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We investigate roads for evaluating model-independent cross-section-distribution functions for the
sequential-hyperon decay Σ0 → Λγ; Λ → pπ− and its corresponding antihyperon decay. The Σ0 and Σ̄0

hyperons are produced in the reaction eþe− → J=ψ → Σ̄0Σ0. Cross-section-distribution functions
are calculated using the folding technique, but a comparison with results using the helicity technique
is also made.
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I. INTRODUCTION

The BESIII experiment [1] is exploring new venues into
hyperon physics, based on eþe− annihilation into hyperon-
antihyperon pairs. In a recent paper [2], we investigated
in some detail the reaction eþe− → J=ψ → Σ0Σ̄0 and its
associated decay chains Σ0 → Λγ; Λ → pπ− and Σ̄0 → Λ̄γ;
Λ̄ → p̄πþ. By measuring this process in the vicinity of the
J=ψ -vector-charmonium state, one gains information on
the strong baryon-antibaryon-decay process of the J=ψ -
vector-charmonium state and also, it offers a model-
independent way of measuring weak-decay-asymmetry
parameters, that in turn could probe CP symmetry [3].
The diagram for the basic reaction eþe− → J=ψ → Σ0Σ̄0

is graphed in Fig. 1. Its structure is governed by two
vertices. The strength of the lepton-vertex function is
determined by a single parameter, the electromagnetic-
fine-structure constant αe, but two complex form factors
Gψ

MðsÞ and Gψ
EðsÞ are needed for the baryonic-vertex

function. However, we shall not work with the form factors
themselves but with certain combinations thereof: the
strength of form factors DψðsÞ; the ratio of form-factor
magnitudes ηψðsÞ; and the relative phase of form factors
ΔΦψ ðsÞ. These form-factor combinations are defined in
Appendix A.
The theoretical description of the annihilation reaction of

Fig. 1 can be found in Ref. [4]. Accurate experimental
results for the form-factor parameters ηψ and ΔΦψ and the
weak-interaction parameters αΛðαΛ̄Þ for the J=ψ annihila-
tion process are all reported in Ref. [3]. In addition, the

graph can be generalized to include hyperons that decay
sequentially.
Our analysis of the cross-section-distribution function

for the annihilation reaction eþe− → J=ψ → Σ0Σ̄0, fol-
lowed by its subsequent hyperon decays, starts from the
master formula of Ref. [2], and which is reproduced in the
following section. The purpose of our investigation is to
find out which coordinate choice would be most convenient
when evaluating the master formula, and at the same time
being able to compare our result to those of others.

II. MASTER FORMULA

In several previous publications we studied eþe− anni-
hilation into hyperon pairs YȲ and the subsequent decays
of those pairs. Photon as well as charmonium induced
annihilaton was considered. In the present investigation we
limit ourselves to the hyperon-decay chain Σ0 → Λγ;
Λ → pπ−, and its corresponding antihyperon-decay chain
Σ̄0 → Λ̄γ; Λ̄ → p̄πþ, again when simultaneously occurring
in the reaction eþe− → J=ψ → Σ0Σ̄0.
In Ref. [2] it was shown that the cross-section-

distribution function for a J=ψ induced joint production
and subsequent decay of a Σ0Σ̄0 pair can be summarized in
the master formula

dσ ¼ dσ
dΩΣ0

ðeþe− → J=ψ → Σ0Σ̄0Þ

×
�
WðξÞ
R

�
dΦðΣ0;Λ; p; Σ̄0; Λ̄; p̄Þ: ð2:1Þ

As can be seen the master formula involves three factors,
describing the annihilation of a lepton pair into a hyperon
pair, the folded product of spin densitiesWðξÞ representing
hyperon production and decay, and the phase space element
of sequential hyperon decays. Each event is specified by a
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nine-dimensional vector ξ ¼ ðθ;ΩΛ;Ωp;ΩΛ̄;Ωp̄Þ, with θ
the scattering angle in the eþe− → Σ0Σ̄0 subprocess.
Following Refs. [4,2] we write the cross-section-

distribution function for the J=ψ induced annihilation
reaction eþe− → J=ψ → Σ0Σ̄0 as

dσ
dΩΣ0

ðeþe− → J=ψ → Σ0Σ̄0Þ

¼ p
k

αψαg
ðs −m2

ψÞ2 þm2
ψΓðmψÞ

DψðsÞR; ð2:2Þ

where the strength functionDψ ðsÞ is defined in Appendix A,
and the structure function R in Appendix B. The electro-
magnetic-coupling constant αψ is determined by the
electromagnetic-decay width ΓðJ=ψ → eþe−Þ, and the had-
ronic-coupling constant αg similarly by the hadronic-decay
width ΓðJ=ψ → Σ0Σ̄0Þ, as illustrated in Fig. 2.
The differential-spin-distribution function WðξÞ of

Eq. (2.1) is obtained by folding a product of five spin
densities,

WðξÞ ¼ hSðnΣ0 ;nΣ̄0ÞGðnΣ0 ;nΛÞGðnΛ;npÞ
×GðnΣ̄0 ;nΛ̄ÞGðnΛ̄;np̄Þin; ð2:3Þ

in accordance with the prescription of Ref. [5] and of
Eq. (5.1). The folding operation h…in applies to each of the
six hadron spin vectors, nΣ0 ;…;np̄.
The function SðnΣ0 ;nΣ̄0Þ represents the spin-density

distribution for the Σ0Σ̄0 hyperon pair. This function also
depends on the unit vectors lΣ0 and lΣ̄0 , which are unit
vectors in the directions of motion of the Σ0 and Σ̄0

hyperons in the center-of-momentum (c.m.) frame of the
event. The four remaining spin-density-distribution func-
tions GðnY1

;nY2
Þ represent spin-density distributions for

the hyperon decays Σ0 → Λγ; or Λ → pπ−, or their anti-
hyperon counterparts.
The spin-decay-distribution functions GðnY1

;nY2
Þ are

normalized to unity, which means their spin indepen-
dent terms are unity. However, for convenience the spin-
density-distribution function SðnΣ0 ;nΣ̄0Þ is normalized
to R.
The phase-space factor, dΦðΣ0;Λ; p; Σ̄0; Λ̄; p̄Þ of the

master equation, describes the normalized phase-space
element for the sequential decays of the two baryons Σ0

and Σ̄0,

dΦðΣ0;Λ; p; Σ̄0; Λ̄; p̄Þ

¼ dΩΣ0 ·
ΓðΣ0 → ΛγÞ
ΓðΣ0 → allÞ

dΩΛ

4π
·
ΓðΛ → pπ−Þ
ΓðΛ → allÞ

dΩp

4π

·
ΓðΣ̄0 → Λ̄γÞ
ΓðΣ̄0 → allÞ

dΩΛ̄

4π
·
ΓðΛ̄ → p̄π−Þ
ΓðΛ̄ → allÞ

dΩp̄

4π
: ð2:4Þ

The widths are defined in the usual way. For ΓðΣ0 → ΛγÞ
this means forming an average over the Σ0 spin directions,
and summing over the Λ and γ spin directions. However,
since the Σ0 → Λγ decay rate is 100% we also have
ΓðΣ0 → ΛγÞ ¼ ΓðΣ0 → allÞ.
The angles ΩΛ define the direction of motion of

the Λ hyperon in the Σ0 rest system, the angles Ωp the
direction of motion of the p baryon in the Λ rest system,
and so on.

