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The Jarlskog invariant which controls the size of intrinsic CP violation in neutrino oscillation
appearance experiments is modified by Wolfenstein matter effects for neutrinos propagating in matter.
In this paper we give the exact factorization of the Jarlskog invariant in matter into the vacuum Jarlskog
invariant times two, two-flavor matter resonance factors that control the matter effects for the solar and
atmospheric resonances independently. We compare the location of the minima of the factorizing resonance
factors with the location of the solar and atmospheric resonances, precisely defined. They are not identical
but the fractional differences are both found to be less than 0.1%. In addition, we explain why symmetry
polynomials of the square of the mass of the neutrino eigenvalues in matter, such as inverse of the square of
the Jarlskog invariant in matter, can be given as polynomials in the matter potential.
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I. INTRODUCTION

In the current and future long baseline experiments,
T2K [1], NOvA [2], DUNE [3] and T2HK(K) [4,5],
neutrinos propagate between 300 to 1300 km through
Earth’s crust between source and detector. Neutrino oscil-
lations in matter are significantly different than in vacuum
because of the coherent forward scattering of the neutrinos
off the electrons in matter. This effect is known as the
Wolfenstein matter effect [6].
The neutrino mass eigenvalues and the mixing angles

of the neutrinos in matter are strongly impacted by the
matter effect which depends on density of the matter and
the energy of the neutrino through the Wolfenstein matter
potential [6], a, given by

a≡ 2
ffiffiffi
2

p
GFNeEν; ð1Þ

where GF is the Fermi constant, Ne is the number density
of electrons, and Eν is the neutrino energy in the matter rest
frame. These changes in the masses and the mixing angles
have a significant effect on the oscillation probabilities as
the neutrinos transverse through matter.
One of the primary goals of the above long baseline

accelerator experiments is to measure intrinsicCP violation
in the neutrinos sector. In vacuum, the CP-violating part of

the neutrino oscillation probability in the appearance
channels, e.g., νμ → νe, is given by [7]

8J sinΔ31 sinΔ32 sinΔ21; ð2Þ

where the kinematic phases are given by Δjk ¼
Δm2

jkL=4Eν with Δm2
jk ¼ m2

j −m2
k for an experiment of

baseline L and neutrino energy Eν. J is the Jarlskog
invariant [8], that controls the size of CP violation.
Using the standard parametrization of the Pontecorvo,
Maki, Nakagawa and Sakata (PMNS) matrix [9,10], the
Jarlskog invariant is given by

J ≡ s23c23s13c213s12c12 sin δ; ð3Þ

where sij ¼ sin θij, cij ¼ cos θij.
For neutrinos propagating in matter, the part of the

appearance oscillation probability that depends on the
intrinsic CP violation is given by

8Ĵ sin Δ̂31 sin Δ̂32 sin Δ̂21; ð4Þ

where x̂ is the matter value for the vacuum variable x. The
Jarlskog invariant in matter, Ĵ, is given by same expression
as Eq. (3) but with the mixing angles and phase replaced by
their matter values [11–13]. The variables θ̂12, θ̂13 and

Δcm2
jk, that appear in Eq. (4), have a strong dependence on

the Wolfenstein matter potential, a.
In [14], by Denton and Parke (DP), a simple and precise

factorization of the Jarlskog invariant in matter was given
as follows:
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Ĵ ≈
J

Rappx
⊙ Rappx

atm
; ð5Þ

where

Rappx
⊙ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2c213 cos 2θ12ða=Δm2

21Þ þ c413ða=Δm2
21Þ2

q
;

Rappx
atm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2 cos 2θ13ða=Δm2

eeÞ þ ða=Δm2
eeÞ2

q
: ð6Þ

The fractional precision of this factorization is better than
0.07%, for all a and both mass orderings. A factorization
with a precision of a few percent was given in [15] with a
follow up paper, [16], that reproduced the precise factori-
zation of DP. In this paper we give an extension of the
analysis of DP to derive an exact factorization of this
Jarlskog invariant in matter as well as a perturbative
expansion in the two small quantities s213 and Δm2

21=Δm2
ee.

Then, after defining precisely and calculating the loca-
tion of the solar and atmospheric resonances to the relevant
accuracy in the matter potential for the first time, we
compare the location of the resonance with the location of
the minima of the factorizing two flavor resonance factors.
Although they are identical at the order given by DP, what
is shown here is they are not identical at higher orders but
the fractional differences are found to be small, less than
0.1%. A qualitative understanding of why they differ is
also given.
As part of our analysis, we show the simplicity of

variables that can be expressed as a symmetric polynomial

of the neutrino eigenvalues in matter, cm2
j, such as the

Jarlskog invariant in matter as well as other examples in
Sec. II. We give the exact factorization of the Jarlskog
invariant in matter as a product of two, two flavor resonance
factors in Sec. III as well as a perturbative expansion. In
Sec. IV, we compare the minima of these exact factorizing
factors to the actual location of the solar and atmospheric
resonance for the matter potential, followed by a summary
and conclusion section. There are five appendixes that
contain computational details. Thus this paper provides
additional understanding of the Wolfenstein matter effect
for three neutrinos propagating through matter.

II. SIMPLICITY OF SYMMETRIC POLYNOMIALS
OF THE EIGENVALUES

In the flavor basis, the neutrino propagation Hamiltonian
in matter is given by

ð2EÞH ¼ U

0B@ 0

Δm2
21

Δm2
31

1CAU† þ

0B@ a

0

0

1CA:

ð7Þ
U is the PMNS [9,10] lepton mixing matrix, parametrized
by

U ¼ U23ðθ23; δÞU13ðθ13ÞU12ðθ12Þ

≡
0B@ 1

c23 s23eiδ

−s23e−iδ c23

1CA
0B@ c13 s13

1

−s13 c13

1CA
×

0B@ c12 s12
−s12 c12

1

1CA; ð8Þ

where sij ¼ sin θij and cij ¼ cos θij are given by

sin2θ13 ≡ jUe3j2 ≈ 0.022;

sin2θ12 ≡ jUe2j2=ð1 − jUe3j2Þ ≈ 0.32;

sin2θ23 ≡ jUμ3j2=ð1 − jUe3j2Þ ≈ 0.55: ð9Þ

The sine and cosine of δ are given by

eiδ ≡ ð1 − jUe3j2ÞUe2U�
μ2U

�
e3Uμ3 þ jUe2j2jUe3j2jUμ3j2

jUe1Ue2Ue3Uμ3Uτ3j
:

