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We analyze the generalized uncertainty principle (GUP) impact onto the nonextensive black hole
thermodynamics by using Rényi entropy. We show that when introducing GUP effects, both Rényi entropy
and temperature associated with black holes have finite values at the end of the evaporation process. We
also study the sparsity of the radiation, associated with Rényi temperature, and compare it with the sparsity
of Hawking radiation. Finally, we investigate GUP modifications to the sparsity of the radiation when GUP
effects are introduced into Rényi temperature.
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I. INTRODUCTION

The thermodynamical study of black holes goes back to
the seminal works of Bekenstein and Hawking [1,2], where
the derivation of the laws of thermodynamics of black holes
was performed once quantum field theory effects were
introduced [3,4]. Those effects allow the black hole to
thermodynamically interact with the environment and can
result in its evaporation by means of the emission of the
Hawking radiation [5]. Since then, a large number of
studies have been developed to fully understand the
Hawking radiation of black holes [6–17]. But still, there
is no conclusive picture of the black hole evaporation
process that is physically consistent and complete [18,19].
Moreover, the lack of a final theory of quantum gravity
prevents a full understanding of the nature of this process.
Heuristically, it has been shown that the temperature

of a black hole can be deduced by using the uncertainty
relation ΔpΔx ≈ ℏ, where x and p are the position and
momentum of a particle and ℏ is the reduced Planck
constant respectively [20,21]. Due to the effects coming
from quantum field theory in the vicinity of the horizon,
one can consider uncertainty in the position of a particle
[20]. Considering the minimum position uncertainty near
the event horizon of the Schwarzschild black hole as
Δx ¼ 2lp ¼ 4GM=c2, where lp is the Planck length, the
energy uncertainty can be written as

Δpc ≈
ℏc3

4GM
; ð1Þ

whereM is the mass of the black hole, G, c, and kB are the
speed of light, the Newton’s gravitational constant, and the
Boltzmann’s constant, respectively. By introducing a cal-
ibration factor of 2π, the Hawking temperature Tbh can be
expressed as

Tbh ¼ Tp

�
mp

8πM

�
¼ c3ℏ

8πGkBM
; ð2Þ

where Tp ¼ mpc2=kB and m2
p ¼ ℏc=G are the Planck’s

temperature and Planck’s mass, respectively. By using the
first law of thermodynamics, c2dM ¼ TbhdSbh, the entropy
of the Schwarzschild black hole, Sbh, can be derived as

Sbh ¼ 4πkB

�
M
mp

�
2

¼ 4πkBGM2

ℏc
: ð3Þ

Note that the entropy Sbh approaches zero, and the temper-
ature Tbh blows up to infinity when M goes to zero during
the Hawking evaporation process. These quantities corre-
spond to a black hole that completely evaporates due to the
emission of Hawking radiation.
During the final stages of the Hawking evaporation, the

semiclassical approach is expected to break down, due to
the dominance of quantum gravity effects. Although there
exist very different proposals [22–29], there is not yet a
satisfactory theory of quantum gravity that allows us to
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fully understand that regime. One way to study the
quantum gravity effects near those scales is to consider
the phenomenological effects of an underlying theory of
quantum gravity [22–26]. One approach, that has the
advantage of being enough general to be consistent with
several theories [27,28], is given by the generalized
uncertainty principle (GUP) [30–36]. Within this frame-
work, the entropy of a black hole at its last stages of
evaporation is modified. It is worth noticing that in this
approach there are two types of possible modifications: one
comes from canonical corrections [37] and the other one
from microcanonical corrections [38]. The canonical cor-
rections are related to thermal fluctuations on the horizon
and it results in an increment of entropy. The micro-
canonical corrections refer to a quantum modification in
counting microstates while keeping the horizon area fixed.
It reduces the entropy as a consequence of the reduction of
the uncertainty in the underlying microstates.
One of the important features of the Hawking radiation,