III. e + e− ANNIHILATION INTO Σ0Σ̄0 PAIRS

The cross-section-distribution function for eþe− annihi-
lation into a Σ0Σ̄0 pair appears in two places in the master
formula of Eq. (2.1). The unpolarized-cross-section-
distribution function is a prefactor in the master formula,
and the hyperon-spin-density-distribution function enters
as a factor in the spin-density-distribution function
of Eq. (2.3).
The cross-section distribution for polarized-final-state

hyperons was derived in Refs. [2,4] as

FIG. 1. Graph describing the psionic annihilation reaction
eþe− → J=ψ → Σ̄0Σ0. The same reaction can also proceed
hadronicly via other vector-charmonium states such as ψ 0 or
ψð2SÞ, or electromagnetically via photons.

FIG. 2. Graph describing the reaction eþe− → Σ̄0Σ0, and the
subsequent decays, Σ0→Λγ; Λ → pπ− and Σ̄0 → Λ̄γ; Λ̄ → p̄πþ.
The reaction graphed can, in addition to photons, be mediated by
vector charmonia, such as J=ψ , ψ 0 and ψð2SÞ. Solid lines refer to
baryons, dashed to mesons, and wavy to photons.
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dσ
dΩΣ0

ðeþe− → J=ψ → Σ0Σ̄0Þ

¼ p
4k

αψαgDψ ðsÞ
ðs −m2

ψÞ2 þm2
ψΓðmψ Þ

SðnΣ0 ;nΣ̄0Þ; ð3:1Þ

where Dψ ðsÞ is the strength function of Eq. (A1), nΣ0 and
nΣ̄0 the spin vectors of the Σ0 and Σ̄0 hyperons, and
SðnΣ0 ;nΣ̄0Þ the spin-density-distribution function for the
final-state hyperons. This spin-density-distribution func-
tion is normalized so that its spin-independent part equals
R, with

R ¼ 1þ ηψcos2θ; ð3:2Þ

according to Eq. (B1). Consequently, summing over the
final-state-hyperon polarizations gives the unpolarized
cross-section-distribution function

dσ
dΩΣ0

ðeþe− → J=ψ → Σ0Σ̄0Þ

¼ p
k

αψαg
ðs −m2

ψÞ2 þm2
ψΓðmψÞ

DψðsÞR: ð3:3Þ

The branching rate for the decay channel J=ψ → Σ0Σ̄0 is
ð1.07� 0.08Þ × 10−3, and for the channel J=ψ → ΛΛ̄ it is
ð1.89� 0.09Þ × 10−3 [6].
For a spin-one-half baryon of four-momentum p, the

four-vector spin sðpÞ is related to the three-vector-spin
direction n, the spin in the rest system, by

sðp;nÞ ¼ nk
M

ðjpj; Ep̂Þ þ ð0;n⊥Þ: ð3:4Þ

Longitudinal and transverse directions of vectors are
relative to the p̂ direction.
In the global c.m. system kinematics simplifies. There,

three-momenta p and k are defined such that

pΣ0 ¼ −pΣ̄0 ¼ p; ð3:5Þ

keþ ¼ −ke− ¼ k; ð3:6Þ

and the scattering angle θ such that cos θ ¼ p̂ · k̂. For the
Σ0 and Σ̄0 unit vectors lΣ0 and lΣ̄0 , we have lΣ0 ¼ −lΣ̄0 ¼ p̂.
The spin-density-distribution function SðnΣ0 ;nΣ̄0Þ is a

sum of seven mutually orthogonal contributions [7],

SðnΣ0 ;nΣ̄0Þ ¼RþSN ·nΣ0 þSN ·nΣ̄0 þT 1nΣ0 · p̂nΣ̄0 · p̂

þT 2nΣ0⊥ ·nΣ̄0⊥þT 3nΣ0⊥ · k̂nΣ̄0⊥ · k̂=sin2θ

þT 4ðnΣ0 · p̂nΣ̄0⊥ · k̂þnΣ̄0 · p̂nΣ0⊥ · k̂Þ=sinθ;
ð3:7Þ

where N is normal to the scattering plane,

N ¼ 1

sin θ
p̂ × k̂: ð3:8Þ

The six structure functionsR, S, and T of Eq. (3.7) depend
on the scattering angle θ, the ratio function ηψðsÞ, and the
phase function ΔΦψ ðsÞ. For their definitions we refer to
Appendix B, but be careful, our original definitions were
slightly different [7].

IV. ASSORTED SPIN DENSITIES

To be able to calculate the differential-distribution
function of Eq. (2.3) we need in addition to the spin-
density-distribution function for the Σ0Σ̄0 final-state pair,
the spin-density-distribution functions for the decays Σ0 →
Λγ and Λ → pπ−, and their antiparticle conjugate decays.
Weak decays of spin-one-half baryons, such as

Λ → pπ−, involve both S- and P-wave amplitudes, and
the spin-density-decay distribution is commonly parame-
trized by three parameters, denoted αβγ, and which fulfill
a relation

α2 þ β2 þ γ2 ¼ 1: ð4:1Þ

Details of this description can be found in Refs. [8] or [2].
The spin-density-distribution function GðnΛ;npÞ,

describing the decay Λ → pπ−, is a scalar, which we
choose to evaluate in the rest system of the Λ hyperon,
to get

GðnΛ;npÞ ¼ 1þ αΛnΛ · lp þ αΛnp · lp þnΛ ·LΛðnp; lpÞ;
ð4:2Þ

with the vector-valued function LΛðnp; lpÞ defined as

LΛðnp; lpÞ ¼ γΛnp þ ½ð1 − γΛÞnp · lp�lp þ βΛnp × lp:

ð4:3Þ

Here, nΛ and np are the spin vectors of the Λ hyperon
and the p baryon, and lp a unit vector in the direction of
motion of the proton in the rest system of the Λ hyperon.
The Λ indices remind us the parameters refer to a Λ decay.
An important aspect of the spin-density-distribution func-
tion is its normalization. The spin-independent term
is unity.
The spin-density-distribution function GðnΛ̄;np̄Þ for

the antiparticle-conjugate decay Λ̄ → p̄πþ has exactly
the same functional structure as GðnΛ;npÞ, but the
decay parameters take other numerical values. For CP
conserving interactions the asymmetry parameters of the
Λ-hyperon decay are related to those of the Λ̄-hyperon
decay by [9,10]

αΛ ¼ −αΛ̄; βΛ ¼ −βΛ̄; γΛ ¼ γΛ̄: ð4:4Þ
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Numerical values for the weak-interaction parameters
are given in Ref. [6]: for the decay Λ → pπ− we have
½α ¼ 0.732� 0.014�, and ½ϕ ¼ arctanðβ=γÞ ¼ −6.5� 3.5�;
and for the decay Λ̄ → p̄πþ, we have ½α ¼ −0.758�
0.010� 0.007�.
Next, we turn to the electromagnetic M1 transition

Σ0 → Λγ. It is caused by a transition-magnetic moment,
of strength

μΣΛ ¼ eF2ð0Þ=ðmΣ þmΛÞ: ð4:5Þ

The normalized-spin-density-distribution function for a
Σ0 → Λγ transition to a final state of fixed photon helicity
λγ is, according to Ref. [2],

GγðnΣ0 ;nΛ; λγÞ ¼ 1−nΣ0 · lγlγ ·nΛ þ λγðnΣ0 · lγ −nΛ · lγÞ;
ð4:6Þ

where lγ is a unit vector in the direction of motion of the
photon, and lΛ ¼ −lγ a unit vector in the direction of
motion of the Λ hyperon, both in the rest system of the Σ0

baryon. The photon helicities λγ take on the values �1.
We notice that when both hadron spins are parallel or

antiparallel to the photon momentum, then the decay
probability vanishes, a property of angular-momentum
conservation.
Summing, in Eq. (4.6), the contributions from the two

photon-helicity states gives the normalized-spin-density-
distribution function

GðnΣ0 ;nΛÞ ¼ 1 − nΣ0 · lγlγ · nΛ: ð4:7Þ

The normalized-spin-density-distribution function for
the conjugate transition, Σ̄0 → Λ̄γ, is obtained by replacing,
in expression (4.7), the particle spin vectors nΣ0 and nΛ by
the antiparticle-spin vectors nΣ̄0 and nΛ̄.

V. SEQUENTIAL DECAY OF HYPERONS

A factor of our master formula for hyperon production
and decay, Eq. (2.1), is the differential-spin-distribution
function WðξÞ of Eq. (2.3), which is obtained by folding a
product of five spin densities. The folding prescription
is especially adapted to spin one-half baryons. A folding
operation implies forming an average over intermediate-
spin directions n according to the prescription of Ref. [5],

h1in ¼ 1; hnin ¼ 0; hn · kn · lin ¼ k · l: ð5:1Þ

The spin-density distribution WðnΣ0 ;npÞ for the decay
chain Σ0 → Λγ; Λ → pπ− is obtained by folding the
product of the spin density distributions in the decay chain.
We obtain

WðnΣ0 ;npÞ ¼ hGðnΣ0 ;nΛÞGðnΛ;npÞinΛ
; ð5:2Þ

where the two spin-density-distribution functions on the
right-hand side are defined in Eqs. (4.7) and (4.2).
Performing the folding operation gives

WðnΣ0 ;npÞ ¼ UΣ0 þ nΣ0 · VΣ0 ; ð5:3Þ

UΣ0 ¼ 1þ αΛnp · lp; ð5:4Þ

VΣ0 ¼ −lγ½αΛlγ · lp þ np ·LΛðlγ;−lpÞ�; ð5:5Þ

and the same for WðnΣ̄0 ;np̄Þ.

VI. PRODUCTION AND DECAY OF Σ0Σ̄0 PAIRS

Now, we come to our final task: production and decay of
Σ0Σ̄0 pairs. The starting point is the reaction eþe− → Σ0Σ̄0,
the spin-density-distribution function of which was calcu-
lated in Sec. III, and named SðnΣ0 ;nΣ̄0Þ. The spin-density-
distribution function WðnΣ0 ;npÞ which represents the
decay chain Σ0→Λγ; Λ→pπ− was calculated in Sec. V,
and so for the antichain-decay function WðnΣ̄0 ;np̄Þ.
The final-state-angular distributions are obtained by

folding the spin distributions for production and decay,
according to prescription (5.1). Invoking Eq. (3.7) for the
production step and Eq. (5.3) and its antidistribution for
the decay steps, we get the differential-spin-density-
distribution function

WðξÞ ¼ hSðnΣ0 ;nΣ̄0ÞWðnΣ0 ;npÞWðnΣ̄0 ;np̄ÞinΣ0 ;nΣ̄0

¼ RUΣ0UΣ̄0 þ SUΣ̄0N · VΣ0 þ SUΣ0N · VΣ̄0

þ T 1VΣ0 · p̂VΣ̄0 · p̂þ T 2VΣ0⊥ · VΣ̄0⊥
þ T 3VΣ0⊥ · k̂VΣ̄0⊥ · k̂=sin2θ

þ T 4ðVΣ0 · p̂VΣ̄0⊥ · k̂þ VΣ̄0 · p̂VΣ0⊥ · k̂Þ=sin θ:
ð6:1Þ

The functions UΣ0 and VΣ0 are defined in Sec. B, and

UΣ0 ¼ 1þ αΛnp · lp; ð6:2Þ

VΣ0 ¼ −lγ½αΛlγ · lp þ np ·LΛðlγ;−lpÞ�: ð6:3Þ

We observe that UΣ0 depends on the weak interaction
parameter αΛ, whereas VΣ0 in addition depends on the
parameters βΛ and γΛ through the vector function LΛ,
of Eq. (4.3).
The angular distributions of Eq. (6.1), which are the most

general ones, still depend on the spin vectors np and np̄. In
case we are satisfied with considering their averages, then
the variables U and V simplify,

GÖRAN FÄLDT PHYS. REV. D 103, 033001 (2021)

033001-4



UΣ̄0 ¼ 1; VΣ0 ¼ −αΛlΛ · lplΛ;

