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The Mu2e and COMET collaborations will search for nucleus-catalyzed muon conversion to positrons
(u= — e™) as a signal of lepton number violation. A key background for this search is radiative muon
capture where either (1) a real photon converts to an e™ e~ pair “externally” in surrounding material, or (2) a
virtual photon mediates the production of an e* e~ pair “internally.” If the e has an energy approaching the
signal region then it can serve as an irreducible background. In this work we describe how the near end
point internal positron spectrum can be related to the real photon spectrum from the same nucleus, which

encodes all nontrivial nuclear physics.
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I. INTRODUCTION

Charged lepton flavor violation (CLFV) is a smoking
gun signature of physics beyond the Standard Model (SM)
and is one of the most sought-after signals at the intensity
frontier [1-4]. Important search channels involving the
lightest two lepton generations are y — 3e, 4 — ey, and
nucleus-catalyzed 4 — e [1-6]. The current best limits on
u — e come from SINDRUM-II [7,8].

The upcoming Mu2e [9] and COMET [10] experiments
will either probe or discover CLFV at unprecedented levels
of precision. Both experiments expect on the order of 108
muon capture events, and plan to measure the ratio, R,,, of
i — e events to total muon captures, at the level of 10717,

Importantly, the MuZ2e setup is “‘charge symmetric” such
that the detection efficiencies for electrons and positrons
are comparable. Thus, Mu2e will serve as a testing ground
not just for the discovery of CLFYV, but also for the dis-
covery of lepton number violation (LNV). Specifically, on
a nucleus (e.g., aluminum), the reaction

u+IAZ] - et +1[A,Z-2] (1)

becomes a viable target for observation (see also [7]).
While neutrinoless double beta (Ovfpf) decay is often
touted as the most promising direction for the discovery of
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LNV, there do exist extensions of the SM that predict a
more competitive signal in the pe sector than in the ee
sector (cf. [11-13] and references therein). There also
remains the looming possibility that m,, ~ 0 (cf. Fig. 4
of [14]), rendering Ovf3f insensitive to LNV if it is mediated
by a light Majorana neutrino. The fact that Mu2e is
charge symmetric by design yields a new handle on
LNV “for free.”

Unfortunately, the charge-changing nature of y= — e*
can result in a substantially lower positron energy com-
pared to the electron energy in the CLFV channel = — e™.
This is driven by the mass difference between [A, Z] and
[A,Z —2] [15], and causes the signal region to approach,
or overlap with, poorly understood SM backgrounds. The
most important of these backgrounds is radiative muon
capture (RMC),

u(k) +[A, Z](p) » v (K) + A, Z = 1](p") +1(q),  (2)

where, for definiteness, we assume the final state nucleus is
in its ground state' (in the case of 27Al the final state would
be 2’'Mg).

In searches for CLFV or LNV, incoming muons are the
source of both the 4 — e signal and the RMC background.
It is therefore critical to constrain the energy spectrum of
electrons and positrons from RMC in order to discriminate
signal from background.

There are two ways that RMC can contaminate the signal
window in a CLFV or LNV search:

"This assumption can be easily relaxed and a generic set of
final states summed over as discussed in the Appendix D.
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FIG. 1. Radiative muon capture on a nucleus (double lines)
resulting in (a) a real photon and (b) a virtual photon that mediates
the production of an electron positron pair. In this work we study
how the e (or e~) spectrum in (b) is related to the photon
spectrum in (a).

(1) External conversion: a (real) photon is produced and
interacts with surrounding material ultimately pair
producing an electron positron pair.

(2) Internal conversion: a virtual photon mediates the
production of an electron positron pair.

These two possibilities are shown schematically in Fig. 1.
Both cases are subject to nuclear model dependence.

In the case of external conversion, nuclear model
uncertainties can be circumvented at either Mu2e or
COMET by directly measuring the real photon spectrum
from RMC on aluminium. With this information in hand,
dedicated Monte Carlo simulations (including the full
detector geometry) can be used to predict the resultant
electron and positron spectra. In this sense, the collabora-
tions (Mu2e and COMET) control their own fate and can
empirically constrain the external RMC backgrounds
relevant for their own experiment.

Internal conversion is a more formidable challenge.
Early work by Kroll and Wada [23] investigated the ratio
of et e~ production relative to single photon production for
a 1 — 2 process. The results of their investigation showed,
unsurprisingly, that the ratio is not calculable without
microscopic theoretical input. Rather, somewhat heuristi-
cally, they suggested that the infrared enhancement of the
virtual photon favors small virtualities and argued for an
approximation in terms of real photon matrix elements.

In this work we critically reexamine this problem
focusing specifically on the viability of using measure-
ments of the (real) photon spectrum to predict the internal
positron (or electron) spectrum. The main conclusion of
our work is that the real photon spectrum is sufficient
to predict the internal spectrum of positrons near the end
point as shown in Fig. 2. This observation implies that
if the real photon spectrum is measured, then the full
(internal + external) electron and positron spectra can be
predicted. If the photon spectrum cannot be measured, then

*The RMC rate and spectral shape for capture on hydrogen has
been studied in heavy baryon chiral perturbation theory [16,17].
Nuclear corrections substantially alter the spectral shape of RMC
photons [18-21], especially near the end point [22].
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FIG. 2. Spectrum of positrons/electrons as compared to real
photons near the end point assuming that the photon spectrum is
given by dI'/dE, « (1 = 2x + 2x?)x(1 — x)? with x = E, /Gy
and g« = 100 MeV. This corresponds to the closure approxi-
mation spectrum used in the analysis of RMC data on various
nuclear isotopes in [20]. The electron/positron spectrum is
computed using Eqgs. (36) and (44) below. The spectrum is
softened relative to photons because (1) the end point is shifted by
m, = 0.511 MeV, and (2) the probability of producing an e e~
pair rises sharply as one moves further from the end point as
shown in Fig. 4. Errors due to virtual-photon nuclear matrix
elements (gray band) are estimated by treating C; and Cr (see
Appendix A) as independent random variables drawn from a
Gaussian distribution with unit variance.