which differentiates it from the black body radiation, is its
extreme sparsity during the black hole evaporation process
[39–49]. Sparsity is defined by the average time between
the emission of successive Hawking quanta over the
timescales set by the energies of the emitted quanta. It is
shown that the Hawking radiation is sparse during the
whole evaporation of a black hole [39]. However, it has also
been shown that, when phenomenological quantum gravity
effects (expressed by GUP) are included, the sparsity
diminishes at the final stages of evaporation, allowing
for a final burst of emission (accelerating the evapora-
tion) [42,43].
Classical thermodynamics of macroscopic objects as

derived from statistical physics is very well understood.
In this formalism, the macroscopic properties of a system
can be obtained from the microscopic description of the
system. Usually, it is assumed that long-range interactions
are negligible. This means that the size of the system under
study is larger than the range of the interaction between the
elements of the system. By applying this condition, the
local extensive parameters of the system are well defined
and the entropy function of the system is obtained by using
the additive Boltzmann-Gibbs formula. Hence, in the
macroscopic limit, the classical thermodynamics can be
recovered. However, for strongly gravitating systems, long-
range type interactions cannot be ignored. For example, for
strong gravitational fields, like for the case of black holes,
the usual local extensive parameters are not the most
appropriate to work with [50,51]. Therefore, Boltzmann-
Gibb’s definition of the additive entropy may not be a
suitable choice for strongly gravitating systems, where the
properties of the long-range interactions are taken into
account.
In this way, it has been shown [52] that Bekenstein

entropy is a nonextensive quantity and some studies have
been developed to understand black hole entropy and

characteristic features of evaporation in the light of non-
extensive thermodynamics [53–60]. The natural entropies
associated with nonextensive thermodynamics are Rényi
entropy [61,62] and Tsallis entropy [50,63,64]. Both
entropies are related to each other and provide different
generalizations to Boltzmann-Gibbs entropy.
Generally, in nonextensive thermodynamics, the non-

additive entropy composition rules are not compatible with
the requirement of thermal equilibrium and they do not
satisfy the zeroth law of thermodynamics [59]. To solve
these problems, it was found [59] that by using a simple
transformation, the nonadditive entropy composition rule
of a given system was mapped into an additive one using
Abe formula [65]. This method provides a well-defined
entropy function for the system that satisfies the zeroth law
and the natural requirement for the thermal equilibrium.
Furthermore, although standard black hole thermody-

namics described by Hawking temperature and Bekenstein
entropy, proved to be a very successful theory, it had also
some problems that need to be solved. For instance, for
large mass black holes in a very large bath of thermal
radiation, black holes are unstable. Since the stability
corresponds to the additive entropy function of the system,
while the Bekenstein entropy is nonadditive and it has
negative specific heat, then it is difficult to maintain black
hole stability. It has been shown [54] that the isolated
rotating black holes are stable within the framework of
Rényi statistics. Besides, black holes surrounded by a
thermal heat bath are in stable equilibrium with the
surroundings at a fixed temperature. This is unlike the
case of the additive Boltzmann-Gibbs statistics, where
black holes are unstable with the surrounding heat bath.
In this paper, we focus on analyzing the effects of GUP

onto the Rényi entropy and the Rényi temperature of black
holes, and the sparsity of Rényi radiation. Note that we use
the term, Rényi radiation for the evaporation of a black hole
within the framework of nonextensive thermodynamics,
that is, associated with Rényi temperature, to differentiate it
from Hawking radiation.
The paper is organized as follows. In Sec. II, we review

the GUP modifications to Hawking temperature and
Bekenstein entropy. In Sec. III, we introduce Rényi entropy
and the corresponding Rényi temperature. Then, we study
GUP modifications related to these quantities. In Sec. IV,
we introduce the sparsity parameter and analyze the
sparsity of the radiation and its modification by GUP
effects. In Sec. V, we present a discussion of the results.

