
 

Standard model meets gravity: Electroweak symmetry breaking
and inflation

Mikhail Shaposhnikov ,* Andrey Shkerin ,† and Sebastian Zell ‡

Institute of Physics, Laboratory for Particle Physics and Cosmology,
École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

(Received 19 February 2020; revised 23 November 2020; accepted 2 February 2021; published 25 February 2021)

We propose a model for combining the Standard Model (SM) with gravity. It relies on a nonminimal
coupling of the Higgs field to the Ricci scalar and on the Palatini formulation of gravity. Without
introducing any new degrees of freedom in addition to those of the SM and the graviton, this scenario
achieves two goals. First, it generates the electroweak symmetry breaking by a nonperturbative
gravitational effect. In this way, it does not only address the hierarchy problem but opens up the
possibility to calculate the Higgs mass. Second, the model incorporates inflation at energies below the onset
of strong-coupling of the theory. Provided that corrections due to new physics above the scale of inflation
are not unnaturally large, we can relate inflationary parameters to data from collider experiments.
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I. INTRODUCTION

The results of LHC have been very exciting. First, it has
found the last missing particle of the Standard Model (SM),
the Higgs boson [1,2]. Second, it has significantly con-
strained physics beyond the SM. In many scenarios, the
existence of new particles close to the electroweak scale is
now excluded. This gives a significant motivation to study
the proposal that no new degrees of freedom exist anywhere
above the weak scaleMF ∼ 102 GeV (see e.g., [3]). Such a
situation is self-consistent, since with the measured values
of its parameters, the SM is a valid quantum field theory
until the Landau poles in the Higgs self-interaction and the
hyper-charge gauge interaction, which appear at exponen-
tially large energies, well above another fundamental scale
of Nature—the Planck mass MP ¼ 2.44 × 1018 GeV.1

Other experimental and observational data that calls for
new physics, such as dark matter, neutrino oscillations and
baryon asymmetry of the Universe, does not require the
presence of any new particle populating the desert between
the Fermi and the Planck scales, either.2 Moreover, the
existence of new heavy particles (such as leptoquarks of
grand unified theories) leads to the celebrated problem of
the stability of the Higgs mass against radiative corrections
coming from loops with these superheavy states [11]. If
there are no such particles all together, the hierarchy
problem as a concern about the sensitivity of low-energy
parameters to high-energy physics below the Planck scale
disappears [3,12,13]. Another aspect of the problem,
however, remains, and it is centered around the question
why the electroweak scale is so much smaller than the
Planck scale. This is one of the issues that we shall address
in the present work.
If we have only the SM (or νMSM) degrees of freedom

all the way up to the Planck scale, the question arises: “How
does the SM merge with gravity?” In this paper we show
that the conformally-invariant (at the classical level) SM
coupled to gravity in the Palatini formulation with non-
minimal interaction between the Higgs field and the
gravitational Ricci scalar has a number of remarkable
properties indicating, perhaps, that this is a step in the
right direction. The Lagrangian of the model reads:
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1Depending on the masses of the top quark and of the Higgs
boson, the Higgs self-coupling can become negative at energy
scales between 108 GeV andMP and thereby give rise to another,
deeper minimum of the Higgs potential [4,5]. Whether this
happens or not is an open question, given the uncertainties in
the determination of the top quark Yukawa coupling; see [6] for a
review. But even if our current vacuum is metastable, the validity
of the SM is not spoiled, since its lifetime exceeds the age of the
Universe by many orders of magnitude [7].

2For example, the neutrino minimal Standard Model (νMSM)
[8,9], whose particle content is extended compared to that of the
SM only by three Majorana neutrinos with masses below MF,
may account for all these phenomena in a unified way (for a
review see [10]).
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L ¼ −
M2

P

2
R − ξH†HRþ LSMjmH;tree→0; ð1Þ

where R is the Ricci scalar,H is the Higgs field, ξ > 0 is the
strength of its nonminimal coupling to gravity, LSM is the
SM Lagrangian, and mH;tree is the tree-level Higgs mass.
We start from the well-known facts about different

sectors of this theory. In the Palatini formulation of gravity
[14,15], the metric gμν and the symmetric affine connection
Γα
βγ are treated as independent variables. In spite of the

larger number of field components as compared to metric
gravity, the number of physical propagating degrees of
freedom—two of the massless graviton—is the same in
both theories. In the absence of the nonminimal coupling,
ξ ¼ 0, Palatini gravity is moreover exactly equivalent to the
standard metric Einstein gravity.
The particle physics sector of the theory is the SM with

zero tree-level Higgs mass. It is well known that the
Lagrangian LSMjmH;tree→0 has an extra symmetry—it is
invariant under the group of conformal transformations.
What is most important for us is that in this theory the
Higgs mass is predictable [16–18] (to be more precise, the
ratio between the scalar and vector boson mass is com-
putable). The easiest way to see that is to use the minimal
subtraction scheme for removing the divergencies. Here the
counterterms are polynomials in the coupling constants
[19], and, if mH;tree ¼ 0, no counterterm is needed for the
mass renormalization, meaning that the Higgs mass can be
expressed through other parameters of the theory. This is
true even in the presence of gravity, because perturbative
quantum gravity corrections can only contain inverse
powers of MP [20]. To put it in different words, the
renormalization group β-function for the Higgs mass is
zero if mH;tree ¼ 0 [19].3

