
 

Extracting a model quark propagator’s spectral density
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We propose a practical procedure to extrapolate the spacelike quark propagator onto the complex plane,
which follows the Schlessinger point method and the spectral representation of the propagator. As a feasible
example, we employ quark propagators for different flavors, obtained from the solutions of their
corresponding Dyson-Schwinger equation (DSE), with different truncations. Thus, the analytical structure
of the quark propagator is studied, capitalizing on the current-quark mass dependence of the observed
features.
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I. INTRODUCTION

The strong-interactions part of the Standard Model of
particle physics, quantum chromodynamics (QCD), is
characterized by two emergent phenomena: dynamical
chiral symmetry breaking (DCSB) and confinement [1].
DCSB is responsible for the vast majority of the mass of
the visible universe and has a crucial impact on the
observed hadron spectrum and properties; for example,
it explains both the large mass of the proton and the
unnaturally light mass of the pion. Confinement entails
that colored states, such as QCD’s fundamental degrees of
freedom (quarks and gluons), cannot appear in the
spectrum. It also guarantees that condensates, typical
order parameters of DCSB [2], are wholly contained
within hadrons [3]. Thus, DCSB and confinement might
be, in fact, intimately connected. Both phenomena can be
potentially understood from QCD’s 2-point functions,
namely, propagators. Studying the analytical properties
of the propagators could shed some light [4,5] on their
confinement properties and the connection with DCSB.
Dyson-Schwinger equations (DSEs) have been a corner-
stone in handling such endeavors [6,7]. Thus, focusing on
the matter sector, we obtain the quark propagator (in the
spacelike axis) through its corresponding DSE [8–10].
Subsequently, the Schlessinger point method (SPM)
[11,12] is employed to extrapolate the propagator into
the complex plane, allowing us to study the corresponding
spectral function and its analytic structure. The article is
organized as follows: in Sec. II we write the DSE for the
quark propagator, the truncation and model inputs.

Section III describes the SPM and the analytic continu-
ation procedure. It is worth mentioning that the algorithm
is quite general and can be employed to study different
inputs, such as lattice QCD propagators and other Green
functions. Section IV shows the numerical results, and
Sec. V summarizes the obtained conclusions.

II. GAP EQUATION

The DSE for the quark propagator, gap equation, is the
starting point for analyses of DCSB and confinement in the
continuum, as well as the fundamental ingredient for
hadron physics studies based upon Bethe-Salpeter or
Faddeev equations [13]. The gap equation, in Euclidean
space, reads

S−1f ðpÞ ¼ Z2ðiγ · pþmbm
f Þ þ ΣfðpÞ;

ΣfðpÞ ¼
4

3
Z1

Z
Λ

dq
g2Dμνðp − qÞγμSfðqÞΓf

νðp; qÞ; ð1Þ

where
R
Λ
dq ¼

R
Λ d4q

ð2πÞ4 stands for a Poincaré invariant regu-

larized integration, with Λ regularization scale. The rest of
the pieces are defined as usual: Sf is the f-flavor quark
propagator, Dμν is the gluon propagator and Γν the fully
dressed quark-gluon vertex (QGV); Z1;2 are the quark-
gluon vertex and quark wave function renormalization
constants, respectively; g is the Lagrangian coupling
constant and mbm

f is the bare-quark mass. The latter is
related with the renormalization point (ζ) dependent
current-quark mass, mζ

f, via Slavnov-Taylor identities
[14,15]. Each Green function involved obeys its own
DSE, thus forming an infinite tower of coupled equations,
which must be systematically truncated to extract the
encoded physics. Regardless of the truncation, a general
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solution for the fully dressed quark propagator can be
expressed as follows

SfðpÞ ¼ Zfðp2Þðiγ · pþMfðp2ÞÞ−1; ð2Þ

in analogy with its bare counterpart,

Sð0Þf ðpÞ ¼ ðiγ · pþmbm
f Þ−1:

Here Zðp2Þ and Mðp2Þ are dressing functions; the latter,
independent of ζ, is known as the mass function. In the
Rainbow approximation [16], Eq. (1) is modified according
to the replacement:

g2Z1Dμνðp − qÞΓf
νðp; qÞ → Z2

2D̃
f
μνðp − qÞγν; ð3Þ

where D̃f
μνðkÞ ≔ TμνðkÞGfðk2Þ ¼ ðδμν − kμkν=k2ÞGfðk2Þ

and Gfðk2Þ is the effective coupling, expressed as [16,17]:

Gfðs ¼ k2Þ ¼ Gf
IRðsÞ þ Gf

UVðsÞ; ð4Þ

Gf
IRðsÞ ¼

8π2D2
f

ω4
f

e−s=ω
2
f ; ð5Þ

Gf
UVðsÞ ¼

8π2γmF ðsÞ
ln½τ þ ð1þ s=ΛQCDÞ2�

: ð6Þ

The term Gf
IRðsÞ provides an infrared enhancement, which

is controlled by the product ωfD2
f. Conversely, G

f
UVðsÞ

is set to reproduce the one-loop renormalization-
group behavior of QCD in the gap equation. We have
defined sF ðsÞ¼ð1−exp½−s=ð4m4

t Þ�Þ, γm¼12=ð33−2NfÞ,
τ ¼ e10 − 1, mt ¼ 0.5 GeV, ΛQCD ¼ 0.234 GeV and
Nf ¼ 5. We solve Eq. (1) for different current-quark
masses, whose specific values and interaction strength are
given in Table I.
Key features of the gluon propagator, such as the

infrared saturation and the connection with perturbation
theory, are conveniently captured by the model defined
in Eqs. (4)–(6). However, we shall also explore the
renormalization-group-invariant (RGI) interaction des-
cribed in [18], which is derived in connection with the

process-independent strong running-coupling, obtained
from lattice QCD’s Green functions at the physical pion
mass. Thus, those attributes of the QCD coupling are
captured from a first principles approach. In this case, the
leading-order QGV, γν, turns out to be inadequate due to
lack of tensor structures that enhance the contribution of
the vertex to DCSB [19,20]. A minimal extension that
makes the QGV compatible with [18] demands the
inclusion of the anomalous chromomagnetic moment
(ACM) term [21,22].
Thus, we explore a simple beyond-RL truncation

(BYRL). In this case, the self-energy term in Eq. (1),
ΣðpÞ, is recast as follows (k ¼ p − q):

ΣðpÞ ¼ Z2

4

3

Z
Λ

dq
4πd̂ðkÞTμνðkÞγμSðqÞΓBY

ν ðp; qÞ; ð7Þ

ΓBY
ν ðp; qÞ ¼ Z2γν þ ησναkα

Bðp2Þ − Bðq2Þ
p2 − q2

Hðk2Þ; ð8Þ

where k ¼ p − q, Bðp2Þ ¼ Mðp2Þ=Zðp2Þ; ðs=m2
0ÞHðsÞ ¼

ð1 − e−s=m
2
0Þ is merely a profile function that controls the

ultraviolet convergence and restricts the ACM effects to the
infrared domain [21];m0 ¼ 2 GeV and η ¼ 0.37 are param-
eters; and, finally, d̂ðkÞ is the effective interaction from
Ref. [18]. For the time being, in the case of the proposed BY
truncation, we shall restrict ourselves to the u=d quark.

III. ANALYTIC CONTINUATION

By solving the gap equation, it is almost straightfor-
ward to obtain the quark propagator in the p2 > 0 axis.
The extension to the complex p2 plane can be numeri-
cally challenging since, among other issues, one might
encounter singularities [23–28]. Thus, we follow an
analytic continuation scheme, based upon the spectral
representation [29–32] of the quark propagator and the
SPM, to extrapolate our spacelike numerical solutions
onto the complex plane.
For that purpose, it is convenient to reexpress the quark

propagator, in Eq. (2), in terms of its vector (σV) and scalar
(σS) dressing functions:

SfðpÞ ¼ −iγ · pσVðp2Þ þ σSðp2Þ: ð9Þ

Both σV;Sðp2Þ are obtained on a large, discrete set of points
(p2

i > 0, i ¼ 1;…; N). Following the SPM, we employ a
continued fraction representation such that

σðp2Þ ¼ σðp2
1Þ

1þ
a1ðp2 − p2

1Þ
1þ

� � � aNðp
2 − p2

NÞ
1

;

¼ σðp2
1Þ
"
1þ a1ðp2 − p2

1Þ
1þ a2ðp2−p2

2
Þ

1þ���

#−1

; ð10Þ

TABLE I. One-loop evolved current quark masses and gluon
model parameters. Masses, ωf and Df are listed in GeV. The
renormalization scale is set to ζ ¼ 2 GeV.