ð10Þ

At this time, circa 2020, the numerical value of δ is still to
be determined. Our definition of the CP-violating phase δ
is invariant under rephasing1 of the rows and columns of U
and thus shifting it from its PDG location, i.e., from next to
s13 to next to s23, does not affect any observable.2 This
choice is made because the θ23; δ submatrix ofU commutes
with the matter potential and factors these variables from
many expressions. For other choices for the ordering of the
factorization of the PMNS matrix see [17].
For the long baseline neutrino oscillation experiments,

T2K, NOvA, DUNE, and T2HK(K) it is sufficient to
consider the matter density along the path of the neutrino to
be a constant, a, as has been discussed in detail in [18,19].
Therefore, for the rest of this paper we will consider the
matter potential to be a constant for a neutrino of a given
energy. This simplifies the solution to the evolution of
the neutrino state in matter significantly, by allowing for
exact analytical solution. However, the resulting solution is
still analytically impenetrable as we will see later in this
section.
The characteristic equation for the matrix (2E)H gives

the eigenvalues of the square of the neutrino masses in

matter, cm2
j, all satisfying

ðcm2
jÞ3 − Aðcm2

jÞ2 þ Bcm2
j − C ¼ 0; ð11Þ

1The commonly used definition, δ ¼ −ArgðUe3Þ, is not a
rephasing invariant and requires an explicit phase choice espe-
cially in the Uαj elements, for α ¼ μ and τ, j ¼ 1 and 2.

2The sign of δ given by Eq. (10) is consistent with the sign in
the PDG expression for PMNS matrix.
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where A, B, and C are the sum of the eigenvalues, sum of
the products of the eigenvalues, and the triple product of the
eigenvalues:

A≡X
j

cm2
j ¼ Δm2

31 þ Δm2
21 þ a;

B≡X
j>k

cm2
j
cm2

k

¼ Δm2
31Δm2

21 þ aðΔm2
31c

2
13 þ Δm2

21ðc212 þ s213s
2
12ÞÞ;

C≡Y
j

cm2
j ¼ aΔm2

31Δm2
21c

2
13c

2
12: ð12Þ

We use the convention that in vacuum ðcm2
1;
cm2

2;
cm2

3Þ ¼
ð0;Δm2

21;Δm2
31Þ.

From Refs. [11,20,21], the exact eigenvalues in matter are

cm2
1 ¼

1

3
A −

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 3B

p �
Z þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p �
;

cm2
2 ¼

1

3
A −

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 3B

p �
Z −

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p �
;

cm2
3 ¼

1

3
Aþ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 − 3B

p
Z; ð13Þ

where Z contains the cosf1
3
cos−1½� � ��g terms, given by

Z ¼ cos

�
1

3
cos−1

�
2A3 − 9ABþ 27C

2ðA2 − 3BÞ3=2
�
þ ζ

�
; ð14Þ

with ζ ¼ 0 for normal ordering (NO) that gives cm2
1 <cm2

2 <
cm2

3 and ζ ¼ 2π=3 for inverted ordering (IO) that

gives cm2
3 <

cm2
1 <

cm2
2, the usual conventions. This con-

voluted term, cosf1
3
cos−1½� � ��g, which is a generic feature of

the analytic solution to cubic equations, does not lend
itself to a useful perturbative expansion for arbitrary
values of the matter potential, even though, for neutrino
oscillations there are two small parameters sin2 θ13 ∼ 0.02
and Δm2

21=Δm2
31 ∼ 0.03. This unfortunate fact3 makes the

exact analytical solution, Eq. (13), only useful, in general, for
numerical studies, not analytic understanding.
However, while the exact eigenvalues have a very

complicated analytic form, any symmetric polynomial in
the eigenvalues can be uniquely expressed in terms of A, B,
and C. This follows from the fundamental theorem of
symmetric polynomials (FTSP) [22] and allows any sym-

metric polynomial of the cm2
i to be written as a polynomial

in the matter potential, substantially simplifying such
expressions.

An example of this is given in [14,23,24], Y
j>k

Δcm2
jk

!
2

¼ ðA2 − 4BÞðB2 − 4ACÞ

þ ð2AB − 27CÞC; ð15Þ

which given the expressions for A, B, and C in Eq. (12) is a
fourth order polynomial in the matter potential, a. No
impenetrable cosf1

3
cos−1½� � ��g terms appear.

The eigenvector-eigenvalue identity [25,26] gives us the
elements of the PMNS matrix in matter as follows:

jÛαij2 ¼
ðcm2

iÞ2 − ðξþ χÞαcm2
i þ ðξχÞα

Δcm2
ijΔcm2

ik

; ð16Þ

where i, j, and k are all different. The variables ðξþ χÞα
and ðξχÞα, which are the trace and determinant, respec-
tively, of (2E)H with the α row and α column removed. All
ðξþ χÞα and ðξχÞα are linear polynomials in the matter
potential, a, and are given in Appendix A.
Combining Eqs. (15) and (16), we have that Y

j>k

Δcm2
jk

!
2	Y

i

jÛαij2



¼
Y
i

ððcm2
iÞ2 − ðξþ χÞαcm2

i − ðξχÞαÞ ð17Þ

is a symmetric polynomial in the eigenvalues, cm2
i, and thus

can be written as a polynomial in A, B, C, ðξþ χÞα and
ðξχÞα, as follows:Y
i

ððcm2
iÞ2 − ðξþ χÞαcm2

i þ ðξχÞαÞ

¼ C½C − Bðξþ χÞα þ Aðξþ χÞ2α − ðξþ χÞ3α�
− ðξþ χÞαðξχÞα½ðAB − 3CÞ − Bðξþ χÞα þ AðξχÞα�
þ ðξχÞα½ðB2 − 2ACÞ þ ðA2 − 2BÞðξχÞα þ ðξχÞ2α�: ð18Þ

This is also a polynomial in the matter potential of maxi-
mum fourth order. In Appendix B we give this expression
which is straightforward to evaluate for α ¼ e, μ, and τ.
Again, no cosf1

3
cos−1½� � ��g terms appear.

