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The Mu2e and COMET collaborations will search for nucleus-catalyzed muon conversion to positrons
(μ− → eþ) as a signal of lepton number violation. A key background for this search is radiative muon
capture where either (1) a real photon converts to an eþe− pair “externally” in surrounding material, or (2) a
virtual photon mediates the production of an eþe− pair “internally.” If the eþ has an energy approaching the
signal region then it can serve as an irreducible background. In this work we describe how the near end
point internal positron spectrum can be related to the real photon spectrum from the same nucleus, which
encodes all nontrivial nuclear physics.
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I. INTRODUCTION

Charged lepton flavor violation (CLFV) is a smoking
gun signature of physics beyond the Standard Model (SM)
and is one of the most sought-after signals at the intensity
frontier [1–4]. Important search channels involving the
lightest two lepton generations are μ → 3e, μ → eγ, and
nucleus-catalyzed μ → e [1–6]. The current best limits on
μ → e come from SINDRUM-II [7,8].
The upcoming Mu2e [9] and COMET [10] experiments

will either probe or discover CLFVat unprecedented levels
of precision. Both experiments expect on the order of 1018

muon capture events, and plan to measure the ratio, Reμ, of
μ → e events to total muon captures, at the level of 10−17.
Importantly, the Mu2e setup is “charge symmetric” such

that the detection efficiencies for electrons and positrons
are comparable. Thus, Mu2e will serve as a testing ground
not just for the discovery of CLFV, but also for the dis-
covery of lepton number violation (LNV). Specifically, on
a nucleus (e.g., aluminum), the reaction

μ− þ ½A; Z� → eþ þ ½A; Z − 2� ð1Þ

becomes a viable target for observation (see also [7]).
While neutrinoless double beta (0νββ) decay is often

touted as the most promising direction for the discovery of

LNV, there do exist extensions of the SM that predict a
more competitive signal in the μe sector than in the ee
sector (cf. [11–13] and references therein). There also
remains the looming possibility that mee ≈ 0 (cf. Fig. 4
of [14]), rendering 0νββ insensitive to LNV if it is mediated
by a light Majorana neutrino. The fact that Mu2e is
charge symmetric by design yields a new handle on
LNV “for free.”
Unfortunately, the charge-changing nature of μ− → eþ

can result in a substantially lower positron energy com-
pared to the electron energy in the CLFV channel μ− → e−.
This is driven by the mass difference between ½A; Z� and
½A; Z − 2� [15], and causes the signal region to approach,
or overlap with, poorly understood SM backgrounds. The
most important of these backgrounds is radiative muon
capture (RMC),

μðkÞ þ ½A; Z�ðpÞ → νμðk0Þ þ ½A; Z − 1�ðp0Þ þ γðqÞ; ð2Þ

where, for definiteness, we assume the final state nucleus is
in its ground state1 (in the case of 27Al the final state would
be 27Mg).
In searches for CLFV or LNV, incoming muons are the

source of both the μ → e signal and the RMC background.
It is therefore critical to constrain the energy spectrum of
electrons and positrons from RMC in order to discriminate
signal from background.
There are two ways that RMC can contaminate the signal

window in a CLFV or LNV search:
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1This assumption can be easily relaxed and a generic set of
final states summed over as discussed in the Appendix D.
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(1) External conversion: a (real) photon is produced and
interacts with surrounding material ultimately pair
producing an electron positron pair.

(2) Internal conversion: a virtual photon mediates the
production of an electron positron pair.

These two possibilities are shown schematically in Fig. 1.
Both cases are subject to nuclear model dependence.2

In the case of external conversion, nuclear model
uncertainties can be circumvented at either Mu2e or
COMET by directly measuring the real photon spectrum
from RMC on aluminium. With this information in hand,
dedicated Monte Carlo simulations (including the full
detector geometry) can be used to predict the resultant
electron and positron spectra. In this sense, the collabora-
tions (Mu2e and COMET) control their own fate and can
empirically constrain the external RMC backgrounds
relevant for their own experiment.
Internal conversion is a more formidable challenge.

Early work by Kroll and Wada [23] investigated the ratio
of eþe− production relative to single photon production for
a 1 → 2 process. The results of their investigation showed,
unsurprisingly, that the ratio is not calculable without
microscopic theoretical input. Rather, somewhat heuristi-
cally, they suggested that the infrared enhancement of the
virtual photon favors small virtualities and argued for an
approximation in terms of real photon matrix elements.
In this work we critically reexamine this problem

focusing specifically on the viability of using measure-
ments of the (real) photon spectrum to predict the internal
positron (or electron) spectrum. The main conclusion of
our work is that the real photon spectrum is sufficient
to predict the internal spectrum of positrons near the end
point as shown in Fig. 2. This observation implies that
if the real photon spectrum is measured, then the full
(internalþ external) electron and positron spectra can be
predicted. If the photon spectrum cannot be measured, then

Mu2e and COMET could use direct measurements of the
total electron or positron spectrum to infer the RMC photon
spectrum.
The rest of the paper is organized as follows. In Sec. II we

define the nonperturbative matrix element that governs the
emission of real photons and discuss how this same matrix
element also governs the emission of electron positron pairs
at leading order in α. Next, in Sec. III we provide an explicit
formula for the real photon spectrum, which naturally leads
into Sec. IV where we provide the corresponding expression
for the positron spectrum. In Sec. V we discuss the near end
point spectrum and demonstrate how the real photon spec-
trum can be used to predict internally converted positrons.
Finally, in Sec. VI we summarize our conclusions, and
suggest future improvements.
We also provide four Appendixes. In Appendix A we

discuss how one can parametrize subleading corrections to
the near end point approximation discussed above. In
Appendix B we give a formal argument for some power
counting details needed to justify the approximation of
transversely polarized virtual photon matrix elements by
their real photon counter parts. To facilitate a comparison
between our work and that of Kroll and Wada we provide a
short discussion of the correspondence in Appendix C. We
also discuss our disagreements with their conclusions there.
Finally in Appendix D we describe how to generalize the

(a) (b)

FIG. 1. Radiative muon capture on a nucleus (double lines)
resulting in (a) a real photon and (b) a virtual photon that mediates
the production of an electron positron pair. In this work we study
how the eþ (or e−) spectrum in (b) is related to the photon
spectrum in (a).