First, we are going to argue that electroweak symmetry
breaking in the theory (1) can be induced by the non-
perturbative semiclassical effect related to a singular
gravitational-scalar instanton—a solution to classical equa-
tions of motion of Euclidean gravity.4 This effect has been
already discussed in metric gravity [23], but there it was
difficult to implement and required ad hoc ingredients. We
will show that in the Palatini formulation, the gravitational
instanton can be realized significantly more simply and
naturally. For large values of the nonminimal coupling ξ,
we find that MF ∝ MP exp ð−BÞ, where B is the instanton
action. The observed hierarchy of the Fermi and Planck
scales requires B ∼ 30, which we can easily achieve.
Second, we will show that the very same choice of

parameters leads to successful inflation. The role of the

inflaton is played by the Higgs field [24]. Due to the
nonminimal coupling of the Higgs field to gravity, pre-
dictions of Higgs inflation in the Palatini formulation of
gravity are different from those in the metric case [25]. The
prominent feature of this scenario is the increase of the
energy scale Λ, at which tree-level unitarity is violated.5 In
the original Higgs inflation, Λ is of the order of MP=ξ and
lies below inflationary scales [29,30]. On the one hand, this
makes it impossible to determine the inflationary potential
from the low-energy SM parameters unless the “jumps” of
the coupling constants at the onset of the strong coupling
regime happen to be very small [26,31]. On the other hand,
the low value of Λ is expected to lead to a breakdown of
perturbation theory during preheating [32,33]. In contrast,
Palatini Higgs inflation gives Λ ¼ MP=

ffiffiffi
ξ

p
[34], which lies

above inflationary energies. As discussed in more detail in
[35], this allows us to establish a connection between low-
and high-energy parameters of the theory, provided that
corrections due to new physics are not unnaturally large.
Moreover, no strong coupling is expected to occur during
preheating. It is important to recall that in our approach no
new particles exist above the weak scale. Consequently, the
violation of tree-level unitarity at the scale Λ is due to a
strong-coupling regime of the low-energy degrees of
freedom.6

II. THE MODEL

We are interested in the Higgs-gravity sector of the
model (1). The rest of the SM particles manifest themselves
through RG running of the Higgs quartic coupling λ, which
shapes the effective Higgs potential. We neglect the running
of ξ (see Appendix C). When we apply the unitary gauge
for the Higgs field, H ¼ ð0; hÞT= ffiffiffi

2
p

, the relevant part of
the Lagrangian reads

L ¼ −
M2

P þ ξh2

2
Rþ 1

2
ð∂μhÞ2 −

λ

4
h4: ð2Þ

In order to make the kinetic term of h canonical, we
perform a Weyl transformation of the metric,

ĝμν ¼ Ω2gμν; Ω2 ¼ 1þ ξh2

M2
P
; ð3Þ

followed by the field redefinition [25]

3That this remains true in the presence of a nonminimal
coupling ξ is discussed in the Appendix A.

4Note that the Coleman-Weinberg effective potential [16] in
the SM cannot lead to electroweak symmetry breaking with the
experimental values of the Higgs self-coupling and top quark
Yukawa coupling (see, e.g., [21,22]).

5The scale Λ only applies to scattering in a vacuum back-
ground. In metric Higgs inflation, the scale of unitarity violation
is background-dependent and during inflation it lies above
inflationary energies [26] (see also [27,28]). In contrast, we
expect in the Palatini case that the scale of unitarity violation does
not increase in a nontrivial background (see Appendix B).

6Further discussions of this idea of “self-healing” [26,36] can
be found in [35]. In the context of gravity, such a scenario was,
e.g., suggested in [37–41].
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h ¼ MPffiffiffi
ξ

p sinh

� ffiffiffi
ξ

p
χ

MP

�
: ð4Þ

Then Lagrangian (2) becomes

L ¼ −
M2

P

2
R̂þ 1

2
ð∂μχÞ2 − UðχÞ; ð5Þ

and the scalar potential is given by

UðχÞ ¼ λM4
P

4ξ2

�
tanh

� ffiffiffi
ξ

p
χ

MP

��
4

: ð6Þ

Note that if we had worked in the metric formulation of the
theory (1), we would have arrived at the same form (5) of
the Lagrangian but with a different potential UðχÞ. Thus,
the nonequivalence of the Palatini and metric formalisms
manifests itself as the difference in the self-interaction of
the canonically normalized scalar field.