II. GENERALIZED UNCERTAINTY
PRINCIPLE REVIEW

One way to deal with phenomenological aspects of
quantum gravity is by considering the effects coming from
the existence of a minimum length. These effects are
encoded in what was called the generalized uncertainty
principle [30–36] and are predicted from several theories
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and developments of quantum gravity [22–29], providing a
considerably general approach to low-energy quantum
gravity effects. In any case, it is constrained to that regime
and cannot provide a full theory. It has been proposed that
the Heisenberg Uncertainty Principle is modified when
including gravity into the game, due to the appearance of a
minimum length at the Planck scale in some quantum
gravity approaches. This generalized uncertainty principle
(GUP) reads [20,21,30–34]

ΔxΔp ¼ ℏ

�
1þ α0

l2p
ℏ2

ðΔpÞ2
�
; ð4Þ

where α0 is a dimensionless constant that is predicted to be
order unity. The prediction is merely theoretical, due to the
extension of quantum gravity effects, and, although there
exist several observational and experimental studies placing
bounds on its value [66–74], they are still far to provide
realistic and effective constraints.
GUP modifies the Hawking temperature as [20]

Tgup ¼
4Tbhh

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − α0

m2
p

M2

q i ; ð5Þ

where Tbh is the standard Hawking temperature that is
consistently recovered in the limit α0 → 0. The sign of the
dimensionless parameter α0 plays a very important role
here. For α0 > 0, the temperature Tbh reaches a finite value
in a finite time when a black hole mass approaches some
critical mass Mc during the Hawking evaporation process.
On the other hand, for α0 < 0, the temperature has still
finite value while the mass of the black hole approaches
zero and yields infinite lifetime [75]. It means that for
positive values of α0; the evaporation process stops at
Mc ¼ ð ffiffiffiffiffi

α0
p

mpÞ=2, and the black hole does not evaporate
completely. Therefore, the final state of the black hole is a
remnant of order of Planck mass, having finite temperature
Tc ¼ Tp=ð2π ffiffiffiffiffi

α0
p Þ. On the other hand, for negative values

of α0; the final stage of evaporation would be a so-called
“zero mass remnant” (due to its asymptotical limit) [75].
Similarly, there have been other studies regarding negative
GUP parameter α0 [76,77].
The modification of Hawking temperature gives rise to a

GUP corrected entropy, Sgup, that can be written as

Sgup ¼
Sbh
4

2
642þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − α0

m2
p

M2

s 3
75

− kBπ
α0
2
ln

2
64M
M0

0
B@2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − α0

m2
p

M2

s 1
CA
3
75; ð6Þ

where M0 is an integration constant with mass units. It can
be seen that in the limit α0 → 0 Bekenstein entropy is

recovered, as expected. Whereas Bekenstein entropy Sbh
goes to zero when M approaches zero, GUP modified
entropy Sgup has a finite value at Mc ¼ ð ffiffiffiffiffi

α0
p

mpÞ=2 for
α0 > 0. This is a consequence of the existence of a
minimum length, that gives rise to the appearance of a
remnant with finite entropy when the mass of the black hole
approaches Mc. We can easily find the entropy of the
remnant at Mc for α0 > 0, that reads

Sc ¼
α0πkB
2

�
1 − ln

ffiffiffiffiffi
α0

p
mp

M0

�
: ð7Þ

One possibility that was conjectured to solve the black hole
information problem is a final state of evaporation as a
remnant that can store information. However, this idea
faces difficulties (see [16] for a detailed discussion about
different remnant scenarios and their relation to the black
hole information problem). Let us remark that Sgup for
α0 < 0, although giving a positive correction to entropy (it
is adding uncertainty due to the fluctuations), decreases
faster at the latest stages of evaporation and it reaches zero
at some finite mass M. Further, when M approaches zero,
the zero mass remnant has negative entropy. Because of
that, we will not consider these corrections in our study
because the final stage of evaporation and its properties are
still not completely clear. It needs to be studied in detail in
future work to check the viability of these corrections and
their predictions. As a result, through the rest of the paper,
we will focus on the well-understood case of α0 > 0.