Mu2e and COMET could use direct measurements of the
total electron or positron spectrum to infer the RMC photon
spectrum.

The rest of the paper is organized as follows. In Sec. II we
define the nonperturbative matrix element that governs the
emission of real photons and discuss how this same matrix
element also governs the emission of electron positron pairs
at leading order in . Next, in Sec. III we provide an explicit
formula for the real photon spectrum, which naturally leads
into Sec. IV where we provide the corresponding expression
for the positron spectrum. In Sec. V we discuss the near end
point spectrum and demonstrate how the real photon spec-
trum can be used to predict internally converted positrons.
Finally, in Sec. VI we summarize our conclusions, and
suggest future improvements.

We also provide four Appendixes. In Appendix A we
discuss how one can parametrize subleading corrections to
the near end point approximation discussed above. In
Appendix B we give a formal argument for some power
counting details needed to justify the approximation of
transversely polarized virtual photon matrix elements by
their real photon counter parts. To facilitate a comparison
between our work and that of Kroll and Wada we provide a
short discussion of the correspondence in Appendix C. We
also discuss our disagreements with their conclusions there.
Finally in Appendix D we describe how to generalize the
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analysis presented in the main text to the case of inclusive
final states.

II. RADIATIVE MUON CAPTURE
ON A NUCLEUS

The relevant S-matrix element for radiative muon capture
is the overlap of an in state, |Au, atom);, containing a muonic
atom, with an out state |A’v,y),, containing a recoiling

nuclear system A’, a muon neutrino v,, and a photon y:

S}/ = out<A/V/,t7|Aﬂ’ atom)in. (3)

This can be expressed via the Lehmann-Symanzik-
Zimmermann reduction formula as

S, = 2m)*6 (23P)et o (A, T | Au, atom)y,, - (4)

where j u denotes the electromagnetic current and the
notation 25 P signifies that this momentum conservation is
for three on shell particles in the final state.

At leading order in a, the S matrix for internal pair pro-
duction is given by (we use () = ou (A'v,| T ,|Ap, atom);,
from here on for brevity’s sake)

Vira

S—iiy'v. (5)
m

*

See = _(2”)46(4> (Z4P) <jﬂ>*

Note that the in-out matrix element in (5) is evaluated “off
shell,” in that m? = (p, + p_)? # 0, where p . refer to the
four momenta of e* and e~, respectively.

Stripping off the four-momentum conserving delta
function, we can therefore identify the matrix elements as

iM, = (J,)p€". (6)

. /4
iM,, = =(J,), ¥ 3" v, ™)

*

where in Eq. (7) we work at leading order in a. The
subscript reminds us whether the matrix element has
been evaluated for real, (ﬁ u)o» OF virtual, <f7 4),» Photon
kinematics.

To calculate the rate of decay we can make use of the
standard formula®

F =i [ 0 MP). (8)

atom

where M, 1s the mass of the muonic atomic (including
binding energy), {| - |*) denotes an average over initial-state

3The conventional muon capture formula (see e.g., [24]) written
in terms of |y (0)|* can be recovered in the nonrelativistic limit by
constructing the bound state |1s, Ax) out of plane-wave states
|(k)) and |A(—k)) as described in §5 of [25].

spins and a sum over final-state spins, and d®,, is n-body
Lorentz invariant phase space,

n 3,
00, = [L5nioe| < @o9Ep). )
i=1 l

In what follows we consider the spin-averaged matrix
element which is rotationally invariant. This allows us to
choose our coordinate system to lie with the Z axis along
the direction of the photon’s momentum without loss of
generality.

III. REAL PHOTON SPECTRUM

Let us introduce the tensor

W= 3 < (). (10)

spins

where an average over initial spin states, and sum over final
spin states is performed.

The real photon matrix element squared, (|M,|?), can be
expressed in terms of this tensor as

(M, ) = (=gu) T - (11)

where we have used ) e,e; = —gf,-,, for the sum over
physical photon polarizations. The differential rate (or
spectrum) of real photons in the lab frame is then given by

ar, 1
dE,  2Mom

A3 75" + T508(q0 — E,). - (12)

IV. POSITRON SPECTRUM

The matrix element for e™e™ creation can be expressed
in terms of J** as

dra y
<|Mee|2> = m—iLW i, (13)

where the lepton tensor L, is defined as

Ly, =Tr[(p- +m )y, (P —m)r,]. (14)
The positron spectrum is then given by

dr 1 4o
— = do,—L,, JVs(C,. —E.), 15
dE+ 2Matom 4 mi ;wj ( + +) ( )

where €, is a function of the phase space variables that will
be specified explicitly below in Eq. (26).

