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The linearly polarized quasireal photons from the highly Lorentz-contracted Coulomb fields of
relativistic heavy ions can fluctuate to quark-antiquark pairs, scatter off a target nucleus, and emerge
as vector mesons. In the process, the two colliding nuclei can serve as slits, forming a Young’s double-slit
experiment. In addition to the well-known double-slit interference pattern in position space, a similar
interference pattern may be expected in polarization space due to the linear polarization of the colliding
photons. In this paper, we investigate the interference effect in polarization space as revealed by the
asymmetries of the decay angular distribution for vector meson photoprodution in heavy-ion collisions.
We find a periodic oscillation pattern with transverse momentum, which can reasonably explain the
second-order modulation in azimuth for the ρ0 decay observed by the STAR Collaboration.

DOI: 10.1103/PhysRevD.103.033007

The double-slit interference experiment plays an essen-
tial role in expressing the central puzzle of quantum
mechanics—wave-particle complementarity. Such wave-
particle duality continues to be challenged [1–5] and
explored in a broad range of entities [6–11]. The dou-
ble-slit experiment could also be performed in relativistic
heavy-ion collisions utilizing the vector meson from
coherent photoproduction. The highly Lorentz-contracted
electromagnetic field accompanied by the heavy nuclei can
be viewed as a spectrum of quasireal photons [12]. The
photon emitted from one nucleus can fluctuate to a quark-
antiquark pair which then scatters off the other nucleus,
emerging as a real vector meson. In the production process,
the elastic scattering occurs via Pomeron exchange, which
imposes a restriction on the production site within one of
the two colliding nuclei. This indicates that the production
source consists of two well-separated nuclei (two slits).
There are two possibilities: Either nucleus 1 emits a photon
and nucleus 2 acts as a target, or vice versa. The two
possibilities are indistinguishable, which present the pro-
duction process as a perfectly double-slit experiment.
Furthermore, for the short-lived vector meson (e.g., ρ0),
it decays before the wave functions from the two slits can
overlap, and the interference entity is the complete set of

decay products in an entangled state, which is an illus-
tration of the Einstein-Podolsky-Rosen paradox. The dou-
ble-slit interference effect of photonuclear vector meson
production in momentum space has been proposed by
Klein and Nystrand [13] and verified by the STAR
Collaboration through measurements of the ρ0 in ultra-
peripheral collisions (UPCs) [14]. In Refs. [15,16], we
extended the scenario to hadronic heavy-ion collisions and
proposed to exploit the strong interactions in the overlap
region to test the observation effect on the interference.
The photons generated from the highly Lorentz-

contracted electromagnetic field are expected to be fully
linearly polarized. It has been suggested by Li et al. [17]
that the collisions of the linearly polarized photons
(γ þ γ → lþ þ l−) result in the second-order and fourth-
order modulations in azimuth (in the plane perpendicular to
the beam direction) between the pair momentum and the
lepton momentum for dilepton production. The experimen-
tal signature was confirmed by the STAR Collaboration
for the dielectron measurements [18]. The vector meson
production from linearly polarized photons also possesses
a distinctive signature in the asymmetries of the decay
angular distributions. Continuous efforts [19–26] has been
made for more than 50 years to utilize the linearly polarized
photons in vector meson photoproduction as a parity filter
for the exchange of particles in the t channel, which is an
effective tool to separate the natural from unnatural parity
exchange in the t channel. Since the photons are in a linear
polarization state, the interference can reveal itself in
polarization space, inducing an asymmetry in the decay
angular distributions. In this paper, we exploit the linearly
polarized photons to investigate the interference pattern in
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polarization space for the vector meson photoproduction in
heavy-ion collisions and demonstrate that the signature is a
periodic oscillation in asymmetries of the decay angular
distributions with transverse momentum.
Hereinafter, we take the process of γ þ A → V þ A →

dþ þ d− þ A in heavy-ion collisions to illustrate the
interference effect on the asymmetries of the decay. The
decay distribution depends on the choice of the coordinate
system, with respect to which the momentum of one of the
two decay products is expressed in spherical coordinates.
Herein, the right-handed coordinate system for vector
meson decay is built up as follows: The z axis is chosen
to the direction of flight of the vector meson in the photon-
nucleon center of mass frame; the y axis is normal to the
photoproduction plane; and the x axis is given by y × z. As
illustrated in Fig. 1, the decay angles θ and ϕ are the polar
and azimuthal angles, respectively, of the unit vector π̃,
which denotes the direction of flight of one of the decay
particles in the vector meson rest frame. In experiment, the
direction of the z axis is approximated by that of incoming
beams (shown as the z0 axis in Fig. 1). It has been verified
by Monte Carlo calculations that this is a good approxi-
mation. Here, we adopt the approximation in our calcu-
lation for direct comparisons with experimental results.
The angle Φ shown in Fig. 1 denotes the angle between
the photon polarization plane and vector meson produc-
tion plane.
Under the helicity no-flip assumption, the vector meson