III. FERMI SCALE

Let us discuss how the model (1) can elegantly accom-
modate the nonperturbative mechanism of generation of the
Fermi scale proposed in [23] and developed further in
[42,43]. Our starting point is the expectation value of h in
the path integral formalism:

hhi ∼
Z

DhDgμνDΓα
βγhe

−SE; ð7Þ

where SE is the Euclidean action of the theory.7 We
disregarded the rest of the SM degrees of freedom since
they can only change the prefactor but not the exponential
dependence in our subsequent result (12).
Our goal is to study if the path integral (7) possesses

saddle points besides the trivial one at hhi ¼ 0. To this end,
we notice that by making the change of variable according
to Eqs. (3), (4), the expectation value can be written as

hhi ∼MPffiffiffi
ξ

p
Z

DχDĝμνDΓα
βγe

ffiffi
ξ

p
χ

MP
−SE: ð8Þ

Here we used that h > 0 (and, correspondingly, χ > 0) in
the unitary gauge. Next, we integrate out the connection
field. To this end, we split Γα

βγ into the Levi-Civita part and
the contorsion tensor Cα

βγ. This does not change the
integration measure in (8):

R
DΓ ¼ R DC. The contorsion

enters only the gravitational part of the action SE and reads
(see, e.g., [46]):

Z
d4x

ffiffiffi
g

p
gμνRμνðΓÞ¼

Z
d4x

ffiffiffi
g

p
gμνðRμνðgÞ

−∇μC
ρ
ρνþ∇ρC

ρ
μνþCλ

μνC
ρ
ρλ−Cλ

ρνC
ρ
μλÞ:
ð9Þ

We see that the path integral over the contorsion is
Gaussian. Hence it can be evaluated exactly by solving
the equations of motion for Cα

βγ and plugging the result
back in the action. Varying (9) with respect to Cα

βγ gives the
condition of vanishing contorsion: Cα

βγ ¼ 0, where we used
that in Palatini gravity the connection is assumed to be
symmetric: Γα

βγ ¼ Γα
γβ. Thus, the metric and Palatini for-

mulations are equivalent in the absence of nonminimal
coupling and Eq. (8) becomes

hhi ∼MPffiffiffi
ξ

p
Z

DχDĝμνe
ffiffi
ξ

p
χ

MP
−SE; ð10Þ

where the Levi-Civita connection is now used in SE. Note
that both integration measures Dχ and Dĝμν can contain
nontrivial factors, which we show and discuss in
Appendix D. We will argue shortly that all of them are
inessential for our purposes as long as we are interested in
the leading-order exponential contribution to Eq. (10).
In Eq. (10), it is natural to expect the term

ffiffiffi
ξ

p
χ=MP to be

included in the determination of the saddle point.8 As in
[23,42,43], our subsequent analysis is based on this
assumption. If it holds, then the dominant contribution
to the path integral is provided by extrema of

B ¼
Z

d4x

�
−

ffiffiffi
ξ

p
χðxÞ
MP

δð4ÞðxÞ þ
ffiffiffiffiffi
ĝE

p
LE

�
: ð11Þ

The subscript E refers to the Euclidean signature. We see
that the Lagrangian is supplemented by an instantaneous
source and we used translational invariance of the theory to
evaluate the latter at the origin. The corresponding saddle-
point approximation gives

hhi ∼MPffiffiffi
ξ

p e−B; ð12Þ

where B is the value of B, evaluated at a suitable Euclidean
classical configuration of the fields χ and ĝμν. The approxi-
mation (12) only holds if B is large, since solely in this case
fluctuations above the classical background are suppressed.
Clearly, the same requirement naturally leads to a hierarchy
between the scales MP and MF. One must show that B
possesses extrema such that the resulting action is large but
finite.

7Note that because of the presence of gravity, the Euclidean
path integral in Eq. (7) must be taken with caution [44,45].

8The same approach is used, e.g., in the discussion of
confinement in gauge theories [47] and of multiparticle
production [48].
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The extremum points of B are found by varying it with
respect to χ and ĝμν. This yields Euclidean equations of
motion supplemented by the instantaneous source of χ.
Since the point source preserves the Oð4Þ-symmetry of the
theory, we specialize to spherically-symmetric solutions.
The assumption that solutions of maximal symmetry
minimize an Euclidean action is commonly used in studies
of Euclidean gravity [49] (see also [50–53]), although the
proof of it is only known for scalar field theories in flat
space [54,55]. Thus, we choose the following ansatz for the
metric:

ds2 ¼ fðrÞ2dr2 þ r2dΩ2
3; ð13Þ

where dΩ3 is the line element on a unit 3-sphere and f is a
function of the radial coordinate r. The total action (11)
becomes

B ¼
Z

∞

0

dr

� ffiffiffi
ξ

p
χ0ðrÞ
MP

þ 2π2r3fLE

�
: ð14Þ

Before determining extrema of B, let us discuss why we
expect subleading contribution, e.g., from nontrivial mea-
sure factors in the path integral, to be small as compared to
the saddle-point result. For this purpose, we implement a
scaling argument to extract explicitly the large parameter in
the total action (14). We shall restrict ourselves to the
spherically symmetric ansatz (13). Moreover, we assume
that f → 0 as r → 0