90 92 94 96 98 100

FIG. 2. Spectrum of positrons/electrons as compared to real
photons near the end point assuming that the photon spectrum is
given by dΓ=dEγ ∝ ð1 − 2xþ 2x2Þxð1 − xÞ2 with x ¼ Eγ=qmax
and qmax ¼ 100 MeV. This corresponds to the closure approxi-
mation spectrum used in the analysis of RMC data on various
nuclear isotopes in [20]. The electron/positron spectrum is
computed using Eqs. (36) and (44) below. The spectrum is
softened relative to photons because (1) the end point is shifted by
me ¼ 0.511 MeV, and (2) the probability of producing an eþe−
pair rises sharply as one moves further from the end point as
shown in Fig. 4. Errors due to virtual-photon nuclear matrix
elements (gray band) are estimated by treating CL and CT (see
Appendix A) as independent random variables drawn from a
Gaussian distribution with unit variance.

2The RMC rate and spectral shape for capture on hydrogen has
been studied in heavy baryon chiral perturbation theory [16,17].
Nuclear corrections substantially alter the spectral shape of RMC
photons [18–21], especially near the end point [22].
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analysis presented in the main text to the case of inclusive
final states.

II. RADIATIVE MUON CAPTURE
ON A NUCLEUS

The relevant S-matrix element for radiative muon capture
is the overlap of an in state, jAμ; atomiin containing amuonic
atom, with an out state jA0νμγiout containing a recoiling
nuclear system A0, a muon neutrino νμ, and a photon γ:

Sγ ¼ outhA0νμγjAμ; atomiin: ð3Þ
This can be expressed via the Lehmann-Symanzik-
Zimmermann reduction formula as

Sγ ¼ ð2πÞ4δð4ÞðΣ3PÞϵμouthA0νμjĴ μjAμ; atomiin; ð4Þ

where Ĵ μ denotes the electromagnetic current and the
notation Σ3P signifies that this momentum conservation is
for three on shell particles in the final state.
At leading order in α, the S matrix for internal pair pro-

duction is given by (we use hĴ μi≡ outhA0νμjĴ μjAμ; atomiin
from here on for brevity’s sake)

See ¼ −ð2πÞ4δð4ÞðΣ4PÞhĴ μi�
ffiffiffiffiffiffiffiffi
4πα

p

m2�
ūγμv: ð5Þ

Note that the in-out matrix element in (5) is evaluated “off
shell,” in that m2� ≡ ðpþ þ p−Þ2 ≠ 0, where p� refer to the
four momenta of eþ and e−, respectively.
Stripping off the four-momentum conserving delta

function, we can therefore identify the matrix elements as

iMγ ¼ hĴ μi0ϵμ; ð6Þ

iMee ¼ −hĴ μi�
ffiffiffiffiffiffiffiffi
4πα

p

m2�
ūγμv; ð7Þ

where in Eq. (7) we work at leading order in α. The
subscript reminds us whether the matrix element has
been evaluated for real, hĴ μi0, or virtual, hĴ μi�, photon
kinematics.
To calculate the rate of decay we can make use of the

standard formula3

Γ ¼ 1

2Matom

Z
dΦnhjMj2i; ð8Þ

where Matom is the mass of the muonic atomic (including
binding energy), hj · j2i denotes an average over initial-state

spins and a sum over final-state spins, and dΦn is n-body
Lorentz invariant phase space,

dΦn ¼
�Yn
i¼1

d3pi

2Eið2πÞ3
�
× ð2πÞ4δð4ÞðΣnPÞ: ð9Þ

In what follows we consider the spin-averaged matrix
element which is rotationally invariant. This allows us to
choose our coordinate system to lie with the ẑ axis along
the direction of the photon’s momentum without loss of
generality.

III. REAL PHOTON SPECTRUM

Let us introduce the tensor

J μν
� ¼

X
spins

hĴ μi� × hĴ ν†i�; ð10Þ

where an average over initial spin states, and sum over final
spin states is performed.
The real photon matrix element squared, hjMγj2i, can be

expressed in terms of this tensor as

hjMγj2i ¼ ð−g⊥μνÞJ μν
0 ; ð11Þ

where we have used
P

ϵμϵ
�
ν ¼ −g⊥μν for the sum over

physical photon polarizations. The differential rate (or
spectrum) of real photons in the lab frame is then given by

dΓγ

dEγ
¼ 1

2Matom

Z
dΦ3½J 11

0 þ J 22
0 �δðq0 − EγÞ: ð12Þ

IV. POSITRON SPECTRUM

The matrix element for eþe− creation can be expressed
in terms of J μν

� as

hjMeej2i ¼
4πα

m4�
LμνJ

μν
� ; ð13Þ

where the lepton tensor Lμν is defined as

Lμν ¼ Tr½ð=p− þmeÞγμð=pþ −meÞγν�: ð14Þ

The positron spectrum is then given by

dΓee

dEþ
¼ 1

2Matom

Z
dΦ4

4πα

m4�
LμνJ

μν
� δðEþ − EþÞ; ð15Þ

whereEþ is a function of the phase space variables that will
be specified explicitly below in Eq. (26).
At this point, to make contact with the real photon

spectrum, it is important to decompose phase space
appropriately. This can be done via [26]

3The conventional muon capture formula (see e.g., [24]) written
in terms of jψ1sð0Þj2 can be recovered in the nonrelativistic limit by
constructing the bound state j1s; Aμi out of plane-wave states
jμðkÞi and jAð−kÞi as described in §5 of [25].
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dΦ4 ¼ dΦ3�
dm2�
2π

dΦ2ðγ� → eþe−Þ; ð16Þ

where Φ3� is the three body phase space for A0, νμ, and a
particle of mass m�. Let us compare to the massless case.
Wewill explicitly integrate over the A0 system’s momentum
such that only the energy conserving delta function,
δðΣ3�EÞ and the neutrino-photon phase space remain

dΦ3� ¼
1

2EA0

d3k0

2k0ð2πÞ3
d3q

2q0ð2πÞ3
ð2πÞδðΣ3�EÞ;

¼ 1

2EA0

d3k0

2k0ð2πÞ3
dΩq

ð2πÞ3 ×
β�q0
2

dq0ð2πÞδðΣ3�EÞ;