For α ¼ e for Eq. (17), one finds that the right-hand side
is independent of the matter potential, i.e., Y

j>k

Δcm2
jk

!
2	Y

i

jÛeij2



¼
 Y

j>k

Δm2
jk

!
2	Y

i

jUeij2


: ð19Þ

3As an example of the analytic impenetrability of Z, setting
a ¼ 0 and recovering the vacuum values for the eigenvalues,
ð0;Δm2

21;Δm2
31Þ, is a highly nontrivial exercise. In vacuum Z ¼

1
2
ðΔm2

31 þ Δm2
32Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

32Þ2 þ Δm2
21Δm2

31

p
for NO.
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This is the well-known Naumov-Harrison-Scott identity
[23,27], divided by the Toshev identity [28], squared. In
this form, this invariance is not a surprise as in the a → þ∞
limit  Y

j>k

Δcm2
jk

!
2

→ a4;

jÛeij2 →
1

a2

�
i ¼ 1; 2 for NO

i ¼ 1; 3 for IO
:

This implies that the fourth order polynomial must just be a
constant.
For α ¼ μ or τ, again in the a → þ∞ limit

jÛμij2 →
1

a2

�
i ¼ 3 for NO

i ¼ 2 for IO
:

This implies that the right-hand side of Eq. (17) is a
quadratic polynomial in the matter potential, a. This fact is
confirmed by explicit calculation where the coefficients of
the powers the matter potential a, depend on θ23 and cos δ.
Further details are also given in Appendix B.

III. EXACT JARLSKOG INVARIANT
IN MATTER

We start from the exact Naumov-Harrison-Scott identity
[23,27], which is that the Jarlskog factor in matter times the
product of the Δm2 matter is an exact invariant4:

J

Ĵ
¼ Δcm2

32Δcm2
31Δcm2

21

Δm2
32Δm2

31Δm2
21

: ð20Þ

While the exact eigenvalues have a very complicated
analytic form [11] due to the presence of the
cosf1

3
cos−1½� � ��g terms, J2=Ĵ2 can be written as a simple

fourth order polynomial of the vacuum parameters and the
matter potential, because of the FTSP.
Combining Eq. (12) and (15) one obtains the exact

expression for ðQi>jΔcm2
ijÞ2 as a fourth order polynomial

in the matter potential, a. This guarantees its factorization
in two quadratics as shown by Lodovico de Ferrari in 1540.
We start by writing Eq. (20) as follows:

J2

Ĵ2
¼ 1þ

X4
n¼1

fn

	
a

Δm2
21



n
; ð21Þ

where the fn’s are dimensionless functions of the vacuum
oscillation parameters which can be easily derived from
Eq. (15). Explicit expressions for the fn’s are given in

Appendix C. f1 and f2 are of order 1, where as f3 is of
order ϵ and f4 is of order ϵ2, where

ϵ≡ Δm2
21=Δm2

ee ∼ 0.03; ð22Þ

and Δm2
ee ≡ c212Δm2

31 þ s212Δm2
31, [29]. Therefore, there is

a distinct hierarchy in the fn’s.
Equation (21) can be exactly factorized as	
J

Ĵ



2

¼
	
1 − 2Sexsol

	
a

Δm2
21



þ Tex

sol

	
a

Δm2
21



2



×

	
1 − 2Sexatm

	
a

Δm2
ee



þ Tex

atm

	
a

Δm2
ee



2



ð23Þ

with

Sexsol ¼
1

4

�
−f1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ 4ðy − f2Þ

q �
; ð24Þ

Tex
sol ¼

1

2

�
yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4f4

q �
; ð25Þ

Sexatm ¼ 1

4

�
−f1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ 4ðy − f2Þ

q �
=ϵ; ð26Þ

Tex
atm ¼ 1

2

�
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 4f4

q �
=ϵ2: ð27Þ

The 1=ϵ and 1=ϵ2 terms for Sexatm and Tex
atm, respectively, are

needed to change the ða=Δm2
21Þ to ða=Δm2

eeÞ in the second
brackets of Eq. (23). Except for the a3 term, the coefficients
for all other powers of a are satisfied for any value of y. To
get the correct coefficient for the a3 terms, y must satisfy
the following cubic equation:

y3 þ g2y2 þ g1yþ g0 ¼ 0

with g2 ¼ −f2; g1 ¼ f1f3 − 4f4

and g0 ¼ ð4f2 − f21Þf4 − f23: ð28Þ

The relevant, exact solution to this cubic equation is

y ¼ 2
ffiffiffiffi
Q

p
cos

�
1

3
arccos ½R=

ffiffiffiffiffiffi
Q3

p
�
�
− g2=3;

Q ¼ ðg22 − 3g1Þ=9; R ¼ ð9g1g2 − 27g0 − 2g32Þ=54;
ð29Þ

where y ≈ f2 ∼ 1. The other solutions give complex coef-
ficients in the factorization of Eq. (23).
Unfortunately the solution to the cubic equation does not

provide any analytic insight even though it is the exact
solution. However, because the fn’s have a distinct hier-
archy in Δm2

21=Δm2
ee, so do the gn’s: g2 is of order 1,

whereas g1 and g0 are first and second order in
4The simplest way to “derive” this expression is that in the

L=E → 0, Eq. (2) and (4) must be equal.
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Δm2
21=Δm2

ee, respectively. This allows an iterative solution
to Eq. (28),

yðnÞ ¼ −g2 − g1=yðn−1Þ − g0=ðyðn−2ÞÞ2 ð30Þ

with yð0Þ ¼ −g2 and yð1Þ ¼ −ðg22 − g1Þ=g2. Therefore, y can
easily be calculated to the required order in Δm2

21=Δm2
ee.