UΣ̄0 ¼ 1; VΣ̄0 ¼ −αΛ̄lΛ̄ · lp̄lΛ̄: ð6:4Þ

When UΣ0 ¼ UΣ̄0 ¼ 1 the effect of the folding is to make
the replacements nΣ0 → VΣ0 and nΣ̄0 → VΣ̄0 in the spin-
density function SðnΣ0 ;nΣ̄0Þ of Eq. (3.7). We notice that the
U and V variables now are independent of the weak-
asymmetry parameters βΛ and γΛ.
Inserting the expressions of Eq. (6.4) into the spin-

density function of Eq. (6.1), we get

WðξÞ ¼ R − αΛSN · lΛlΛ · lp − αΛ̄SN · lΛ̄lΛ̄ · lp̄

þ αΛαΛ̄lΛ · lplΛ̄ · lp̄½T 1lΛ · p̂lΛ̄ · p̂

þ T 2lΛ⊥ · lΛ̄⊥ þ T 3lΛ⊥ · k̂lΛ̄⊥ · k̂=sin2θ

þ T 4ðlΛ · p̂lΛ̄⊥ · k̂þ lΛ̄ · p̂lΛ⊥ · k̂Þ=sin θ�: ð6:5Þ

Thus, this is the angular distribution obtained when folding
the product of spin densities for production and decay.
These results were previously reported in Ref. [2].

VII. DIFFERENTIAL-SPIN DISTRIBUTIONS

A closer inspection of the differential-spin-density-
distribution function of Eq. (6.5) shows that the weak-
interaction parameters αΛ and αΛ̄ always come in the
combinations αΛlΛ · lp or αΛ̄lΛ̄ · lp̄. Therefore, it is con-
venient to define the following functions:

λΛðθΛpÞ ¼ αΛlΛ · lp ¼ αΛ cosðθΛpÞ; ð7:1Þ

λΛ̄ðθΛ̄ p̄Þ ¼ αΛ̄lΛ̄ · lp̄ ¼ αΛ̄ cosðθΛ̄ p̄Þ: ð7:2Þ

Then, the differential-spin-density-distribution function of
Eq. (6.5) can be rewritten as

WðξÞ ¼ R − ½λΛQΛ þ λΛ̄QΛ̄�S
þ λΛλΛ̄½Q1T 1 þQ2T 2 þQ3T 3 þQ4T 4�; ð7:3Þ

with the argument ξ a nine-dimensional vector ξ ¼ ðθ;ΩΛ;
Ωp;ΩΛ̄;Ωp̄Þ representing the scattering angle and four
directional-unit vectors of particle motion.
The six structure functions R, S, and T are functions of

the scattering angle θ and the ratio of form factors ηψ . The
six kinematic Q functions are functions of lΛ and lΛ̄. Their
dependencies on the unit vectors lp and lp̄ reside solely in
the functions λΛ and λΛ̄ of Eqs. (7.1) and (7.2).
The analytic expressions for the six functions QðlΛ; lΛ̄Þ

are obtained by comparing Eqs. (6.5) and (7.3),

QΛ ¼ N · lΛ;

QΛ̄ ¼ N · lΛ̄;

Q1 ¼ lΛ · p̂lΛ̄ · p̂;

Q2 ¼ lΛ⊥ · lΛ̄⊥;
Q3 ¼ lΛ⊥ · k̂lΛ̄⊥ · k̂=sin2θ;

Q4 ¼ ½lΛ · p̂lΛ̄⊥ · k̂þ lΛ̄ · p̂lΛ⊥ · k̂�=sin θ: ð7:4Þ

Here, longitudinal and transverse components of vectors
are defined relative to p̂, the direction of motion of the Σ0

hyperon.
The differential-spin-density distribution of Eq. (7.3),

and the angular functions above, depend on a number of
unit vectors; p̂ and −p̂ are unit vectors along the directions
of motion of the Σ0 and the Σ̄0 in the c.m. system; k̂ and −k̂
are unit vectors along the directions of motion of the
incident electron and positron in the c.m. system; lΛ and lΛ̄
are unit vectors along the directions of motion of the Λ and
Λ̄ in the rest systems of the Σ0 and the Σ̄0; and lp and lp̄ are
unit vectors along the directions of motion of the p and the
p̄ in the rest frames of the Λ and the Λ̄.

VIII. SPIN POLARIZATIONS

As an application we shall now investigate what can be
learned by concentrating our attention to the proton leg.
The spin-density-distribution functionWðnp;np̄Þ for final-
state-spin vectors np and np̄ is described by Eq. (6.1). We
start by averaging over the final-state antiproton-spin
directions np̄, to get

WðnpÞ ¼ hWðnp;np̄Þinp̄

¼ ðXa þ XbÞ þ aXa þ bXb; ð8:1Þ

where the functions Xa and Xb are defined as

Xa ¼ R − λΛ̄QΛ̄S; ð8:2Þ

Xb ¼ −λΛQΛS þ λΛλΛ̄½Q1T 1 þQ2T 2 þQ3T 3 þQ4T 4�;
ð8:3Þ

and the functions a and b as

a ¼ αΛnp · lp; ð8:4Þ

b ¼ −np ·LΛð−lΛ;−lpÞ: ð8:5Þ

Since the vector-valued function LΛð−lΛ;−lpÞ is defined
in Eq. (4.3), and X ¼ Xa þ Xb equals WðξÞ of Eq. (7.3), it
follows that in this particular case the final-state-proton
polarization Pp becomes
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Pp ¼ ðαΛXalp − XbLΛð−lΛ;−lpÞÞ=X: ð8:6Þ

Hence, apart from the Λ weak-interaction parameters, the
final-state-proton-polarization vector is built on the vectors
lp and LΛ.
It is instructive to compare this result with the spin-

density-distribution function GðnΛ;npÞ of Eq. (4.2)
describing the decay Λ → pπ−. For a Λ hyperon of initial-
state poarization nΛ ¼ PΛ, the spin-density-distribution
function reads

GðPΛ;npÞ ¼ 1þ αΛPΛ · lp þ αΛnp · lp þ PΛ ·LΛðnp; lpÞ;
ð8:7Þ

and implies a proton polarization

Pp ¼ ðαΛlp −LΛð−PΛ;−lpÞÞ=ð1þ αΛPΛ · lpÞ: ð8:8Þ

We immediately notice the similarity between the final-
state-proton polarizations of Eqs. (8.6) and (8.8).
However, it should be remembered that the spin polari-

zation Pp of Eq. (8.6) is only one of many possible.

