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The lepton angular distribution coefficients Ai for Z boson production in pp and p̄p collisions have been
measured at the LHC and the Tevatron. A recent study showed that many features of the measured angular
distribution coefficients, including the transverse momentum (qT ) and rapidity dependencies and the
violation of the Lam-Tung relation, can be well described using an intuitive geometric approach. In this
paper, we extend this geometric approach to describe the angular distribution coefficients for W boson
produced in p̄p collisions at the Tevatron. We first compare the data with a perturbative QCD calculation
at Oðα2sÞ. We then show that the data and QCD calculations can be well described with the geometric
approach. Implications for future studies at the LHC energy are also discussed.

DOI: 10.1103/PhysRevD.103.034011

I. INTRODUCTION

Dilepton production in hadron-hadron collision has been
studied extensively following the pioneering experiment
performed in 1970 [1]. The mechanism for dilepton
production involves a quark annihilating with an antiquark,
forming a vector boson (γ�;W, or Z), which subsequently
decays into a pair of leptons. In the original Drell-Yan
model [2], the vector boson was predicted to be trans-
versely polarized, leading to an azimuthally symmetric
1þ cos2 θ lepton angular distribution with respect to the
beam axis. This prediction agreed well with early fixed-
target dilepton production data where the transverse
momentum (qT) of the dilepton is low [3].
The azimuthal symmetry for the lepton angular distri-

bution no longer holds for nonzero value of qT , and a
general expression for the lepton angular distribution is
given as [4]

dσ
dΩ

∝ 1þ λ cos2 θ þ μ sin 2θ cosϕþ ν

2
sin2 θ cos 2ϕ; ð1Þ

where θ and ϕ are the lepton polar and azimuthal angles in
the dilepton rest frame. In the original Drell-Yan model [2],
λ ¼ 1 and μ ¼ ν ¼ 0. However, the intrinsic transverse

momenta of partons and QCD effects can result in nonzero
values for ν and μ, while λ can also deviate from unity. It
was pointed out by Lam and Tung [4] that the amount of
deviation of λ from 1 is twice the value of ν, namely,
1 − λ ¼ 2ν. This so-called Lam-Tung relation was shown
to be insensitive to corrections from leading-order QCD
processes [4].
The Lam-Tung relation was found to be significantly

violated in pion-induced Drell-Yan experiments [5–8].
Many theoretical models [9–11] were proposed to explain
this violation. In particular, Boer [11] suggested that a
novel transverse-momentum dependent (TMD) parton
distribution, the Boer-Mulders function [12], can give rise
to a cos 2ϕ azimuthal angular modulation, resulting in a
violation of the Lam-Tung relation. This not only explained
the observed violation of the Lam-Tung relation but also
allowed the first extraction of the Boer-Mulders functions
from pion and proton induced Drell-Yan data [11,13].
Recent high-statistics measurements of the lepton angu-

lar distribution coefficients in Z boson production over a
broad range of qT in pp collision at the LHC by the CMS
[14] and ATLAS [15] experiments revealed a clear viola-
tion of the Lam-Tung relation. Since TMD effects are only
relevant at the low qT region, the results from LHC showed
that sources other than the Boer-Mulders functions are
responsible for the violations of the Lam-Tung relation at
high qT . Indeed, the fixed-order QCD calculations can
account for the LHC data rather well [16].
In Ref. [17], the lepton angular distribution in Z boson

production was described using an intuitive geometric
approach. Both the violation of the Lam-Tung relation
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and the observed qT dependence of λ and ν could be well
described by this approach. A subsequent paper [18]
showed that this approach could explain both the qT and
the rapidity dependencies of the lepton angular distribu-
tions. Several recent papers have also addressed various
aspects of lepton angular distributions in Z boson produc-
tion [19–22] and the Drell-Yan process [23,24].
In addition to the lepton angular distribution data for Z