Then to obtain the factorization coefficients, Ssol thru
Tatm, Eqs. (24)–(27), we use the fact that for neutrino
oscillations there are two small parameters,

sin2 θ13 ∼ 0.02 and ϵ≡ Δm2
21=Δm2

ee ∼ 0.03 ð31Þ

so that one can easily perform a Taylor series expansion in
these two small qualities to obtain

Ssol ≈ c213 cos 2θ12 − ðs213ϵÞ − cos 2θ12ðs213ϵ2Þ þ � � � ; ð32Þ

Tsol ≈ c413 − 2 cos 2θ12ðs213ϵÞ þ 2 cos 2θ12ðs413ϵÞ
− 2ð1 − 6s212c

2
12Þðs213ϵ2Þ þ � � � ; ð33Þ

Satm ≈ cos 2θ13 þ s212c
2
12ðϵ2Þ − 4s212c

2
12ðs213ϵ2Þ

þ s212c
2
12 cos 2θ12ðϵ3Þ þ � � � ; ð34Þ

Tatm ≈ 1þ 2s212c
2
12ðϵ2Þ þ 2s212c

2
12 cos 2θ12ðϵ3Þ þ � � � :

ð35Þ

The first term in each of these equations gives the
approximation discussed in DP and the correction to the
first term are of Oðϵ2Þ or Oðs213ϵÞ as expected.
In Table I we numerical evaluate the exact factorization

along with those of DP and the approximation given by
Eq. (32) to (35).
Thus the factorization of the Jarlskog invariant in matter

is given by

J ≈R⊙RatmĴ; ð36Þ

where

R⊙ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Ssol

	
a

Δm2
21



þ Tsol

	
a

Δm2
21



2

s
; ð37Þ

Ratm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Satm

	
a

Δm2
ee



þ Tatm

	
a

Δm2
ee



2

s
: ð38Þ

This is the same functional form as in DP, Eq. (5).
Depending on which approximation one uses for the S’s
and T’s one obtains a fractional precision of 7 × 10−4 using
DP, Eq. (6), 4 × 10−6 using Eqs. (32)–(35) and machine
precision using the numerical solution to the cubic equation
and Eqs. (24)–(27). See Fig. 1 for both the ratio of Ĵ=J, as
well as the fractional difference between the exact and the
approximation of DP, Eq. (6) and that of Eqs. (32)–(35).

TABLE I. The fractional differences for the coefficients of the factorizing quadratics between DP, [14], and
the exact, Eqs. (24)–(27), (middle row) as well as between the perturbative expansions given in this paper
Eqs. (32)–(35) and the exact (bottom row). For this table the following parameters where used: sin2 θ13 ¼ 0.022,
sin2 θ12 ¼ 0.32, and Δm2

21 ¼ 7.5 × 10−5 eV2. Δm2
ee ¼ �2.5 × 10−3 eV2 where the plus (minus) sign is for NO

(IO). The matter density times electron fraction used is Yeρ ¼ 1.5 g=cm3.

NO (IO) Ssol=Sexsol − 1 Tsol=Tex
sol − 1 Satm=Sexatm − 1 Tatm=Tex

atm − j
DP approx þ1.9ð−1.9Þ × 10−3 þ4.7ð−5.0Þ × 10−4 −1.9ð−1.9Þ × 10−4 −4.0ð−4.0Þ × 10−4

Eq. (32) to (35) −1.6ðþ1.4Þ × 10−7 −6.1ðþ2.5Þ × 10−7 þ2.8ðþ2.8Þ × 10−7 −6.9ð−6.9Þ × 10−8

FIG. 1. Top: ratio between the Jarlskog invariant in matter and
the vacuum Jarlskog invariant for both NO (blue) and IO (red) as
a function of the energy of the neutrino. Here Yeρ ¼ 1.5 g:cm−3.
Bottom: fractional difference between the various approximation
to the factorization of the Jarlskog invariant compared with the
exact Jarlskog invariant in matter. The dashed lines are using
the DP approximation, Eq. (5) [14], whereas the solid lines are the
third order approximation given in this paper, Eqs. (32)–(35),
giving more than two orders of magnitude improvement. The
results for the exact factorization, Eqs. (24)–(27), are not shown
on this figure because they depend on the machine precision;
using “double precision” one obtains 10−14 fractional precision.
Positive (negative) energy is for neutrinos (antineutrinos) and
zero is vacuum for both neutrinos and antineutrinos and all
energies.
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If by machine precision one means “double precision,” then
the fractional difference is ∼10−14. For phenomenological
purposes the precision using the simple result of DP [14] is
accurate enough for most applications.

IV. RELATIONSHIP WITH THE SOLAR AND
ATMOSPHERIC RESONANCES

Its easily shown that R⊙ is minimum when5

asolmin

Δm2
21

¼ Sexsol
Tex
sol

¼ cos 2θ12
c213

þ cos 4θ12ðs213ϵÞ þ � � �

¼ cos 2θ12
c213

þ
�
−5.2 × 10−4 NO

5.0 × 10−4 IO
; ð39Þ

and that Ratm is minimum when

aatmmin

Δm2
ee

¼ Sexatm
Tex
atm

¼ cos 2θ13 − s212c
2
12ðϵ2Þ þ � � �

¼ cos 2θ13 −
�
2.0 × 10−4 NO

1.9 × 10−4 IO
; ð40Þ

from Eqs. (37) and (38) respectively. The “� � �” are higher
order terms in s213 and ϵ. Clearly, these two values for the
matter potential are close to the values for the solar and
atmospheric resonances. But what is the precise relation-
ship? It cannot be exact as bothR⊙ andRatm are symmetric
functions about the value that minimizes them, whereas for
the solar and atmospheric resonances there must be some
asymmetry caused by the fact that the solar resonance is
below (above) atmospheric resonance for the NO (IO).
To answer this question we first have to define the solar

and atmospheric resonance. For the solar resonance we
define it to be the value of the matter potential that
minimizes the separation between the matter mass eigen-
states jν̂1i and jν̂2i, that is when

dðcm2
2 − cm2

1Þ
da

¼ 0: ð41Þ

It can be easily shown by taking the derivative of A, B, and
C with respect to a, see Appendix D, or using the evolution
equations of [30] that

dcm2
i

da
¼ jÛeij2: ð42Þ

Therefore the solar resonance condition also implies that

jÛe1j2 ¼ jÛe2j2; sin2θ̂12 ¼ 0.5: ð43Þ

That is, by minimizing the separation of the matter mass
eigenstates jν̂1i and jν̂2i, we also have exact maximal
mixing between the matter eigenstates jν̂1i and jν̂2i.
For the atmospheric resonance, one could consider the