IX. GLOBAL ANGULAR FUNCTIONS

The differential-spin-density distribution (6.5) is a func-
tion of several unit vectors. In order to handle them we need
a common coordinate system, which we call global and
define as follows. The scattering plane of the reaction
eþe− → Σ0Σ̄0 is spanned by the unit vectors p̂ ¼ lΣ0 and
k̂ ¼ le, as measured in the c.m. system. The scattering
plane makes up the xz plane, with the y axis along the
normal to this plane. We choose a right-handed coordinate
system with basis vectors

ez ¼ p̂;

ey ¼
1

sin θ
ðp̂ × k̂Þ;

ex ¼
1

sin θ
ðp̂ × k̂Þ × p̂; ð9:1Þ

and where the initial-state-lepton momentum is decom-
posed as

k̂ ¼ sin θex þ cos θez: ð9:2Þ

The reason we call this coordinate system global is that
we use it whenever studying a subprocess of the eþe−
annihilation.
In spherical xyz coordinates the unit vectors lΛ and lΛ̄

associated with the directions of motion of the Λ and Λ̄
hyperons are

lΛ ¼ ðcosϕΛ sin θΛ; sinϕΛ sin θΛ; cos θΛÞ;
lΛ̄ ¼ ðcosϕΛ̄ sin θΛ̄; sinϕΛ̄ sin θΛ̄; cos θΛ̄Þ: ð9:3Þ

However, in order to make our formulas more transparent
we introduce the notations lΛ ¼ E ¼ ðEx; Ey; EzÞ and
lΛ̄ ¼ F ¼ ðFx; Fy; FzÞ. In this Cartesian notation, the
expressions for kinematic functions QðlΛ; lΛ̄Þ of Eq. (7.4)
are

QΛ ¼ Ey; QΛ̄ ¼ Fy;

Q1 ¼ EzFz; Q2 ¼ ExFx þ EyFy;

Q3 ¼ ExFx; Q4 ¼ ExFz þ EzFx: ð9:4Þ

Inserting them into Eq. (7.3), the differential-spin-density-
distribution function becomes

WðξðΩÞÞ
¼1þηψcos2θ−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−η2ψ

q
sinðΔΦψ Þsinθcosθ½λΛEyþλΛ̄Fy�

þλΛλΛ̄½ð1þηψÞEzFzþsin2θðExFx−EzFz−ηψEyFyÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηψ

2

q
cosðΔΦψ ÞsinθcosθðExFzþEzFxÞ�: ð9:5Þ

Now, the phase-space-angular variables are hidden inside
the EðθΛ;ϕΛÞ and FðθΛ̄;ϕΛ̄Þ functions.
The differential-spin-density-distribution function WðξÞ

of Eq. (9.5) involves two parameters related to the eþe− →
Σ0Σ̄0 reaction that can be determined by data: the ratio
of form factors ηψ , and the relative phase of form factors
ΔΦψ . In addition, the distribution function WðξÞ depends
on the weak-asymmetry parameters αΛ and αΛ̄ of the two
Lambda-hyperon decays. The dependencies on the weak-
asymmetry parameters β and γ drop out, when final-state-
proton and antiproton spins are unidentified.
An important conclusion to be drawn from the differ-

ential distribution of Eq. (9.5) is that when the phase ΔΦψ

is small, the parameters αΛ and αΛ̄ are strongly correlated
and therefore difficult to separate. In order to contribute to
the experimental precision value of αΛ and αΛ̄ a nonzero
value of ΔΦψ is required.

X. GLOBAL2 ANGULAR FUNCTIONS

In the global2-coordinate system, the scattering plane
of the reaction eþe− → Σ0Σ̄0 is still spanned by the unit
vectors p̂ ¼ lΣ0 and k̂ ¼ le, as measured in the c.m. system,
and with scattering angle cos θ ¼ k̂ · p̂. Again, the scatter-
ing plane makes up the x0z0 plane, and the y0 axis is normal
to this plane. In the x0y0z0 coordinate system we choose a
right-handed set of basis vectors
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e0z ¼ k̂;

e0y ¼
1

sin θ
ðk̂ × p̂Þ;

e0x ¼
1

sin θ
ðk̂ × p̂Þ × k̂: ð10:1Þ

We observe that by this definition the xyz and x0y0z0
coordinate bases are related by an interchange of the p̂
and k̂momenta. Moreover, in global2 coordinates the final-
state-hyperon momentum can be decomposed as

p̂ ¼ sin θe0x þ cos θe0z; ð10:2Þ

with N ¼ −e0y normal to the scattering plane, for N defined
in Eq. (3.8).
In spherical x0y0z0 coordinates the unit vectors lΛ and lΛ̄

associated with the directions of motion of the Λ and Λ̄
hyperons are

lΛ ¼ ðcosϕ0
Λ sin θ

0
Λ; sinϕ

0
Λ sin θ

0
Λ; cos θ

0
ΛÞ;

lΛ̄ ¼ ðcosϕ0̄
Λ sin θ

0̄
Λ; sinϕ

0̄
Λ sin θ

0̄
Λ; cos θ

0̄
ΛÞ; ð10:3Þ

and similarly for the unit vectors lp and lp̄. More generally,
we use the prime notation for vectors in global2 coordi-
nates, lΛ ¼ E0 ¼ ðE0

x; E0
y; E0

zÞ and lΛ̄ ¼ F0 ¼ ðF0
x; F0

y; F0
zÞ.

In order to be able to determine the spin-density-
distribution function in terms of the angles of Eqs. (10.3),
first we need to determine the angular dependencies of the
six kinematic functions QðlΛ; lΛ̄Þ of Eq. (7.4). In principle,
this is straightforward but it turns out to be more involved
than for the global case, since some of the QðlΛ; lΛ̄Þ
functions will depend on the scattering angle θ.
The basis vectors of Eqs. (10.1) and (9.1) are related by

ex ¼ − cos θe0x þ sin θe0z;

ey ¼ −e0y;

ez ¼ sin θe0x þ cos θe0z: ð10:4Þ

From this relation one obtains a corresponding relation
for the xyz components Fk, and the x0y0z0 components F0

k,
of the directional unit vector lΛ̄ ¼ F associated with the Λ̄
hyperon,

Fx ¼ − cos θF0
x þ sin θF0

z;

Fy ¼ −F0
y;

Fz ¼ sin θF0
x þ cos θF0

z; ð10:5Þ

and the same for the Λ hyperon case.
The new set of the six QðlΛ; lΛ̄Þ functions of Eq. (7.4)

is obtained by replacing global-vector components by
global2-vector components, which give

QΛ ¼ −E0
y;

QΛ̄ ¼ −F0
y;

Q1 ¼ ðsin θE0
x þ cos θE0

zÞðsin θF0
x þ cos θF0

zÞ;
Q2 ¼ Q3 þ E0

yF0
y;

Q3 ¼ ð− cos θE0
x þ sin θE0

zÞð− cos θF0
x þ sin θF0

zÞ;
Q4 ¼ ð− cos θE0

x þ sin θE0
zÞðsin θF0

x þ cos θF0
zÞ

þ ðsin θE0
x þ cos θE0

zÞð− cos θF0
x þ sin θF0

zÞ: ð10:6Þ

This global2 set of functions has a decidedly more
complex dependence on the scattering angle θ than the
global set of Eq. (9.4), which is independent of the
scattering angle.
The differential-distribution function as defined in

Eq. (7.3) now takes the form

WðξðΩ0ÞÞ
¼1þηψcos2θþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−η2ψ

q
sinðΔΦψÞsinθcosθ½λΛE0

yþλΛ̄F
0
y�

þλΛλΛ̄½ð1þηψÞQ1þsin2θððQ3−Q1Þþηψ ðQ3−Q2ÞÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ηψ

2

q
cosðΔΦψ ÞsinθcosθQ4�; ð10:7Þ

with the functions QðΩ0Þ of Eq. (10.6).
This ends our involvement with x0y0z0 global2 coordi-

nates, since the xyz coordinates seem considerably easier to
work with.