boson production in p̄p [25] and pp [14,15] collisions,
there are also W boson production data in p̄p collision
reported by the CDF Collaboration [26]. The important
roles of the lepton angular distribution in understanding the
mechanisms for W and Z boson production at the p̄p
collisions at the Tevatron were pointed out in Refs. [27,28].
Unlike the Z boson production where both l− and lþ decay
products are detected, only the charged lepton from W
boson decay is measured. Consequently, different exper-
imental uncertainties are encountered in the measurements
of lepton angular distributions in W versus Z boson pro-
duction. Another important difference is that W and Z
boson productions involve different parity-violating cou-
plings. Therefore, it is instructive to compare the lepton
angular distribution of W production with that of Z
production. In this paper, we extend our previous geometric
approach of interpreting the lepton angular distribution for
Z boson production to W boson production.
This paper is organized as follows. In Sec. II, we briefly

describe the geometric approach and present the implica-
tions of this approach on the lepton angular distribution
coefficients of W production. In Sec. III, we compare the
CDF data on the angular coefficients ofW production with a
perturbative QCD calculation. We then show in Sec. IV that
the geometric approach can provide qualitative agreement
with the QCD calculation and the CDF data.We also discuss
possible future measurements at LHC on the angular
coefficients of W production. We conclude in Sec. V.

II. GEOMETRIC APPROACH FOR LEPTON
ANGULAR DISTRIBUTION COEFFICIENTS

In hadron-hadron collision, the angular distribution of
charged leptons in the W� rest frame is given by the CDF
Collaboration [26] as

dσ
dΩ

∝ ð1þ cos2 θÞ þ A0

2
ð1 − 3 cos2 θÞ þ A1 sin 2θ cosϕ

þ A2

2
sin2 θ cos 2ϕþ A3 sin θ cosϕþ A4 cos θ

þ A5 sin2 θ sin 2ϕþ A6 sin 2θ sinϕ

þ A7 sin θ sinϕ; ð2Þ

where θ and ϕ are the polar and azimuthal angles of
charged lepton in the rest frame of W. Comparing Eq. (2)
with Eq. (1), we obtain

λ ¼ 2 − 3A0

2þ A0

; μ ¼ 2A1

2þ A0

; ν ¼ 2A2

2þ A0

; ð3Þ

and the Lam-Tung relation, 1 − λ ¼ 2ν, becomes A0 ¼ A2.
To shed some light on the meaning of the angular

distribution coefficients Ai in Eq. (2), we define three
different planes in the rest frame of the W boson, as shown
in Fig. 1. These planes are (1) the hadron plane formed by
the two colliding hadrons’ momenta p⃗B and p⃗T . For the
Collins-Soper (C-S) frame [29], the ẑ and x̂ axes lie in the
hadron plane where ẑ bisects, with angle β, the two hadron
momentum vectors, p⃗B and −p⃗T . (2) The quark plane
formed by ẑ and the axis ẑ0, along which a pair of quark and
antiquark collide collinearly to produce a W boson at rest.
The polar and azimuthal angles of ẑ0 are defined as θ1 and
ϕ1, respectively, in the C-S frame. (3) The lepton plane
defined by the momentum vector of the charged lepton (l)
and the ẑ axis. It is worth noting that the definitions of these
three planes and angles are completely general and inde-
pendent of the specific reaction mechanism for producing
the W boson.
While Eq. (2) can be derived using the technique of

contracting the leptonic and hadronic tensors [28,29], it is
instructive to derive Eq. (2) using a different approach [17].
In the rest frame of W, the charged lepton angular
distribution has a very simple form when it is expressed
with respect to the ẑ0 axis, namely,

dσ
dΩ

∝ 1þ a cos θ0 þ cos2 θ0; ð4Þ

FIG. 1. Definition of the C-S frame and various planes in the
rest frame ofW boson. The hadron plane is formed by P⃗B and P⃗T ,
the momentum vectors of the colliding hadrons B and T. The x̂
and ẑ axes of the C-S frame both lie in the hadron plane with ẑ
axis bisecting the angle between P⃗B and −P⃗T vectors with angle
β. The quark (q) and antiquark (q̄) collide head-on with equal
momenta to form theW boson at rest, while the quark momentum
unit vector ẑ0 and the ẑ axis form the quark plane. The polar and
azimuthal angles of ẑ0 in the C-S frame are θ1 and ϕ1. The l and ν
leptons are emitted back-to-back fromW with θ and ϕ specifying
the polar and azimuthal angles of the charged lepton l.
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where θ0 is the polar angle of l with respect to the quark
momentum as shown in Fig. 1. The forward-backward
asymmetry parameter, a, originates from the parity-
violating coupling to the W boson. For the Drell-Yan
process involving the electromagnetic coupling to a virtual
photon, parity is conserved and a ¼ 0. For Z boson
production, a ¼ 2AfAf0 , where Af is a function of the