inherits the photon polarization state, which is fully linearly
polarized. The helicity conservation assumption has
been investigated by various experimental measurements
[20–25]. Following Ref. [27] and the derivation in the
Appendix, the decay angular distribution of vector meson
to two spinless products (e.g., ρ0 → πþ þ π−) is

d2N
d cos θdϕ

¼ 3

8π
sin2θ½1þ cos 2ðϕ −ΦÞ�; ð1Þ

and to spin 1=2 products (e.g., ρ0 → eþ þ e−) gives

d2N
d cosθdϕ

¼ 3

16π
ð1þ cos2θÞ

�
1−

sin2θ
1þ cos2θ

cos2ðϕ−ΦÞ
�
:

ð2Þ

As revealed in Eqs. (1) and (2), the linearly polarized states
result in the second-order modulations in azimuth, and the
strength of the second-order modulation is given by

2hcosð2ϕÞi ¼ cosð2ΦÞ ð3Þ

and

2hcosð2ϕÞi ¼ −
sin2θ

1þ cos2θ
cosð2ΦÞ; ð4Þ

for the ρ0 → πþ þ π− and ρ0 → eþ þ e− cases, respec-
tively. The modulation strength is determined by the
direction of the linear polarization, and the orientation of
the photon polarization is determined by the direction of the
electric field vector. As demonstrated in Fig. 2, the electric
field vector is parallel to the impact parameter at leading
order. That is to say that the modulations of the decay
distribution for vector meson are determined by the
anisotropy in its two-dimensional transverse momentum
distribution with respect to the impact parameter at leading
order. The variation of polarization direction due to the
finite size of nuclei should be small in ultraperipheral
collisions, which could be investigated in future work.
The two-dimensional transverse momentum distribution

of the vector meson from coherent photoproduction can be
obtained by performing a Fourier transformation of the
coordinate space amplitude:

d2P
dpxdpy

¼
���� 1

2π

Z
d2x⊥ðA1ðx⊥Þ þ A2ðx⊥ÞÞeip⊥·x⊥

����
2

; ð5Þ

where A1ðx⊥Þ and A2ðx⊥Þ are the amplitude distributions in
the transverse plane for the two colliding nuclei. Consider,

yx

zz'

x'

π

θ

ϕΦ

V rest frame

FIG. 1. The coordinate system for the measurement of a two-
body decay angular distribution in the vector meson rest frame.
The definition of the x, y, and z axes is described in the text. The
z0 axis denotes the beam direction, and the x0 axis represents the
linear polarization vector.

FIG. 2. Schematic diagram for the direction of electric vector of
the photons, which hit on the target nuclei, in ultraperipheral
heavy-ion collisions.
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to leading order, we can approximate the production
over the two nuclei as two point sources: A1;2ðx⊥Þ ¼
�A1;2δðx⊥ � 1

2
bÞ, where A1 and A2 are the relative ampli-

tudes for the two colliding nuclei, δ is the Dirac δ function,
b is the impact parameter, and the minus sign in A2ðx⊥Þ
results from the negative parity of the vector meson. With
the interference effect, as demonstrated in Fig. 3(a) for the
case with b ¼ 20 fm at midrapidity (A1 ¼ A2), the trans-
verse momentum reveals a typical Young’s double-slit
interference pattern with a series of alternating light and
dark fringes, which corresponds to significant asymmetries
in azimuth. According to Eq. (3), the modulation strength
factor of vector meson decay to two spinless products,
2hcosð2ϕÞi, versus transverse momentum (pT) can be
extracted from the two-dimensional distribution. The result
is shown in Fig. 3(b). The modulation strength shows a
periodic oscillation like the hyperbolic Bessel functions
with the transverse momentum. The oscillation cycle is
determined by the distance between the two source (impact
parameter). For production at forward rapidity in heavy-ion
collisions, the relative amplitudes from the two nuclei are
not equal. Figure 3(c) shows the modulation strength as a
function of transverse momentum with unequal amplitudes
from the two sources. Since the interference is not complete
in this case, the oscillation level is weaker than that at
midrapidity. Furthermore, the modulation strength is 0 at
pT ¼ 0, while it is maximum for the case at midrapidity.
This results since the interference contribution is close to 0
for pT ¼ 0.
As mentioned herein before, we have qualitatively