9; the actual solution fulfills this
property: see subsequent discussion below Eqs. (17),
(18). With these simplifications, the change of variables

r → ξ1=6r=MP; χ → MPχ; f → ξ−1=6f ð15Þ

brings the total action to the form

B ¼
ffiffiffi
ξ

p
B̄; ð16Þ

where B̄ is a dimensionless action in which all terms are of
the order of one. Thus, the instanton action B is large as
long as the nonminimal coupling ξ is large. Moreover, all
terms in the quadratic action for fluctuations are manifestly
of the order of one, which gives us an argument that the
corrections to the saddle-point result (12) are subleading.
It turns out, however, that evaluating B in the theory (5)

leads to an infinite action, caused by a divergent value of
χð0Þ. Indeed, the equations of motion take the form

r3χ0

f
¼ −

ffiffiffi
ξ

p
2π2MP

; ð17Þ

6 − 6f2 −
r2χ02

M2
P

¼ 0; ð18Þ

where for the moment we switched off the potential. One
boundary condition for the instanton comes from asymp-
totic flatness: χ → 0, f → 1 at r → ∞; another one is due to
the source: f → 0 as r → 0. Together, they select a unique
solution of Eqs. (17), (18). Its exact form is

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1þ ξ
24π4M4

Pr
4

s
; ð19Þ

χðrÞ ¼
ffiffiffi
ξ

p
2π2MP

Z
∞

r

fðr0Þdr0
r03

: ð20Þ

We see that at r → 0

f ≈
2
ffiffiffi
6

p
π2M2

Pr
2ffiffiffi

ξ
p ; χ ≈ −

ffiffiffi
6

p
MP log r: ð21Þ

Thus, the scalar field diverges at the origin: χð0Þ ¼ ∞ and
the solution is not viable. It is easy to check that allowing
for nonzero potential UðχÞ does not change the above
results. Indeed, since on the solution both r3fU0ðχÞ and
r2f2UðχÞ tend to 0 at r → 0, the short-distance asymptotics
of the instanton are still given by Eqs. (21).
At this point, we must remember that our theory enters

strong coupling at a finite energy scale. Therefore, its high-
energy behavior is sensitive to the existence of higher-
dimensional operators. We can use those to remove the
unphysical UV-divergence of χð0Þ. As we shall show, it
suffices to supplement Lagrangian (2) by the operator (in
the Lorentz signature)10

δLδ ¼
δ

M8
PΩ8

�
1þ δ

Ω2

�
ð∂μhÞ6; ð22Þ

where δ > 0 and Ω is defined in Eq. (3). Clearly, δLδ does
not introduce any new degrees of freedom. Hence, it fulfills
our assumption about the absence of new particles above
the weak scale. Moreover, the operator (22) is suppressed
below the scale ∼MP=

ffiffiffi
ξ

p
as long as δ≲ ξ2. Nevertheless, it

is important to emphasize that our goal is not to discuss a
possible UV-completion of the theory connected to the
specific choice of the operator (22). Instead, we want to
demonstrate on a simple example how regularization at
high energies can be achieved. The operator (22) is not a
unique option; other derivative operators produce the same
effect on the instanton [23].

9This allows us to neglect the second term in the scalar
curvature R ∼ ð−f þ f3 þ rf0Þ=ðr2f3Þ.

10We choose this operator since the simplest option
∝ −δð∂μhÞ4 (with positive δ) would violate positivity bounds
[56,57].
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After including the operator (22), the Euclidean equa-
tions of motion become

∂r

�
r3χ0

f
þ 6δr3χ05GðχÞ

M8
Pf

5

�
−
δr3χ06G0ðχÞ

M8
Pf

5

−r3fU0ðχÞ ¼ −
ffiffiffi
ξ

p
2π2MP

δðrÞ;

6 − 6f2 þ 2r2f2UðχÞ
M2

P
−
r2χ02

M2
P
−
10δr2χ06GðχÞ

M10
P f4

¼ 0;

ð23Þ

where we defined GðχÞ ¼ 1þ δ= cosh2 ð ffiffiffi
ξ

p
χ=MPÞ. We

shall solve these equations numerically with the boundary
conditions discussed above. Close to the origin, however,
they reduce to

6δr3χ05

M8
Pf

5
¼ −

ffiffiffi
ξ

p
2π2MP

; ð24Þ

6 −
10δr2χ06

M10
P f4

¼ 0; ð25Þ

and this again can be solved analytically, yielding the short-
distance asymptotics of the instanton:

fðrÞ ∼ δ
1
10ξ−

3
10ðMPrÞ45; ð26Þ

χ0ðrÞ ∼ δ−
1
10ξ−

1
5M

11
5

Pr
1
5: ð27Þ

We see that χð0Þ is finite now. It remains to check that one
can achieve B ¼ Oð10Þ. To this end, we use Eq. (23) to
determine δ as a function of ξ in such a way that hhi ¼ MF.
The method for computing the instanton and the corre-
sponding action is described in Appendix E, and the result
is shown in Fig. 1. For the values of ξ admissible for
inflation (see below), δ is of the same order of magnitude
as ξ2.
As discussed above, a necessary condition for the