At this point, to make contact with the real photon
spectrum, it is important to decompose phase space
appropriately. This can be done via [26]
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dm?

dq)4 = dq)';* dq)z( il €+€_), (16

~

where @;, is the three body phase space for A’, v, and a
particle of mass m,. Let us compare to the massless case.
We will explicitly integrate over the A’ system’s momentum
such that only the energy conserving delta function,
5(23,E) and the neutrino-photon phase space remain

1 &K dgq
2E, 2K (2x) 2q0(27r)3
R /)’*
© 2E 2K (27)° ( )3

chB* =

(27)6(23.E),

1o dqo(27)5(Z3,.E),
(17)

where 8, = q/qo = \/1 — m2/q3, and we have made use
of dg/dgy = 1/p.. This is to be compared with the case of

a massless photon which does not have the factor of f,

1 dBr dQ
45 99 4g0(27)6(ZE).  (18)

A, =
T 2EL 2K (21)} (27)° T 2

The energy conservation condition is (for a recoiling A" of
mass M)

S E= ko -+ /I +1GP +2/qlkcost,, + M2 = My,
3%

Ey

(19)

where |§]> = ¢} — m? and 6, is the opening angle between
the photon and neutrino in the lab frame. Integrating over

the neutrino energy introduces a factor of [523*5]
1 E
k A (20)
1+ +\q\cos9 M yom — (1 =, cos Hl,y)qo

The factor of E4 cancels against the factor of E, in the
denominator of Egs. (17) and (18) such that the phase space
for a massive photon can be related to the phase space for a
massless photon via

dd;, = dd; x f,.F,, (21)
with @5 being independent of m,, and d®,, and the variable

F, being given by [cf. Eq. (2) of [24]]
|

o 55:E / 635, F Xk;
o 5k 5k K’

_ Matom - (1 — COS 9»7)‘10 x k_%’ (22)
Matom - (l _ﬂ* CcOoS 9yy)Q0 k

where the various energetic factors in the phase space
measure are modified so that they satisfy Eq. (19).
In terms of these variables we can then write

d
/dd>4 /d(I)3 /q" sy */dtbz, (23)

with @, the two-body phase space for a virtual photon of
mass m, decaying into an e™ e~ pair. We have inserted the
integral symbols explicitly to emphasize the order in which
the they must be performed.

Let us now study Eq. (15), performing the integrations
sequentially from right to left as suggested by Eq. (23).
Since the decomposed phase space is factorized into
independently Lorentz invariant pieces we can carry out
the integration in the frame of our choice. The quantity 7,
is independent of the two-body phase space @, and so

/dq)ZL/w(S((g-ﬁ— - E+)v (24)

in the rest frame of the photon. Two body phase space in
this frame is given by

dcos ddg
327

where 8, = \/1 —4m2/m? and coordinates are defined

such that Z is parallel to the boost direction that connects the
photon’s rest frame to the lab frame. As already discussed
above, this choice can be made without loss of generality
because of the spherical symmetry of the spin-averaged
matrix element (|M|?).

In terms of these variables the function € that deter-
mines the positron’s energy is given by

dq)Z /}e ’ (25)

q

G, (go.cos8) =22 (1 +fof.cosd).  (26)

where 8, = /1 —m?2/qj is (as above) the velocity of the

virtual photon.
The delta function is independent of ¢ and so it is

convenient to define (L,,), = [ g_il‘/w given explicitly by

0 0 0 0
0 2—(1-cos’9)p? 0 0 .
(Luw)y = m3 5 om0 (in photon rest frame).  (27)
0 0 2 — (1 —cos?9)p2 0
0 0 0 2(1 — cos?9432)
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Then we find

p. 1
8” %ﬁeﬂ*

where we have used (note the different fonts of 9 vs 0)

/m%m _E,) = (Ldoleosor  (28)

5(C,—-E,) = 5(cosd — cos ). (29)

2
qO/)) */} e

The emission angle of the positron, cos@, is found by
solving E, = € (g, cos ), being given explicitly by

2E/q0 -1
PP

Obviously, cos® must lie in the interval [—1,1] and so
Heaviside functions enforcing this condition should be
included:

cosO(E, . qo.m.) = (30)

dar,, _ 1 i, dm? « B.F. x 471:!
dE,  2Myom 2 m?
11 )
X gm@w)wﬂ: O(1 —|cos b)),
1 )
= F /11/
2Iwmom 34” 0/ |: V>l/1‘7 :|
O(1 —|cos b)),
1 F
= dd;—— [ dm?—
2Matom ’ 4”q0 " m%
x [(2 = [1 = cos?0]p2) (T + T?)
+2(1 = cos?0p2) T73310(1 — | cos 4]). (31)

In Eq. (31) we have contracted [J%° against the lepton
tensor evaluated in the rest frame of the photon.4

Now let us define auxiliary variables to condense the
notation:

[T+ T2 =T + T5

==z
j33
Li= j + J?3? (33)

The quantities 72, and L? are related to the transverse and
longitudinal matrix elements, respectively. Notice that
T?(m, = 0) =0 by construction such that T2 ~ O(m?)
in the small m, limit.

*If the longitudinal matrix element is evaluated in the lab frame
then one finds (m,/qy) x [L3], [23]. We can relate [L3],,, to
[L2],. by boosting between frames, and one finds that [L2],, =
(go/m,) x [L¥],.q such that the factor of m,/q, is precisely
canceled.