demonstrated the interference effect on the asymmetries
of the decay angular distributions for vector meson photo-
production. The quantitative calculations are described
hereinafter. Following Ref. [15], the production amplitude
distribution for vector meson photoproduction is deter-
mined by the spatial photon flux and the corresponding
γA scattering amplitude ΓγA→VA. According to equivalent

photon approximation, the spatial photon flux generated by
the heavy nuclei can be written as

nðω; x⃗⊥Þ ¼
4Z2α

ωγ

����
Z

d2k⃗γ⊥
ð2πÞ2 k⃗γ⊥

Fγðk⃗γÞ
jk⃗γj2

eix⃗⊥·k⃗γ⊥
����
2

;

k⃗γ ¼
�
k⃗γ⊥;

ωγ

γc

�
; ωγ ¼

1

2
MVe�y; ð6Þ

where x⃗⊥ and k⃗γ⊥ are two-dimensional photon position and
momentum vectors, respectively, perpendicular to the beam
direction, ωγ is the energy of the emitted photon, Z is the
electric charge of the nucleus, α is the electromagnetic
coupling constant, γc is the Lorentz factor of the beam,MV
and y are the mass and rapidity, respectively, of the vector
meson, and Fγðk⃗γÞ is the nuclear electromagnetic form
factor. The form factor can be obtained via the Fourier
transformation of the charge density in the nucleus. The
charge density profile of the nucleus can be parametrized
by the Woods-Saxon distribution:

ρAðrÞ ¼
a0

1þ exp½ðr − RWSÞ=d�
; ð7Þ

where the radius RWS and skin depth d are based on fits
to electron-scattering data [28] and a0 is the normali-
zation factor. As demonstrated in Eq. (6), the polarization
direction for the quasireal photons follows the position
vector x⃗⊥.
The scattering amplitude ΓγA→VA with the shadowing

effect can be estimated via the Glauber [29]þ vector meson
dominance (VMD) approach [30]:

ΓγA→VAðx⃗⊥Þ ¼
fγN→VNð0Þ

σVN
2

�
1 − exp

�
−
σVN
2

T 0ðx⃗⊥Þ
��

;

ð8Þ
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FIG. 3. (a) Two-dimensional transverse momentum distribution pattern with pointlike assumption at midrapidity. (b) The modulation
strength 2hcosϕi as a function of transverse momentum at midrapidity. (c) 2hcosϕi as a function of transverse momentum at forward
rapidity (A1 ≠ A2).
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where fγN→VNð0Þ is the forward-scattering amplitude for
γ þ N → V þ N and σVN is the total VN cross section. To
account for the coherent length effect, the modified thick-
ness function T 0ðx⃗⊥Þ is defined as

T 0ðx⃗⊥Þ ¼
Z þ∞

−∞
ρ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x⃗2⊥ þ z2
q 	

eiqLzdz; qL ¼ MVey

2γc
;

ð9Þ

where qL is the longitudinal momentum transfer required
to produce a real vector meson. The fγN→VNð0Þ can be
determined from the measurements of forward-scattering

cross section dσγN→VN

dt jt¼0, which is well parametrized in
Ref. [31]. Using the optical theorem and VMD relation, the
total cross for VN scattering can be given by

σVN ¼ fV
4

ffiffiffi
α

p
C
fγV→VN; ð10Þ

where fV is the V-photon coupling and C is a correction
factor for the nondiagonal coupling through higher mass
vector mesons. Finally, the production amplitude can be
given by

Aðx⃗⊥Þ ¼ ΓγA→VA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðω; x⃗⊥Þ

p
: ð11Þ

In addition to the coherent production with interference,
there are also an incoherent contribution in heavy-ion
collisions, which is significant at relative high transverse
momentum. The incoherent production should have no
contribution to the asymmetries of decay distribution,
which would weaken the overall modulation strength.
Similarly to the case of coherent vector meson photo-
production on nuclei, the incoherent cross section σγA→VA0

could be related to the exclusive γp cross section σγp→Vp

via the Glauber þ VMD approach. Here, A0 is the final
nuclear state containing products of the nuclear disintegra-
tion. The approach gives