validity of the saddle-point result (12) is B ≫ 1. In the
theory without the higher-dimensional operator, the scaling
argument (15) shows that the strength of the source term,
controlled by the nonminimal coupling ξ, determines the
instanton profile and appears as a common factor in B.
Therefore, a value ξ ≫ 1 automatically gives a large B,
unlike in the scenario considered in [23]. In the theory with
the operator (22), the scaling argument remains applicable
although it becomes more complicated. For completeness,
we discuss it in Appendix E. We postpone a more detailed
study of subleading corrections to the instanton solution to
future work.
Finally, one may wonder whether the instanton mecha-

nism can also be realized in a simpler setup. For example,
consider the theory with the same Lagrangian for χ

but without gravity, in the flat background, i.e., set
f ¼ 1. In this case, it follows from Eq. (24) that χ0 ∼
r−3=5 at small r, hence χð0Þ is still finite. Furthermore, one
can show that the instanton action is also finite. However,
the strength of the source now is of order 1, i.e.,

ffiffiffi
ξ

p
disappears from the right-hand side (rhs) of the first line of
Eq. (23). Consequently, the instanton action is also of order
1 and the semiclassical approximation is no longer valid.
Dynamical gravity and a large nonminimal coupling ξ are,
therefore, essential to make the action large. The same
conclusion was reached in metric gravity [23,42,43].

IV. INFLATION

The potential (6) gives rise to inflation at field values
χ ≳MP=

ffiffiffi
ξ

p
[25]. The spectral tilt and tensor-to-scalar ratio

are readily computed:

ns ¼ 1 −
2

N
; r ¼ 2

ξN2
; ð28Þ

where N is the number of e-foldings. In what follows, we
take N ¼ 50.9 corresponding to ξ ∼ 107 [58]. The predic-
tion for ns is essentially identical to the original scenario of
Higgs inflation [24], but r is suppressed by an additional
power of ξ [25]. One can use the normalization of the
inflationary potential, extracted e.g., from the Planck data
[59], to relate ξ and λ:

ξ ¼ 1.1 × 1010λ: ð29Þ

At this point, the question arises if the high-energy value of
λ, which appears in Eq. (29), can be derived from the
parameters of the SM measured at collider experiments.
The relevant energy for the evaluation of the corresponding
RG evolution is of the order of the top quark mass,
μ ¼ ytMP=

ffiffiffi
ξ

p
, where yt is the top Yukawa coupling and

yt ≈ 0.43 at inflationary energies [35]. It lies below the
scale Λ ¼ Mp=

ffiffiffi
ξ

p
, at which perturbation theory (defined

6.0 6.5 7.0 7.5 8.0
log10

0.5

1.0

1.5

FIG. 1. Values of the nonminimal coupling ξ and the coupling δ of
the higher-order operator (22), for which B ¼ lnðMP=ð

ffiffiffi
ξ

p
MFÞÞ.

Admissible values of ξ are within the blue area, the left bound
coming from inflation and the right bound coming from top quark
measurements.
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on top of the low-energy vacuum) breaks down [34].11

However, the separation of μ and Λ is small and, moreover,
λ, as evaluated within the SM, is close to zero and,
therefore, susceptible to corrections. For this reason, the
connection of low- and high-energy physics may break
down if contributions of strongly-coupled physics at Λ are
unnaturally large [35]. But if this is not the case, infla-
tionary parameters can be deduced from the low-energy
data using the SM running of the relevant couplings.
To a good accuracy the running of λ within the SM can

be presented as

λðμÞ ¼ λ0 þ b ln2
�

μ

qMP

�
: ð30Þ

Here q≲ 1, b ∼ 10−5, and λ0 ≪ 1 are functions of the
parameters of the SM. Today, the largest uncertainty in their
determination comes from measurements of yt [6].
Plugging in λðμÞ in Eq. (29), we can determine ξ as a
function of yt measured at the weak scale. For example,
taking the conservative bound mt ≳ 170 GeV [63–66] on
the top pole mass as an input, we get [35]

ξ < 6.8 × 107: ð31Þ

Thus, barring the above remark about corrections due to
strong coupling at Λ, the lower bound on the top mass
inferred from collider experiments leads to an upper bound
on ξ. Improving precision in top quark measurements
narrows down the window of admissible values of ξ.
Inflation itself provides a lower bound on ξ, as was

already noticed in [67]. It is given by [35]:

ξ > 1.0 × 106: ð32Þ

Essentially, this constraint comes from the requirement that
after plugging in λðμÞ from Eq. (30), the potential (6) does
not develop a stationary point below μ. If we take the
intermediate value ξ ¼ 107 in between the bounds (31) and
(32), we obtain from Eqs. (28) that ns ¼ 0.961 and
r ¼ 7.7 × 10−11. Both values are consistent with recent
measurements of the cosmic microwave background [59].