ð17Þ

where β� ¼ q=q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2�=q20

p
, and we have made use

of dq=dq0 ¼ 1=β�. This is to be compared with the case of
a massless photon which does not have the factor of β�

dΦ3 ¼
1

2EA0

d3k0

2k0ð2πÞ3
dΩq

ð2πÞ3 ×
q0
2
dq0ð2πÞδðΣ3EÞ: ð18Þ

The energy conservation condition is (for a recoiling A0 of
mass M)X
3�

E¼ kþq0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þjq⃗j2þ 2jq⃗jkcosθνγ þM2

q
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

EA0

−Matom;

ð19Þ
where jq⃗j2 ¼ q20 −m2� and θνγ is the opening angle between
the photon and neutrino in the lab frame. Integrating over
the neutrino energy introduces a factor of ½δΣ3�E

δk �−1:

1

1þ kþjq⃗j cos θ
EA0

¼ E0
A

Matom − ð1 − β� cos θνγÞq0
: ð20Þ

The factor of EA0 cancels against the factor of EA0 in the
denominator of Eqs. (17) and (18) such that the phase space
for a massive photon can be related to the phase space for a
massless photon via

dΦ3� ¼ dΦ3 × β�F�; ð21Þ

withΦ3 being independent ofm� and dΦ2, and the variable
F� being given by [cf. Eq. (2) of [24] ]

F� ¼
��

δΣ3E
δk

�
=

�
δΣ3�E
δk

��
×
k0�
k0
;

¼ Matom − ð1 − cos θνγÞq0
Matom − ð1 − β� cos θνγÞq0

×
k0�
k0
; ð22Þ

where the various energetic factors in the phase space
measure are modified so that they satisfy Eq. (19).
In terms of these variables we can then writeZ

dΦ4 ¼
Z

dΦ3

Z
q2
0

4m2
e

dm2�
2π

β�F�

Z
dΦ2; ð23Þ

with Φ2 the two-body phase space for a virtual photon of
mass m� decaying into an eþe− pair. We have inserted the
integral symbols explicitly to emphasize the order in which
the they must be performed.
Let us now study Eq. (15), performing the integrations

sequentially from right to left as suggested by Eq. (23).
Since the decomposed phase space is factorized into
independently Lorentz invariant pieces we can carry out
the integration in the frame of our choice. The quantity J μν

is independent of the two-body phase space Φ2 and soZ
dΦ2LμνδðEþ − EþÞ; ð24Þ

in the rest frame of the photon. Two body phase space in
this frame is given by

dΦ2 ¼
d cosϑdφ
32π2

βe; ð25Þ

where βe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

e=m2�
p

and coordinates are defined
such that ẑ is parallel to the boost direction that connects the
photon’s rest frame to the lab frame. As already discussed
above, this choice can be made without loss of generality
because of the spherical symmetry of the spin-averaged
matrix element hjMj2i.
In terms of these variables the function Eþ that deter-

mines the positron’s energy is given by

Eþðq0; cosϑÞ ¼
q0
2
ð1þ βeβ� cosϑÞ; ð26Þ

where β� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2�=q20

p
is (as above) the velocity of the

virtual photon.
The delta function is independent of φ and so it is

convenient to define hLμνiφ ¼ R dφ
2π Lμν given explicitly by

hLμνiφ ¼ m2�

0BBB@
0 0 0 0

0 2 − ð1 − cos2ϑÞβ2e 0 0

0 0 2 − ð1 − cos2ϑÞβ2e 0

0 0 0 2ð1 − cos2ϑβ2eÞ

1CCCA ðin photon rest frameÞ: ð27Þ
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Then we findZ
dΦ2LμνδðEþ − EþÞ ¼

βe
8π

1

q0βeβ�
hLμνiφjcos θ; ð28Þ

where we have used (note the different fonts of ϑ vs θ)

δðEþ − EþÞ ¼
2

q0β�βe
δðcos ϑ − cos θÞ: ð29Þ

The emission angle of the positron, cos θ, is found by
solving Eþ ¼ Eþðq0; cos θÞ, being given explicitly by

cos θðEþ; q0; m�Þ ¼
2Eþ=q0 − 1

β�βe
: ð30Þ

Obviously, cos θ must lie in the interval ½−1; 1� and so
Heaviside functions enforcing this condition should be
included:

dΓee

dEþ
¼ 1

2Matom

Z
dΦ3

dm2�
2π

× β�F� ×
4πα

m4�

×
1

8π

1

q0β�
hLμνiφJ μν

� Θð1 − j cos θjÞ;

¼ 1

2Matom

Z
dΦ3

α

4πq0

Z
dm2�F�

�
1

m4�
hLμνiφJ μν

�

�
Θð1 − j cos θjÞ;

¼ 1

2Matom

Z
dΦ3

α

4πq0

Z
dm2�

F�
m2�

× ½ð2 − ½1 − cos2θ�β2eÞðJ 11� þ J 22� Þ
þ 2ð1 − cos2θβ2eÞJ 33� �Θð1 − j cos θjÞ: ð31Þ

In Eq. (31) we have contracted J μν
� against the lepton

tensor evaluated in the rest frame of the photon.4

Now let us define auxiliary variables to condense the
notation:

T2� ¼
½J 11� þ J 22� � − ½J 11

0 þ J 22
0 �

J 11
0 þ J 22

0

; ð32Þ

L2� ¼
J 33�

J 11
0 þ J 22

0

: ð33Þ

The quantities T2�, and L2� are related to the transverse and
longitudinal matrix elements, respectively. Notice that
T2�ðm� ¼ 0Þ ¼ 0 by construction such that T2� ∼Oðm2�Þ
in the small m� limit.

Having introduced all of the necessary ingredients, we
can now write the positron spectrum as if it were produced
by real photons converting “internally” via a probabilistic
process described by a function Pint

dΓee

dEþ
¼ 1

2Matom

Z
dΦ3½J 11

0 þ J 22
0 �PintðEþjq0;ΠÞ: ð34Þ

The symbol Π represents a set of 3-body phase space
variables (e.g., the photon-neutrino opening angle cos θνγ),
and we have introduced the internal conversion probability

PintðEþjq0;ΠÞ ¼
1

q0

α

4π

Z
dm2�
m2�

F�

× ½ð2 − ½1 − cos2θ�β2eÞð1þ T2�Þ
þ 2ð1 − cos2θβ2eÞL2��Θð1 − j cos θjÞ;