III. GUP AND THE NONEXTENSIVE BLACK
HOLE THERMODYNAMICS

In Boltzmann-Gibbs thermodynamical description, the
entropy is an additive quantity, which means that the
entropy of the total isolated system is equal to the sum
of the entropies of the two isolated subsystems, i.e., that
S12 ¼ S1 þ S2, where S12 is the entropy of the total system
and S1 and S2 are the entropies of corresponding sub-
systems. As it was shown [52,53], the additivity of entropy
is not the case for the black hole thermodynamics since
Bekenstein entropy is not an extensive parameter and
fulfills the following nonadditive composition rule

S12 ¼ S1 þ S2 þ 2
ffiffiffiffiffi
S1

p ffiffiffiffiffi
S2

p
: ð8Þ

For black holes S ∝ M2, and when two black holes of
masses M1 and M2 merge adiabatically, before the merger
the sum of their entropies is M2

1=4þM2
2=4, while after the

merger, the entropy jumps by a factor of M1M2=2 and is
ðM1 þM2Þ2=4 fulfilling the above mentioned composition
rule (8). Note that this composition rule is also held by
Tsallis entropy, providing the original motivation for the
interpretation of Bekenstein entropy as Tsallis entropy [53].
In order to generalize the previous case, it can be introduced
a nonadditive parameter λ fulfilling the following rule
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S12 ¼ S1 þ S2 þ λS1S2: ð9Þ

Both composition rules are examples of the nonadditive
entropy composition rule of Abe [65]

HðS12Þ ¼ HðS1Þ þHðS2Þ þ λHðS1ÞHðS2Þ; ð10Þ

with HðSÞ being a differentiable function of entropy that
turns to be additive when considering a general logarithm
of the form

LðSÞ ¼ 1

λ
ln ½1þ λHðSÞ�; ð11Þ

that fulfills

LðS12Þ ¼ LðS1Þ þ LðS2Þ: ð12Þ

It has been shown that, in fact, function LðSÞ corresponds
to the definition of Rényi entropy and HðSÞ can be
identified with Tsallis entropy [54].
In statistical terms, Tsallis entropy can be defined

as [63,64]

ST ¼ kB

�
1 −

P
W
i¼1 p

q
i

q − 1

�
; ð13Þ

for a set of W discrete states, where pi (with
P

W
i¼1 pi ¼ 1)

is a probability distribution and q ∈ R, q ≠ 1, is a dimen-
sionless nonextensivity parameter. In fact, the Tsallis
entropy generalizes the Boltzmann-Gibbs statistics for
strongly coupled systems [64], where the extensive nature
of entropy does not work. On the other hand, the Rényi
entropy SR [61,62] is defined in the following way

SR ¼ kB

�
ln
P

W
i¼1 p

q
i

1 − q

�
; ð14Þ

with q ≥ 0 and q ≠ 1, that can be written in terms of ST

SR ¼ kB
1 − q

ln

�
1þ ð1 − qÞ ST

kB

�
; ð15Þ

and it corresponds to the definition (11), if we define
λ ¼ 1 − q. Note that for q → 1 or λ → 0 (or kB → ∞,
cf. [50]), both ST and SR reduce to the standard Boltzmann-
Gibbs entropy (Shannon entropy)

SBG ¼ −kB
�XW

i¼i

pi lnpi

�
: ð16Þ

In fact, each of these entropies provides a family of
q-entropies. The value of q parameter determines the order
of the entropy and it is crucial for its interpretation
[50,61,62]. For the case of Rényi entropy that we will
focus on this paper, some particular values of q are well

know in the literature (as e.g., q ¼ 0 for Hartley or max-
entropy and q ¼ 2 for critical or collision entropy) [51,
78–81]. It is worth mentioning that for the values of
q ≥ 3=2, the standard mean value of the energy of the
q-generalized canonical ensemble [50] is infinite. For
various complex systems, one finds many specific values
of the q-index, which can be determined from the data [50].
For example, for the so-called q-triplet which composes of
qsensitivity that describes sensitivity to the initial conditions
of the system, qrelaxation that characterizes the dissipation of
the nonlinear dynamical system, and qcorrelation that mea-
sures the degree of correlation in the system, one finds the
values of q in the range from −0.6 up to 3.8. However,
bearing in mind the requirement of the positivity of entropy
for black holes in Eq. (15), it is advisable to restrict oneself
to q < 1.
Considering that the entropy of a black hole can be

interpreted as a nonextensive entropy defined by Tsallis
entropy, ST ¼ Ŝbh [53,57], one can introduce Rényi
entropy associated to a black hole [53,57] as