Having introduced all of the necessary ingredients, we
can now write the positron spectrum as if it were produced
by real photons converting “internally” via a probabilistic
process described by a function P;,

r,, 1
dE + M atom

d®3[Ty" + T5° | Pin(Eq0. D). (34)

The symbol IT represents a set of 3-body phase space
variables (e.g., the photon-neutrino opening angle cos 6,,),
and we have introduced the internal conversion probability

1 a [dm?

Poi(E.|go. 1) = — 2 [ €

1nt( +|QO7 ) 610477 mz *
X [(2 - [1 - cos 021 + T2)
+2(1 = cos?0p2)L21O(1 — | cos b)),

(35)

where dgg X [ Py (E|go. IT)dIT can be interpreted as
the probability for photons with energy between ¢, and
qo + dg, to produce an electron positron pair.

The functions 72 and L? are unconstrained by measure-
ments of the on shell photon spectrum. As discussed above,
T? ~ O(m?) for small virtualities, and so if m, < g then
we can expect it to be small. In contrast, L, is expected to
be O(1) in the m, - 0 limit.’> Notice, however, that as
cosfd — 1 (or equivalently as E, — gy —m,) that the
longitudinal matrix elements are suppressed. We will
discuss this in more detail in Sec. V.

Our definition of P;, still depends on the unconstrained
matrix elements L2 and 72. As we will show in the next
section there exists a limit where L2 and 72 can be
neglected. In this case Eq. (34) can be rewritten by carrying
out the integration over all of the 3-body phase space except
for dg, in which case we find

dr,,
dE,

dr
:/mém@w, (36)

which allows us to construct the positron spectrum using
the measured photon spectrum from the same nucleus,
and the calculable function P, (E|E,). We now turn our
attention to the aforementioned limit in which P;, is
independent of 72 and L2.

V. NEAR END POINT SPECTRUM

As discussed in the introduction, for 4 — e searches it is
the high-energy tail of the RMC spectrum that is most
important. This motivates studying the internal conversion

>This is qualitatively different than the conclusion of [23]. We
discuss the origin of these differences in Appendix C.
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probability in the limit where E, — Egma”. This is con-

veniently parametrized by the dimensionless ratio formed
from the electron’s kinetic energy to the virtual photon
energy,

5:CIO_(E++me):E—_me
90 90

, (37)

which tends to zero as the positron approaches its end
point.

Let us now study the integral over m, in Eq. (35) more
carefully. Having restricted ourselves to a specific value
of E_, the limits of integration on m, are supplied by the
Heaviside function. This can be understood by plotting €,
for cos @ = =1, as a function of m, at different fixed values
of g, as depicted in Fig. 3. At a fixed positron energy E .,
the limits of integration over m, can be found by solving

€, (m,,qp.cos9=1)=E,. (38)

These are given explicitly by

= \Jal 4 E (g~ B (B~ ) (g — £, )]

Notice that m'” > 2m, and consequently m,/m, < 1 over
the full range of integration. If we introduce the small
parameter

m
€e=—2, 40
7 (40)
then the maximal value of m, is set by
m'") = go[2y/(1 = 8)5 + O(e)). (41)

We therefore find that m, /g, < O(+/6) in the small § limit
(provided € <« §). Similarly, for a high-energy positron to
emerge from a virtual photon, it must be emitted collinear
to the photon’s momentum, cos @ =~ 1. Explicitly,

2FE -1
l—coso=1-EdD=1 55
B.be
57 100f .- @-——m e
: T B
oo @emeeeee o Tesg
=oosops 4 el TN ~ — E.=95
g [ o=
5 eff 45 p
RS Y --- E,=100
3] i oS
= 401];‘?,‘ 51 1
g s e B,=85
.g 203 ’:' s | e
& ‘{% cOSY_Toza=="7" LS
00 _7_—’-2?0 4:0 éﬂ 8‘0 100
Photon Virtuality m, [MeV]
FIG. 3. Phase space for radiative muon capture. Varying cos ¢

from —1 to 1 at fixed m, moves from the bottom of the hull to the
top of the hull. Changing E, = g, changes the size of the hull to
be integrated over (i.e., orange dotted curve [E, = 85 MeV] —
blue dashed curve [E, = 100 MeV]). If E; — g, then only the
top tip of the hull contributes to the phase space integration. Units
of E, and m, are in MeV.

(39)

|

where we treat f§, ~ ff, ~ 1 (see Appendix A for details).
Thus, we can reexpress the internal conversion probability
for E. — q as

La (=" dm?
P = —— — F,
Go 7 Jm  my

X [242T2 - 0(5) + 0(8) x L2,

= PLI(E. |q0) + 0(6). (43)
where we have counted 72 ~ O(5) (see Appendix B for
more details). The longitudinal matrix elements, by con-
trast, are taken to be O(1) in the m, — 0 limit, but
are suppressed by (cos?>@p% —1) = O(6). Therefore at
leading order in 6 we find, setting F, ~ 1 as discussed
in Appendix A, that

+)
1 a [ dm?