Flavor mζ
f

ωf D2
f

u=d 0.005 0.500 1.060
s 0.112 0.530 1.040
c 1.170 0.730 0.599
b 4.070 0.766 0.241
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provides a rational representation for these functions (the
labels V, S are implicit). The coefficients ai are recursively
obtained, ensuring that ∀p2

i , the interpolated value of
σðp2

i Þ exactly reproduces the numerically obtained one
[11]. Therefore, as discussed in Ref. [31], the SPM gives
almost exact reconstructions, of the continuous function,
if the number of input points is adequate. Notice
that Eq. (10) can be expressed as a rational fraction,
σðp2Þ ¼ Pðp2Þ=Qðp2Þ, where P and Q are polynomials
of p2, whose degree is determined by the parity of N, the
number of input points: if N is an odd number, both P and
Q will have degree ðN − 1Þ=2; if N is even instead, then
the order would be N=2 − 1 (for P) and N=2 (for Q).
Therefore, the parity of N determines the asymptotic
p2 → ∞ behavior (it is either a constant or exhibits a
1=p2 fall) and the number of poles, which are simply the
roots of Q. As we shall discuss, most of these poles are
neither physically nor numerically meaningful.
The obtained rational function will be employed to

evaluate σðp2Þ beyond the original input domain. Thus
we allow the spacelike p2 to take complex values. An
important feature of the SPM is its capability to identify
singularities and branch points [33]. For example, a series
of poles along a line in the complex plane, typically
indicates the presence of a branch cut [34]. However, it is
seen that if p2 remains real and positive in the training
set, the SPM most likely will not introduce or detect any
singular structure besides scattered poles. This is due to
the simple shapes that σV;S take on the spacelike axis:
finite, continuous and monotonically decreasing func-
tions. Thus, it is found advantageous to deal with a

ffiffiffiffiffi
p2

p
grid instead [34]. The training set is plainly mapped as

fp2
i ; σðp2

i Þg →
n ffiffiffiffiffi

p2
i

q
; σðp2

i Þ
o
; ð11Þ

such that SPM is performed on the set f
ffiffiffiffiffi
p2
i

p
; σðp2

i Þg and
a rational representation of the quark propagator is then
obtained. Clearly, the mapping in Eq. (11) introduces
branch cuts on the positive and negative imaginary axes.
On the p2 plane, this corresponds to a branch cut along
the negative real axis. Besides, other singular structures,
in the form of complex conjugate poles (CCP), could also
appear dispersed on the complex plane [6,23]. The closed
contours, which leave all the poles and branch cuts
outside, are sketched in Fig. 1. One can see the
connection between the

ffiffiffiffiffi
p2

p
and p2 planes and their

corresponding, equivalent, integration contours.
At this point, one can appeal to complex analysis

theorems to represent σðp2Þ in a convenient manner. An
arbitrary point inside the chosen contour can be written as a
Cauchy integral. Moreover, from the residue theorem
[35,36], the quark propagator can be usefully reexpressed
as follows:

σðp2Þ − 1

π

Z
∞

0

ρðωÞ
p2 þ ω

dω ¼
X
i

�
Ri

p2 − qi
þ R�

i

p2 − q�i

�
;

ρðωÞ ¼ Im½σð−ω − iϵÞ�; ð12Þ

where ϵ is a positive infinitesimal real number; Ri and qi
take complex values, which are, respectively, identified as
the residues and poles. Notice that the above equation
corresponds to the integration contour on the p2 plane,
Fig. 1, such that we obtain a more compact expression.
For instance, a pair of CCPs on the p2 plane corresponds
to four poles on the

ffiffiffiffiffi
p2

p
one. The integral part is a

standard dispersion relation for the propagator, such that
ρðωÞ defines its spectral function; the fraction part
accounts for the possible presence of complex conjugate
poles.
In principle, ρðωÞ can be computed straightforwardly

from the SPM on the numerical data. However, there are
many components that can impact the stability of the
extrapolations. We have identified key factors which
alter the outcome; in particular, the number of input
points and their distribution play a crucial role. Thus, in
order to get more accurate and stable results, we
proceed as follows:

(i) Redistribute the big set of Np ¼ m · n points into n
subsets of m points.