vector Cf
V and axial-vector Cf

A couplings for Z boson to

fermion f, as discussed in Ref. [18]. As Eq. (2) is expressed
in terms of the angles θ and ϕ, one can substitute the
following trigonometric relation:

cos θ0 ¼ cos θ cos θ1 þ sin θ sin θ1 cosðϕ − ϕ1Þ ð5Þ

into Eq. (4) to obtain

dσ
dΩ

∝ ð1þ cos2 θÞ þ sin2 θ1
2

ð1− 3 cos2 θÞ þ
�
1

2
sin2θ1 cosϕ1

�
sin 2θ cosϕþ

�
1

2
sin2 θ1 cos2ϕ1

�
sin2 θ cos2ϕ

þ ða sin θ1 cosϕ1Þ sin θ cosϕþ ða cos θ1Þ cos θþ
�
1

2
sin2 θ1 sin 2ϕ1

�
sin2 θ sin2ϕþ

�
1

2
sin2θ1 sinϕ1

�
sin2θ sinϕ

þ ða sin θ1 sinϕ1Þ sin θ sinϕ; ð6Þ

which contains all angular terms in Eq. (2). Comparing
Eq. (2) with Eq. (6), we find that all lepton angular
distribution coefficients, Ai, can be expressed in terms of
θ1, ϕ1, and a as follows:

A0 ¼ hsin2θ1i A1 ¼
�
1

2
sin 2θ1 cosϕ1

�

A2 ¼ hsin2θ1 cos 2ϕ1i A3 ¼ ha sin θ1 cosϕ1i

A4 ¼ ha cos θ1i A5 ¼
�
1

2
sin2θ1 sin 2ϕ1

�

A6 ¼
�
1

2
sin 2θ1 sinϕ1

�
A7 ¼ ha sin θ1 sinϕ1i: ð7Þ

The brackets indicate that the measured coefficients are
obtained by averaging over all events. In this way, the
lepton angular distribution coefficients could be related to
the polar and azimuthal angles, θ1 and ϕ1, of the quark axis
in the W rest frame.
One difference between W and Z boson productions

is that W boson production maximally violates parity. The
V − A coupling for the W boson implies a ð1þ cos θ0Þ2
or ð1 − cos θ0Þ2 lepton angular distribution for Wþ
and W− productions in Eq. (4). Hence, jaj ¼ 2, and
Eq. (7) implies that the ranges of the angular distribution
coefficients are

0 ≤ A0 ≤ 1; −1 ≤ A2 ≤ 1

− 2 ≤ A3 ≤ 2; − 2 ≤ A4 ≤ 2; ð8Þ

where we only consider A0, A2, A3, A4, which were
measured by the CDF Collaboration. Equation (7) also
shows that A0 ≥ A2. Therefore, when the Lam-Tung rela-
tion, A0 ¼ A2, is violated, A2 can only be smaller, not
greater, than A0 [21].

We emphasize that the expressions of Eqs. (6)–(8) are
completely general, independent of the choice of the
reference frame. The exact values of the polar angles
ðθ; θ1Þ and azimuthal angles ðϕ;ϕ1Þ do depend, in general,
on the choice of the reference frame. There are many
different choices for theW boson rest frame in the literature,
including the Collins-Soper frame [29], the Gottfried-
Jackson frame [30], the U-channel frame [4], the helicity
frame, and the Mustraal frame [31], corresponding to
different choices for the orientations of the axes.
It is possible to find the values of θ1 and ϕ1 for certain

specific W boson production processes [17,18]. Consider
first a OðαsÞ process, qq̄ → WG, in which a quark from
one hadron annihilates with an antiquark from another
hadron to form a W boson. A hard gluon G is emitted
from either the quark or the antiquark, resulting in a
nonzero transverse momentum for the W. It is easy to
see that in the C-S frame, θ1 must be identical to the angle
β in Fig. 1 [18]. Emission of a gluon from one of the
colliding partons cannot change the momentum of the
other parton, which continues to move along the p⃗B or p⃗T
direction. Hence, the qq̄ collision axis (ẑ0 in Fig. 1) is
along the p⃗B or p⃗T direction, making an angle β with
respect to the ẑ axis in the C-S frame. It is straightforward
to obtain [18]