V. CONCLUSIONS

We have considered the Standard Model with a con-
formally invariant Higgs potential and proposed a model
for how it can be merged with general relativity. The
two key ingredients are the nonminimal coupling of the
Higgs field to the Ricci scalar and the Palatini formulation
of gravity. No new degrees of freedom are introduced
beyond those of the SM and the graviton. We have shown

that after regulating the theory with an exemplary higher-
dimensional operator, electroweak symmetry breaking can
take place due to a singular gravitational-scalar instanton.
In this way, an exponential suppression of the weak scale
as compared to the Planck mass is naturally achieved.
Moreover, such a setup offers the possibility to calculate
the value of the former. Finally, the same theory leads to
successful inflation with the Higgs boson as inflaton. Since
the scale of violation of tree-level unitarity lies above
inflationary energies, the Higgs potential during inflation
can be determined from the low-energy parameters of
the Standard Model, provided that corrections due to the
strong-coupling regime at higher scales are not unnaturally
large. This makes it possible to test inflationary physics at
collider experiments and vice versa.
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APPENDIX A: RG RUNNING OF THE
HIGGS MASS

The goal of this Appendix is to study the influence of the
nonminimal coupling ξ on the running of the Higgs mass.
Unlike in the rest of our work, we will first be more general
and allow for a nonzero Higgs mass mH, i.e., we add to
Lagrangian (2) the term −m2

H=2h
2. In the Einstein frame,

this leads to

δL ¼ −
m2

HM
2
P

2ξ

 
tanhð

ffiffi
ξ

p
χ

MP
Þ

coshð
ffiffi
ξ

p
χ

MP
Þ

!2

≈ −
1

2
m2

Hχ
2 þ 5m2

Hξ

6M2
P
χ4; ðA1Þ

where we expanded up to 4th order in χ in the second step.
Higher-order terms are suppressed by powers of MP=

ffiffiffi
ξ

p
and therefore are subleading. Since all kinetic terms are
canonical in the Einstein frame, we can apply the standard
RG equations of a massive self-interacting scalar field. We
conclude that the leading contribution of the nonminimal
coupling to the βm-function of the Higgs mass is

δβm ¼ −5m2
Hξ

4π2M2
P
m2

H: ðA2Þ

The novelty of this term consists in the fact that it is no
longer suppressed by any coupling constant. However, it
still vanishes for mH → 0. Thus, the Higgs mass is
predictable in the theory (1).

11Also in the metric formalism, it is possible to increase Λ by
adding higher dimensional operators [60,61] or new degrees of
freedom [62].
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APPENDIX B: SCALE OF UNITARITY
VIOLATION IN PALATINI SCENARIO

In the metric scenario, we know that the scale of unitarity
violation increases in a nontrivial background [26]. We
want to investigate if the same happens in the Palatini case.
To this end, we follow the analysis of [26] and study the
scattering of gauge bosons. In unitary gauge, the Higgs
boson interacts with a gauge boson Aμ via the term

g02
h2

Ω2
ðAμÞ2; ðB1Þ

where g0 is the weak coupling constant. We observe that at
high energies, the coupling of the Higgs with gauge bosons
is weaker than without nonminimal coupling. Therefore,
the growth of the amplitudes involving longitudinal gauge
bosons can no longer be compensated by scattering with
Higgs particles. The compensation starts to fail as soon as
Ω deviates from 1, i.e., when h≳MP=

ffiffiffi
ξ

p
(equivalently

χ ≳MP=
ffiffiffi
ξ

p
). At this point, the amplitudes M of the

longitudinal gauge bosons grow as M ∼ E=ma, where E
is the characteristic energy of the process and ma is the
mass of gauge bosons. Using that ma ≈ g0MP=

ffiffiffi
ξ

p
for

h≳MP=
ffiffiffi
ξ

p
, we obtain the amplitude

M ∼
ffiffiffi
ξ

p
E

g0MP
: ðB2Þ

Up to the factor g0, which is of order 1, the scale of unitarity
violation therefore remains at MP=

ffiffiffi
ξ

p
even at large back-

ground field values. We emphasize, however, that a more
detailed study of the background-dependence of the scale
of unitarity violation remains to be done.

APPENDIX C: RG RUNNING OF THE
NONMINIMAL COUPLING ξ

In our analysis, we have neglected the RG running of the
nonminimal coupling ξ. We want to study if this approxi-
mation is justified. Since at high energies the Higgs mass
scales asMP=

ffiffiffi
ξ

p
both in the metric and Palatini scenario, ξ

obeys the same RG equation in both cases, namely [68,69]

μ∂μξ ¼ −
α

16π2
ξ; ðC1Þ

where α ¼ 3=2g02 þ 3g2 − 6y2t . Here g0 and g are the SUð2Þ
and Uð1Þ gauge couplings of the Standard Model, respec-
tively. In the approximation of constant α, Eq. (C1) is
solved by

ξðμÞ ¼ ξ0

�
μ0
μ

� α
16π2 ; ðC2Þ

where μ0 represents a reference energy scale.