POYE,|q) = ——
nt ( +|q0) 90 4” ’n£_) mz

X 2,

1 _
= —glog(mi+)/m£ )).
qgo 7

(44)

This function is plotted, along with error estimates dis-
cussed in Appendix A, in Fig. 4. The small-6 form of

mff) / mfﬁ_) depends on the relative size of ¢ and o.
Explicitly the various scaling limits are given by (always
taking 6, e < 1)

25/e 5>¢

mgf) <6+e+5, /1+2€/6) 1/2 S~ e
e ~ Ste—5v/142¢/6 :

1++/28/e

If one wishes to straddle these various regimes then the

exact expressions for miﬂ, as presented in Eq. (39), should

be used. This is important for applications at Mu2e and

(45)

ke
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10[

P(O)

int

""" P+ APjy, CL=Cp=0

10° x Py (EL|E,) [MeV ]

90 92 94 96 98 106
Positron Energy [ MeV ]

FIG. 4. Probability per differential bin (i.e., of width dE,) of
producing a positron with energy E, given a photon energy of
E, = 100 MeV, Egs. (39) and (44). We plot P\") of Eq. (43) as
well as error estimates (gray band) obtained by considering an
ensemble of the two parameters C;, and Cr, that capture nuclear
structure dependence (see discussion in Appendix A). We treat
C; and C; as random variables drawn from independent

Gaussian distributions such that (C?) = (C2) = 1.

COMET where energy resolution is of O(100 keV) [9]
such that electron mass effects can be resolved.

VI. CONCLUSIONS AND OUTLOOK

We have shown that given the photon spectrum from
RMC on a nucleus, the spectrum of high energy positrons
or electrons can be computed accurately with errors con-
trolled by 6 = (E_ —m,)/q, This allows for a robust
characterization of the internal RMC positron and elec-
tron spectra near the end point. External positrons,
stemming from real photons pair producing in surround-
ing detector material, can be calculated from the real-
photon spectrum by dedicated Monte Carlo simulations
that include the full detector geometry. Thus, with this
present work, a measurement of the real-photon spectrum
becomes entirely predictive for the purposes of determin-
ing the high-energy positron spectrum. Most importantly,
this allows for nuclear physics effects, which have large
theoretical uncertainties, to be included empirically with
measured data.

While our study has emphasized the near end point
positron spectrum, it applies equally well to the near end
point electron spectrum. The reason that electrons and
positrons can be treated on an equal footing is that we have
not included the influence of the nucleus’ strong Coulomb
field, which, in reality, will influence the outgoing electron
and positron. Near the end point, for internal conversion,
this approximate neglect of Coulomb corrections may be
insufficient. A high-energy positron necessarily implies a
low-energy electron whose outgoing wave function is then
substantially distorted by the Coulomb field of the nucleus
(as is well known in the theory of beta decay [27]). This has

been discussed in a more general setting in [28], and we
will study this issue in the context of the RMC end point in
future work [29]. We anticipate that our formalism of an
internal conversion probability can be readily adapted to
account for Coulomb distortion effects.
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APPENDIX A: ERROR ESTIMATES

Here we consider corrections to the universal conversion
probability P;,.. As emphasized in Eq. (45), these corrections
depend on the relative size of € and §. In what follows we will
consider the cases of ¢ < 6 [i.e., a relativistic electron
satisfying 2m, < (E, — E)], € ~ ¢ [i.e., a quasirelativistic
electron satisfying 2m, ~ (E, — E.)], and € > § [ie., a
nonrelativstic electron 2m, > (E, — E. )] separately.

For this section it is convenient to reexpress Eq. (30) as

2(1-6-€)—1 1-26-2¢
ﬂ*ﬂe B ﬁ*ﬂe ’

cosf =

(A1)

where we remind the reader that g, = \/1 —m?/q3 and

1 — 4m2/m?. The ratio of m'® to the photon

energy go will also be useful, and this can written in terms
of f and ¢ as

()

My

q0
= \/2[€+5(1 —6—2€) £ /6(1-6)(1—56—2¢)(6+2¢)].
(A2)

Subleading corrections to P;,; depend on nuclear matrix
elements and are therefore model dependent. We can,
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however, parametrize this model dependence at next to
leading order by defining

2
am-alyer| oy
Culm) = 12, (%)

where Cr and C; depend on the other phase-space
variables IT (IT = cos 0,,, the opening angle between the
photon and neutrino, for RMC). In estimating errors in the
main text we treat C; and Cy as constants independent of
cos 6,,. The small-m,, behavior of the functions 72 and L3
can be expressed in terms of Cy and C; via

72 = C,(I0) x (%)2 +Oo(mh), (AS)
L2 = C,(I1) + O(m?). (A6)

Depending on the relative sizes of mii), either of 5, or 3,
can deviate from unity at next to leading order. We
therefore expand both of them in a Taylor series:

2 2
_dm, o 2mg

_ N ~1 , A7
po= 1o 2 (a7
m2 m2
Bo= J1 =T (A8)
3 243

While the expansion in m2/m? may look ill-behaved for
small m,, recall that m, > 2m,, and for 6 < 1 we always

have that m,/m, < O(v/6). Throughout the full region of

phase space we find that F, ~1+ O(qoﬂ'fl ) and for

medium-heavy nuclei these deviations from unity are at
the permille level since m, ~ 10 MeV, g, ~ 100 MeV, and
M iom ~ 30 GeV; we therefore set F, = 1 hereafter.

