ¼
X
f

Z
0

E2
sph

dM2
k

Z
0

π

dϕ̃
C4

9ð2πÞ5F2
π

1−x
x2

dxd2k⊥: ðB14Þ

with perturbative and chromomagnetic bottom vertices
respectively.
In case of two pions we have

dσ̂ðcÞ ¼
jMðcÞj2

2ŝ
dR̂4

¼
X
f

Z
C4

9F4
π

ð1 − zÞ
29π7x

dM2
l dxdzd

2k⊥d2q⊥ ðB15Þ

¼
X
f

C4

9F4
π

ð1 − zÞ
29π7x

E2
sphdxdzd

2k⊥d2q⊥; ðB16Þ

where integration over dM2
l was done and we got E2

sph in
the last line. Next we will integrate out dz, which gives the
factor 1=2:

dσ̂ðcÞ ¼
X
f

C4

9F4
π

E2
sphdxd

2k⊥d2q⊥
210π7x

: ðB17Þ

Replacing integration over d2q⊥ by dM2
k we get:

dσ̂ðcÞ ¼
X
f

C4E2
sph

9 × 210π7F4
π

ð1 − xÞ
x2

dxd2k⊥dM2
kdϕ̃: ðB18Þ

In the end let us briefly discuss flavor summation. Pion
field in flavor space decomposed as

τ⃗ ϕ⃗ ¼
ffiffiffi
2

p
ðτþπþ þ τ−π

−Þ þ τ0π
0; ðB19Þ

τþ ¼
�
0 1

0 0

�
; τ−¼

�
0 0

1 0

�
; τ0 ¼

�
1 0

0 −1

�
: ðB20Þ

For π0

jMπ0 j2 ∝ ðψ̄uð…Þψu− ψ̄dð…ÞψdÞðψ̄uð…Þψu− ψ̄dð…ÞψdÞ�
¼ ðψ̄uð…ÞψuÞ2þðψ̄dð…ÞψdÞ2; ðB21Þ

where (…) denotes any expression with Dirac γ matrices.
For charged pions it is

jMπ�j2 ∝
ffiffiffi
2

p
ðψ̄u;dð…Þψd;uÞ

ffiffiffi
2

p
ðψ̄u;dð…Þψd;uÞ�

¼ 2ðψ̄u;dð…Þψd;uÞ2: ðB22Þ

APPENDIX C: INTEGRATION OVER PARTON
MOMENTA FRACTION

A differential hadron cross section is a convolution of
parton distribution functions (PDF) and the partonic cross
section dσ̂
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dσ ¼
Z

dxadxbfðxaÞfðxbÞdσ̂: ðC1Þ

The momenta of an exclusive hadron in the parton c.m.
frame and hadron c.m. frame are related:

k̂z ¼ x

ffiffiffî
s

p

2
; kz ¼ xF

ffiffiffi
s

p
2

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2z þm2

π

q
≈

ffiffiffi
s

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2T þ x2F

q
;

xT;F ¼ 2ffiffiffi
s

p k⊥;z; xF ¼ xax;

kz ¼
ffiffiffiffiffi
xa
xb

r
k̂z; k⊥ ¼ k̂⊥: ðC2Þ

The hat denotes a value in the parton c.m. frame. Rewriting
the cross section in terms of momenta in the hadron frame
we get

Ek
d3σ
d3k

¼
X
f

Z
xmax
a

xmin
a

dxa

Z
xmax
b

xmin
b

dxbfðxaÞfðxbÞ
2Ekffiffiffi
s

p
xa

dσ̂
dxd2k⊥

:

ðC3Þ

We have 2 → 3 or 2 → 4 parton subprocess. It means
that we cannot recklessly use ŝþ t̂þ û ¼ 0, which is true
for 2 → 2 subprocess with massless particles. However, we
can combine all particles, except the detected one, into an
effective particle and reduce our case to 2 → 2. We denote
the mass of the effective particle as X2.

ŝþ t̂þ û ¼ X2; ðC4Þ

X2 ¼ ðpþ þ p− − kÞ2 ¼ ð1 − xÞŝ − k2⊥
x
: ðC5Þ

For the cross section with one pion we combine only q−
and qþ quarks. All formulas are valid for this case also,
because we can just put l ¼ 0. Note that t̂ is not a gluon
virtuality, t̂ ≠ q2.
We need express parton variables through hadron level

variables:

ŝ ¼ xaxbs; t̂ ¼ xat; û ¼ xbu; ðC6Þ

x1 ¼ −
u
s
¼ xT

2 tanðθh=2Þ
; ðC7Þ

x2 ¼ −
t
s
¼ xT tanðθh=2Þ

2
: ðC8Þ

θh is the pion scattering angle in the hadron c.m. frame.

To determine maximum and minimum values for xa
and xb, we notice from Eq. (C4)

xb ¼
X2=sþ xax2

xa − x1
: ðC9Þ

For fixed X, it is monotonically decreasing function
with xa. Therefore xa ¼ xmin

a when xb ¼ 1,

xmin
a ¼ x1

1 − x2
; xmax

a ¼ 1;

xmin
b ¼ xax2

xa − x1
; xmax

b ¼ 1: ðC10Þ

This limits allow kinematic region where invariant mass X2

becomes negative. We need additional constraints coming
from X2 > 0:

xb >
k2⊥=x

xað1 − xÞs : ðC11Þ

However, it is not important for RHIC kinematics.
Integration region is almost identical to one determined
by Eq. (C10) alone. The Fig. 12 shows the example of
integration region over xa and xb.
One may notice that for the amplitude with two pions

Fig. 1(c) X2 ¼ ðqþ þ q−Þ2, without inclusion of the pion l.
As result, limits for xa;b depend on l⊥ and z. Therefore
we cannot integrate over z and l⊥ independently as we did
in (B17). That more rigorous calculation was done and the
correction is less than 5% for cross section at the RHIC
kinematics. Therefore we can use this approach as a good
approximation.

0.0 0.2 0.4 0.6 0.8
0.000

0.002

0.004

0.006

0.008

0.010

FIG. 12. Integration region over xa and xb (shaded area) for
kinematics

ffiffiffi
s

p ¼ 200 GeV, k⊥ ¼ 2 GeV, η ¼ 3.68.
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