sin2 θ1 ¼ sin2 β ¼ q2T=ðQ2 þ q2TÞ; ð9Þ

where qT and Q are the transverse momentum and mass
of the W, respectively. Since the quark plane and the
hadron plane both contain ẑ and p⃗B (or p⃗T), these two
planes coincide and ϕ1 must vanish for this process.
For the qG → q0W Compton process, the value of θ1 was

found [18,32] to be given approximately as

sin2 θ1 ¼ 5q2T=ðQ2 þ 5q2TÞ; ð10Þ
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while ϕ1 remains zero. It is interesting to note that atOðαsÞ,
Eq. (7) shows that the Lam-Tung relation, A0 ¼ A2, is
satisfied since ϕ1 ¼ 0. At Oðα2sÞ or higher, the quark plane
is in general different from the hadron plane due to the
emission of more than one jet [18,22]. Hence, ϕ1 ≠ 0 and
the Lam-Tung relation will be violated.

III. COMPARISON BETWEEN THE CDF DATA
AND PERTURBATIVE QCD CALCULATION

The CDF Collaboration reported the measurement of the
A2 and A3 angular coefficients of the W boson production
in p̄p collision at

ffiffiffi
s

p ¼ 1.8 TeV [26]. From the detection
of the charged lepton momentum from the W → eν and
W → μν decays and the missing transverse energy =ET, the
azimuthal angle ϕ of the charged lepton in the C-S frame is
measured. However, the polar angle θ of the charged lepton
cannot be uniquely determined due to a twofold ambiguity
resulting from the unknown longitudinal momentum of the
neutrino. The W boson events satisfy the requirements

Ee
TðPμ

TÞ ≥ 20 GeV =ET > 20 GeV

jηe;μj ≤ 1 15 < qWT < 105 GeV; ð11Þ

where η is the pseudorapidity of the charged lepton.
From the measurement of the azimuthal angle of the

charged lepton in the C-S frame from the W → eν and
W → μν decays, the angular coefficients A2 and A3 were
extracted. With much reduced sensitivity, the coefficients
A2 and A4 were also measured. Figure 2 shows the CDF
data on A0, A2, A3, and A4 versus the transverse momentum
qT of the W boson. Both the statistical and total (statistical
plus systematic) uncertainties are shown for A2 and A3.
As the statistical uncertainties for A0 and A4 are large, no
estimates for their systematic uncertainties were provided
by the CDF Collaboration.
We first compare the CDF results with perturbative QCD

calculation at Oðα2sÞ. For this calculation, we utilize the
DYNNLO code [33] version 1.5 [34], which provides the
differential cross sections for the Drell-Yan process and
W=Z boson production. The CT14NNLO parton distribu-
tion functions were used for the proton and antiproton in
this calculation. From the calculated dσ=dΩ differential
angular distribution, the Ai angular coefficients can be
evaluated by taking the appropriate moments, namely [28],

A0 ¼ 4 − 10hcos2θi A2 ¼ 10hsin2θ cos 2ϕi
A3 ¼ 4hsin θ cosϕi A4 ¼ 4hcos θi; ð12Þ

where hfðθ;ϕÞi denotes the moment of fðθ;ϕÞ, i.e.,

hfðθ;ϕÞi ¼
R
fðθ;ϕÞ dσ

dΩ dΩR
dσ
dΩ dΩ

: ð13Þ

Equation (12) is obtained by using the orthogonality
property of the various angular distribution terms in
Eq. (2). The results of the calculation for A0, A2, A3, A4

are shown as solid curves in Fig. 2. The finite vertical
widths of the curves reflect the variations when using other
two PDF sets, NNPDF31nnlo andMMHT2014nnlo, for the
calculation.
We note some qualitative features of the QCD calcu-

lation. As qT → 0, Eqs. (9) and (10) show that θ1 ¼ 0.
Equation (7) requires that all Ai except A4 vanish when
θ1 ¼ 0. This is confirmed by the QCD calculation shown in
Fig. 2. Moreover, the upper and lower bounds listed in
Eq. (8) are satisfied by the QCD calculation. The agreement
between the calculation and the CDF data is quite good.
We note that the present results are also in good agreement
with an earlier QCD calculation performed by members of
the CDF Collaboration [35].