We may then expand Eq. (35) under the integral sign
subtracting off the leading-order expression. We therefore
define

APy = Py — PV (A9)

nt °

given explicitly by

a [ dm? m? m2  4m? m2
4z ) m dp qp  mi ‘0
la [dn 1l m2 2m?
=—= *L2[6 2C (IT) -1 Cr(I) —C,(T) +=| — = A10
2 [ Latsr dacum - 11+ |cam - cum+ 5] 2+ 222 (A10)
In deriving the above equation we have made use of
2% — (1 — 26— 2¢)? 2 4m?
(1 = cosg)p2 = PP = W72 ys4e) - o, (A1)
ﬂ* qO n
2 —(1-26-2¢) 2
(1 cos2p2) = P = : F a5+ e) ~Zro@). (A12)
ﬂ* QO
If we integrate over m, we then find
1 B 1 1 1 *+> 2 _ i—) 2
APy =2 Lo 4 26, (1) = 1tog(nt /) + [L g~ Loy 1) e P e ]
qom 2 2 4 q5
m, \?2 m, \2
G -G 1) )
m mt)
Different terms in Eq. (A13) will be relevant or negligible mt
depending on whether € < 6, € ~ J, or € > §. It is therefore ~ 2\/5’ (A14)
. o 90
useful to consider these limits separately.
m e 3
1. Relativistic electron: ¢ <« ~—=~0(577). AlS
Y (677 (A15)

In this section we will power count with € ~ O(5%) such
that

We then find
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Mmz??mqmwwmwwa
07

+ [Cr(IT) = CL(IT) + 1]}, (A16)

where all contributions proportional to e have been dropped
because of the € ~ 5> power counting. The final term in

Eq. (A16) receives a contribution from [m,/ mfﬁ_)]2 ~ 0(5)
and [m'"/qo]" ~ 0(5).

2. Quasi-relativistic electron: € ~ 6
In this section we treat € ~ O(8) in our power counting,
and find

m™

90

1/2
~ V26 X

2
148+ /14

5 5 (A17)

Notice that both m!"” and m!™ are parametrically of the

same Size, in contrast to the case where ¢ << 6 where we
instead found that mff) > m'”). We then find

APy = ——{[ZCL(H) —1] <1 _|_E> IOg(me)/mS:))
qo7 1)

+ 1+2§[CT(H) —C,(TT) + 1]}, (A18)

where, for compactness, we have left the dependence of

mii) on € and ¢ implicit inside the logarithm. The final term

in Eq. (A20) receives contributions from both roots of m,(ﬁi).

3. Nonrelativistic electron: ¢ > 6

In this section € ~ O(5'/?) in our power counting, and

i

~V2e £ V6. (A19)

90

Much like in the previous section both roots are of roughly
the same size. We then find that

V8e a

AP;y = ———[Cr(TT) + C, (TT)], (A20)
do T

where we have Taylor expanded log(mff) / mi_)) taking
advantage of the fact that 6 < e. In this regime the error

scales parametrically like O(v/ed). This should be com-
pared to P in the same regime which is O(y/6/¢). The

int
relative error is therefore O(¢). This stems from the photon
virtuality m, tending towards m? — 2m,q, in the limit that

8 — 0 such that m2/g3 ~ O(m,/q,) ~ O(e).

APPENDIX B: VIRTUALITY DEPENDENCE
OF THE TRANSVERSE
ELECTROMAGNETIC CURRENT

In Eq. (43) we have assumed that corrections stemming
from L2 and 72 are O(5) or smaller. The longitudinal
matrix elements, L2, are suppressed explicitly by a factor of
(1 = p2cos? ) ~ O(5). In contrast, the transverse matrix
elements, 72, are not suppressed by explicitly O(5)
prefactors. For corrections from 72 to be small, we there-
fore require that terms proportional to the virtual photon
mass m? are suppressed by energetic scales of O(g3) ~

O(m2) such that T2 ~ m?/g§ ~ O(5). One may be con-
cerned that energy-level splittings (on the order of AE ~
few MeV) from low-lying nuclear excited states
could enhance m, dependent contributions leading to
O(m2/AE?) corrections. In this section we study the
structure of J% by inserting a complete set of nuclear
states, and deriving a time-ordered expression where
energy-splitting denominators appear explicitly.
We will study the matrix element

out <y, A/|jﬂ |A/"7 at0m> in
Bk s
~ —31//ﬂ(k)out<U7A |jﬂ|A(_k)vﬂ(k>>in

(27)
~ Wﬂ(o)out<1/’ A/|ju Av /’t>in’

(B1)

where we have assumed a nonrelativistic treatment of
the muon-nucleus bound state in the first approximation,
and approximated the plane-wave matrix element by its
value at k = 0 in the second approximation; we have also
used y,(0) = [, (k)d*k/(27)*.

We are interested in this matrix element for real- and
virtual-photon kinematics at fixed photon energy g, We
take the initial state as having zero three-momentum and an
energy (i.e., rest mass) of M. The outgoing momentum
of A’ is fixed by momentum conservation, and the energy of
the neutrino by energy conservation. In the limit where
My ~ M yom — o (i.e., neglecting the recoil energy of A”)
we find

Ev = (Matom - MA’) —qo+ O(Q(z)/MA’)7

& m, — o, (B2)
where in the approximation we have neglected the binding
energy of the muon and the mass difference My — M 4o,

Let us evaluate o, (7,);, at leading order in G using
Dyson’s formula, such that the lepton and nuclear matrix
elements can be fully separated