SR ¼ kB
λ
ln ½1þ λŜbh�; ð17Þ

where Ŝbh ¼ Sbh=kB is a dimensionless entropy measured
in bits. Note that in analyzing Rényi entropy for black
holes, due to previous reasoning, we will restrict our study
to Rényi entropies with q < 1ðλ ∈ ð0; 1�Þ. For the sake of
simplicity and clear visualization, in our further consid-
erations we will present the limiting cases of Hartley
entropy λ ¼ 1 and standard Shannon entropy (λ ¼ 0), as
well as an intermediate value of λ ¼ 1=2 [51,78–81]. These
entropies give a more detailed measure of correlations, and
they are used to evaluate information in very different fields
(for, e.g., they are used for strongly correlated systems)
[64]. Thus, for the Schwarzschild black hole, Rényi entropy
results in

SR ¼ kB
λ
ln

�
1þ 4λπ

�
M
mp

�
2
�
: ð18Þ

Note that the limit of Bekenstein entropy can be directly
recovered by taking λ → 0. By using the first law of
thermodynamics c2dM ¼ TRdSR, we can derive the cor-
responding Rényi temperature associated with the
Schwarzschild black hole, yielding

TR ¼ Tbh þ Tλ ¼
c3ℏ

8πkBGM
þ λ

2

Mc2

kB
; ð19Þ

where the first term in the above equation is the Hawking
temperature TBH and the second term, Tλ, comes as a
consequence of the nonextensive nature of the Rényi
entropy related to the introduction of the nonextensivity
parameter λ.
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The evolution of the temperature (19) along the evapo-
ration process for different values of parameter λ is
represented in Fig. 1. It can be seen that Rényi temperatures
are high for macroscopic masses, in contrast to Hawking
temperature (λ ¼ 0), and that they decrease along with the
evaporation. In opposition, they diverge at the last stages of
evaporation in the same way as Hawking temperature,
although for them it takes longer to start growing expo-
nentially. These results indicate the thermodynamic fea-
tures of the nonextensive Rényi entropy versus Bekenstein
entropy. For Rényi entropy, it can be seen that consistently,
the initial high temperature favors the radiation process.
Note that the heat capacity associated with this Rényi
temperature is positive [53] so it is consistent with the
decrease of temperature during evolution (In contrast to
Hawking radiation). At the last stages of evaporation (for
very small masses) this behavior changes and temperature
and heat capacity coincide with the associated Hawking
radiation, as it can be checked in the plot.

The evolution of entropy for different values of λ can
be seen in Fig. 2. In this case, Rényi entropies (λ ≠ 0) at
initial states of evaporation present a lower value than
Bekenstein entropy (λ ¼ 0). This fact can be understood
as Rényi entropy considering interactions that are
ignored in Bekenstein-Hawking thermodynamical analy-
sis. Then, the nonextensive thermodynamics shows
much less uncertainty because of the measurement of
correlations with this entropy, but their decrease is
slower reaching the same evolution at the last stages
of evaporation.
In order to introduce the phenomenological quantum

gravity effects into Rényi entropy SR, we consider the
introduction of GUP in a similar way that enters into
Bekenstein entropy. After some computations it results into
the following expression for the GUP modified Rényi
entropy, SRgup,