ð35Þ

where dq0 ×
R
PintðEþjq0;ΠÞdΠ can be interpreted as

the probability for photons with energy between q0 and
q0 þ dq0 to produce an electron positron pair.
The functions T2� and L2� are unconstrained by measure-

ments of the on shell photon spectrum. As discussed above,
T2� ∼Oðm2�Þ for small virtualities, and so if m� ≪ q0 then
we can expect it to be small. In contrast, L� is expected to
be Oð1Þ in the m� → 0 limit.5 Notice, however, that as
cos θ → 1 (or equivalently as Eþ → q0 −me) that the
longitudinal matrix elements are suppressed. We will
discuss this in more detail in Sec. V.
Our definition of Pint still depends on the unconstrained

matrix elements L2� and T2�. As we will show in the next
section there exists a limit where L2� and T2� can be
neglected. In this case Eq. (34) can be rewritten by carrying
out the integration over all of the 3-body phase space except
for dq0 in which case we find

dΓee

dEþ
¼

Z
dEγ

dΓγ

dEγ
PintðEþjEγÞ; ð36Þ

which allows us to construct the positron spectrum using
the measured photon spectrum from the same nucleus,
and the calculable function PintðEþjEγÞ. We now turn our
attention to the aforementioned limit in which Pint is
independent of T2� and L2�.

V. NEAR END POINT SPECTRUM

As discussed in the introduction, for μ → e searches it is
the high-energy tail of the RMC spectrum that is most
important. This motivates studying the internal conversion

4If the longitudinal matrix element is evaluated in the lab frame
then one finds ðm�=q0Þ × ½L2��lab [23]. We can relate ½L2��lab to
½L2��rest by boosting between frames, and one finds that ½L2��lab ¼
ðq0=m�Þ × ½L2��rest such that the factor of m�=q0 is precisely
canceled.

5This is qualitatively different than the conclusion of [23]. We
discuss the origin of these differences in Appendix C.
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probability in the limit where Eþ → EðmaxÞ
þ . This is con-

veniently parametrized by the dimensionless ratio formed
from the electron’s kinetic energy to the virtual photon
energy,

δ ¼ q0 − ðEþ þmeÞ
q0

¼ E− −me

q0
; ð37Þ

which tends to zero as the positron approaches its end
point.

Let us now study the integral over m� in Eq. (35) more
carefully. Having restricted ourselves to a specific value
of Eþ, the limits of integration on m� are supplied by the
Heaviside function. This can be understood by plotting Eþ
for cos θ ¼ �1, as a function ofm� at different fixed values
of q0 as depicted in Fig. 3. At a fixed positron energy Eþ,
the limits of integration over m� can be found by solving

Eþðm�; q0; cosϑ ¼ 1Þ ¼ Eþ: ð38Þ

These are given explicitly by

mð�Þ
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
h
m2

e þ Eþðq0 − EþÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2þ −m2

eÞð½q0 − Eþ�2 −m2
eÞ

q ir
: ð39Þ

Notice that mð−Þ
� ≥ 2me and consequently me=m� ≤ 1 over

the full range of integration. If we introduce the small
parameter

ϵ ¼ me

q0
; ð40Þ

then the maximal value of m� is set by

mðþÞ
� ¼ q0½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − δÞδ

p
þOðϵÞ�: ð41Þ

We therefore find that m�=q0 ≤ Oð ffiffiffi
δ

p Þ in the small δ limit
(provided ϵ ≪ δ). Similarly, for a high-energy positron to
emerge from a virtual photon, it must be emitted collinear
to the photon’s momentum, cos θ ≈ 1. Explicitly,

1 − cos θ ¼ 1 −
2Eþ=q0 − 1

β�βe
¼ OðδÞ; ð42Þ

where we treat βe ≈ β� ≈ 1 (see Appendix A for details).
Thus, we can reexpress the internal conversion probability
for Eþ → q0 as

Pint ¼
1

q0

α

π

Z
mðþÞ

�

mð−Þ
�

dm2�
m2�

F�

× ½2þ 2T2� −OðδÞ þOðδÞ × L2��;
¼ Pð0Þ

int ðEþjq0Þ þOðδÞ: ð43Þ

where we have counted T2� ∼OðδÞ (see Appendix B for
more details). The longitudinal matrix elements, by con-
trast, are taken to be Oð1Þ in the m� → 0 limit, but
are suppressed by ðcos2 θβ2e − 1Þ ¼ OðδÞ. Therefore at
leading order in δ we find, setting F� ≈ 1 as discussed
in Appendix A, that

Pð0Þ
int ðEþjq0Þ ¼

1

q0

α

4π

Z
mðþÞ

�

mð−Þ
�

dm2�
m2�

× 2;

¼ 1

q0

α

π
logðmðþÞ

� =mð−Þ
� Þ: ð44Þ

This function is plotted, along with error estimates dis-
cussed in Appendix A, in Fig. 4. The small-δ form of

mðþÞ
� =mð−Þ

� depends on the relative size of ϵ and δ.
Explicitly the various scaling limits are given by (always
taking δ, ϵ ≪ 1)

mðþÞ
�

mð−Þ
�

∼

8>>><>>>:
2δ=ϵ δ ≫ ϵ�
δþϵþδ

ffiffiffiffiffiffiffiffiffiffiffi
1þ2ϵ=δ

p
δþϵ−δ

ffiffiffiffiffiffiffiffiffiffiffi
1þ2ϵ=δ

p
	
1=2

δ ∼ ϵ

1þ ffiffiffiffiffiffiffiffiffiffi
2δ=ϵ

p
δ ≪ ϵ

: ð45Þ

If one wishes to straddle these various regimes then the

exact expressions for mð�Þ
� , as presented in Eq. (39), should

be used. This is important for applications at Mu2e and

FIG. 3. Phase space for radiative muon capture. Varying cos ϑ
from −1 to 1 at fixed m� moves from the bottom of the hull to the
top of the hull. Changing Eγ ¼ q0 changes the size of the hull to
be integrated over (i.e., orange dotted curve [Eγ ¼ 85 MeV] →
blue dashed curve [Eγ ¼ 100 MeV]). If Eþ → q0 then only the
top tip of the hull contributes to the phase space integration. Units
of Eþ and m� are in MeV.
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COMET where energy resolution is of Oð100 keVÞ [9]
such that electron mass effects can be resolved.