σγA→VA0 ¼ σγp→Vp

Z
d2x⃗⊥Tðx⃗⊥Þe−ð1=2ÞσinVNTðx⃗⊥Þ; ð12Þ

where σinVN ¼ σVN − σ2VN=ð16πBVÞ is the inelastic vector
meson-nucleon cross section and BV is the slope of the t
dependence of the γp → Vp scattering [31].
Here, we focus on the ultraperipheral collisions, where

there is no nuclear overlap to reject hadronic background.
According to the optical Glauber model [32], the mean
number of projectile nucleons that interact at least once in
Aþ A collisions with impact parameter b is

PHðbÞ ¼
Z

d2x⃗⊥Tðx⃗⊥ − b⃗Þf1 − exp½−σNNTðx⃗⊥Þ�g; ð13Þ

where σNN is the total nucleon-nucleon cross section. Then,
the probability of having no hadronic interaction is
exp½−PHðbÞ�. In experiment, the UPC events are usually
triggered or selected by the mutual Coulomb dissociation
of the nuclei, in which the number of emitted forward
neutrons can be detected by zero degree calorimeters.
Following the EPA approach, the Coulomb excitation
probability of an ultrarelativistic nucleus can be determined
by the photon flux accompanied with the nucleus and the
appropriate photon-absorption cross section of nuclei. The
lowest-order probability for an excitation of nucleus which
emits at least one neutron (Xn) is

mXnðbÞ ¼
Z

dωnðω; bÞσγA→A� ðωÞ; ð14Þ

where nðω; bÞ is photon flux described by Eq. (6) and
σγA→A� ðωÞ is the photoexcitation cross section with incident
energy ω. The photoexcitation cross section σγA→A� ðωÞ can
be extracted from the experimental measurements [33–39].
The probability of mutual dissociation for the two nuclei
with at least one neutron emission for each beam (XnXn) is
then given by

PXnXnðbÞ ¼ ð1 − exp½−mXnðbÞ�Þ2: ð15Þ

As described in our recent work [40], the mutual dissoci-
ation probability with any number of neutron emission can
be estimated in a similar way.
With the inputs described before, the cross section and

differential distributions for vector meson photoproduction
can be calculated and can reasonably describe the mea-
surements from STAR [24,41] and ALICE [42,43]. The
estimated modulation strength 2hcosð2ϕÞi of ρ0 → πþ þ
π− and ρ0 → eþ þ e− as a function of pT in ultraperipheral
Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV for mutual dis-
sociation mode XnXn are shown in Fig. 4. The modulation
strength shows a periodic oscillation with the transverse
momentum. The amplitude of the second oscillation period
is weaker than that of the first oscillation period, which is
due to a larger fraction of incoherent production at higher
pT . The oscillation feature completely disappears for
pT > 0.16 GeV=c, where the incoherent production plays
the dominate role in the photoproduction. As expected in
Eqs. (3) and (4), the modulation strength for ρ0 → eþ þ e−

is weaker and possesses opposite sign in comparison with
that for ρ0 → πþ þ π−. Furthermore, it depends on the
acceptance, and the calculations for ρ0 → eþ þ e− are
performed with STAR acceptance as listed in the figure.
The results for ρ0 → πþ þ π− can reasonably describe
the transverse momentum dependence of the second-
order modulation in azimuth observed by the STAR
Collaboration [44]. The predictions for ρ0 → eþ þ e− call
for further experimental testing.
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In summary, the double-slit interference pattern is
explored in polarization space with the linearly polarized
photons in heavy-ion collisions. We demonstrate how the
interference between the two colliding nuclei affects the
asymmetries of the decay angular distributions for vector
meson photoproduction from linearly polarized photons.
Using the vector meson dominance with the Glauber
approach, the second-order modulation in azimuth for
vector meson decay from photoproduction in ultraperiph-
eral Auþ Au collision at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV is estimated
and reveals a periodic oscillation with transverse mo-
mentum. The results for ρ0 → πþ þ π− can reasonably
describe the decay asymmetries observed by the STAR
Collaboration, while the predictions for ρ0 → eþ þ e− call
for further experimental verification. Furthermore, in prin-
ciple, the modulation strength should also reveal itself for
photoproduction in multislit interference setups (future
electron-ion collider experiments), which may serve as a
novel tool to probe the gluon distribution in nuclei.
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APPENDIX: GENERAL DECAY ANGULAR
DISTRIBUTION OF VECTOR MESON