(ii) Randomly select one point from each subset, in
order to form a new small set (of n points).

(iii) Implement SPM on the latter and produce a rational
representation of σðp2Þ.

(iv) Repeat several times to obtain a mean value and
error estimates.

This strategy makes it easy to control the number of
points, while also covering most of the domain of the
initial, much bigger, set. The SPM is performed several
times, keeping the mean value as the final result and
ensuring a small error is produced. Besides, the par-
ticular values of m and n are properly fixed by the
requirement that the produced spectral functions are
similar in shape and the location of the poles is stable.
The latter is discussed below.

FIG. 1. Connection between the closed contours, correspond-
ing to the

ffiffiffi
p

p
and p2 planes. The contours keep all the poles

outside and have a infinitesimal distance ε away from the branch
cut(s). To calculate the Cauchy integral, the p2 plane is simpler.
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Another important point is the fact that ρðωÞ comes from
the integral along a branch cut, corresponding to p2 < 0.
Although the SPM was performed on a

ffiffiffiffiffi
p2

p
grid, we can

establish the connection with the equivalent contour on the

p2 plane, as it is clear from Fig. 1. The presence of the
branch cut serves a crucial purpose: it allows us to write
the propagator as in Eq. (12), enabling access to its pole
structure. An effective method to calculate the positions
and residues of the poles has been already introduced in
Refs. [37,38], but it is not practical enough to reconstruct
the propagator.
On the other hand, the collection of complex poles

which are obtained from the rational representation,
Eq. (10), depends on the size of the input set, therefore
yielding a number of spurious irrelevant poles. This is an
undesirable aspect of relying completely on the SPM,
which needs to be supplemented somehow. In Ref. [34],
it was proposed to take into account only those poles

TABLE II. Chosen ðm; nÞ values for each quark flavor; vector
and scalar parts separately.

Flavor Vector Scalar

u=d (42,24) (16,60)
s (10,24) (16,64)
c (28,36) (32,8)
b (6,38) (42,24)

FIG. 2. Upper panel: spectral density associated with the scalar
part of the propagator, σsðp2Þ, in the RL truncation. Lower panel:
the analogous for the vector part. The dark-gray and light-gray
shaded areas represent the σ and 2σ confidence intervals,
respectively. Consistently, the observed peaks are shifted towards
ω → ∞ as the quark mass increases.

FIG. 3. Upper panel: comparison of RL and BYRL truncation
results for the spectral density associated with the scalar part of
the u-quark propagator, σsðp2Þ. Lower panel: the analogous for
the vector part. The dark-gray and light-gray shaded areas
represent the σ and 2σ confidence intervals, respectively.
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with residues above a certain threshold. This demands
identifying all the poles produced from the rational
interpoland (which might not be practical) and then
use Eq. (12) to discriminate. We suggest an alternative
which prevents us from performing such demanding task.
With σðp2Þ and ρðωÞ already at hand after performing the
SPM several times, what is left to compute is the right-
hand side of Eq. (12). This can be obtained by finding
optimal values, of qi and Ri, such that the left-hand side
is reproduced with highest accuracy. In fact, we have
seen that a single pair of CCPs is sufficient to accurately
determine the quark propagator. This implies that
Eq. (12) can be conveniently reduced to

σðp2Þ − 1

π

Z
∞

0

ρðωÞ
p2 þ ω

dω ≃
�

R
p2 − q

þ R�

p2 − q�

�
; ð13Þ

such that, with ρðωÞ already calculated, q and R (poles
and residues) can be straightforwardly identified follow-
ing standard minimization procedures. As we shall see,
the leading pair of CCPs (those closest to the origin on
the complex plane), obtained from the rational represen-
tation of Eq. (10), coincide with q and q�, ensuring the
robustness of this approach.

IV. NUMERICAL RESULTS

From the solutions of the gap equation, Eq. (1), for
different quark flavors (u=d, s, c, b), one gets the
spacelike quark propagators. Following the SPM, the
quark propagators extrapolated beyond their original
domain. Then, the corresponding spectral functions; the

FIG. 5. Location of the poles of the quark propagator, according
to the interpoland of Eq. (10) (blue, multiple pairs of CCPs) and
the Cauchy integral, Eq. (13) (yellow, single pair of CCPs). The
latter is assumed to be the relevant pair of CCPs. Upper panel:
scalar part of the u-quark RL propagator. Lower panel: the
analogous for the vector part.