resonance condition for NO to be

dðcm2
3 − cm2

2Þ
da

¼ 0; jÛe3j2 ¼ jÛe2j2; ð44Þ

which implies sin2 θ̂13 ≈ 0.5. For IO

dðcm2
3 − cm2

1Þ
da

¼ 0; jÛe3j2 ¼ jÛe1j2; ð45Þ

which also implies sin2 θ̂13 ≈ 0.5, [30]. That is, almost
maximal mixing between jν̂3i and jν̂2i (jν̂1i) for NO (IO).
For both NO and IO, the fractional difference between
sin2 θ̂13 and 0.5 is ∼2 × 10−4 with these definitions.
However, we present here a mass ordering independent

definition of the atmospheric resonance, given by

dðcm2
3 − cm2

2 − cm2
1Þ

da
¼ 0: ð46Þ

This gives an excellent approximation6 to Eq. (44) for NO
as the mass of the matter eigenstate jν̂1i is essentially
independent of the matter potential at the atmospheric

resonance as dcm2
1=da ¼ jÛe1j2 ≈ 2 × 10−4 here. Similarly

for Eq. (45) for IO.
This mass ordering independent definition also gives

jÛe3j2 ¼ jÛe2j2 þ jÛe1j2; sin2θ̂13 ¼ 0.5 ð47Þ

from Eq. (42), independent of the mass ordering. That is,
exact maximal mixing between the matter eigenstate jν̂3i
and the state cos θ̂12jν̂1i þ sin θ̂12jν̂2i. Therefore, the mass
ordering independent definition, Eq. (46), is what will be
used for the atmospheric resonance in the rest of this paper.
Independent of this discussion, it was argued in [31] that

combination ðcm2
3 − cm2

2 − cm2
1Þ is the effective Δm2

eeðaÞ
in matter with the addition of a constant that depends on
one’s conventions: Δm2

eeðaÞ gives the effective frequency
for a νe disappearance oscillations in matter at the atmos-
pheric minima and coincides with Δm2

ee in vacuum, i.e.,
Δm2

eeða ¼ 0Þ ¼ Δm2
ee. In the conventions of this paper,

5For the numerical calculations in this section, we use the same
parameters as in Table I.

6The fractional difference between the solution to Eqs. (44)
and (46) or Eqs. (45) and (46) is 7 × 10−5. Using Eqs. (44) and
(45) as the definition of the atmospheric resonance does not
change our conclusions.
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Δm2
eeðaÞ≡ cm2

3 − cm2
2 − cm2

1 þ Δm2
21c

2
12;

≈ Δm2
ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2 cos 2θ13ða=Δm2

eeÞ þ ða=Δm2
eeÞ2

q
:

ð48Þ
Note, this approximation is just the leading terms
in Δm2

eeRatm.
With the above definitions, the exact position of the solar

and atmospheric resonances, axsol and axatm respectively,
can be calculated perturbatively, see Appendix E, and
numerical from Eq. (13) and we find that

axsol
Δm2

21

¼ cos 2θ12
c213

þ cos22θ12ðs213ϵÞ þ � � �

¼ cos 2θ12
c213

þ
�
9.7 × 10−5 NO

−8.2 × 10−5 IO
; ð49Þ

and

axatm
Δm2

ee
¼ cos 2θ13 − s212c

2
12ð1 − 2s13Þðϵ2Þ þ � � �

¼ cos 2θ13 −
�
1.52 × 10−4 NO

1.49 × 10−4 IO
: ð50Þ

Thus the accuracy of the leading terms is at the 10−4 level,
provided one includes the c213 for the solar resonance
and Δm2

ee instead of Δm2
31 or Δm2

32 for the atmospheric
resonance [11,32]. The magnitude of Δm2

31 and Δm2
32

differs from Δm2
ee at the 1%–2% level.

Comparing the Eqs. (39) and (49) and Eqs. (40) and (50),
it is clear that the minima of R⊙ and Ratm do not exactly
coincide with the exact solar and exact atmospheric
resonances but the difference is at the 0.06% for solar
and 0.005% for atmospheric which are negligible for
phenomenological purposes. The order of magnitude dif-
ference between these two is probably due to the fact that

the variable ðcm2
3 − cm2

2 − cm2
1Þ is more the symmetric

about the atmosphere resonance than ðcm2
2 − cm2

1Þ is about
the solar resonance, see Fig. 2.
It is also worth noting that by using the Δm2

eejIO ¼
−Δm2

eejNO rule for switching between the two mass order-
ings (NO ↔ IO), the fractional difference between jaxatmj
for the two orderings is ∼3 × 10−6 and in fact, the fractional
difference between

− ðcm2
3 − cm2

2 − cm2
1 þ Δm2

21c
2
12ÞjIOð−aÞ and

ðcm2
3 − cm2

2 − cm2
1 þ Δm2

21c
2
12ÞjNOðaÞ ð51Þ

is smaller than 10−5 for all a. As compared to ∼1%, if one
uses any of the following rules to flip the mass ordering:

Δm2
31jIO ¼ −Δm2

31jNO or Δm2
32jIO ¼ −Δm2

32jNO or

Δm2
32jIO ¼ −Δm2

31jNO:

V. SUMMARY AND CONCLUSIONS

In this paper we have derived three new results for three
flavor neutrino oscillations in matter. First, we have shown
that any quantity that can be represented by a symmetric

polynomial of the eigenvalues of the Hamiltonian, cm2
j, can

be written as a polynomial in the matter potential, a.
Examples of such quantities are Y

j>k

Δcm2
jk

!
2

;

	
J

Ĵ



2

and

 Y
j>k

Δcm2
jk

!
2

×

	Y
i

jÛαij2


:

The first two are fourth order polynomials in the matter
potential whereas the last one is a constant for α ¼ e and a
quadratic polynomial in the matter potential for α ¼ μ, τ.
Clearly there are many other such quantities that are
symmetric in the eigenvalues.
Second, for the Jarlskog invariant in matter we give the

exact factorization of the fourth order polynomial, such that

Ĵ ¼ J
Rex

⊙Rex
atm

;

where

FIG. 2. The solid lines are ðcm2
3 − cm2

2 − cm2
1 þ Δm2

21c
2
12Þ for

both NO (blue) and IO (red) as a function of the neutrino
energy. Note, the approximate symmetry about the minima,
jEj ∼ 10.5 GeV, for these two functions. At E ¼ 0, i.e., vacuum,
this combination is exactly �Δm2

ee, plus NO, minus for IO. The

dashed lines are ðcm2
2 − cm2

1Þ for NO (blue) and IO (red). These
two functions have a significant asymmetry about the minima,
E ∼ 0.12 GeV, especially for jEj > 10 GeV. Here, Yeρ ¼ 1.5
g.cm−3. Positive (negative) energy is for neutrinos (antineutrinos)
and zero is vacuum for both neutrinos and antineutrinos and all
energies.
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Rex
⊙ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Sexsol

	
a

Δm2
21



þ Tex

sol

	
a

Δm2
21



2

s
;