033002-9



RYAN PLESTID and RICHARD J. HILL

PHYS. REV. D 103, 033002 (2021)

o AT A )y = (0, AT S DT

T u(0)}u. A),
= 7% / d*y (v A T{(0)7 (1 = 15)£(0),(0) T 4(0) Y. A) + O(GE),

(B3)

where J , 18 the weak-hadronic current. Furthermore, the electromagnetic current is a linear combination of a leptonic and

hadronic piece

Ty=H,+ Z —ely,t. (B4)
¢
We can therefore write (dropping in and out labels since we are now calculating perturbatively)
(W AT lu, A) = f d*y[=e(IT{D(y)r" (1 = 75)£()Z(0)r*¢ (0) ) (AT, (v) A)
+ W)y (1= 75) D)) (AT, () T, (0) }A), (BS)

where we have used Eq. (B4) and the fact that
(AT{T, ()T 4 (0)}A) = (A'|T{T, ()7, (0)}|A).

The first term can be reduced to a s1ngle weak-current
nuclear matrix element (measurable with e.g., neutrino
scattering) and an electroweak Feynman diagram with the
muon radiating a photon. In the second term the nucleus
radiates a photon and is excited by a weak current insertion.
In between these two current insertions a virtual excitation of
some low-lying nuclear energy level could, naively, supply
an energetic denominator that is AE ~ O(few MeV). Our
focus therefore shifts to this term.

Translating the lepton fields to + =0 and y =0 and
introducing Q, = k — k' (the four momentum transferred
out of the leptons) we see that all of the nuclear physics that
could enhance terms proportional to m? is buried in the
current-current correlation function evaluated between two
nuclear states

W, = / &y (AT, (0).7,(0)} A} (B6)

In terms of this object the second term in Eq. (B5) can be
expressed as %GFW"(I —ys)uW,,. Let us consider each

time ordering separately:

Wi, = / dyo / &y (417,07,
/ dyo/d3 (A7 ,(0

Our approach is to
(i) Insert a complete set of energy eigenstates
£1X)(X| = 1; we will refer to these states as isobars.
(ii) Integrate over space to get a momentum conserving
delta function.

(0)|A)e70~. (B7)

J,(y)lA)em¢~. (BS)

[
(iii) Integrate over time
1/(E £ in).
We find

to get denominators of

(A'17,1X)(X|T,]4)
(Qs+Px—p')y—in’

(B9)

w;:j(zzr) (G, + Py— )

X

(A'|T,1%)(X|],|A)
(Qs+p—Px)o+in’

(B10)

W, = —ﬂ(2ﬂ)35(3)(éf—13x+ﬁ)

X

Next, we can make use of Lorentz invariance to rewrite

=2/ den where states are now labeled by their
quantum number n (which determines the mass and spin of

-

the isobar state) and their three momentum |X) = |n, P);
here dp = dzp/(27t) Let us introduce |Z) = |n, P =

P -0, and |Y) = — p) such that

A'\,\Z)(2|T,|A
W,w:Z AL IZK21TA)
2E7(AE, + [Ez — Ey]) —in
(A Y)(Y|J, A

5 AT R

2Ey(AE, — [Ey — E4]) +in

We have introduced AE, = (Q;), and the energies of the
isobars Ey and E,. Notice that the isobars |Z) and |Y) are
discrete states whose momentum is fixed by three-momentum

conservation, PZ =p - Qf and PY = Qf — p. Small
nuclear energy level splittings from the ground state do not
lead to small denominators in Eq. (B11). AE, ~ O(q,) ~
100 MeV is sufficiently large that any low-lying nuclear
states are far off shell. The only small denominators that can
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appear are in the second time ordering when
[Ey — E4| ~ AE; such considerations are beyond the scope
of this work, and we do not consider them here.

APPENDIX C: COMPARISON WITH
KROLL AND WADA

The main difference between [23] (KW) and our study is
that we focus on the end point specifically and carefully
consider the validity of approximating virtual photons by
real ones. Since the authors of KW simply assume this
approximation as an ansatz many of our results are similar
to theirs. We disagree with the authors on certain technical
points, and in particular on the validity of their advocated
approximation in generic regions of phase space. We find,
however, that the ansatz proposed in KW becomes a well
controlled approximation in the limit that the electron’s
kinetic energy becomes much smaller than the virtual
photon energy, i.e., when 6 < 1.

The notation of KW differs substantially from modern
treatments and specifically this paper. Moreover, they
consider a two-body system and so details of the phase
space are slightly different between our works. For the
benefit of the interested reader we spell out the differences
in notation, derive the results of KW, and comment on
typos and conceptual differences.

Kroll and Wada consider a system A, initially at rest, that
emits a photon becoming system B of mass M. The mass of
system A is parametrized by M, = M + E,p with E,p the
energy splitting between A and B. An important identity
is that

1 Exp+ M
2Eg.  (Ezp+ M)’ +M> —m?

(C1)

The case of a massless photon, Ep, is recovered by
setting m,, = 0.