TABLE III. Relevant poles (q) and residues (R) for different
quark flavors. Top (bottom) panel corresponds to the RL (BYRL)
truncation results. The mass units are expressed in appropriate
powers of GeV.

Flavor q R [σv] R [σs]

u=d −0.302� 0.364i 0.586 ∓ 0.542i −0.013 ∓ 0.480i
s −0.646� 0.660i 0.702 ∓ 0.311i 0.060 ∓ 0.719i
c −2.325� 1.145i 0.577 ∓ 0.712i 1.098 ∓ 0.157i
b −32.942� 4.260i 0.674� 0.498i 5.110 ∓ 3.287i

u=d −0.175� 0.210i 0.231 ∓ 0.685i 0.001 ∓ 0.390i

FIG. 4. Position of the poles (q) in the complex plane, with
extrapolation uncertainty. From left to right: u, s, c and b
quark propagators. The displayed results correspond to the RL
truncation.
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relevant poles and their residues are identified following
the algorithm described in the previous section. The SPM
is performed 50 times for each quark flavor; the outputs
are averaged to produce a final result and error estimates.
The particular values of m and n, for each case, are
specified in Table II.
The RL results for the spectral densities are displayed

in Figs. 2 and 7; the latter shows the curves separately,
for each quark flavor, and also includes the quark
propagator dressing functions. As it is clear from these
figures, the spectral densities are not positive definite.
Moreover, both ρsðwÞ and ρvðwÞ consistently exhibit a
peak (a minimum). Figure 3 compares the RL and BYRL
results for the u=d quark. Notably, ρsðwÞ follow the same
pattern in both truncations and, although this does not
happen for ρvðwÞ, it is important to highlight that the
produced spectral densities are not positive definite in
either case. Focusing on the RL case, it is seen that the
position of the peak moves towards ω → ∞ as the
current quark mass increases. For the scalar part, the
absolute value of this minimum increases with the quark
mass, while the opposite pattern is observed for the
vector part. A natural kindred feature is also observed
with the quark propagator dressing functions: at infrared
momenta, the vector part of the u quark is much larger

that its scalar counterpart; this is completely reversed for
masses above mcr ≃mc. The position of the poles (with
the associated uncertainty) as a function of the quark’s
mass is shown in Fig. 4. Their central values and the
corresponding residues are captured in Table III.
Evidently, the dominant poles move deeper into the
complex plane as the current mass grows, i.e. it takes
larger absolute values of both real and imaginary parts.
This feature is consistent with realistic DSE studies
[39,40]. It is worth mentioning that, although the rational
interpoland of Eq. (10) introduces a collection of spu-
rious meaningless poles, the leading CCPs almost
coincide with the poles obtained from Eq. (13), as can
be seen from Fig. 5. Similar outcomes are observed for
the rest of the cases. This means, we do not require to
compute all the poles obtained through Eq. (10) and
identify the relevant ones somehow. Eq. (13) already
provides such information and expedites the adequate
identification.
The nonpositivity of the spectral functions [in particular

ρvðwÞ] is often related to confinement [4,6], since it is a
necessary (but not sufficient) condition. In this connection,
we can also study the so-called spaced averaged (SA)
Schwinger function [41], which, at p⃗ ¼ 0:

ΔV;SðτÞ ≔
Z

d3x
Z

d4p
ð2πÞ4 e

iðτp4þx⃗·p⃗ÞσV;Sðp2
4Þ;

¼ 1

π

Z
∞

0

dp4 cosðτp4ÞσV;Sðp2
4Þ: ð14Þ

The SA Schwinger function for a real, m massive, scalar
particle will decay exponentially, ΔðτÞ ∼ e−mτ, since the
propagator is simply σðp2Þ ¼ 1=ðp2 þm2Þ and the mass
shell can be reached in the real axis. On the other hand, if
the quark propagator is described by a pair of CCPs instead,
one should expect an oscillatory behavior, ΔðτÞ ∼
e−aτ cosðbtþ δÞ (here, m ¼ a� ib are the CCP masses).
In this case, the propagator could be associated with either a
short-lived excitation that decays, or a confined, funda-
mental particle [6]. Figure 6 displays the SA Schwinger
functions for the scalar parts of different quark flavors. The
presence of the peaks in the logarithmic scale reveals a
negative sign in the Schwinger function, thus another proof
of violation of positivity. Naturally, the position of the
peaks follow an opposite pattern, with respect to ρðωÞ,
i.e. peaks move towards τ → 0 with increasing current
quark mass.