IV. INTERPRETATION OF THE ANGULAR
COEFFICIENTS WITH THE GEOMETRIC

APPROACH

While the Oðα2sÞ QCD calculation can describe the
angular coefficients of W production very well as shown
in Fig. 2, it is instructive to examine how well the intuitive
geometric approach discussed in Sec. II can reproduce the
main features of the data. In the earlier studies of the Z
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FIG. 2. Comparison between the CDF W boson angular
coefficient data [26] with Oðα2sÞ QCD calculation. qT is the
transverse momentum of theW boson. The coefficients A2 and A3

display both the statistical uncertainties (inner error bars) and
the total uncertainties (outer error bars). For A0 and A4, only
statistical error bars are provided by CDF. The Oðα2sÞ QCD
calculation, shown as the solid curves, utilized the DYNNLO
code and the CT14NNLO PDFs for proton and antiproton.
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boson production [17,18], the high statistics of the LHC
data made it possible to use the data to constrain some
parameters in the geometric approach. Unfortunately, the
large uncertainty for the W boson production data from
CDF greatly limits the sensitivity of using the data to test
the geometric approach. Therefore, we use instead the
Oðα2sÞ QCD results to check whether the geometric
approach can adequately describe the angular coefficients
for W boson production.
We start with the A0 angular coefficient. Equation (7)

shows that A0 is given by the values of sin2 θ1 averaged
over the different processes. At OðαsÞ, Eqs. (9) and (10)
give the qT dependence of sin2 θ1 for the quark-antiquark
annihilation and the quark-gluon Compton process, respec-
tively. The dotted and dot-dashed curves in Fig. 3 corre-
spond to Eqs. (9) and (10), respectively. Note that the qG
process alone overestimates A0, while qq̄ underestimates it.
As the qq̄ annihilation and the qG Compton processes
involve different initial states, they contribute incoherently
to theW production. The dashed curve in Fig. 3 is obtained
with the following expression:

A0 ¼ f
q2T

Q2 þ q2T
þ ð1 − fÞ 5q2T

Q2 þ 5q2T
; ð14Þ

where f represents the fraction of qq̄ process, and 1 − f is
the fraction of the qG process. The best fit to the QCD
calculation gives f ¼ 0.610� 0.002, which is consistent
with the expectation that the qq̄ annihilation process
dominates the qG process in pp̄ collision. The excellent
agreement between the geometric approach and the QCD

calculation suggests that Eqs. (9) and (10) are capable of
reproducing the main features of the QCD calculation
for A0.
We next consider the A2 angular coefficient. If Lam-

Tung relation is satisfied, then A0 ¼ A2. Figure 4 compares
the Oðα2sÞ QCD calculation for A2 (solid curve) with the
result of A0 from the geometric approach (dotted curve)
obtained with Eq. (14). While the agreement is reasonable,
the QCD calculation is consistently below the dotted curve.
This indicates that the Lam-Tung relation, A0 ¼ A2, is
violated. In the geometric approach, this implies that the
angle ϕ1 is nonzero, which leads to a smaller A2 than A0, as
shown in Eq. (7). A nonzero ϕ1 implies that the quark and
hadron planes are not coplanar. This non-coplanarity is
caused by higher-order QCD processes at Oðα2sÞ or higher,
in which multiple partons accompany the W boson in the
final state. To account for the nonzero ϕ1 angle, we use the
following expression:

A2 ¼
�
f

q2T
Q2 þ q2T

þ ð1 − fÞ 5q2T
Q2 þ 5q2T

�
cos 2ϕ1: ð15Þ

The dashed curve in Fig. 4 corresponds to Eq. (15) with
f ¼ 0.610 obtained from the A0 data discussed above and
the best-fit value for cos 2ϕ1 ¼ 0.905� 0.004. This cor-
responds to an average non-coplanarity angle, ϕ1, of 12.6°.
The improved agreement between the geometric model and
QCD calculation using this nonzero ϕ1 angle indicates the
effects ofOðα2sÞ or higher, which allows the hadron plane to
deviate from the quark plane. An analogous situation
was found for Z boson production and discussed in [18].
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FIG. 3. Comparison between the Oðα2sÞ QCD (solid curve) and
the geometric approach (dashed curve) for the calculations of A0.
The dotted and dot-dashed curves correspond to the contribution
from the qq̄ and qG subprocess, respectively, in the geometric
approach. The CDF data points [26] are also displayed.
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data points [26] are also displayed.
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The good agreement between the simple calculation using
Eq. (15) and the sophisticated QCD calculation again
illustrates the useful insight provided by the geometric
approach for understanding the angular coefficient in W
boson production.
We consider next the parity-violating angular coefficient