As derived in [35], the high-energy value of the top
Yukawa coupling is yt ≈ 0.43. Using the same method, we
deduce that g0 ≈ 0.44 and g ≈ 0.53.12 It turns out that
the contributions of the different couplings largely cancel,
α ≈ 0.03. Both for the computation of the gravitational
instanton and inflation, only field values χ ≳MP=

ffiffiffi
ξ

p
are

relevant. In this region of parameter space, the renormal-
ization scale is bounded as μ≳ ytMP=

ffiffiffi
ξ

p
tanhð1Þ. Thus,

the nonminimal coupling can at most vary by Δξ=ξ≈
1 − tanhð1Þ α

16π2 ≈ 5 × 10−5. Nevertheless, one can wonder if
such a change of ξ, albeit small, can affect the flatness of
the inflationary potential. Numerical analysis analogous to
the one performed [35] shows that this is not the case, i.e.,
all predictions remain invariant. It is interesting to note,
however, that for α ∼ 1 small values of ξ near the lower
bound (32) are no longer viable.

APPENDIX D: PATH INTEGRAL MEASURE

As explained in the main text, we neglect any nontrivial
factors in the measure of the path integral in Eq. (10). The
reason is that they do not change the leading-order result of
the saddle point-solution. In order to go beyond the leading
order, one would have to compute all subleading contri-
butions. They arise not only from the measure factors, but
e.g., also from the integration over the fields χ and ĝμν. For
completeness, and in order to illustrate these points, here
we discuss the different contributions to the measure.
First, we do not take into account the higher-dimensional

operator (22) and only consider a fundamental scalar field h
with the Lagrangian

L ¼ 1

2Ω2
ð∂μhÞ2 − V: ðD1Þ

This corresponds to the Higgs part of the action (2), after
performing the conformal transformation (3). For the
present discussion, Ω and V could be arbitrary functions
of h and other fields, but they must be independent of ∂μh.
The corresponding conjugate momentum is

Π ¼ 1=Ω2∂0h: ðD2Þ

Consequently, the Hamiltonian density reads

H ¼ Ω2

2
ðΠ2 þ ð∂⃗hÞ2Þ þ V: ðD3Þ

In terms of field variable and its conjugate, the path
integral (in Lorentzian signature) is

12We thank Fedor Bezrukov for kindly providing us with a
script to do so.
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P ¼
�Y

x

Z
dhðxÞdΠðxÞ

�
exp

�
i
Z

d4xΠ∂0h −H
�

ðD4aÞ

¼
�Y

x

Z
dhðxÞ

�
exp

�
i
Z

d4xL
�

ðD4bÞ

·

�Y
x

dΠðxÞ exp
�
−i

Ω2

2

�
Π −

1

Ω2
∂0h

�
2
��

: ðD4cÞ

Performing the Gaussian integral in the last line, we obtain,
up to constant factors:

P ¼
�Y

x

Z
dhðxÞ
Ω

�
exp

�
i
Z

d4xL
�
: ðD5Þ

In this way, we have derived the path integral measure of h
in the presence of a noncanonical kinetic term13. Finally, we
perform the transformation to the canonical field χ. Since
dh ¼ Ωdχ according to Eq. (4), we obtain

P ¼
�Y

x

Z
dχðxÞ

�
exp

�
i
Z

d4xL
�
: ðD6Þ

Thus, there is no additional contribution to the measure.
Any field with a canonical kinetic term should exhibit this
property [72].
Next we take into account the higher-order operator (22).

The conjugate momentum becomes

Π ¼ 1

Ω2
∂0h

�
1þ 6δ

M8
PΩ6

�
1þ δ

Ω2

�
ð∂μhÞ4

�
: ðD7Þ

Consequently, the integral over Π is no longer Gaussian
and we cannot perform it explicitly. However, we can
evaluate it in the saddle point approximation (see e.g.,
[73]). It turns out that to leading order, the stationary point
of Π is still given by Eq. (D7). Repeating the same steps as
above, we obtain

P ≈
�Y

x

Z
dχðxÞmðxÞ

�
exp

�
i
Z

d4xL
�

ðD8aÞ

¼
�Y

x

Z
dχðxÞ

�
exp

�
i
Z

d4xðL− iδð4Þð0Þ lnmðxÞÞ
�
;

ðD8bÞ

where

mðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6δ

M8
PΩ6

�
1þ δ

Ω2

�
ðð∂μhÞ4þ4ð∂μhÞ2ð∂0hÞ2Þ

s
:

ðD9Þ

We see that the additional contribution to the measure is
singular. Such factors have long been known [74], and they
cancel in a consistent theory (see e.g., also [75,76]). This
makes it evident that only after a complete study of
fluctuations around the saddle-point solution, a finite
correction can be obtained.
Finally, we briefly refer to results that are relevant for the

gravitational part of the path integral. First, the integration
over the connection in Palatini gravity leads to the same
measure as in the metric theory [77]. However, the measure
in metric gravity is nontrivial. It leads to the same singular
factor as displayed in Eq. (D8), where now (see, e.g., [77])

mðxÞ ¼ ðdetGαβγδÞ−1=2; ðD10Þ

with

GαβγδðgÞ ¼ ffiffiffi
g

p ðgαγgβδ þ gαδgβγ − 2gαβgγδÞ: ðD11Þ

As in the case of the scalar field, the nontrivial contribution
of the measure only becomes meaningful after taking into
account other corrections to the saddle-point solution.