VI. CONCLUSIONS AND OUTLOOK

We have shown that given the photon spectrum from
RMC on a nucleus, the spectrum of high energy positrons
or electrons can be computed accurately with errors con-
trolled by δ ¼ ðE− −meÞ=q0. This allows for a robust
characterization of the internal RMC positron and elec-
tron spectra near the end point. External positrons,
stemming from real photons pair producing in surround-
ing detector material, can be calculated from the real-
photon spectrum by dedicated Monte Carlo simulations
that include the full detector geometry. Thus, with this
present work, a measurement of the real-photon spectrum
becomes entirely predictive for the purposes of determin-
ing the high-energy positron spectrum. Most importantly,
this allows for nuclear physics effects, which have large
theoretical uncertainties, to be included empirically with
measured data.
While our study has emphasized the near end point

positron spectrum, it applies equally well to the near end
point electron spectrum. The reason that electrons and
positrons can be treated on an equal footing is that we have
not included the influence of the nucleus’ strong Coulomb
field, which, in reality, will influence the outgoing electron
and positron. Near the end point, for internal conversion,
this approximate neglect of Coulomb corrections may be
insufficient. A high-energy positron necessarily implies a
low-energy electron whose outgoing wave function is then
substantially distorted by the Coulomb field of the nucleus
(as is well known in the theory of beta decay [27]). This has

been discussed in a more general setting in [28], and we
will study this issue in the context of the RMC end point in
future work [29]. We anticipate that our formalism of an
internal conversion probability can be readily adapted to
account for Coulomb distortion effects.
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APPENDIX A: ERROR ESTIMATES

Here we consider corrections to the universal conversion
probabilityPint. As emphasized in Eq. (45), these corrections
depend on the relative size of ϵ and δ. Inwhat followswewill
consider the cases of ϵ ≪ δ [i.e., a relativistic electron
satisfying 2me ≪ ðEγ − EþÞ], ϵ ∼ δ [i.e., a quasirelativistic
electron satisfying 2me ∼ ðEγ − EþÞ], and ϵ ≫ δ [i.e., a
nonrelativstic electron 2me ≫ ðEγ − EþÞ] separately.
For this section it is convenient to reexpress Eq. (30) as

cos θ ¼ 2ð1 − δ − ϵÞ − 1

β�βe
¼ 1 − 2δ − 2ϵ

β�βe
; ðA1Þ

where we remind the reader that β� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2�=q20

p
and

βe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

e=m2�
p

. The ratio of mð�Þ
� to the photon

energy q0 will also be useful, and this can written in terms
of β and ϵ as

mð�Þ
�
q0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ϵþ δð1− δ− 2ϵÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δð1− δÞð1− δ− 2ϵÞðδþ 2ϵÞ

p
�

q
:

ðA2Þ

Subleading corrections to Pint depend on nuclear matrix
elements and are therefore model dependent. We can,

90 92 94 96 98 100

0

2

4

6

8

10

FIG. 4. Probability per differential bin (i.e., of width dEγ) of
producing a positron with energy Eþ given a photon energy of

Eγ ¼ 100 MeV, Eqs. (39) and (44). We plot Pð0Þ
int of Eq. (43) as

well as error estimates (gray band) obtained by considering an
ensemble of the two parameters CL, and CT , that capture nuclear
structure dependence (see discussion in Appendix A). We treat
CL and CT as random variables drawn from independent
Gaussian distributions such that hC2

Li ¼ hC2
Ti ¼ 1.
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however, parametrize this model dependence at next to
leading order by defining

CTðΠÞ ¼ q20

�
1

2

δ2

δm2�
T2�

�
m�¼0

; ðA3Þ

CLðΠÞ ¼ ½L2��m�¼0; ðA4Þ

where CT and CL depend on the other phase-space
variables Π (Π ¼ cos θνγ, the opening angle between the
photon and neutrino, for RMC). In estimating errors in the
main text we treat CL and CT as constants independent of
cos θνγ. The small-m� behavior of the functions T2� and L2�
can be expressed in terms of CT and CL via

T2� ¼ CTðΠÞ ×
�
m�
q0

�
2

þOðm4�Þ; ðA5Þ

L2� ¼ CLðΠÞ þOðm2�Þ: ðA6Þ

Depending on the relative sizes of mð�Þ
� , either of βe or β�

can deviate from unity at next to leading order. We
therefore expand both of them in a Taylor series:

βe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

m2�

s
∼ 1 −

2m2
e

m2�
; ðA7Þ

β� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2�
q20

s
∼ 1 −

m2�
2q20

: ðA8Þ

While the expansion in m2
e=m2� may look ill-behaved for

small m�, recall that m� ≥ 2me, and for δ ≪ 1 we always
have that me=m� ≲Oð ffiffiffi

δ
p Þ. Throughout the full region of

phase space we find that F� ∼ 1þOð m2�
q0Matom

Þ and for
medium-heavy nuclei these deviations from unity are at
the permille level since m� ∼ 10 MeV, q0 ∼ 100 MeV, and
Matom ∼ 30 GeV; we therefore set F� ¼ 1 hereafter.
We may then expand Eq. (35) under the integral sign

subtracting off the leading-order expression. We therefore
define

ΔPint ¼ Pint − Pð0Þ
int ; ðA9Þ

given explicitly by

ΔPint ¼
α

4π

Z
dm2�
m2�

�
2CTðΠÞ

m2�
q20

−
�
4ðδþ ϵÞ −m2�

q20
−
4m2

e

m2�

�
þ 2

�
4ðδþ ϵÞ −m2�

q20

�
CLðΠÞ

�
;

¼ 1

q0

α

π

Z
dm�
m�



2½δþ ϵ�½2CLðΠÞ − 1� þ

�
CTðΠÞ − CLðΠÞ þ

1

2

�
m2�
q20

þ 2m2
e

m2�

�
: ðA10Þ

In deriving the above equation we have made use of

ð1 − cos2θÞβ2e ¼
β2eβ

2� − ð1 − 2δ − 2ϵÞ2
β2�

∼ 4ðδþ ϵÞ −m2�
q20

−
4m2

e

m2�
þOðδ2Þ; ðA11Þ

ð1 − cos2θβ2eÞ ¼
β2� − ð1 − 2δ − 2ϵÞ2

β2�
∼ 4ðδþ ϵÞ −m2�

q20
þOðδ2Þ: ðA12Þ

If we integrate over m� we then find

ΔPint ¼
1

q0

α

π



2½δþ ϵ�½2CLðΠÞ − 1� logðmðþÞ

� =mð−Þ
� Þ þ

�
1

2
CTðΠÞ −

1

2
CLðΠÞ þ

1

4

� ½mðþÞ
� �2 − ½mð−Þ

� �2
q20

þ
��

me

mð−Þ
�

�
2

−
�

me

mðþÞ
�

�
2
��

: ðA13Þ

Different terms in Eq. (A13) will be relevant or negligible
depending on whether ϵ ≪ δ, ϵ ∼ δ, or ϵ ≫ δ. It is therefore
useful to consider these limits separately.