Rex
atm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Sexatm

	
a

Δm2
ee



þ Tex

atm

	
a

Δm2
ee



2

s
:

The exact coefficients Sexsol to Tex
atm are given in Eqs. (24)–

(27). Since the exact coefficients involve the solution to a
cubic polynomial which are notoriously challenging to
penetrate analytically, a Taylor series expansion of these
coefficients to Oðs413ϵÞ;Oðs213ϵ2Þ;Oðϵ3Þ, is also given in
Eqs. (32)–(35). The fractional accuracy of these coeffi-
cients is better than 106, as shown in Table I.
Third, we define the solar resonance to be when

dðcm2
2 − cm2

1Þ
da

¼ 0 ⇔ sin2 θ̂12 ¼ 0.5;

and calculate that this occurs when

a
Δm2

21

¼ cos 2θ12
c213

þ cos2 2θ12ðs213ϵÞ þ � � � ;

where the “� � �” are higher order terms in s213 and
ϵ≡ Δm2

21=Δm2
ee. Independent of the mass ordering, we

define the atmospheric resonance to be when

dðcm2
3 − cm2

2 − cm2
1Þ

da
¼ 0 ⇔ sin2 θ̂13 ¼ 0.5;

and calculate that this occurs when

a
Δm2

ee
¼ cos 2θ13 − s212c

2
12ð1 − 2s13Þðϵ2Þ þ � � � :

For three flavors of neutrinos, these are the most accurate
values for the locations of the solar and atmospheric
resonances available in the literature. The value of the
matter potential typically quoted for the atmospheric
resonance, a=Δm2

32 ¼ cos 2θ13, differs from above value
by 2%, a phenomenological significant difference.
We have also made a comparison between the location of

the minima in the matter potential for the two factorizing
factors, Rex

⊙ and Rex
atm, and the location in matter potential

of the solar and atmospheric resonances. The difference in
the value of the matter potential between the location of the
minima and the resonance values are 0.06% for solar and
0.005% for atmospheric, therefore they do not coincide.
However, these difference are negligible for phenomeno-
logical purposes.
To conclude, the understanding of the physics of

neutrino propagation in matter is of essential importance
to the current NOvA and T2K, and upcoming DUNE and
T2HK(K) long baseline neutrino oscillation experiments.
The Wolfenstein matter effect significantly complicates

three flavor neutrino oscillations in matter compared to
vacuum. The exact analytic expressions, even for constant
matter density, are analytically impenetrable due to the
presence of the cosf1

3
cos−1½� � ��g terms. In this paper we

show that variables that depend on the symmetric polyno-
mials of the mass squared of the neutrino eigenstates in
matter are just simple polynomials of the matter potential, a
significant simplification.Wegive a number of examples and
in particular the Jarlskog invariant in matter which controls
the size of intrinsic CP violation in the above neutrino
appearance experiments. We give for the first time the exact
factorization of the Jarlskog invariant in matter into two
quadratic resonance factors. The location of the minima of
these resonance factors is compared to the location of the
solar and atmospheric resonances to the appropriate order in
the small quantities s213 and Δm2

21=Δm2
ee. This required, for

the first time, the calculation of the location of the solar and
atmospheric resonances beyond leading order. All of this
further enhances our understanding of neutrino propagation
in matter relevant for the long baseline neutrino oscillation
experiments being currently performed and for the next
generation of experiments.
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APPENDIX A: THE VARIABLES ξ AND χ

The quantities ðξþ χÞα and ðξχÞα are the trace and
determinant of the submatrix of (2E)H with the α row and α
column removed. In the flavor basis, since Hee is the only
element that depends on the matter potential these traces
and determinants are at most linear polynomials in the
matter potential, a. In fact, ðξþ χÞe and ðξχÞe are inde-
pendent of the matter potential. Explicitly,

ξe þ χe ¼ ðHμμ þHττÞ ¼ Δm2
31c

2
13 þ Δm2

21ðc212 þ s213s
2
12Þ

¼ dB=da; ðA1Þ
ξeχe ¼ ðHμμHττ −H2

μτÞ ¼ Δm2
31Δm2

21c
2
13c

2
12 ¼ dC=da;

ðA2Þ
ξμ þ χμ ¼ ½c223ðHee þHττÞ þ s223ðHee þHμμÞ

− 2s23c23 cos δðHμτÞ�; ðA3Þ
ξμχμ ¼ ½c223ðHeeHττ −H2

eτÞ þ s223ðHeeHμμ −H2
eμÞ

− 2s23c23 cos δðHeeHμτ −HeμHeτÞ�: ðA4Þ
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The ξτ and χτ eigenvalues are the same as ξμ and χμ under the interchange s223 ↔ c223 and s23c23 → −s23c23. Where

H ¼

0B@aþ Δm2
ees213 þ Δm2

21s
2
12 c13s12c12Δm2

21 s13c13Δm2
ee

· Δm2
21c

2
12 −s13s12c12Δm2

21

· · Δm2
eec213 þ Δm2

21s
2
12

1CA; ðA5Þ

where Hαβ ¼ Hβα and Δm2
ee ≡ c212Δm2

31 þ s212Δm2
31 [29].

The relationship between H and H of Eq. (7) is H ¼
ð2EÞU†

23ðθ23; δÞHU23ðθ23; δÞ. See [25] for further details.
Defining ξα ≤ χα, then the Cauchy interlace theorem

tells us that cm2
1 ≤ ξα ≤ cm2

2 ≤ χα ≤ cm2
3 for NO.