APPENDIX E: INSTANTON SOLUTION

In order to solve the full equations of motion (23)
numerically, we implement a shooting method. It relies on
the fact that fðrÞ ¼ 1 and χðrÞ ∼ r−2 for large r. Therefore,
we can choose a sufficiently largevalue of r and then demand
that fðrÞ ¼ 1 and r2χðrÞ ¼ c at this point, where c initially is
an arbitrary value. Using these boundary conditions, we
solve the coupled differential equations (23). Subsequently,
we check if the boundary condition at the origin, i.e.,
Eq. (24), is fulfilled. We change c accordingly until the
discrepancy between the lhs and rhs of Eq. (24) is tolerably
small. The left panel of fig. 2 shows the solutions fðrÞ and
χðrÞ for exemplary values of the parameters of the theory.
The full instanton action is given by

B ¼ −
ffiffiffi
ξ

p
χð0Þ þ 2π2

Z
∞

0

drðLδ þ LUÞ; ðE1Þ

with

Lδ ¼
2δr3GðχÞχ06

f5
; LU ¼ −fr3UðχÞ: ðE2Þ

The right panel of Fig. 2 shows Lδ and LU as functions of r
for the exemplary solution. We see that the contribution to

13The measure in Eq. (D5) is scale-invariant for h → ∞. That a
theory of Higgs inflation should obey this property has already
been proposed long ago [70] (this corresponds to “prescription I”
in the language of [70]). Further discussion of the choice of path
integral measure can be found in [71].
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the action from the potential term is negligible. The total
value of B results from the balance between the negative
source term and the positive higher-dimensional term.
Let us now discuss the validity of the semiclassical

approximation in Eq. (12) with the above instanton
solution. We would like to use a scaling argument similar
to Eq. (15) to show that a large parameter can always be
extracted from the action (E1). As before, we make use of
the spherical symmetry of the solution and of the fact that
f → 0 as r → 0. The analysis is complicated by the
presence of the higher-dimensional term (22). We will
consider separately the inner region of the instanton, where
GðχÞ ≈ 1, and the outer region, where GðχÞ ≫ 1. From the
right panel of Fig. 2 we see that both regions contribute to
the instanton action. From the left panel of Fig. 2 it is
evident that in the inner region f ≪ 1 while in the outer
region f ≈ 1.
Our goal is to factor out the leading-order ξ-dependence

of the action B, as in Eq. (16). For a given value of ξ, we
choose δ such that B ¼ lnðMP=ð

ffiffiffi
ξ

p
MFÞÞ (see fig. 1).

Numerical analysis shows that δ ∼ ξσ where σ ≈ 2.24.
Our argument, however, does not depend on a particular
value of σ, and we shall keep it arbitrary. Next, we make the
following rescaling of the variables entering the action:

r → αr=MP; χ → βMPχ; f → γf: ðE3Þ

To fix α, β, and γ as functions of ξ, we study the
contributions to B from the source term Bχ , the curvature
term BR and the higher-dimensional operator Bδ. Consider

first the inner region of the instanton, GðχÞ ≈ 1. Then, the
three contributions scale as

Bχ ∼ ξ1=2β; BR ∼
α2

γ
; Bδ ∼

ξσβ6

α2γ5
: ðE4Þ

Now we demand that all three terms exhibit the same
scaling, Bχ ∼ BR ∼ Bδ ∼ S. Here S is a function of ξ, which
is fixed by the solution. We shall also keep it arbitrary since
the argument is insensitive to the choice of S. Then, we
obtain

α¼S5=6ξðσ−3Þ=12; β¼Sξ−1=2; γ¼S2=3ξðσ−3Þ=6: ðE5Þ

Consider now the outer region of the instanton, GðχÞ ≫ 1.
In this case f ≈ 1, hence the only contribution to the action
comes from the higher-dimensional term. It scales as

Bδ ∼
ξ2σβ6

α2
: ðE6Þ

Demanding that this contribution also yields S leads to

α ¼ S−1=2ξð2σ−3Þ=2; β ¼ ξ−
1
2; ðE7Þ

where β is fixed by the requirement that the argument of
cosh in GðχÞ no longer depends on ξ. With the scalings
(E5) and (E7) we have achieved our goal of extracting all
large numbers from the integrals in the action.

(a) (b)

FIG. 2. (a) The field χ (blue) and the metric function f (red) of the instanton solution corresponding to ξ ¼ 107, δ ¼ 0.887ξ2 (chosen
so that B ¼ B0), and λ ¼ 10−3. (b) ContributionsLδ (blue) andLU (red, scaled up 106 times) to the Lagrangian for the same solution. All
dimensionful quantities are in the units of MP.
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