SRgup ¼
kB
λ
ln

8>><
>>:1þ πλ

M2

m2
p

0
B@2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − α0

m2
p

M2

s 1
CA − πλ

α0
2
ln

2
64M
M0

0
B@2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − α0

m2
p

M2

s 1
CA
3
75
9>>=
>>;: ð20Þ

The limits of Rényi entropy (when α0 → 0) and Bekenstein entropy (when λ → 0, that correspond, as assumed to Tsallis
entropy) are recovered as expected. By using SRgup, we can calculate the GUP modified Rényi temperature, TRgup, by using
the relation, c2dM ¼ TRgupdSRgup, getting

TRgup ¼ Tgup þ Tλ

8>><
>>:1þ α0

m2
p

2M2

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − α0

m2
p

M2

q ln

2
64M
M0

0
B@2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − α0

m2
p

M2

s 1
CA
3
75
9>>=
>>;; ð21Þ

that recovers the standard limits, as previously. It is worth to emphasize that GUP modifications to Rényi entropy and Rényi
temperature predict the existence of a remnant in the same way as for the case of GUP modified entropy and temperature
of Sec. II.

FIG. 1. Rényi temperature TR as a function of mass M for
different values of λ ¼ 0; 1=2; 1. We have taken natural units such
that M0 ¼ c ¼ ℏ ¼ kB ¼ G ¼ mp ¼ 1.

FIG. 2. Rényi entropy SR versus mass M for different
values of λ. Bekenstein entropy corresponds to λ ¼ 0, and the
studied two orders of Rényi entropy to λ ¼ 1=2 ðq ¼ 1

2
Þ, and

λ ¼ 1 (q ¼ 0). We have taken natural units such that
M0 ¼ c ¼ ℏ ¼ kB ¼ G ¼ mp ¼ 1.
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In Fig. 3 we show GUP modifications in temperature. It
is direct to note that these quantum gravity effects modify
all the temperatures in a similar way. Providing a final finite
temperature for the remnant at Mc, with a value that is
higher proportionally to parameter λ. The finite temperature
of a remnant is fundamental to understand the final state
and its thermodynamics. Note that a nonextensive remnant
has a lower temperature.
The GUP modifications in the evolution of entropy are

depicted in Fig. 4. Due to the appearance of a remnant at
Mc, the evaporation process finishes at that stage, corre-
sponding in all the cases to a finite and small value of the
entropy. It can be seen that the higher is λ, the lower is the
entropy. These results show that there is less uncertainty on
the state when analyzing evaporation using nonextensive
parameters, then we can get more information from the

evaporation that could help to shed some light on the
information problem.

IV. GUP MODIFIED RÉNYI ENTROPY AND THE
SPARSITY OF RÉNYI RADIATION

It has been shown that Hawking radiation is very sparse
throughout the whole Hawking evaporation process [39].
However, due to quantum gravity effects, it is no longer
sparse at late stages of the black hole evaporation [42,43].
That is, the sparsity decreases when the mass of a black
hole approaches zero and quantum gravity effects are taken
into account. The sparsity of the Hawking radiation is
defined by a dimensionless set of parameters η that in
general are given by [39]

η ¼ C

�
λ2thermal

gAeff

�
; ð22Þ

where C is a dimensionless constant that depends on the
specific parameter η chosen, g is the spin degeneracy factor,
Aeff ¼ 27

4
A is an effective area (that corresponds to the

universal cross section at high frequencies), with A the area
of the black hole horizon, and the thermal wavelength,
λthermal reads

λthermal ¼ 2π

�
ℏc
kBT

�
: ð23Þ

For the case of a Schwarszchild black hole one obtains�
λ2thermal

Aeff

�
H
¼ 64π3

27
≫ 1; ð24Þ

where the subscript H refers to the consideration of
Hawking temperature Tbh. In order to calculate the sparsity,
we express only the proportionality factor of thermal
wavelength and effective area for the sake of generality.
(For more details see [39].) In this case, η is much greater
than one, showing a sparse radiation, in contrast to normal
emitters in the laboratory. In Fig. 5 for α0 ¼ λ ¼ 0, the
constant continuous line shows that the Hawking radiation
is sparse throughout the black hole evaporation process. On
the other hand, by incorporating the GUP modifications
into η [42,43], T is replaced by Tgup and Aeffs replaced by