A4. From Eq. (7), the expression for A4 is the product of
the forward-backward asymmetry parameter a ¼ �2 and
cos θ1. Since the expressions for sin2 θ1 are given by
Eqs. (9) and (10) for the qq̄ and qG processes, we use
the following expression for A4:

A4 ¼ 2r4

�
f

Q

ðQ2 þ q2TÞ
1
2

þ ð1 − fÞ Q

ðQ2 þ 5q2TÞ
1
2

�
; ð16Þ

where the factor of 2 on the right-hand side signifies the
magnitude of the forward-backward asymmetry, jaj ¼ 2.
The parameter r4, which has a magnitude less than 1, is to
account for the fact that the sign of a is either positive or
negative, depending on whether it is qq̄ → W or q̄q → W
process, as discussed in Ref. [18] for the analogous Z boson
production. Depending on the relative weight of these two
contributions, governed by the partonic distributions of
quarks and antiquarks in the proton and antiproton, the
magnitude of A4 is expected to be reduced from the partial
cancellation effect. The parameter r4 accounts for such a
partial cancellation effect. The dashed curve in Fig. 5 shows
that Eq. (16), using the best-fit value of r4 ¼ 0.738�
0.002, is in excellent agreement with the QCD calculation.
The large uncertainty of the A4 measurement from CDF
prevents a conclusive comparison between the QCD and
geometric model calculation with the data. In fact, the
constraint A4 < 2 from Eq. (8), marginally violated by the

central values of the data points at the lowest two qT values,
is satisfied by the QCD calculation. The fact that the
simple calculation of Eq. (16) can describe theOðα2sÞ QCD
calculation very well again indicates the adequacy of the
simple geometric model in understanding the main features
of the angular coefficients in W boson production.
We turn to the A3 coefficient next. As shown in Eq. (7),

A3 involves all three quantities, θ1;ϕ1, and a. The partial
cancellation effects discussed for A4 are also expected for
A3. From Eqs. (7), (9), and (10), we use the following
expression for A4 in the geometric model:

A3 ¼ 2r3

�
f

qT
ðQ2 þ q2TÞ

1
2

þ ð1 − fÞ
ffiffiffi
5

p
qT

ðQ2 þ 5q2TÞ
1
2

�
cosϕ1;

ð17Þ

where the factor of 2 is again the forward-backward
asymmetry parameter for W boson production, and ϕ1 ¼
12.6° was obtained in the previous analysis of A2. Since A3

is an odd function under the ϕ1 ↔ π − ϕ1 exchange, a large
cancellation effect is expected [18]. Therefore, we expect
the value of the reduction factor, r3, to be small. The dashed
curve in Fig. 6 is the best fit to the OðαsÞ QCD calculation
using Eq. (17). Indeed, the value of r3 is found to be quite
small, r3 ¼ 0.0540� 0.001, confirming a very large can-
cellation effect. Moreover, the agreement between the
calculations of the geometric model and the Oðα2sÞ QCD
is not very good. This suggests that the simple assumption
that r4 is independent of qT is no longer a good assumption
in the presence of strong cancellation effects. Nevertheless,
the general feature that A3 increases with qT can still be
described by the geometric model.
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FIG. 5. Comparison between the Oðα2sÞ QCD (solid curve) and
the geometric model (dashed curve) for A4. The CDF data points
[26] are also displayed.
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FIG. 6. Comparison between the Oðα2sÞ QCD (solid curve) and
the geometric model (dashed curve) for A3. The CDF data points
[26] are also displayed.
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We conclude this section by discussing the prospect for
collecting and analyzingW boson angular distribution data
at the LHC. The high luminosity and high center-of-mass
energy at the LHC allow a precise measurement ofW and Z
boson production. Indeed, the lepton angular distribution
data for Z production reported by CMS and ATLAS have
demonstrated a much higher precision and broader qT
coverage than at Tevatron. It is still challenging to measure
W boson angular distribution due to the missing neutrinos.
As a result, only theW polarization parameters, fL, fR, and
f0 in the helicity frame have been measured [36,37] so far.
Nevertheless, as shown by the CDF Collaboration, at least
the A2 and A3 coefficients in the C-S frame could be
measured with adequate precision even at Tevatron. It is
anticipated that LHC could at least allow a very precise
measurement of A2 and A3 coefficients for W production.
As discussed in a recent paper [22], the A2 coefficient is
expected to have very different qT distributions for Z boson
plus single jet or multiple jets. Similar expectation also
holds for W plus jets production at the LHC. In particular,
the A2 values for W plus multiple-jets events are expected
to be smaller than for the W plus single-jet events. This is
due to the nonzero values of ϕ1 for a multiple-jets events,
while a single-jet W production event must have ϕ1 ¼ 0.
Equation (7) then implies that A2 for multiple-jet events
must be smaller than that for single-jet events. This
prediction remains to be tested by the LHC experiments.
We note that a recent paper suggests the possibility of