1. Relativistic electron: ϵ ≪ δ

In this section we will power count with ϵ ∼Oðδ2Þ such
that

mðþÞ
�
q0

∼ 2
ffiffiffi
δ

p
; ðA14Þ

mð−Þ
�
q0

∼
ϵffiffiffi
δ

p ∼Oðδ3=2Þ: ðA15Þ

We then find
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ΔPint ¼
2δ

q0

α

π
f½2CLðΠÞ − 1� logð2δ=ϵÞ

þ ½CTðΠÞ − CLðΠÞ þ 1�g; ðA16Þ

where all contributions proportional to ϵ have been dropped
because of the ϵ ∼ δ2 power counting. The final term in

Eq. (A16) receives a contribution from ½me=m
ð−Þ
� �2 ∼OðδÞ

and ½mðþÞ
� =q0�2 ∼OðδÞ.

2. Quasi-relativistic electron: ϵ ∼ δ

In this section we treat ϵ ∼OðδÞ in our power counting,
and find

mð�Þ
�
q0

∼
ffiffiffiffiffi
2δ

p
×

"
1þ ϵ

δ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ

δ

r #
1=2

: ðA17Þ

Notice that both mðþÞ
� and mð−Þ

� are parametrically of the
same size, in contrast to the case where ϵ ≪ δ where we

instead found that mðþÞ
� ≫ mð−Þ

� . We then find

ΔPint ¼
2δ

q0

α

π



½2CLðΠÞ − 1�

�
1þ ϵ

δ

�
logðmðþÞ

� =mð−Þ
� Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ

δ

r
½CTðΠÞ − CLðΠÞ þ 1�

�
; ðA18Þ

where, for compactness, we have left the dependence of

mð�Þ
� on ϵ and δ implicit inside the logarithm. The final term

in Eq. (A20) receives contributions from both roots ofmð�Þ
� .

3. Nonrelativistic electron: ϵ ≫ δ

In this section ϵ ∼Oðδ1=2Þ in our power counting, and

mð�Þ
�
q0

∼
ffiffiffiffiffi
2ϵ

p
�

ffiffiffi
δ

p
: ðA19Þ

Much like in the previous section both roots are of roughly
the same size. We then find that

ΔPint ¼
ffiffiffiffiffiffiffi
8δϵ

p

q0

α

π
½CTðΠÞ þ CLðΠÞ�; ðA20Þ

where we have Taylor expanded logðmðþÞ
� =mð−Þ

� Þ taking
advantage of the fact that δ ≪ ϵ. In this regime the error
scales parametrically like Oð ffiffiffiffiffi

ϵδ
p Þ. This should be com-

pared to Pð0Þ
int in the same regime which is Oð ffiffiffiffiffiffiffi

δ=ϵ
p Þ. The

relative error is therefore OðϵÞ. This stems from the photon
virtuality m� tending towards m2� → 2meq0 in the limit that
δ → 0 such that m2�=q20 ∼Oðme=q0Þ ∼OðϵÞ.

APPENDIX B: VIRTUALITY DEPENDENCE
OF THE TRANSVERSE

ELECTROMAGNETIC CURRENT

In Eq. (43) we have assumed that corrections stemming
from L2� and T2� are OðδÞ or smaller. The longitudinal
matrix elements, L2�, are suppressed explicitly by a factor of
ð1 − β2e cos2 θÞ ∼OðδÞ. In contrast, the transverse matrix
elements, T2�, are not suppressed by explicitly OðδÞ
prefactors. For corrections from T2� to be small, we there-
fore require that terms proportional to the virtual photon
mass m2� are suppressed by energetic scales of Oðq20Þ ∼
Oðm2

μÞ such that T2� ∼m2�=q20 ∼OðδÞ. One may be con-
cerned that energy-level splittings (on the order of ΔE∼
few MeV) from low-lying nuclear excited states
could enhance m� dependent contributions leading to
Oðm2�=ΔE2Þ corrections. In this section we study the
structure of J μν

� by inserting a complete set of nuclear
states, and deriving a time-ordered expression where
energy-splitting denominators appear explicitly.
We will study the matrix element

outhν; A0jĴ μjAμ; atomiin
≈
Z

d3k
ð2πÞ3 ψ̃μðkÞouthν; A0jĴ μjAð−kÞ; μðkÞiin

≈ ψμð0Þouthν; A0jĴ μjA; μiin; ðB1Þ

where we have assumed a nonrelativistic treatment of
the muon-nucleus bound state in the first approximation,
and approximated the plane-wave matrix element by its
value at k ¼ 0 in the second approximation; we have also
used ψμð0Þ ¼

R
ψ̃μðkÞd3k=ð2πÞ3.

We are interested in this matrix element for real- and
virtual-photon kinematics at fixed photon energy q0. We
take the initial state as having zero three-momentum and an
energy (i.e., rest mass) of Matom. The outgoing momentum
of A0 is fixed by momentum conservation, and the energy of
the neutrino by energy conservation. In the limit where
MA0 ∼Matom → ∞ (i.e., neglecting the recoil energy of A0)
we find

Eν ¼ ðMatom −MA0 Þ − q0 þOðq20=MA0 Þ;
≈mμ − q0; ðB2Þ

where in the approximation we have neglected the binding
energy of the muon and the mass difference MA0 −Matom.
Let us evaluate outhĴ μiin at leading order in GF using

Dyson’s formula, such that the lepton and nuclear matrix
elements can be fully separated
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outhν; A0jĴ μjA; μiin ¼ hν; A0jTfe−i
R

d4yHintðyÞĴ μð0Þgjμ; Ai;

¼ GFffiffiffi
2

p i
Z

d4yhν; A0jTfν̄ðyÞγνð1 − γ5ÞlðyÞĴνðyÞĴ μð0Þgjμ; Ai þOðG2
FÞ; ðB3Þ

where Ĵν is the weak-hadronic current. Furthermore, the electromagnetic current is a linear combination of a leptonic and
hadronic piece