Aeff ¼
27

4
AGUP ¼

27

4

�
A − πα0l2p ln

A
A0

�
; ð25Þ

where A0 ¼ 16πG2M2
0c

−4 is an integration constant. Note
that there is some discussion about the modifications that
should be considered for the area [42,75]. In any case, one
can develop the calculations in both ways to check that the
difference in the final results would be only quantitative
and not qualitative. Now we can write the GUP corrected
sparsity parameter ηHgup

FIG. 3. GUP modified temperatures (with α0 ¼ 1) as a
function of mass M for different values of λ corresponding to
GUP modified Hawking temperature Tgup (α0 ¼ 1 and λ ¼ 0)
and GUP modified Rényi temperatures TRgup (α0 ¼ 1 and
λ ¼ 1=2, 1). We have taken natural units such that
M0 ¼ c ¼ ℏ ¼ kB ¼ G ¼ mp ¼ 1.

FIG. 4. GUP modified Bekenstein entropy Sgup and GUP
modified Rényi entropy SRgup (with α0 ¼ 1) versus mass M
for different values of λ. We have taken natural units such that
M0 ¼ c ¼ ℏ ¼ kB ¼ G ¼ mp ¼ 1.
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�
λ2thermal

Aeff

�
Hgup

¼ 64π3

27
×
M2

h
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − α0

m2
p

M2

q i2
½16M2 − α0m2

p lnðM2

M2
0

Þ� : ð26Þ

One can see that the sparsity depends on the mass of the
black hole and that, at the initial stages of the black hole
evaporation process, the Hawking flux is sparse but its
sparsity decreases at the final stages of the evaporation (see
Fig. 5 for α0 ¼ 1, λ ¼ 0). It is worth mentioning that for
negative values of the GUP parameter α0, the sparsity
would increase during the final stages of the black hole
evaporation process [75].
In terms of Rényi temperature TR, the sparsity parameter

ηR results in the expression�
λ2thermal

Aeff

�
R
¼ 64π3
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�
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p
þ 1

�−2
: ð27Þ

Then, introducing GUPmodifications to Rényi temperature
TRgup, we derive ηRgup as
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consistently recovering ηHgup for λ → 0. The sparsity
behavior of the radiation is completely different for
Rényi temperatures. In this case, as it can be seen in
Fig. 5, the Rényi radiation is not sparse at the initial stages
of the evaporation process (so it is alike for normal emitters
in the laboratory), but when reaching the last stages of
evaporation, Rényi radiation starts being more and more
sparse till the sparsity parameter associated with Rényi
temperature reaches the same value as the sparsity param-
eter associated with Hawking temperature. This is consis-
tent with previous analysis (remember that Rényi
temperatures are much higher and heat capacity are positive
for initial stages of evaporation). This behavior at last
stages change completely with the introduction of GUP
modifications, as expected. Then, the effect is similar in all
kind of radiations and GUP effects prevent radiation (in a
general sense) from being sparse (being less sparse in
proportion to λ). So, in the case of Rényi radiation, it would
not be sparse at any moment of the evaporation, but would
be emitted continuously. This result seems to indicate that
when considering nonextensive thermodynamics and its
quantum gravity correction at last stages of evaporation,
one can see the black hole emitter is similar to a normal
emitter during the whole evolution. That allows for a
simpler and better understanding of the process and,
moreover, it shows where distinctive features of black
holes are codified, that is, in the nonextensive parameters
and the underlying quantum gravity effects. This leads to
the interest in further delving into the nonextensive
thermodynamics of gravity in general and in particular
of black holes.