XI. CROSS-SECTION DISTRIBUTIONS

The differential-cross-section-distribution function
WðξðΩÞÞ of Eq. (7.3) is a Cartesian scalar. Its argument
ξ is a nine-dimensional vector ξ ¼ ðθ;ΩΛ;Ωp;ΩΛ̄;Ωp̄Þ,
which represents the scattering angle and four directional-
unit vectors of particle motion. In view of the findings of
the previous sections, we propose evaluating this cross-
section-distribution function in the global xyz coordinate
system of Eq. (9.1), and so for each event.
The desired expression for the cross-section-distribution

function WðξðΩÞÞ is in our global coordinates already
known, and displayed in Eq. (9.5), where the symbol Ω
refers to spherical angles, Ω ¼ ðθ;ϕÞ, in the xyz coordinate
system.
It might be remembered we introduced the notation

E ¼ lΛ and F ¼ lΛ̄, with Cartesian components as defined
in Eq. (9.3). A unit vector such as lΛ, which is a unit vector
in the direction of motion of the Λ hyperon in the rest
system of the Σ0 hyperon, can be expressed in either
Cartesian xyz or spherical-angular variables,

lΛ ¼ ðlΛx; lΛy; lΛzÞ ¼ ðcosϕΛ sin θΛ; sinϕΛ sin θΛ; cos θΛÞ:
ð11:1Þ
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The decomposition into spherical coordinates needs to be
known since in our treatment the phase-space element dΩΛ
is expressed in terms of spherical-angular variables.
It was already noticed in Sec. VII that the angular

variables Ωp and Ωp̄ only appear in the multiplicative
parameters λΛðθΛpÞ and λΛ̄ðθΛ̄ p̄Þ of Eqs. (7.1) and (7.2).
Averaging these parameters overΩp orΩp̄ give a vanishing
result, as e.g.,

Z
dΩp

4π
αΛ cosðθΛpÞ ¼ 0: ð11:2Þ

The phase-space element dΦðξÞ of Eq. (2.4), associated
with the spin-density-distribution function WðξÞ, is nine-
dimensional as the dimensionality of the ξ vector. The
corresponding nine-dimensional-cross-section distribution
is that of the master formula Eq. (2.1). Certainly, it should
be possible to determine the weak-interaction parameters
αΛðαΛ̄Þ, and the amplitude parameters ηψ ðsÞ and ΔΦψ ðsÞ,
from this distribution.
Lower dimensional cross-section distributions may con-

tain as much information as the nine-dimensional one. To
investigate this claim let us integrate over the antihyperon
angles Ωp̄ and ΩΣ̄0 . The result is a five-dimensional cross-
section-distribution function

Z
dΩp̄

4π

dΩΣ̄0

4π
WðξÞ ¼ Wðξ0Þ; ð11:3Þ

with ξ0 ¼ ðθ;ΩΛ;ΩpÞ, and

Wðξ0Þ ¼ R − λΛQΛS;

¼ Rðθ; ηψÞ − αΛN · lΛlΛ · lpSðθ;ΔΦψÞ: ð11:4Þ

Thus, we realize the five-dimensional cross-section-
distribution function contains as much information as the
nine-dimensional one.
A further reduction of phase-space into a three-dimen-

sional space can be obtained by integrating over the
hyperon angles ΩΛ, giving

Z
dΩΛ

4π
Wðξ0Þ ¼ Wðξ00Þ; ð11:5Þ

with ξ00 ¼ ðθ;ΩpÞ, and

Wðξ00Þ ¼ R − λΛQΛS;

¼ Rðθ; ηψÞ −
1

3
αΛN · lpSðθ;ΔΦψÞ: ð11:6Þ

Since N ¼ ey it follows that N · lp ¼ lpy ¼ sinϕp sin θp.
Again we are forced to conclude that the three-dimensional
phase-space harbors as much information as the nine-
dimensional one.

We end our investigation with a remark on polarization.
If we integrate the cross-section-distribution function over
the antiparticle leg, which will then be the polarizations of
the Σ0 and Λ baryons? After the integration, we get the Σ0

polarization from Eq. (3.7)

PΣ0 ¼ S=RN; ð11:7Þ

and, similarly, the Λ polarization can be picked out from
Eq. (6.5)

PΛ ¼ −S=RN · lΛlΛ: ð11:8Þ

Thus, the polarization of the Σ0 is directed along the normal
to the scattering plane, and the polarization of the Λ
directed along its own momentum.

XII. SUMMARY

This is a study of joint production and simultaneous
sequential decay of Σ0Σ̄0 pairs produced in eþe− annihi-
lation. It starts from a master formula which is a product of
three factors, describing: the annihilation of a lepton pair
into a hyperon pair, the spin-density distribution WðξÞ
representing the spin dependence in hyperon production
and decay, and the phase-space element in sequential
hyperon decay. Each measured event is specified by a
nine-dimensional vector ξ ¼ ðθ;ΩΛ;Ωp;ΩΛ̄;Ωp̄Þ, with θ
the scattering angle in the eþe− → Σ0Σ̄0 subprocess.
The dynamics of the process is described by four unit-

three vectors lp, lΛ, lp̄, lΛ̄, directed along the directions
of motion of the final state baryons ðΩp;ΩΛ;Ωp̄;ΩΛ̄Þ. We
have arranged so that the spin-density-distribution function
can be written as

WðξÞ ¼ R − ½λΛQΛ þ λΛ̄QΛ̄�S
þ λΛλΛ̄½Q1T 1 þQ2T 2 þQ3T 3 þQ4T 4�:

ð12:1Þ

Here, the six functions R, S, and T are functions of the
scattering angle θ and the ratio of form factors ηψ , whereas
the six functions Q are functions of lΛ and lΛ̄, and of
p̂ ¼ lΣ0 and k̂ ¼ le. The unit vectors lp and lp̄ only enter the
weak-asymmetry functions λΛ and λΛ̄ of Eqs. (7.1) and (7.2).
It remains to connect the four kinematic unit vectors to

measured quantities. To this end we imbed Cartesian-
coordinate systems in our events. Then, with the Lambda
hyperon as an example,

lΛ ¼ ðlΛx; lΛy; lΛzÞ ¼ ðcosϕΛ sin θΛ; sinϕΛ sin θΛ; cos θΛÞ:
ð12:2Þ

Our preferred coordinate system is named global and has
the xz plane as scattering plane, and p̂ along the z direction.
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In global coordinates the building blocks of the spin-density-
distribution function WðξÞ in Eq. (12.1) have the simple
structure mentioned above. In particular, the six Q functions
are independent of the scattering angle θ.
An alternative to global coordinates is helicity-like coor-

dinates, when the x0z0 plane is the scattering plane, and k
directed along the z0 axis. Several of the Q functions now
depend on the scattering angle θ in a complex way, even
though the two coordinate systems are related by a rotation.
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APPENDIX A: BARYON FORM FACTORS

The diagram in Fig. 1 describes the annihilation reaction
e−ðk1Þeþðk2Þ → Yðp1ÞȲðp2Þ and involves two vertex
functions: one of them leptonic, the other one baryonic.
The strength of the lepton-vertex function is determined by
the fine-structure constant αe, but two complex form factors
Gψ

MðsÞ and Gψ
EðsÞ are needed for a proper parametrization

of the baryonic vertex function, as of Ref. [4]. The values of
these form factors vary with energy, s ¼ ðp1 þ p2Þ2.
The strength of the baryon form factors is measured by

the function Dψ ðsÞ,

Dψ ðsÞ ¼ sjGψ
Mj2 þ 4M2jGψ

Ej2; ðA1Þ

with the M-variable representing the hyperon mass. The
ratio of form factors is measured by ηψ ðsÞ,

ηψðsÞ ¼
sjGψ

Mj2 − 4M2jGψ
Ej2

sjGψ
Mj2 þ 4M2jGψ

Ej2
; ðA2Þ

with ηψðsÞ satisfying−1 ≤ ηψðsÞ ≤ 1. The relative phase of
form factors is measured by ΔΦψðsÞ,

Gψ
E

Gψ
M
¼ eiΔΦψ ðsÞ

���� G
ψ
E

Gψ
M

����: ðA3Þ

A model involving both strong and electromagnetic
amplitudes, and simultaneously describing the J=ψ decays
into baryon-antibaryon pairs, J=ψ → YȲ, is investigated
in Ref. [11]. The model parameters are determined by
fitting to available experimental data. For the parameters
we need, those of the decay J=ψ → Σ0Σ̄0, experimental
data exist [12]. In particular, ½ηψ ¼ −0.467� 0.014� and
½ΔΦψ ¼ 0.092� 0.030�.

APPENDIX B: STRUCTURE FUNCTIONS

The six structure functions R, S, and T of Eq. (3.7)
depend on the scattering angle θ, the ratio function ηψ ðsÞ,
and the phase function ΔΦψ ðsÞ. To be specific [4,7],

R ¼ 1þ ηψcos2θ; ðB1Þ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2ψ

q
sin θ cos θ sinðΔΦψÞ; ðB2Þ

T 1 ¼ ηψ þ cos2θ; ðB3Þ
T 2 ¼ −ηψ sin2θ; ðB4Þ
T 3 ¼ ð1þ ηψÞsin2θ; ðB5Þ

T 4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2ψ

q
sin θ cos θ cosðΔΦψ Þ: ðB6Þ

The parameters ηψ and ΔΦψ are defined in Eqs. (A2)
and (A3). The function T 3 of Eq. (B5) differs from the
corresponding function T 3 of Ref. [2] by the sin2 θ factor.
Similarly, the function T 4 of Eq. (B6) differs from the
corresponding function T 4 of Ref. [2] by the sin θ factor.

APPENDIX C: INTRODUCING ANGULAR
VARIABLES

The angular functions QðlΛ; lΛ̄Þ of Eq. (7.4) and the λ
parameters of Eqs. (7.1) and (7.2) are expressed in terms
of unit vectors such as lp and lΛ, which are not directly
measurable but which must be calculated. We suggest the
following approach.
For each event we imbed the particle momenta in its c.m.

system and with coordinate axes as defined in Eq. (9.1).
For the Σ0 hyperon the components of the momentum are,
by definition,

p̂Σ0 ¼ ð0; 0; 1Þ: ðC1Þ
Then, let us consider the proton and the hyperon of the

final state, with momenta pp and pΛ in the c.m. system. In
the rest system of the Lambda hyperon Lp denotes the
proton momentum, which is given by the expression

Lp ¼ pp þ BΛppΛ; ðC2Þ

BΛp ¼ 1

mΛ

�
1

EΛ þmΛ
pΛ · pp − EΛ

�
: ðC3Þ

Now, the length of the vector Lp is well known, being the
momentum in the hyperon decay Λ → πN, and therefore

jLpj ¼
1

2mΛ
½ðm2

Λ þm2
π −m2

NÞ2 − 4m2
Λm

2
π�1=2: ðC4Þ

Hence, the unit vector lp appearing in our equations
should be

lp ¼ Lp=jLpj; ðC5Þ

¼ ðcosϕp sin θp; sinϕp sin θp; cos θpÞ: ðC6Þ
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Also, the equation for lΛ in the decay Σ0 → Λγ is easily
written down, as are the corresponding equations for the
antiparticles, p̄ and Λ̄.