Ĵ μ ¼ Ĥμ þ
X
l

− el̄γμl: ðB4Þ

We can therefore write (dropping in and out labels since we are now calculating perturbatively)

hν; A0jĴ μjμ; Ai ¼
GFffiffiffi
2

p
Z

d4y½−ehνjTfν̄ðyÞγνð1 − γ5ÞlðyÞl̄ð0Þγνlð0ÞgjμihA0jĴνðyÞjAi

þ hνjν̄ðyÞγνð1 − γ5ÞlðyÞjμihA0jTfĴνðyÞĴ μð0ÞgjAi�; ðB5Þ

where we have used Eq. (B4) and the fact that
hA0jTfĴνðyÞĴ μð0ÞgjAi ¼ hA0jTfĴνðyÞĤμð0ÞgjAi.
The first term can be reduced to a single weak-current

nuclear matrix element (measurable with e.g., neutrino
scattering) and an electroweak Feynman diagram with the
muon radiating a photon. In the second term the nucleus
radiates a photon and is excited by a weak current insertion.
In between these two current insertions a virtual excitation of
some low-lying nuclear energy level could, naïvely, supply
an energetic denominator that is ΔE ∼Oðfew MeVÞ. Our
focus therefore shifts to this term.
Translating the lepton fields to t ¼ 0 and y ¼ 0 and

introducing Ql ¼ k − k0 (the four momentum transferred
out of the leptons) we see that all of the nuclear physics that
could enhance terms proportional to m2� is buried in the
current-current correlation function evaluated between two
nuclear states

Wμν ¼
Z

d4y hA0jTfĴνðyÞĴ μð0ÞgjAie−iQly: ðB6Þ

In terms of this object the second term in Eq. (B5) can be
expressed as 1ffiffi

2
p GFūγνð1 − γ5ÞuWμν. Let us consider each

time ordering separately:

Wþ
μν ¼

Z
∞

0

dy0

Z
d3y hA0jĴνðyÞĴ μð0ÞjAie−iQly; ðB7Þ

W−
μν ¼

Z
0

−∞
dy0

Z
d3y hA0jĴ μð0ÞĴνðyÞjAie−iQly: ðB8Þ

Our approach is to
(i) Insert a complete set of energy eigenstates

⨋jXihXj ¼ 1; we will refer to these states as isobars.
(ii) Integrate over space to get a momentum conserving

delta function.

(iii) Integrate over time to get denominators of
1=ðE� iηÞ.

We find

Wþ
μν ¼

XZ
X

ð2πÞ3δð3ÞðQ⃗lþ P⃗X − p⃗0Þ hA0jĴνjXihXjĴ μjAi
ðQlþPX −p0Þ0 − iη

;

ðB9Þ

W−
μν ¼−

XZ
X

ð2πÞ3δð3ÞðQ⃗l− P⃗X þ p⃗Þ hA
0jĴ μjXihXjĴνjAi

ðQlþp−PXÞ0þ iη
:

ðB10Þ

Next, we can make use of Lorentz invariance to rewrite
⨋X ¼ P

n

R fdpn where states are now labeled by their
quantum number n (which determines the mass and spin of
the isobar state) and their three momentum jXi ¼ jn; P⃗i;
here fdp ¼ 1

2Ep
d3p=ð2πÞ3. Let us introduce jZi ¼ jn; P⃗ ¼

p⃗0 − Q⃗li and jYi ¼ jn; P⃗ ¼ Q⃗l − p⃗i such that

Wμν ¼
X
Z

hA0jĴνjZihZjĴ μjAi
2EZðΔEl þ ½EZ − EA0 �Þ − iη

−
X
Y

hA0jĴ μjYihYjĴνjAi
2EYðΔEl − ½EY − EA�Þ þ iη

: ðB11Þ

We have introduced ΔEl ¼ ðQlÞ0 and the energies of the
isobars EY and EZ. Notice that the isobars jZi and jYi are
discrete stateswhosemomentum is fixed by three-momentum
conservation, P⃗Z ¼ p⃗0 − Q⃗l and P⃗Y ¼ Q⃗l − p⃗. Small
nuclear energy level splittings from the ground state do not
lead to small denominators in Eq. (B11). ΔEl ∼Oðq0Þ ∼
100 MeV is sufficiently large that any low-lying nuclear
states are far off shell. The only small denominators that can
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appear are in the second time ordering when
½EY − EA� ≈ ΔEl; such considerations are beyond the scope
of this work, and we do not consider them here.

APPENDIX C: COMPARISON WITH
KROLL AND WADA

The main difference between [23] (KW) and our study is
that we focus on the end point specifically and carefully
consider the validity of approximating virtual photons by
real ones. Since the authors of KW simply assume this
approximation as an ansatz many of our results are similar
to theirs. We disagree with the authors on certain technical
points, and in particular on the validity of their advocated
approximation in generic regions of phase space. We find,
however, that the ansatz proposed in KW becomes a well
controlled approximation in the limit that the electron’s
kinetic energy becomes much smaller than the virtual
photon energy, i.e., when δ ≪ 1.
The notation of KW differs substantially from modern

treatments and specifically this paper. Moreover, they
consider a two-body system and so details of the phase
space are slightly different between our works. For the
benefit of the interested reader we spell out the differences
in notation, derive the results of KW, and comment on
typos and conceptual differences.
Kroll and Wada consider a system A, initially at rest, that

emits a photon becoming system B of massM. The mass of
system A is parametrized by MA ¼ M þ EAB with EAB the
energy splitting between A and B. An important identity
is that

1

2EB�
¼ EAB þM

ðEAB þMÞ2 þM2 −m2�
: ðC1Þ

The case of a massless photon, EB, is recovered by
setting m� ¼ 0.
In Eq. (2) of KW, the rate of photon emission is

calculated. To emphasize the difference in definition we
denote our equivalent expression by (P&H) and the
expressions of KW by (K&W),

Γγ ¼
1

8π2
q0MA

EB

Z
dΩðJ110 þ J220 Þ ðK&WÞ; ðC2Þ

Γγ ¼
1

2MA
×
β̄ðMA; 0;MBÞ

32π2

Z
dΩðJ 11

0 þ J 22
0 Þ ðP& HÞ;

ðC3Þ
where (borrowing notation from [26])