APPENDIX B: EVALUATION OFQ
i ððcm2

iÞ2 − ðξ + χ Þαcm2
i + ðξχ ÞαÞ

It is straightforward to show thatY
i

ððcm2
iÞ2 − ðξþ χÞαcm2

i þ ðξχÞαÞ

¼ C½C − Bðξþ χÞα þ Aðξþ χÞ2α − ðξþ χÞ3α�
− ðξþ χÞαðξχÞα½ðAB − 3CÞ − Bðξþ χÞα þ AðξχÞα�
þ ðξχÞα½ðB2 − 2ACÞ þ ðA2 − 2BÞðξχÞα þ ðξχÞ2α�: ðB1Þ

For α ¼ e, both ðξþ χÞe and ðξχÞe are independent of a and
this is at most a quadratic polynomial in a. The quadratic and
linear terms in a cancel and one is left with the constant, so
this expression is independent of the matter potential.
For α ¼ μ (or τ), both ðξþ χÞμ and ðξχÞμ are linear in a

and this polynomial is at most fourth order in a. Again the
top two powers of a cancel and one is left with a quadratic
polynomial in a. Since ðξþ χÞμ and ðξχÞμ depend on θ23
and δ it is convenient to reorganize the calculation by

multiplying ðcm2
iÞ2 by ðc223 þ s223Þ as follows:Y

i

ððcm2
iÞ2 − ðξþ χÞμcm2

i þ ðξχÞμÞ

¼
Y
i

ðc223Xi þ s223Yi þ 2s23c23 cos δZiÞ ðB2Þ

where

Xi ¼ ðcm2
iÞ2 − ðHee þHττÞðcm2

iÞ þ ðHeeHττ −H2
eτÞ ¼ ðcm2

i −HeeÞðcm2
i −HττÞ −H2

eτ;

Yi ¼ ðcm2
iÞ2 − ðHee þHμμÞðcm2

iÞ þ ðHeeHμμ −H2
eμÞ ¼ ðcm2

i −HeeÞðcm2
i −HμμÞ −H2

eμ;

Zi ¼ Hμτðcm2
iÞ − ðHeeHμτ −HeμHeτÞ ¼ Hμτðcm2

i −HeeÞ −HeμHeτ; ðB3Þ

which satisfy the following condition that XiYi ¼ Z2
i . Then the left-hand side of Eq. (B1) is a homogeneous third order

polynomial in c223, s
2
23 and ð2s23c23 cos δÞ:

Y
i

ðc223Xiþ s223Yiþ2s23c23 cosδZiÞ¼ c623½X1X2X3�þc423s
2
23½X1X2Y3�þc223s

4
23½X1Y2Y3�þ s623½Y1Y2Y3�

þð2s23c23 cosδÞðc423½Z1X2X3�þc223s
2
23½X1Y2Z3�þ s423½Z1Y2Y3�Þ

þð2s23c23 cosδÞ2ðc223½Z1Z2X3�þ s223½Z1Z2Y3�Þþð2s23c23 cosδÞ3½Z1Z2Z3� ðB4Þ

where each ½� � �� is symmeterized over the labels (1,2,3)
which guarantees that each term is a polynomial in a. This
is easy to calculate using an algebraic program like FORM.
Some, but not all of the terms are very simple; we give here
examples of the simplest terms.
The coefficient of s623 is given by

Y1Y2Y3 ¼ s413c
2
13s

2
12c

2
12ðΔm2

21Þ2ðΔm2
31Δm2

32 þ aΔm2
eeÞ2;

the coefficient of c623 is

X1X2X3 ¼ s213c
2
13s

4
12c

4
12ðΔm2

21Þ4a2;

and the coefficient of ð2s23c23 cos δÞ3

Z1Z2Z3 ¼ s313c
2
13s

3
12c

3
12ðΔm2

21Þ3ðΔm2
31Δm2

32 þ aΔm2
eeÞa:

Note Z1Z2Z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1X2X3Y1Y2Y3

p
.

For α ¼ τ, just interchange s223 ↔ c223 and flip the sign
of s23c23.
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APPENDIX C: DERIVATION OF THE f n’s

Writing A, B, and C, defined in Eq. (12), as constant plus linear in a terms, reads as follows:

A ¼ A0 þ a; A0 ¼ Δm2
21 þ Δm2

31;

B ¼ B0 þ aB1; B0 ¼ Δm2
31Δm2

21; B1 ¼ Δm2
31c

2
13 þ Δm2

21ðc212 þ s213s
2
12Þ;

C ¼ aC1; C1 ¼ Δm2
31Δm2

21c
2
13c

2
12: ðC1Þ

Then from Eq. (15), the fn’s of Eq. (21) are given by

f1 ¼ 2Δm2
21½ðA2

0 − 4B0ÞðB0B1 − 2A0C1Þ þ B2
0ðA0 − 2B1Þ þ A0B0C1�=f0;

f2 ¼ ðΔm2
21Þ2½ðA2

0 − 4B0ÞðB2
1 − 4C1Þ þ B2

0 þ 4ðA0 − 2B1ÞðB0B1 − 2A0C1Þ þ 2ðB1A0 þ B0ÞC1 − 27C2
1�=f0;

f3 ¼ 2ðΔm2
21Þ3½ðB0B1 − 2A0C1Þ þ ðB2

1 − 4C1ÞðA0 − 2B1Þ þ B1C1�=f0;
f4 ¼ ðΔm2

21Þ4ðB2
1 − 4C1Þ=f0; ðC2Þ

where f0 ¼ B2
0ðA2

0 − 4B0Þ ¼ ðΔm2
21Δm2

31Δm2
32Þ2.

Note, f1, f2, f3, and f4 are of order 1, 1, ϵ, and ϵ2,
respectively, where ϵ≡ Δm2

21=Δm2
ee.

APPENDIX D: PROOF OF dcm2
i=da= jÛeij2

Differentiate A, B, and C of Eq. (12) with respect to a, to
obtain the following:

1 ¼ dcm2
1

da
þ dcm2

2

da
þ dcm2

2

da
; ðD1Þ

ðξþ χÞe ¼ ðcm2
2 þ cm2

3Þ
dcm2

1

da
þ ðcm2

3 þ cm2
1Þ
dcm2

2

da

þ ðcm2
1 þ cm2

2Þ
dcm2

3

da
; ðD2Þ

ðξχÞe ¼ ðcm2
2
cm2

3Þ
dcm2

1

da
þ ðcm2

3
cm2

1Þ
dcm2

2

da

þ ðcm2
1
cm2

2Þ
dcm2

3

da
: ðD3Þ

Multiplying Eq. (D1) by ðcm2
iÞ2, Eq. (D2) by ð−cm2

iÞ, and
add these to Eq. (D3), one obtains

dcm2
i

da
¼ ðcm2

iÞ2 − ðξþ χÞeðcm2
iÞ þ ðξχÞe

Δcm2
ijΔcm2

ik

¼ jbUeij2; ðD4Þ

with the indices i, j, and k all different. See Eq. (16).