APPENDIX D: HELICITY APPROACH

Working within the helicity formalism, Adlarson and
Kupsc [13,14] have derived an expression, WHðE;FÞ,

for the spin-density-distribution function describing
reaction, eþe− → J=ψ → Σ0Σ̄0 → ΛγΛ̄γ → pπ−γp̄πþγ.
Subsequently, this function has been employed by
Heikkilä [12] for a study of hyperon-decay parameters.
The corresponding spin-density-distribution function in

the global formalism is WGðE;FÞ of Eq. (9.5).
The two density-distribution functions can be unified

into a single equation,

WG;HðE;FÞ ¼ 1þ ηψcos2θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2ψ

q
sinðΔΦψÞ sin θ cos θ½þλΛEy − λΛ̄Fy�

− λΛλΛ̄½�ð1þ ηψ ÞEzFz − sin2θðExFx � EzFz � ηψEyFyÞ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηψ

2

q
cosðΔΦψÞ sin θ cos θð�EzFx − ExFzÞ�; ðD1Þ

with the � symbol being þ for WH and − forWG, and the
following shorthand notations being understood:

EðθΛ;ϕΛÞ ¼ ðEx; Ey; EzÞ
¼ ðcosϕΛ sin θΛ; sinϕΛ sin θΛ; cos θΛÞ; ðD2Þ

FðθΛ̄;ϕΛ̄Þ ¼ ðFx; Fy; FzÞ
¼ ðcosϕΛ̄ sin θΛ̄; sinϕΛ̄ sin θΛ̄; cos θΛ̄Þ: ðD3Þ

The λ factors of Eq. (D1) are originally defined in Eqs. (7.1)
and (7.2),

λΛ ¼ αΛ cos θΛp ¼ αΛlΛ · lp ðD4Þ

λΛ̄ ¼ αΛ̄ cos θΛ̄ p̄ ¼ αΛ̄lΛ̄ · lp̄; ðD5Þ

where the angles θΛp and θΛ̄ p̄ are the hyperon-helicity
angles.
In global coordinates the components of the unit vectors

EðθΛ;ϕΛÞ≡ lΛðθΛ;ϕΛÞ and FðθΛ̄;ϕΛ̄Þ≡ lΛ̄ðθΛ̄;ϕΛ̄Þ of
Eqs. (D2) and (D3), as well as the unit vectors lp and
lp̄, are defined relative to the Cartesian base ðx̂; ŷ; ẑÞ≡
ðex; ey; ezÞ of Eq. (9.1). Inspection shows that in these
coordinates the differential-spin-density-distribution func-
tionsWGðE;FÞ andWðEðθΛ;ϕΛÞ;FðθΛ̄;ϕΛ̄ÞÞ of Eq. (9.5)
are one and the same function, identically,

WGðE;FÞ≡WðEðθΛ;ϕΛÞ;FðθΛ̄;ϕΛ̄ÞÞ: ðD6Þ

Working in helicity coordinates implies working in
several coordinate systems in parallel. In the present
application it is conventional to consider two different
coordinate systems.
The first one is for particles, such as the Λ and their

decays, and spanned by basis vectors ðx̂1; ŷ1; ẑ1Þ ¼
ð−ex;−ey; ezÞ. To emphasize the coordinate system,

components are marked by a ‘prime,’ such that E0ðθ;ϕÞ¼
ðE0

x;E0
y;E0

zÞ¼ðExðΩ0
EÞ;EyðΩ0

EÞ;EzðΩ0
EÞÞ, and with spheri-

cal coordinates Ω0
E ¼ ðθ0E;ϕ0

EÞ.
The second coordinate system is for antiparticles, such

as anti-Lambda and their decays, and spanned by basis
vectors ðx̂2; ŷ2; ẑ2Þ ¼ ð−ex; ey;−ezÞ. Vector components
are marked by a ‘bis,’ such that F00ðθ;ϕÞ ¼ ðF00

x; F00
y; F00

z Þ ¼
ðFxðΩ00

FÞ; FyðΩ00
FÞ; FzðΩ00

FÞÞ. Relations among basis
vectors lead to relations among components, e.g., Ex ¼
−E0

x ¼ −E00
x .

Let us then return to WH of Eq. (D1).
The spin-density functionWH, which is the one encoun-

tered in the helicity-based work, differs from the spin-
density function WG, encountered in the global-based
work, through some signs. They can be absorbed into
the E and F functions, yielding new functions ηE and ηF
that satisfy, by definition,

WHðE0;F00Þ ¼ WGðηE; ηFÞ: ðD7Þ

From Eq. (D1) we deduce that a redefinition with this
demand can be achieved in two different ways:

ðηEx; ηEy; ηEzÞ ¼ ð−E0
x;−E0

y; E0
zÞ;

ðηFx; ηFy; ηFzÞ ¼ ð−F00
x; F00

y;−F00
z Þ; ðAÞ

and

ðηEx; ηEy; ηEzÞ ¼ ðE0
x;−E0

y;−E0
zÞ;

ðηFx; ηFy; ηFzÞ ¼ ðF00
x; F00

y; F00
z Þ: ðBÞ

We first check case (A).
By construction ηE is a vector with components as given,

in the base x̂1ŷ1ẑ1. Comparing the basis vectors of this
coordinate with those of the global-coordinate system x̂ ŷ ẑ
we notice the minus signs match. Therefore, we have the
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relation ð−E0
x;−E0

y; E0
zÞ ¼ ðEx; Ey; EzÞ; in short ηE ¼ E.

This represents a rotation by π around the ẑ axis.
Repeating this analysis for the F vector we get ηF ¼ F.

Now, the rotation is around the ẑ axis. This all means that,

WHðE0;F00Þ ¼ WGðηE; ηFÞ ¼ WGðE;FÞ; ðD8Þ

which in turn means that in the initial spin-density func-
tional WH the vector E0 is a vector in the base x̂1ŷ1ẑ1, and
F00 a vector in the base x̂2ŷ2ẑ2. In the global spin-density
functional WG, the vectors E and F are vectors in the base
x̂ ŷ ẑ. Equation (D8) is the connection we set out to prove.
Next, we turn to case (B).
We already have ηF ¼ F00, which is a vector in the base

x̂2ŷ2ẑ2. Concerning the ηE we notice it involves a rotation
by π around the x̂ axis, or equivalently, two successive
rotations around the ŷ and ẑ axes.
Concerning the ηE vector we notice the signs enter in

such a way that ηE ¼ E. Thus, we obtain a relation,

WHðE0;F00Þ ¼ WGðE;F00Þ; ðD9Þ

between the helicity WH and the global WG spin-density
functionals. It follows that case (B) is not the relation we
were looking for, but it was fun anyway.
The relations of Eqs. (D8) and (D9) can alternatively be

formulated as relations among spherical-angular coordi-
nates. The calculation is elementary and therefore we only
give results. Hence, for case (A) the relations between the
spherical angles of the Λ-directional-unit-vector E and
the spherical angles of the Λ̄-directional-unit-vector F as
required by the helicity (H) and global (G) calculations are

�
θΛH ¼ θΛG

ϕΛH ¼ π þ ϕΛG

�
θΛ̄H ¼ π − θΛ̄G
ϕΛ̄H ¼ π − ϕΛ̄G

:

The notation should be obvious. For case (B) the corre-
sponding relations read

�
θΛH ¼ θΛG

ϕΛH ¼ π þ ϕΛG

�
θΛ̄H ¼ θΛ̄G
ϕΛ̄H ¼ ϕΛ̄G

:
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