TWO-BODY DECAY

For single production, the vector meson is formed as a
superposition of the three J ¼ 1 eigenstates, Jz¼þ1;−1, 0
with respect to the polarization axis z:

jVi ¼ aþ1j þ 1i þ a−1j − 1i þ a0j0i: ðA1Þ

The calculation is performed in the vector meson rest
frame, where the common direction of the two decay
products defines the reference axis z0, oriented conven-
tionally along the direction of the positive product. For the
decay of a vector meson to two spinless products (e.g.,
ρ0 → πþ þ π−), the decay system has angular momentum
projection 0 along z0; while for the decay to a dilepton
system (e.g., ρ0 → eþ þ e−), due to helicity conservation
for fermions in QED, it has angular momentum projection
�1 along z0. The decay system can be represented as an
eigenstate of Jz0 , jdþd−; 1; l0i with l0 ¼ þ1, −1, or 0. The
eigenstate along z0 can be expressed by a superposition of
eigenstates of Jz, jdþd−; 1; li with l ¼ 0;�1 through the
rotation transformation:

jdþd−; 1; l0i ¼
X

l¼0;�1

D1
ll0 ðϕ; θ;−ϕÞjdþd−; 1; li: ðA2Þ

The complex rotation matrix elements D1
ll0 are defined as

D1
ll0 ðϕ; θ;−ϕÞ ¼ e−iðl−l0Þϕd1ll0 ðθÞ: ðA3Þ

The amplitude of the partial process Vðj1; miÞ → dþ þ
d−ðj1; l0iÞ can then be written as

Bml0 ¼
X

l¼0;�1

D1�
ll0 ðϕ; θ;−ϕÞhdþd−; 1; ljMjV; 1; mi

¼ BD1�
ml0 ðϕ; θ;−ϕÞ: ðA4Þ

Here we imposed hdþd−; 1; ljMjV; 1; mi ¼ Bδml according
to the angular momentum conservation and rotational
invariance (B is independent of m). The total amplitude
of V → dþ þ d−ðj1; l0iÞ with the superposition of eigen-
state written by Eq. (A1) is

Bl0 ¼
X

m¼0;�1

amBD1�
ml0 ðϕ; θ;−ϕÞ: ðA5Þ

The probability of the transition is obtained by squaring
Eq. (A5) and summing over the spin alignments of the
decay system. For photoproduction, the vector meson
inherits the photon polarization state. which is fully linearly
polarized. It reads

jVi ¼ −
1ffiffiffi
2

p e−iΦj þ 1i þ 1ffiffiffi
2

p eiΦj − 1i; ðA6Þ

where Φ is the angle between the linear polarization vector
and the production plane of vector meson. This gives
a0 ¼ 0, aþ1 ¼ − 1ffiffi

2
p e−iΦ, and a−1 ¼ 1ffiffi

2
p eiΦ. For the decay
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FIG. 4. The modulation strength 2hcosð2ϕÞi of ρ0 → πþ þ π−

and ρ0 → eþ þ e− as a function of transverse momentum in
ultraperipheral Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV for
mutual dissociation mode XnXn.
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of a vector meson to two spinless products (e.g.,
ρ0 → πþ þ π−), with d100 ¼ cos θ and d1�10 ¼∓ 1ffiffi

2
p sin θ,

the decay distribution can be written as

Wðcos θ;ϕÞ ∝ jB0j2 ∝
3

8π
sin2θ½1þ cos 2ðϕ −ΦÞ�: ðA7Þ

For the decay to a dilepton system (e.g., ρ0 → eþ þ e−),
with d10�1¼� 1ffiffi

2
p sinθ, d1�1�1¼ 1þcosθ

2
, and d1∓1�1¼ 1−cosθ

2
,

the decay distribution can be written as

Wðcos θ;ϕÞ
∝

X
l0¼�1

jBl0 j2

∝
3

16π
½1þ cos2θ − sin2θ cos 2ðϕ −ΦÞ�

∝
3

16π
ð1þ cos2θÞ

�
1 −

sin2θ
1þ cos2θ

cos 2ðϕ −ΦÞ
�
: ðA8Þ
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miniac, and A. Veyssiére, Nucl. Phys. A431, 573 (1984).
[36] T. A. Armstrong et al., Phys. Rev. D 5, 1640 (1972).
[37] D. O. Caldwell, V. B. Elings, W. P. Hesse, R. J. Morrison,

F. V. Murphy, and D. E. Yount, Phys. Rev. D 7, 1362 (1973).
[38] S. Michalowski, D. Andrews, J. Eickmeyer, T. Gentile, N.