reconstructing the W decay angular distribution in the
Mustraal frame [31]. From an analysis of the Monte Carlo
data at the LHC energy, it was shown that the Mustraal
frame has the interesting property that all angular coef-
ficients except A4 have vanishing values. An inspection
of Eq. (4) shows that the z axis of the Mustraal frame
coincides with the ẑ0 axis. Thus far, all existing data on W
and Z boson production from LHC are analyzed in either
the C-S frame or the helicity frame. Future analysis of these
data in the Mustraal frame would be of considerable
interest.

V. SUMMARY AND CONCLUSIONS

In this paper, we have extended the geometric approach
to describe the angular distribution coefficients ofW boson
production at the CDF. In this geometric approach, first
discussed in [17], all of the eight lepton angular distribution
coefficients can be expressed as trigonometric expressions
involving three quantities: a, θ1, and ϕ1. The quantity θ1
refers to the polar angle of the collinear quark-antiquark
axis in the W boson rest frame, ϕ1, the non-coplanarity

angle between the plane formed by the two hadrons, and
the lepton plane containing the leptons from the W decay.
The parity-violating parameter a has a magnitude of 2 for
W production. These trigonometric expressions lead to a
set of upper and lower bounds for the various angular
coefficients, as well as some relationships between these
angular coefficients. In particular, the Lam-Tung relation
refers to the equality of the A0 and A2 coefficients when the
non-coplanarity angle ϕ1 vanishes. The violation of the
Lam-Tung relation is then attributed to a nonzero ϕ1 angle,
resulting in A0 > A2. For the qq̄ annihilation and qG
Compton processes at OðαsÞ, ϕ1 vanishes, and the Lam-
Tung relation is valid. For processes at Oðα2sÞ or higher, ϕ1

can be nonzero and the Lam-Tung relation will be violated.
We first compare the CDF angular coefficient data with

Oðα2sÞ QCD calculation. Although the statistical precision
of the CDF data is only marginal, the general features of the
data are in good agreement with the QCD calculations. We
then compare the QCD results with the expressions
obtained from the geometric model in order to determine
several parameters in this model. Good agreement between
the QCD calculations and the geometric approach is
obtained. We also confirm that the QCD calculations
and the geometric approach satisfy the upper and lower
bounds derived for the angular coefficients, as well as the
inequality A0 > A2. The implication of this study for W
production at LHC is also discussed. In particular, a high
precision measurement of A2 for W plus jets events is
feasible and of much interest.
We emphasize that this geometric approach is developed

to provide some simple intuitive insights for understanding
the angular distribution coefficients for W and Z boson
production. It is certainly not a substitute for the rigorous
perturbative QCD calculations. The good agreement
between the geometric approach and the perturbative
QCD calculation as well as the data is reassuring that the
geometric model has somemerits in understanding themain
features of the lepton angular distributions, including their
transverse momentum dependence and the violation of the
Lam-Tung relation, in an intuitive fashion. We expect that
this geometric approach can also be extended to other hard
processes, including the Drell-Yan process, quarkonium
production, e−eþ collision, and deep-inelastic scattering.
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