APPENDIX E: PERTURBATIVE EXPANSIONS
ABOUT THE RESONANCES

Aperturbative expansion is used to obtain the values of the
matter potential for the atmospheric and solar resonances.

1. Atmospheric resonance

In this appendix we perform an perturbative expansion in
the matter potential about the approximate value of the

matter potential that minimizes ðcm2
3 − cm2

2 − cm2
1Þ, that is

a ¼ Δm2
ee cos 2θ13 þ δa: ðE1Þ

Starting with the Hamiltonian from Eq. (7), a (2–3) rotation
using U23ðθ23; δÞ is performed to remove the θ23 and δ
dependence. Then a π=4 rotation is performed in the (1–3)
sector using the value of a given in Eq. (E1). The resulting
Hamiltonian is given by

U†
13ðπ=4ÞU†

23ðθ23;δÞð2EÞHU23ðθ23;δÞU13ðπ=4Þ ¼Haþh

ðE2Þ

with

Ha ¼ diagðΔm2
eeðc213 − s13c13Þ þ Δm2

12s
2
12;

Δm2
21c

2
12; Δm2

eeðc213 þ s13c13Þ þ Δm2
12s

2
12Þ;

ðE3Þ

h ¼ 1

2

0B@ δa δm2þ δa

· 0 δm2
−

· · δa

1CA ðE4Þ

where δm2
� ¼ ffiffiffi

2
p

Δm2
21s12c12ðc13 � s13Þ. Note, because the

solar crossing has not been resolved the mass eigenstates ν1
and ν2 are interchanged. Since h is symmetric, the � � �’s are
given by the appropriate term above the diagonal.
Now perturbation theory can be used to calculate

ðcm2
3 − cm2

2 − cm2
1Þ, which to third order in h, is given by
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cm2
3−cm2

2− m̂2
1≈d31þ 2ðh213=d31þh223=d32Þ

þ 2h11h23ð2h12d32−h23d31Þ=ðd232d31Þ;
ðE5Þ

where hjk are the elements of matrix h, Eq. (E4), and
djk ¼ Haðj; jÞ −Haðk; kÞ, e.g., d31 ¼ Δm2

eeð2s13c13Þ.
Equation (E5) is a quadratic in the variable δa as both
h11 and h13 are linear in δa. To obtain an estimate of
the shift one needs to go to third order, as first order
vanishes, second order is quadratic, and third order gives
the first odd term in δa. The value of δa that minimizes

ðcm2
3 − cm2

2 − cm2
1Þ is given by

δa ¼ −h23ð2h12d32 − h23d31Þ=d232
≈ −s212c212ð1 − 2s13ÞðΔm2

21Þ2=Δm2
ee: ðE6Þ

This gives Eq. (50). The minimum of Eq. (E5) reproduces
the exact minimum to better than one part in 108.
Using the above perturbation theory, one can also show

that the value of δa that minimizes ðcm2
3 − cm2

2Þ for NO is
given by

δa ≈ −s212c212ðΔm2
21Þ2=Δm2

ee: ðE7Þ

Thus the alternative definition of the atmospheric reso-
nance, Eq. (44), changes the corrections at Oðs13ϵ2Þ and
similarly for IO.

2. Solar resonance

In this appendix we perform a perturbative expansion in
the matter potential about the approximate value of the

matter potential that minimizes ðcm2
2 − cm2

1Þ, that is

a ¼ a0 þ δa; a0 ¼ Δm2
21 cos 2θ12=cos

2θ13: ðE8Þ

Starting with the Hamiltonian from Eq. (7), a (2–3) rotation
using U23ðθ23; δÞ is performed to remove the θ23 and δ
dependence. Then a θ13 rotation is performed in the (1–3)
sector followed by a π=4 rotation performed in the (1–2)
sector using the value of a given in Eq. (E8). The resulting

Hamiltonian is given by

U†
12ðπ=4ÞU†

13ðθ13ÞU†
23ðθ23; δÞð2EÞHU23ðθ23; δÞ

×U13ðθ13ÞU12ðπ=4Þ ¼ Hs þ h ðE9Þ

where

Hs ¼ diagðΔm2
21ðc212 − s12c12Þ; Δm2

21ðc212 þ s12c12Þ;
Δm2

31 þ a0Þ; ðE10Þ

h ¼ 1

2

0B@ δac213 δac213
ffiffiffi
2

p
as13c13

· δac213
ffiffiffi
2

p
as13c13

· · 2δas213

1CA: ðE11Þ

Since h is symmetric, the � � �’s are given by the appropriate
term above the diagonal. There are only three independent
elements in h: we will use h11, h13, h33 as the indepen-
dent ones.
Now perturbation theory can be used to calculate

ðcm2
2 − cm2

1Þ, which to third order in h is given by

cm2
2 − cm2

1 ≈ d21 þ 2h211=d21 − h213d21=ðd32d31Þ
− h213ðd31 þ d32Þ½2h11=ðd32d31d21Þ
þ ðh11 − h33Þd21=ðd231d232Þ� ðE12Þ

where here hjk are the elements of matrix h, Eq. (E11), and
djk ¼ Hsðj; jÞ −Hsðk; kÞ, e.g., d21 ¼ Δm2

21ð2s12c12Þ.
Using the fact that h13 is approximately constant,

h13 ≈ a0s13c13=
ffiffiffi
2

p
, and keeping only the terms with d21

in the denominator, then the value of δa that minimizes

ðcm2
2 − cm2

1Þ is approximately given by

δa≈h213ðd31þd32Þ=ðd31d32Þ≈cos22θ12s213ðΔm2
21Þ2=Δm2

ee:

ðE13Þ

This gives Eq. (49). The minimum of Eq. (E12) reproduces
the exact minimum to one part in 107.
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