Mistry, R. Talman, and K. Ueno, Phys. Rev. Lett. 39, 737
(1977).

[39] T. Armstrong et al., Nucl. Phys. B41, 445 (1972).
[40] J. D. Brandenburg et al., arXiv:2006.07365.
[41] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 96,

054904 (2017).
[42] J. Adam et al. (ALICE Collaboration), J. High Energy Phys.

09 (2015) 095.
[43] S. Acharya et al. (ALICE Collaboration), J. High Energy

Phys. 06 (2020) 035.
[44] D. Brandenburg (STAR Collaboration), Quark Matter 2019

(2019), https://indico.cern.ch/event/792436/contributions/
3535864/.

ZHA, BRANDENBURG, RUAN, and TANG PHYS. REV. D 103, 033007 (2021)

033007-6

https://doi.org/10.1038/351111a0
https://doi.org/10.1038/351111a0
https://doi.org/10.1038/377584a0
https://doi.org/10.1038/377584a0
https://doi.org/10.1103/PhysRevLett.95.040401
https://doi.org/10.1103/PhysRevLett.96.100403
https://doi.org/10.1103/PhysRevLett.96.100403
https://doi.org/10.1038/nphoton.2009.261
https://doi.org/10.1038/nphoton.2009.261
https://doi.org/10.1007/BF01342460
https://doi.org/10.1103/RevModPhys.60.1067
https://doi.org/10.1103/PhysRevLett.66.2689
https://doi.org/10.1038/44348
https://doi.org/10.1126/science.275.5300.637
https://doi.org/10.1103/PhysRevLett.91.090408
https://doi.org/10.1103/PhysRevLett.91.090408
https://doi.org/10.1016/S0146-6410(97)00049-5
https://doi.org/10.1016/S0146-6410(97)00049-5
https://doi.org/10.1103/PhysRevLett.84.2330
https://doi.org/10.1103/PhysRevLett.84.2330
https://doi.org/10.1103/PhysRevLett.102.112301
https://doi.org/10.1103/PhysRevLett.102.112301
https://doi.org/10.1103/PhysRevC.97.044910
https://doi.org/10.1103/PhysRevC.97.044910
https://doi.org/10.1103/PhysRevC.99.061901
https://doi.org/10.1103/PhysRevC.99.061901
https://doi.org/10.1016/j.physletb.2019.07.005
https://doi.org/10.1016/j.physletb.2019.07.005
https://arXiv.org/abs/1910.12400
https://doi.org/10.1016/0550-3213(68)90191-0
https://doi.org/10.1016/0370-2693(68)90260-8
https://doi.org/10.1103/PhysRevLett.24.1364
https://doi.org/10.1016/0550-3213(76)90073-0
https://doi.org/10.1016/0550-3213(76)90073-0
https://doi.org/10.1016/0370-2693(96)00172-4
https://doi.org/10.1103/PhysRevC.77.034910
https://doi.org/10.1103/PhysRevC.77.034910
https://doi.org/10.1103/PhysRevC.97.035208
https://doi.org/10.1103/PhysRevC.97.035208
https://doi.org/10.1007/JHEP10(2020)064
https://doi.org/10.1016/0550-3213(70)90070-2
https://doi.org/10.1016/0550-3213(70)90070-2
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1103/RevModPhys.50.261
https://doi.org/10.1016/j.cpc.2016.10.016
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1016/0375-9474(70)90727-X
https://doi.org/10.1016/0375-9474(81)90516-9
https://doi.org/10.1016/0375-9474(84)90269-0
https://doi.org/10.1103/PhysRevD.5.1640
https://doi.org/10.1103/PhysRevD.7.1362
https://doi.org/10.1103/PhysRevLett.39.737
https://doi.org/10.1103/PhysRevLett.39.737
https://doi.org/10.1016/0550-3213(72)90403-8
https://arXiv.org/abs/2006.07365
https://doi.org/10.1103/PhysRevC.96.054904
https://doi.org/10.1103/PhysRevC.96.054904
https://doi.org/10.1007/JHEP09(2015)095
https://doi.org/10.1007/JHEP09(2015)095
https://doi.org/10.1007/JHEP06(2020)035
https://doi.org/10.1007/JHEP06(2020)035
https://indico.cern.ch/event/792436/contributions/3535864/
https://indico.cern.ch/event/792436/contributions/3535864/
https://indico.cern.ch/event/792436/contributions/3535864/
https://indico.cern.ch/event/792436/contributions/3535864/