FIG. 6. Space averaged Schwinger functions of the scalar part
of the RL propagators: u, s and c quarks. The presence of peaks,
which move towards τ → 0 as the quark mass increases, reveals a
change of sign in ΔsðτÞ. The first peak of the RL b-quark
propagator lies around τ ∼ 1, but the Schwinger function be-
comes numerically unstable for larger values of τ.
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FIG. 7. The spectral densities and dressing functions for different quark masses, in the RL truncation. Left panel: scalar part, ρsðωÞ.
Middle panel: vector part, ρvðωÞ. Right panel: quark propagator dressing functions: σsðp2Þ, σvðp2Þ. From top to bottom: u, s, c and b
quarks. The depicted spectral functions are the mean result after 20 times SPM and analytic continuation. The dark-gray and light-gray
bands represent σ and 2σ confidence intervals, respectively.
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V. CONCLUSIONS AND SUMMARY

Starting with spacelike quark propagators, we described a
viable procedure to get access to their complex structure. The
DSE inputs have been employedmerely as an illustration and
the proposed method is quite general. This is based upon the
SPM, which interpolates the spacelike quark propagator and
extrapolates it into the complex plane. Then, a proper choice
of integration contour allows us to rewrite the propagator in
terms of a Cauchy integral, Eq. (12); thus defining the
propagator’s dressing functions in terms of spectral densities
and granting us access to its pole structure. Remarkably, it is
seen that a single pair of CCPs is sufficient to accurately
represent the quark propagator, hence preventing us from the
task of identifying and discriminating the spurious poles
introduced by the rational interpoland, Eq. (10). Among
other things, the representation of Eq. (13) could expedite the
computation of the form factors, which typically require two
pairs of CCPs [40,42–44] to give a precise result.
It is observed that the spectral densities are not positive

definite and present peaks, which are shifted towards the
ultraviolet region as the quark mass gets larger. Similarly,
the position of the poles moves further into the complex
plane with increasing current quark mass. The Schwinger
functions exhibit the corresponding analogous features.
Such consistency is encouraging. An immediate goal is to
study whether or not the observed attributes are still valid
for truncations beyond the RL approximation. In fact, we
have proposed a simple RL extension that makes use of the
novel process-independent strong running coupling [18]
which, in contrast with the effective interaction that comes
along with the RL truncation, is derived from a first
principles approach to QCD’s gauge sector. Our extension
also includes the ACM term in the QGV, a crucial piece that
is tightly connected with DCSB [20,21]. Limiting ourselves

to the u=d quark, we have found that the produced spectral
densities are not positive definite, as it also occurs with the
RL truncation. This is a crucial characteristic that must
prevail regardless of the current quark mass. The quanti-
tative differences between the RL and BYRL result should
be understood as follows: at the level of Green functions,
the quantitative results shown should not be taken as the
final answer; neither the RL or BYRL quark propagators
correspond to the quark propagator of QCD in its full glory.
Nevertheless, as has been known for several years, sym-
metry-preserving treatments of the RL truncation are
adequate to describe a variety of hadron observables [1].
In that sense, our quantitative RL results should be useful
and trusted.
Together with the practicality of our approach and the

reduced error estimates, we believe that the algorithm
discussed herein is also suitable to study other Green
functions, since no assumptions on the form of σV;S are
made. Moreover, a domestic computer was sufficient to
produce the results presented herein. Finally, it is worth
recalling that the SPM has been proven useful in connect-
ing Euclidean and Minkowskian quantities, a key goal in
modern hadron physics, as well as a valuable extrapolation
resource (see e.g. [45–48]). The present approach to
obtain the analytical representation of the quark propagator
would take potential roles in the calculation of the hadron
spectrum, especially for the meson excited states.
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