β̄ðs;m1; m2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ðm2
1 þm2

2Þ
s

þ ðm2
1 −m2

2Þ2
s2

s
: ðC4Þ

For m1 ¼ 0 we have that β̄ ¼ 2E1=MA such that
β̄ðMA; 0;MBÞ ¼ 2q0=MA and therefore

Γγ ¼
1

2MA

1

16π2
q0
MA

Z
dΩðJ 11

0 þ J 22
0 Þ ðP& HÞ: ðC5Þ

This allows us to identify the (K&W) current with our
(P&H) matrix element via

ðK&WÞ Jμ ¼
ffiffiffiffiffiffi
EB

p
2MA

hJ μi ðP& HÞ: ðC6Þ

This means that there are implicit factors of EB contained in
the expressions in KW, with Jμν� ∝ EB� × J μν

� .
Having identified the appropriate current we can now

jump ahead to the internal conversion coefficient ρ which is
defined as the rate of electron-positron pair production to
photon emission. KW gives (with expressions adapted to
our notation) in Eq. (8)

ρ ¼ α

2π

Z
q0

2me

dm�
m�

Z
1

−1
d cos ϑ

EB�
EB

jq⃗�j
jq⃗j βe

×



½2þ 2ðcos2ϑ − 1Þβ2e�RTðm�Þ þ 2½1 − β2ecos2ϑ�

×
m2�
q20

RLðm�Þ
�

ðK&WÞ; ðC7Þ

where we have used

q0 ¼
E2
AB þ 2EABM þm2�
2ðEAB þMÞ : ðC8Þ

Modifying our discussion in the main text to account for
two-body phase space we find that

Φ2� ¼ Φ2 ×
β̄�
β̄0

; ðC9Þ

with

β̄� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ðM2
B þm2�Þ
M2

A
þ ðM2

B −m2�Þ2
M4

A

s
: ðC10Þ

One can check that jq⃗�j=jq⃗0j ¼ β̄�=β̄0. We therefore find
[using dm2� ¼ 2m�dm� and keeping in mind that we are not
including the delta function δðEþ − EþÞ],

ρ ¼ α

2π

Z
q0

2me

dm�
m�

Z
1

−1
d cosϑ

jq⃗�j
jq⃗j × βef½2þ 2ðcos2ϑ − 1Þβ2e�ð1þ T2�Þ

þ 2½1 − β2ecos2ϑ�L2�g ðP& HÞ: ðC11Þ

The factor of EB�=EB obtained in KW is absent from our
expression because our functions T2� and L2� are defined in
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terms of J whereas RT and RL are defined in terms of
KW’s J. As emphasized in Eq. (C6), upon being squared
these differ by a factor of EB, and hence in KW’s
expression there should be a ratio of EB=EB� instead of
the factor of EB�=EB that appears in Eqs. (8) and (9) of KW
[explicitly, ½ðEþMÞ2 þM2 − x2�=½ðEþMÞ2 þM2� in the
notation of KW]; we ascribe this to a typo in KW.
Despite appearances there is no discrepancy between our

longitudinal matrix element and those in KW, because KW
have evaluated their matrix elements in the lab frame,
whereas our expression is evaluated in the rest frame of the
virtual photon (or equivalently the electron positron pair).
This accounts for the factor of m2�=q20 in KW, which can be
interpreted as arising from boosting the rest-frame expres-
sion into the lab frame.
This final point is important since the naïve m2� sup-

pression appearing in front of RLðm�Þ is artificial, but was
used as a justification for the neglect of longitudinal matrix
elements in KW. The fact that this is an artificial suppres-
sion can be seen in a simple example such as lþl− → eþe−
where we can interpret the lþl− pair as a current sourcing a
virtual photon γ�. In this case a straightforward calculation
shows that J μν

� ¼ ðkμpν þ pμkν − 1
2
sgμνÞ such that J 33� ¼

2m2
l in the rest frame (i.e., center of mass frame), whereas it

equals J 33� ¼ 2γ2�m2
l in the lab frame, where γ� ¼ q20=m

2� is
the boost of the virtual photon. Note, however, that in any
frame the combination m2�=q20 × J 33� ¼ 2m2

l, which does
not vanish in the m� → 0 limit. This illustrates that
longitudinal matrix elements do not decouple in the
m� → 0 limit. Instead, as we have shown in Eqs. (27),
(31), and (35), they decouple when βe cos θ → 1.
The neglect of finite-m2� corrections to the transverse

matrix elements is only valid if m2� ≪ q20. The integration
measure is logarithmic in m�, and so all scales contribute

equally. Therefore, unless ðmðþÞ
� =q0Þ2 ≪ 1, there is no

reason to expect a real-photon approximation to be accu-
rate. Additionally, as we have emphasized in the paragraph
above, there is no small-virtuality suppression of longi-
tudinal matrix elements. Rather, these are suppressed when
½1 − β2e cos2 ϑ� is small. As the positron energy approaches
its end point, both of these conditions are satisfied with
errors being OðδÞ.

APPENDIX D: GENERALIZATION TO
ARBITRARY FINAL STATES

In Eq. (2) we have assumed a definite exclusive final
state. As mentioned in the first footnote of the paper this
assumption can be easily relaxed to accommodate inclusive
final states for reactions of the form

jAμ; atomi →
X
X

jν; γ; Xi: ðD1Þ

The expressions for the real photon spectrum and internal
eþe− spectrum are given by

Γγ ¼
1

2Matom

X
X

Z
dΦ3ðXÞJ μν

0 ðXÞð−g⊥μνÞ; ðD2Þ

Γeþe− ¼ 1

2Matom

X
X

Z
dΦ4ðXÞJ μν

� ðXÞ 4πα
m4�

Lμν; ðD3Þ

where we have included an X dependent evaluation of the
electromagnetic current. Four-body phase space can be
decomposed for each final state X as described in the main
text. If X is has a multiparticle final state then an analogous
decomposition for n-body phase space can be performed.
Working at leading order in δ the resultant eþe−

spectrum can then be related to the photon spectrum by
the same internal conversion probability for every final
state X

dΓeþe−

dEþ
¼

Z
dEγ

X
X

dΓX

dEγ
Pð0Þ
int ðEþjEγÞ: ðD4Þ

The full differential photon flux is then easily identified as
dΓ ¼ P

X dΓX, such that

dΓeþe−

dEþ
¼

Z
dEγ

dΓ
dEγ

Pð0Þ
int ðEþjEγÞ: ðD5Þ

This agrees with Eq. (36).
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