In Eq. (2) of KW, the rate of photon emission is
calculated. To emphasize the difference in definition we
denote our equivalent expression by (P&H) and the
expressions of KW by (K&W),

_ 1 qoMy4
v 871'2 EB

r — 1 XB(MA,O,MB)
T 2My, 3277

/ dQUN +J72) (K& W), (C2)

[y« a) e,
(3)

where (borrowing notation from [26])

A3 2 2 2 2 2\2
ﬁ(s,ml,m2):\/1_ (m]+m2)+(m] 2m2) ‘

N N

(C4)

For m; =0 we have that j =2E,/M, such that

B(M,,0,Mg) = 2qy/M, and therefore

1T a 2
TR ITh [eogy g pen). (s

This allows us to identify the (K&W) current with our
(P&H) matrix element via

VEg
K&W) J, =
( ) 2M,

(Ju) (P&H).  (Co)

This means that there are implicit factors of E contained in
the expressions in KW, with J4* « Eg, x J4".

Having identified the appropriate current we can now
jump ahead to the internal conversion coefficient p which is
defined as the rate of electron-positron pair production to
photon emission. KW gives (with expressions adapted to
our notation) in Eq. (8)

qo dm* / B* |q*|
p= 77
277: 2m, My |

X {[2 +2(cos?9 — 1)2|Ry(m,) + 2[1 — fcos*I]

2
xm—z*RL(m*)} (K & W), (C7)
qo
where we have used
E2, + 2E,sM + m?>
go = ~Ap T AL T (c8)

2(Eqp + M)

Modifying our discussion in the main text to account for
two-body phase space we find that

D,, =Dy x — (C9)
> B
with
2(My +m2) | (Mj—m3)?
— /1= C10
p. \/ T (C10)

One can check that |g.|/|go| = B./Bo. We therefore find
[using dm? = 2m,dm, and keeping in mind that we are not
including the delta function 6(€_ — E, )],

d
p= @ [ m*/ dcos®d

2m,

Iq*l
]
2[1 — fcos?I]L2}

X B{[2 + 2(cos?9 — 1)2](1 + T2)

(P & H). (C11)

The factor of E,/Eg obtained in KW is absent from our
expression because our functions 72 and L? are defined in

033002-11



RYAN PLESTID and RICHARD J. HILL

PHYS. REV. D 103, 033002 (2021)

terms of J whereas Ry and R; are defined in terms of
KW’s J. As emphasized in Eq. (C6), upon being squared
these differ by a factor of Ep, and hence in KW’s
expression there should be a ratio of Ep/Ejp, instead of
the factor of Ep, / Ep that appears in Eqgs. (8) and (9) of KW
[explicitly, [(E + M)? + M* — x*]/[(E + M)? + M?] in the
notation of KW]; we ascribe this to a typo in KW.

Despite appearances there is no discrepancy between our
longitudinal matrix element and those in KW, because KW
have evaluated their matrix elements in the lab frame,
whereas our expression is evaluated in the rest frame of the
virtual photon (or equivalently the electron positron pair).
This accounts for the factor of m?/g3 in KW, which can be
interpreted as arising from boosting the rest-frame expres-
sion into the lab frame.

This final point is important since the naive m? sup-
pression appearing in front of R; (m,) is artificial, but was
used as a justification for the neglect of longitudinal matrix
elements in KW. The fact that this is an artificial suppres-
sion can be seen in a simple example such as £7¢~ — eTe”
where we can interpret the £~ pair as a current sourcing a
virtual photon y,. In this case a straightforward calculation
shows that 7%* = (k*p* + p*k* —1sg,,) such that 73° =
2m> 2 in the rest frame (i.e., center of mass frame), whereas it
equals 73° = 2y2m? in the lab frame, where y, = ¢3/m? is
the boost of the virtual photon. Note, however, that in any
frame the combination m2/g3 x J3* = 2m2, which does
not vanish in the m, — 0 limit. This illustrates that
longitudinal matrix elements do not decouple in the
m, — 0 limit. Instead, as we have shown in Egs. (27),
(31), and (35), they decouple when f, cos@ — 1.

The neglect of finite-m? corrections to the transverse
matrix elements is only valid if m? < g3. The integration
measure is logarithmic in m,, and so all scales contribute

equally. Therefore, unless (m&ﬂ /q0)* < 1, there is no
reason to expect a real-photon approximation to be accu-
rate. Additionally, as we have emphasized in the paragraph
above, there is no small-virtuality suppression of longi-
tudinal matrix elements. Rather, these are suppressed when
[1 — g% cos? 9] is small. As the positron energy approaches
its end point, both of these conditions are satisfied with
errors being O(5).

APPENDIX D: GENERALIZATION TO
ARBITRARY FINAL STATES

In Eq. (2) we have assumed a definite exclusive final
state. As mentioned in the first footnote of the paper this
assumption can be easily relaxed to accommodate inclusive
final states for reactions of the form

|Ap, atom) — X). (D1)

X

The expressions for the real photon spectrum and internal
eTe” spectrum are given by

! v
Y= om Z/d‘l’S(X)J’é (X)(-gz).  (D2)
atom ~ y
ere_ 2Matom ZX:/ 4 * mi v

where we have included an X dependent evaluation of the
electromagnetic current. Four-body phase space can be
decomposed for each final state X as described in the main
text. If X is has a multiparticle final state then an analogous
decomposition for n-body phase space can be performed.

Working at leading order in & the resultant eTe™
spectrum can then be related to the photon spectrum by
the same internal conversion probability for every final
state X

dr’,, .. dFX
dE+ /dE Z mt E+‘E)

(D4)

The full differential photon flux is then easily identified as
dI' = >, dI'y, such that

ar, ., dr PO
- dE, — E. |E D5
dEJr / 14 dE 1nl ( + | ) ( )

This agrees with Eq. (36).
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