V. CONCLUSIONS

We have investigated the generalized uncertainty prin-
ciple impact on the Rényi entropy and temperature for the
case of the Schwarzschild black hole. Furthermore, we
have also studied the sparsity parameters of the radiation
flux associated with Rényi and GUP modified Rényi
temperatures.
In fact, we have extended the issue of four fundamental

constants h; c; G; kB as being simultaneously present in
quantum thermostatistical expressions (2) and (3) as dis-
cussed in Ref. [50] into an extra set of parameters: GUP
parameter α0 and the nonextensivity of entropy parameter λ
[or q ¼ 1 − λ, cf. (15)]. The first of these two parameters
adds a new important aspect of black hole physics aiming
toward quantum gravity, while the second extends black
hole thermodynamics onto the area, where nonextensive
statistical mechanics applies (see Ref. [60]).
Our motivation was given by the fact that strong

gravitational fields of black holes do not exhibit additivity
of entropy and so the standard Boltzmann-Gibbs definition
of entropy does not apply. Tsallis and Rényi entropies
extend Boltzmann Gibbs statistics, so they may fit better
the demand. In the case of black holes, we assumed that

FIG. 5. The sparsity parameter λ2thermal
Aeff

as a function of mass for
different values of α0 and λ, corresponding to Hawking sparsity
(α0 ¼ λ ¼ 0), GUP modified sparsity (α0 ¼ 1 and λ ¼ 0), Rényi
sparsity (α0 ¼ 0 and λ ¼ 0; 1=2) and GUP modified Rényi
sparsity (α ¼ 1 and λ ¼ 0; 1=2), written in the legend respectively
(from top to bottom). We have taken natural units such that
M0 ¼ c ¼ ℏ ¼ kB ¼ G ¼ mp ¼ 1.
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Tsallis entropy is just the Bekenstein entropy of black holes
and that Rényi entropy could still further extend the range
of application via the parameter λ (or q) while having
another nice property of fulfilling the generalized additive
Abe rule (12). In such a construction, Tsallis entropy
becomes the limit λ → 0 of Rényi entropy which, on the
other hand, gives the whole space of nonadditive property
extensions of the black holes through the nonvanishing
range of the nonextensivity parameter λ.
We have shown that the black hole does not evaporate

completely due to the minimum length modifications and
hence, the associated GUP modified Rényi entropy and
temperature have finite values at Mc similar to the cases of
GUP modifications to Bekenstein entropy and Hawking
temperature. However, the behavior of both the temper-
atures and entropies are very different. At the initial stages,
the specific heat capacity of black holes associated with
nonextensive thermodynamics is positive, and for small
masses, it becomes negative coinciding with the Hawking
flux. This is reflected in higher initial temperature that will
decrease during evaporation till the last stages of evapo-
ration, where the semiclassical exponential growth of
temperature is corrected by the introduction of quantum
effects. Also, we see much lower initial entropy, that is,
more information on the system, that decreased along with
the evolution till a final finite value for the remnant.
Finally, we have analyzed that the radiation flux,

corresponding to Rényi temperature, is not sparse at the
initial stages of the black hole evaporation process, but the
sparsity of Rényi radiation flux increases during the black
hole evaporation process and, in the end, it reaches the
sparsity parameter of the Hawking flux. In addition to this,

we have also shown that the modification of the sparsity
parameter for the Rényi radiation flux due to the GUP
corrected Rényi temperatures leads to the radiation flux that
is less sparse than the Hawking flux.
Our analysis of nonextensive thermodynamics with

quantum gravity effects results, globally, in a radiation
flux that is not sparse in any moment of the evolution so it
behaves similar to normal emitters, a temperature that
decreases along with the evolution (with a positive heat
capacity) and not very high entropy for black holes that
slowly decreases till a finite value for the final remnant
predicted by the theory.
In a more general framework, we should emphasize that

the inclusion of quantum gravity aspects via α0 and
nonextensivity aspects via λ (or q) may have some more
consequences onto the long-term discussion related to the
problem of black hole information paradox resolution,
through quantum black hole entanglement features widely
discussed in the recent literature [8–11,82–84]. However,
this matter is left for the scope of future papers.
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